WO1997048846A1 - Nonwoven short fibre fabric and absorbent article made by using same - Google Patents

Nonwoven short fibre fabric and absorbent article made by using same Download PDF

Info

Publication number
WO1997048846A1
WO1997048846A1 PCT/JP1997/002073 JP9702073W WO9748846A1 WO 1997048846 A1 WO1997048846 A1 WO 1997048846A1 JP 9702073 W JP9702073 W JP 9702073W WO 9748846 A1 WO9748846 A1 WO 9748846A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nonwoven fabric
short
fibers
component
Prior art date
Application number
PCT/JP1997/002073
Other languages
French (fr)
Japanese (ja)
Inventor
Koki Nagano
Shigeru Hirabayashi
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26499651&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997048846(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to CA002256550A priority Critical patent/CA2256550A1/en
Priority to JP50266798A priority patent/JP3219250B2/en
Priority to EP97926261A priority patent/EP0906981A4/en
Priority to AU31077/97A priority patent/AU3107797A/en
Publication of WO1997048846A1 publication Critical patent/WO1997048846A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/60Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently
    • D04H1/62Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently at spaced points or locations
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/629Composite strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/632A single nonwoven layer comprising non-linear synthetic polymeric strand or fiber material and strand or fiber material not specified as non-linear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/632A single nonwoven layer comprising non-linear synthetic polymeric strand or fiber material and strand or fiber material not specified as non-linear
    • Y10T442/633Synthetic polymeric strand or fiber material is of staple length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric

Definitions

  • the present invention relates to a short-fiber nonwoven fabric, and more particularly, a short-fiber nonwoven fabric suitably used for sanitary materials such as disposable diapers, napkins, incontinence pads, breast milk pads, wipers, and the like, and an absorbent material using the short-fiber nonwoven fabric.
  • sanitary materials such as disposable diapers, napkins, incontinence pads, breast milk pads, wipers, and the like
  • absorbent material using the short-fiber nonwoven fabric.
  • the above-mentioned conventional nonwoven fabric uses a card machine, and the fibers are hooked by a needle cloth and arranged in the machine direction, so that the bulkiness that the fibers can contribute to the nonwoven fabric has been lost. Therefore, a bulky nonwoven fabric that sufficiently functions to contribute to the bulkiness of the fibers has not been obtained, and it was not always satisfactory.
  • An object of the present invention is to improve these drawbacks and to provide a bulky nonwoven fabric in which fibers have a sufficiently high bulkiness that can contribute to the nonwoven fabric. Disclosure of the invention
  • the short-fiber nonwoven fabric of the present invention and an absorbent article using the same are as follows.
  • the fiber length is 3 to 25 mm and the single yarn fineness is 1 to 100 denier
  • At least one of the short fibers is a short fiber having an eccentric sheath-core structure in which high-crystalline polypropylene is used as a core component and high-density polyethylene is used as a sheath component.
  • the short-fiber nonwoven fabric according to the above.
  • FIG. 1 is a side view of an apparatus for producing the nonwoven fabric of the present invention.
  • FIG. 2 is a partially cutaway plan view of the airlaid apparatus 1 in the apparatus of FIG. is there.
  • FIG. 3 is a cross-sectional view of the device of FIG. 2 taken along the line EE ′ in the direction of the arrow.
  • the fibers used in the short-fiber nonwoven fabric of the present invention include natural fibers such as pulp and cotton, rayon (regenerated fiber), acetate (semi-synthetic fiber), and nylon, vinylon, polyester, acryl, Examples include synthetic fibers such as polyethylene, polypropylene, and polystyrene.
  • any type of fiber can be used as long as it adheres when a binder is used and does not impair the uniformity of the nonwoven fabric, but a powdery binder that falls as small particles or a water solution that requires drying Thermoplastic fibers are preferred which have a heat-bonding property that allows the intersections of the fibers to adhere in a short period of time by heat treatment without using a conductive binder.
  • the fiber length of the short fibers constituting the short fiber nonwoven fabric of the present invention needs to be in the range of 3 to 25 mm, preferably 3 to 15 mm, and more preferably 5 to 1 Omm.
  • the number of crimps is about 5 metric inches (2.54 cm), so that the fiber length of a single crimp is 5 mm and the number of crimps is two.
  • the optimum fiber length is 1 Omm, which is the length of the wound fiber.
  • the fiber length is less than 3 mm, the strength of the nonwoven fabric is reduced. If the fiber length exceeds 25 mm, it is difficult to produce a uniform web because the fibers are entangled before passing through a sieve or screen.
  • the thickness of the fiber is from 1 to 100 denier, preferably from 1.5 to 35 denier, more preferably from 1.5 to 20 denier.
  • the thickness of the fiber is less than 1 denier, the fiber density in the cylindrical screen increases, and a uniform web cannot be produced. Also, if the fiber thickness exceeds 100 denier, a uniform force can be produced because the force between the fibers increases. Peg.
  • Specific volume of the short fiber nonwoven fabric of the present invention is 4 0 ⁇ 2 00 cm 3 Zg, good or Ku is 7 0 ⁇ 1 5 0 cm Zg. If the specific volume of the nonwoven fabric is less than 4 O cm 3 / g, the nonwoven fabric becomes hard and is not preferable. On the other hand, if the specific volume of the nonwoven fabric exceeds 200 cm 3 Zg, the strength of the nonwoven fabric becomes small, which is not preferable.
  • the number of fiber lump having a volume of 1 mm 3 or more in the nonwoven fabric needs to be 5 or less per 20 g of the nonwoven fabric. If the amount of the fiber lumps having the specific size mixed in the nonwoven fabric exceeds the above range, the nonwoven fabric becomes non-uniform, a rough feeling occurs, and the color of the nonwoven fabric becomes uneven due to the fiber lumps. Any inconvenience occurs and is not preferred.
  • the fiber used in the short-fiber nonwoven fabric of the present invention is a composite fiber composed of at least two components (hereinafter, referred to as component (A) and component (B)), the following resins and the like can be used as a raw material.
  • Examples of the resin (A) include polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and a binary or terpolymer of propylene with another ⁇ -olefin.
  • the resin of the component for example, polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, a binary or terpolymer of propylene with other ⁇ -olefins Etc.
  • Other spinnable resins such as a mixture of resins, can be used.
  • the difference between the melting points of the (A) and (B) component resins is preferably 10 ° C. or more.
  • the low melting point component of the composite fiber is melted, the high melting point component remains as it is, and the intersection of the fibers is thermally bonded.
  • a heat-bonding nonwoven fabric having a three-dimensional network structure can be formed.
  • the melting point means the softening point.
  • the measurement of the softening point conforms to JIS K2530.
  • Examples of such a combination of the resin components (A) and (B) include, for example, high-density polyethylene polypropylene, low-density polyethylene propylene-ethylene butene-1 crystalline copolymer, high-density polyethylene / polyethylene terephthalate, and nylon 6Z.
  • Nylon 66 low melting point polyester Z polyethylene terephthalate, polypropylene Z polyethylene terephthalate, polyvinylidene fluoride / polyethylene terephthalate, mixture of linear low-density polyethylene and high-density polyethylene Polyethylene terephthalate Etc. can be exemplified.
  • thermoplastic conjugate fiber is made of an olefin-based resin or a polyester-based resin, or a combination of both.
  • examples of such a combination of the (A) and (B) resin components include, for example, high-density polyethylene Z polypropylene, Low-density poly (ethylene propylene) -ethylene butene-1 crystalline copolymer, high-density polyethylene Z polyethylene terephthalate, low-melting polyester / polyethylene terephthalate, polypropylene / Examples include polyethylene terephthalate and linear low-density polyethylene zpolyethylene terephthalate.
  • the form of the composite fiber is a sheath-core type, an eccentric sheath-core type, a side-by-side type, a multilayer type having three or more layers, a hollow multilayer type, a heterogeneous (non-circular) multilayer type, etc., and the resin components (A) and (B) Among them, a structure in which the low melting point resin component forms at least a part of the fiber surface may be used.
  • the most preferable combination of the constituent components of the composite fiber and its form is a composite fiber having an eccentric sheath-core structure in which the thermoplastic composite fiber has a highly crystalline polypropylene as a core component and a high-density polyethylene as a sheath component. And it has a spiral crimp. Since a fiber having a spiral crimp has a large storage space per single yarn, a web formed by laminating becomes extremely bulky.
  • the bulkiness of the tube greatly depends on the number of crimps of the thermoplastic fiber used, and it is particularly preferable that the fiber has a helical crimp of 3 to 20 mountains Z inches (2.54 cm).
  • “3 to 20 inches (2.54 cm)” means that the number of crimps per 1 inch (ie, 2.54 cm) of fiber length is 3 to 20 mountains. . More preferably, it is a fiber having a helical crimp of 5 to 15 mountain inches (2.54 cm), more preferably 5 to 10 mountain inches (2.54 cm).
  • a nonwoven fabric using fibers having a crimp number in this range is very bulky and preferable.
  • the bulk of the nonwoven fabric tends to be small, as in the case of straight fibers.
  • the number of crimps of the spiral type is considerably larger than 20 mountains Z inches (2.54 cm)
  • the bulk of the nonwoven fabric tends to decrease on the contrary because the holding space per single yarn is small. is there.
  • the composite ratio of the low melting point resin component to the high melting point resin component is 10 to 90% by weight for the low melting point resin component and 90 to 10% by weight for the high melting point resin component. It is. More preferably, the low melting point resin component is 30 to 70% by weight, and the high melting point resin component is 70 to 30% by weight.
  • the low-melting resin component is less than 10% by weight, the heat-bondable nonwoven fabric made of the composite fiber has insufficient tensile strength, and when it exceeds 90% by weight, the core remaining without being melted at the time of thermal bonding is too small. Therefore, the bulk of the heat-bonded nonwoven fabric made of the conjugate fiber tends to be small.
  • the nonwoven fabric When the short fibers are straight, the nonwoven fabric is very uniform, but the bulk is small and very flat, which narrows the range of application and development as a product. .
  • Examples of the crimped shape of the short fibers used in the short-fiber nonwoven fabric of the present invention include spiral (three-dimensional crimped), zigzag, and wavy shapes. Short fibers having crimps of any of these shapes can be used for the short fiber nonwoven fabric of the present invention, but spiral crimps are most preferred.
  • a method of not pulling the tube may be considered. For example, there is a method of producing the tube by dropping the fibers. According to the method of dispersing fibers one after another, the fibers are not entangled with each other and pulled, so that the bulkiness of the fibers themselves is not impaired and the bulkiness of the fibers is fully functioned. Nonwoven fabrics can be made.
  • Some short fibers are easily entangled and others are hard to be entangled.
  • the crimps having a zigzag shape and having a large number of crimps and / or having a large crimp set force tend to be relatively easily entangled.
  • short fibers with a crimped wavy shape tend to be easily entangled because the ends of the fibers are fishhook-shaped, and short fibers with a crimped spiral shape are located close to the circumference of the same circle. It is particularly preferable because it is difficult to get entangled.
  • the unspread portion can be reduced by selecting the shape of the crimp.
  • the crimped shape is more wavy than the zigzag shape, and more helical than the wavy shape, in which the fibers are easily dispersed and the unspread portion is small. In other words, the occurrence of the entanglement between the fibers and the unopened portion can be suppressed by the shape of the crimp.
  • the fiber is uniformly dispersed three-dimensionally, and the fiber is deposited to produce a tube.
  • the object of the present invention of providing a bulky nonwoven fabric having a sufficiently high bulkiness that fibers can contribute to the nonwoven fabric can be achieved.
  • the nonwoven fabric made by the method of sieving the fiber and passing it through the screen is a three-dimensionally dispersed and piled down fiber, so it is compared to a nonwoven fabric in which the fiber is aligned in one direction by a force machine.
  • the nonwoven fabric is particularly suitable for applications that have a soft feeling and directly touch the body, for example, absorbent articles such as disposable diapers and napkins.
  • a large specific volume means that it is bulky and has a high cushioning property, so it can be used for bandages and eye patches, ranchon mats, cooking utensils, glassware packaging materials, fruits and vegetables, cut flower packaging materials, musical instruments and furniture. It is suitable for use in applications requiring cushioning, such as packaging materials.
  • the heat-adhesive conjugate fiber used for the short-fiber nonwoven fabric of the present invention can be produced, for example, by the following steps.
  • Undrawn yarn from 3 denier to 400 denier is produced by drawing at a discharge rate of 100 g / min to 200 g / min and a take-up speed of 40 m / min to 1300 m / min. I do. Not yet The drawn yarn is drawn between the two rolls heated from 60 ° C. to 120 ° C. with the rotation speed of the second roll being higher than the rotation speed of the first roll. By setting the ratio of the rotation speed of the first roll to the rotation speed of the second roll between 1: 2 and 1: 5, a drawn yarn of 1 denier or 100 denier is produced. .
  • a finishing agent is applied to the drawn yarn with a touch roll, it is passed through a box-type crimping machine to produce a crimped tow.
  • the number of crimps is preferably 0 to 25 peaks per inch. Since the tow contains about 10% by weight of moisture, it is dried at 60 ° C to 120 ° C using a dryer. The dried tow is cut to a fixed fiber length within a fiber length range of 3 mm to 25 mm using a push-to-cut type cutter. Such a fiber length is substantially shorter than the fiber used for the conventional card nonwoven fabric.
  • Nonwoven fabric when fabricating non-woven fabric, use multiple forming heads and use different fineness or different crimped short fibers in each forming part to have density gradient in the thickness direction.
  • Nonwoven fabric can be produced.
  • the nonwoven fabric having a density gradient in the thickness direction manufactured in this way can be used as a nonwoven fabric material for filters such as liquid filters and air filters.
  • the short-fiber nonwoven fabric produced as described above can be used as an absorbent article, such as a disposable diaper, as a surface nonwoven fabric, a second sheet, or a backing sheet.
  • the short fiber nonwoven fabric is bulky, it is suitable as a second sheet requiring bulkiness.
  • a nonwoven fabric obtained by mixing pulp, heat-fusible fibers and a high water-absorbing material is suitable as an absorber that does not lose its shape during urine absorption.
  • the short-fiber nonwoven fabric of the present invention can be produced as follows using short fibers having a fiber length of 3 to 25 mm using an air-laid apparatus.
  • Air raid device 1 has an opening only on the lower surface as shown in Figs.
  • a casing 2 having a trapezoidal cross section, fiber inlets 3 and 4 provided at both ends of the casing 2, respectively, facing the inlets 3 and 4, and being parallel to a side surface of the casing 2.
  • the web forming heads 5 and 6 made of rotatable cylindrical screens 5a and 6a are provided so as to be in sliding contact with the inner walls of the cylindrical screens 5a and 6a, respectively.
  • Fiber circulating zones 7 provided between both end portions of the provided needle rolls 5b and 6b and the cylindrical screens 5a and 6a, and both end surfaces of the casing 2 respectively.
  • a net conveyor 9a is provided directly below the lower surface of the arrayed device 1, and a pair of drive rolls 17a and 17b and a suction device 10 are attached to the net conveyor 9a.
  • a suction dryer 12 for thermally bonding the composite fibers constituting the web and a net conveyor 19b for passing the web here are attached, and below the net conveyor 19b.
  • a pair of drive rolls 17c17d for moving the conveyor 9b is provided, and a compression roll 11 is provided on the drive roll 17c with the net conveyor 19b interposed therebetween.
  • a feed roll 18 for feeding the produced heat-bondable nonwoven fabric 14 and a pair of drive rolls 19 a and 19 b for driving the take-up roll 14 are provided.
  • the short fibers are sent to a cotton feeding circulation duct communicating with the fiber inlets 3 and 4 after the fibers are opened mechanically by a weaving machine (not shown).
  • the fibers 15 fed into the fiber inlets 3 and 4 pass through the passage formed by the cylindrical screens 5a and 6a and the fiber circulation zones 7 and 8 by arrows C1, C2 and C2 in FIG. While being moved in the directions of C 3 and C 4 and in the directions of arrows D l, D 2, D 3 and D 4, they are mixed and circulated. As shown in Fig. 3, the circulated fibers are used as needle rolls 5b and 6b that rotate in the direction of arrow AA 'and a cylindrical screen that rotates in the direction of arrow BB'.
  • the web 16 is compressed by a web compression roll 11 and then supplied to a suction dryer 12 where the melting point is higher than the low melting point component and lower than the high melting point component, for example, from 90 ° C to 170 ° C.
  • the heat treatment at a temperature of ° C for 3 to 10 seconds, the low-melting-point component of the conjugate fiber is melted, and the high-melting-point component remains as it is, thereby forming a three-dimensional net peak.
  • the heat-bonding non-woven fabric 13 of the structure is formed and wound on the winding roll 14.
  • a method of passing through a sieve or a net made of various meshes may be used as a manufacturing method, and specifically, a method of passing through a screen. It is preferable to use a method of dispersing and accumulating the particles by making them fall.
  • the shape of the holes in the cylindrical screens 5a and 6a used for the air-laid device are usually horizontally long rectangles, but the vertical length is l ⁇ 3mm and the horizontal length is 15 ⁇ A 3 O mm rectangle is preferred.
  • the shape of the hole may be a circle, a triangle, a rectangle, a polygon, an ellipse, or the like in addition to a horizontally long rectangle.
  • the screen porosity is preferably 20% to 50%.
  • the nonwoven fabrics composed of the heat-adhesive conjugate fibers are heat-sealed at the intersections of the fibers by heat treatment with a suction dryer 112 after forming the web.
  • This heat treatment is performed by a suction dryer 1
  • the heating may be performed using a heating device such as a heat calender roll.
  • the basis weight of the obtained nonwoven fabric is not particularly limited, but is preferably about 10 to 1000 g / m 2 .
  • wiper about 10 when the filter; I 00 0 g / m 2 is preferred.
  • the apparent density of the non-woven fabric is not particularly limited, and is preferably about 0.017 to 0.10 g / cm 3 in consideration of force and texture.
  • a higher density nonwoven fabric can be obtained by subjecting the nonwoven fabric to post-processing such as hot pressing or hot roll processing.
  • the heat-bonding nonwoven fabric of the short-fiber nonwoven fabric of the present invention preferably has a thermocompression bonding area ratio of 10 to 30% when a heat calender roll is used to thermally fuse intersections of fibers.
  • a heat calender roll is used to thermally fuse intersections of fibers.
  • the short-fiber nonwoven fabric of the present invention can be used for various applications either alone or by lamination, sewing, heat fusion, and the like with other members.
  • the short-fiber nonwoven fabric of the present invention can be used for various applications either alone or by lamination, sewing, heat fusion, and the like with other members.
  • it when used as a member of pants-type disposable diapers, it can be used for parts that require both texture and strength, such as surface materials and back sheets.
  • other members such as an elastic member for tightly attaching the trunk and the legs, or the thermo-adhesive nonwoven fabric.
  • the heat-bondable nonwoven fabric can be laminated with other nonwoven fabrics, tissue papers, webs, films and the like, and used as a cover material for the front surface material ⁇ a cover material for the back surface material.
  • the short-fiber nonwoven fabric of the present invention can be used for wipers of furniture, cars, etc. by adhering various lubricants and the like.
  • the short fiber nonwoven fabric is folded or formed into a cylindrical shape, the thermoadhesive nonwoven fabric is wound into a tubular shape, or the thermoadhesive nonwoven fabric is rolled while being heated, and the layer is heated.
  • Post-processing such as molding into a fused cylinder and filter media can do.
  • the definition and measurement method of the physical property values and the like of the heat-bondable nonwoven fabric in this example are as follows.
  • the specific volume of the short-fiber nonwoven fabric in Table 1 was defined as follows and measured.
  • the basis weight and thickness of the nonwoven fabric were measured, and the calculated value was used as the value of the specific volume.
  • X represents the basis weight (gZm 2 ) of the nonwoven fabric
  • Y represents the thickness (cm) of the nonwoven fabric.
  • the size of the nonwoven fabric sample was 25 cm in length and 25 cm in width, and the number of fiber masses of the short fiber nonwoven fabric in Table 1 was defined as follows and measured.
  • the rayon fiber and the heat-fused fiber 15 passed through the opening machine are fed to the fiber feed ports 3 and 4 via the cotton feeding circulation duct, and the rotating cylindrical screens 5a and 6a are rotated.
  • the fiber was discharged from.
  • the discharged fibers were collected by a net conveyor 19a of a suction device 10 operated at 9 Om / min, and a web 16 was produced.
  • the physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 3.6 mm, a specific volume of 144 cm 3 Zg, and a number of fiber clumps of 2.1 / "20 g.
  • the results are shown in Table 1. (Example 2)
  • the temperature of the first roll is 90 ° C
  • the temperature of the second roll is 20 ° C
  • the rotational speed ratio of the first roll to the second roll is 1: 4.
  • Stretching was performed between two rolls set at 5, to produce a drawn yarn having a helical crimp of 3 denier.
  • the drawn yarn having the helical crimp was cut by using a push-off type force cutter to produce a fiber having a fiber length of 5 mm.
  • the composite fiber was passed through a weaving machine, mechanically opened the fiber, and then supplied to an air-laid apparatus shown in Figs. 1 to 5 for processing. That is, the opened composite fiber 18 was fed into the fiber inlets 3 and 4 via the cotton circulation duct, and the fibers were discharged from the rotating cylindrical screens 5a and 6a.
  • the discharged fibers were collected by a net conveyor 9a having a suction device 10 operating at 9 Om / min to produce a web 16.
  • heat treatment at 150 ° C for 3 seconds using a suction dryer 12 to melt-bond the high-density polyethylene of the sheath component to produce a nonwoven fabric 13. It was wound on a take-up roll 14.
  • the physical properties of the obtained nonwoven fabric were as follows: basis weight 25 gZm 2 , thickness 4.6 mm, The volume was 18.5 cm 3 Zg, and the number of fiber masses was 1.2 pieces / 20 g. Table 1 shows the results.
  • a nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length of the conjugate fiber was set to 1 Omm.
  • a nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length of the conjugate fiber was changed to 15 mm.
  • a method for producing a nonwoven fabric using polyester short fibers and parallel type composite fibers is produced.
  • Number of crimps 14 Parallel type consisting of 30% by weight of 2 d / f X 5 mm polyester fiber having a zigzag crimp of 14 inches (2.54 cm), polypropylene component and high density polyethylene component 70% by weight of a 2 d / fx 5 mm conjugate fiber having a helical crimp of 6 crimps / inch (2.54 cm), which is a conjugate fiber, is fed into the opening machine and passed therethrough. After mechanically weaving the fibers, they were fed to the air-laid apparatus shown in Figs.
  • the opened polyester fiber and the parallel type composite fiber 15 were fed into fiber inlets 3 and 4 and the fibers were discharged from the rotating cylindrical screens 5a and 6a.
  • the discharged fibers were collected by a net conveyor 19a having a suction device 10 operated at 9 OmZmin to produce a web 16.
  • a suction drier 12 After compressing this tube with a tube compression roll 11, use a suction drier 12 to 150.
  • the high-density polyethylene of the sheath component was melt-bonded to produce a nonwoven fabric 13, which was taken up on a take-up roll 14.
  • Example 6 was the same as Example 6 except that the take-up speed was 4 17 mZm in, the undrawn yarn of 72 denier, the drawn yarn of 18 denier, and the number of spiral crimps was 6 mountains Z inches (2.54 cm). Fibers were produced under the same conditions.
  • the conditions for producing the nonwoven fabric were the same as in Example 5.
  • spinning was performed at a discharge rate of 450 g / min, and drawing was performed at a take-up speed of 919 mZmin, thereby producing 7.1-denier undrawn yarn.
  • the yarn was cooled by air cooling just below the spinneret.
  • the unstretched yarn is stretched between two rolls heated to 90 DC each by setting the rotation speed ratio of the first roll and the second roll to 1: 4, and the 2 denier stretched yarn is formed.
  • a finishing agent containing lauryl phosphate potassium salt as a main component to the drawn yarn using evening rolls, the yarn is passed through a box-type crimping machine to form a tow having 14 zigzag crimps per inch. Produced.
  • the tow contained moisture, it was dried at 90 ° C using a dryer, and then cut using a push-cut type cutlet to produce a fiber with a fiber length of 10 mm.
  • the conditions for producing the nonwoven fabric were the same as in Example 5.
  • the physical properties of the obtained nonwoven fabric were a basis weight of 25 g / m 2 , a thickness of 2.8 mm, a specific volume of 79 cm 3 Zg, and the number of fiber masses 4.5 Z 20 g. Table 1 shows the results.
  • a heat-fusible conjugate fiber was produced under the same conditions as in Example 8, except that 12 zig-zag crimps were applied per inch and the fiber length was set to 1 Omm.
  • the conditions for producing the nonwoven fabric were the same as in Example 5.
  • a fiber was produced under the same conditions as in Example 8 except that the yarn, 100 denier drawn yarn, 10 zigzag crimps per inch, and a fiber length of 25 mm were used.
  • the conditions for producing the nonwoven fabric were the same as in Example 5.
  • Discharge ratio of high crystalline polypropylene with MFR 1 1 g / 10 min (JISK7210 condition 14) as core component and high density polyethylene of MI-16.5 gXl 0 min (JISK7210 condition 4) as sheath component
  • a 5-denier undrawn yarn was produced by spinning at a discharge rate of 350 g / min and a take-up speed of 995 mZmin using a sheath-core composite spinneret having 5 to 5 holes and 621 holes. During spinning, the yarn was cooled by air cooling just below the spinneret.
  • the first roll temperature was set to 90 ° C
  • the second roll temperature was set to 20 ° C
  • the rotation speed ratio of the first roll to the second roll was 1: 1. 4.
  • Stretched between two rolls set at 5. After applying a finishing agent containing lauryl phosphate potassium salt as the main component to this drawn yarn with Tytrol, it is passed through a box-type crimping machine to produce 9 wavy ridges per inch (2.54 cm). A tow having a crimp was produced.
  • the drawn yarn having the wavy crimp was cut using a push-cut type cutter to produce a fiber having a fiber length of 5 mm.
  • the conditions for producing the nonwoven fabric were the same as in Example 5.
  • the physical properties of the obtained nonwoven fabric were 23 g in weight, 3.75 mm in thickness, specific volume of 163 cm 3 / g, and 18 pieces of fiber mass Z20 g. Table 1 shows the results.
  • the first roll temperature was set to 90 ° C
  • the second roll temperature was set to 20 ° C
  • the rotation speed ratio of the first roll to the second roll was 1: 1.
  • the film was drawn between two rolls set to 4.5 to produce a drawn yarn having a spiral crimp of 2 denier.
  • the extended drawn yarn having the helical crimp was cut using a push-cut type cutter to produce a fiber having a fiber length of 1 Omm.
  • the nonwoven fabric was produced under the same conditions as in Example 5.
  • Crystalline polyethylene terephthalate with intrinsic viscosity of 0.68 d1 Zg as the core component, and high-density polyethylene with M1 16.5 gZ10 min (JISK 7210 condition 4) as the sheath component at a discharge ratio of 5 to 5.
  • spinning was performed at a discharge rate of 450 gZmin, and drawing was performed at a drawing speed of 1035 mZmin to produce an undrawn yarn of 6,3 denier.
  • the yarn is cooled by air cooling just below the spinneret. Rejected.
  • the undrawn yarn was drawn between two rolls each heated to 90 ° C. with the rotation speed ratio of the first roll and the second roll set to 1: 3.3.
  • a finishing agent containing lauryl phosphate potassium salt as a main component to the drawn yarn with evening rolls
  • the yarn is passed through a box-type crimping machine to form a wavy crimp of 5 peaks per inch (2.54 cm).
  • the drawn yarn having the wavy crimp was cut using a push-type cutter to produce a fiber having a fiber length of 1 Omm.
  • the conditions for producing the nonwoven fabric were the same as in Example 5.
  • a nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length was 38 mm and a carding machine was used during the production of the web.
  • the physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 0.9 mm, a specific volume of 36 cm 3 Zg, and the number of fiber masses was 0.9 / 20 g.
  • the nonwoven fabric Since it was a card nonwoven fabric, the nonwoven fabric had a smaller specific volume than the other examples.
  • a nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length was 30 mm.
  • the physical properties of the obtained nonwoven fabric are as follows: basis weight 25 g / n ⁇ , thickness 2.75 mm, The specific volume was 110 cm 3 Z g and the number of fiber mass was 8.5 Z 20 g. Although it is an airlaid nonwoven fabric, since the fiber length is longer than 25 mm, the fibers are easily entangled and the nonwoven fabric has a large number of fiber clumps. Therefore, the obtained non-woven fabric was poor in uniformity, had a feeling of graininess, noticeable white portions due to fiber mass, and non-uniform hue. Therefore, this nonwoven fabric was judged to have a poor texture. The results are shown in Table 1.
  • a commercially available disposable diaper having a substantially I-shaped planar cross section substantially similar to that of a railroad rail was used, and only the surface material of the disposable diaper was substantially replaced with the heat-adhesive nonwoven fabric described in Example 2.
  • the commercially available disposable diaper uses a polyethylene / polypropylene-based heat-fusible composite fiber staple, and has a surface material of a non-woven fabric in which intersections of the fibers are heat-sealed, and a water-absorbing material mainly composed of pulp and a highly water-absorbent resin. , And a diaper with a polyethylene film as the backing material. Only the surface material was cut off from the diaper with a knife. The heat-adhesive nonwoven fabric obtained in Example 3 was laminated on the same portion instead of the cut and removed surface material. Further, the heat-bonding nonwoven fabric and the nonwoven fabric near the remaining leg portions were heat-sealed.
  • the fiber length of the fibers used in the heat-bondable nonwoven fabric of the present invention is shorter than that of the nonwoven fabric by the card method, the number of fibers increases, so that the dispersion of fibers becomes less dense and dense, and a uniform nonwoven fabric is obtained.
  • the non-woven fabric is formed by dispersing the fibers and being deposited, the density and the air permeability are lower than those of the card nonwoven fabric in which the fibers are hooked and oriented.
  • the short-fiber nonwoven fabric of the present invention is formed by dispersing and depositing short fibers using short fibers to form a nonwoven fabric, so that the nonwoven fabric obtained by the force method is hindered in bulkiness by pulling the fibers. Thus, a bulky and soft nonwoven fabric can be obtained.
  • the short fiber nonwoven fabric of the present invention has a shorter fiber length than the card method nonwoven fabric, it is laminated in a randomly dispersed state, so that unevenness in the density of fibers is reduced and a uniform nonwoven fabric is obtained. Furthermore, since the nonwoven fabric is formed by dispersing the fibers in a three-dimensional direction and accumulating them, the density is lower than that of the card nonwoven fabric in which the fibers are hooked and oriented. Are better. Industrial applicability
  • the nonwoven fabric of the present invention is suitably used for applications that have a soft feeling and directly touch the body, for example, absorbent articles such as disposable diapers, napkins, incontinence pads, and breast milk pads.
  • absorbent articles such as disposable diapers, napkins, incontinence pads, and breast milk pads.
  • it has a large specific volume, is bulky and has good cushioning properties, so it can be used for bandages, eyeglasses, luncheon mats, cooking dishes, glassware packaging, fruits and vegetables, cut flowers, musical instruments and furniture. It is suitably used for applications that require buffering properties.
  • a non-woven fabric base having a non-woven fabric having a density gradient in the thickness direction can be used as a non-woven fabric material for filters such as liquid filters and air filters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

A nonwoven short fibre fabric which comprises short fibers which have a fibre length of 3 to 25 mm and a single yarn fineness of 1 to 100 denier and which are dispersed and piled up, and nodes of which are bonded to one another. Fibre wads composed of short fibres and having a volume of at least 1 mm3 in the nonwoven fabric of 20 g are five or less in number, and the nonwoven short fibre fabric has a specific volume of 40 to 200 cm?3?/g. The nonwoven fabric can provide a bulky nonwoven fabric functioning sufficiently to contribute to bulkiness due to fibres, and is suitably used for sanitary materials such as disposable diapers, napkins, pads for incontinence, pads for mother's milk, or wipers.

Description

明細書 短繊維不織布及びそれを用いた吸収性物品 技術分野  Description Short fiber nonwoven fabric and absorbent article using the same
本発明は、 短繊維不織布に関し、 さらに詳しくは紙おむつ、 ナプキン、 失禁用パッ ト、 母乳パッ ト等の衛生材料、 またはワイパーなどに好適に 用いられる短繊維不織布及びこの短繊維不織布を用いた吸収性物品に関 する。 背景技術  The present invention relates to a short-fiber nonwoven fabric, and more particularly, a short-fiber nonwoven fabric suitably used for sanitary materials such as disposable diapers, napkins, incontinence pads, breast milk pads, wipers, and the like, and an absorbent material using the short-fiber nonwoven fabric. Regarding goods. Background art
従来、 この種の短繊維不織布としては、 特公昭 5 2— 1 2 8 3 0号公 報に記載されるように、 カード機を用いて熱接着性複合繊維を引き揃え、 所定の目付けになるように積層, 絡合させた後、 熱処理して繊維相互を 融着させて形成した不織布が知られている。  Conventionally, as this kind of short-fiber nonwoven fabric, as described in Japanese Patent Publication No. 52-12830, the heat-adhesive conjugate fibers are aligned using a card machine to achieve a specified basis weight. A nonwoven fabric formed by laminating and entangled in a manner as described above and then heat-treating to fuse the fibers together is known.
しかしながら、 上記従来の不織布は、 カード機を使用しており針布に より繊維を引っ掛けて機械方向に並べるため、 繊維が不織布に寄与し得 る嵩高性を失わせてしまっていた。 したがって、 繊維による嵩高性への 寄与を十分機能させた嵩高性不織布は得られておらず、 必ずしも満足で きるものではなかった。  However, the above-mentioned conventional nonwoven fabric uses a card machine, and the fibers are hooked by a needle cloth and arranged in the machine direction, so that the bulkiness that the fibers can contribute to the nonwoven fabric has been lost. Therefore, a bulky nonwoven fabric that sufficiently functions to contribute to the bulkiness of the fibers has not been obtained, and it was not always satisfactory.
本発明は、 これらの欠点を改良し、 繊維が不織布に寄与し得る嵩高性 を十分機能させた嵩高性不織布を提供することを目的とする。 発明の開示  An object of the present invention is to improve these drawbacks and to provide a bulky nonwoven fabric in which fibers have a sufficiently high bulkiness that can contribute to the nonwoven fabric. Disclosure of the invention
本発明の短繊維不織布及びそれを用いた吸収性物品は次の様である。 ( 1 ) 繊維長が 3〜2 5 m mであり、 単糸繊度が 1〜 1 0 0デニール である 1種類以上の短繊維が分散して降り積もらされてなり、 かつ該短 繊維同士の交点が接着されている不織布であって、 該不織布の比容積が 40〜 2 00 c m3 /gであり、 該不織布中に存在する前記短繊維から なる体積 l mm3 以上の繊維塊の個数が該不織布 2 0 gあたりに 5個以 下である短繊維不織布。 The short-fiber nonwoven fabric of the present invention and an absorbent article using the same are as follows. (1) The fiber length is 3 to 25 mm and the single yarn fineness is 1 to 100 denier A non-woven fabric in which one or more types of short fibers are dispersed and deposited, and the intersections of the short fibers are bonded to each other, and the specific volume of the non-woven fabric is 40 to 200 cm 3 / g. A short-fiber nonwoven fabric, wherein the number of fiber lump having a volume of l mm 3 or more composed of the short fibers present in the nonwoven fabric is 5 or less per 20 g of the nonwoven fabric.
(2) 短繊維の繊維長が、 5~ 1 0 mmである前記 (1 ) 項記載の短 繊維不織布。  (2) The short-fiber nonwoven fabric according to (1), wherein the short fiber has a fiber length of 5 to 10 mm.
(3) 短繊維のうちの少なくとも 1種が、 捲縮数 3〜20山 Z吋 (2. 54 c m) の螺旋型捲縮を有する短繊維である前記 (1) 項に記載の短 繊維不織布。  (3) The short-fiber nonwoven fabric according to the above (1), wherein at least one of the short fibers is a short fiber having a helical crimp of 3 to 20 mountains Z inches (2.54 cm). .
(4) 短繊維のうちの少なく とも 1種が、 熱可塑性繊維である前記 (1) 項に記載の短繊維不織布。  (4) The short-fiber nonwoven fabric according to the above (1), wherein at least one of the short fibers is a thermoplastic fiber.
(5) 短繊維のうちの少なく とも 1種が、 ォレフィ ン系またはポリエ ステル系の熱可塑性短繊維である前記 (1) 項に記載の短繊維不織布。  (5) The short-fiber nonwoven fabric according to the above (1), wherein at least one of the short fibers is an olefin- or polyester-based thermoplastic short fiber.
(6) 短繊維のうちの少なく とも 1種が、 該繊維中に熱融着可能な成 分を 1成分として含む熱可塑性複合短繊維である前記 ( 1) 項に記載の 短繊維不織布。  (6) The short-fiber nonwoven fabric according to the above (1), wherein at least one of the short fibers is a thermoplastic composite short fiber containing a heat-fusible component as one component in the fiber.
(7) 短繊維のうちの少なく とも 1種が、 高結晶性ポリプロピレンを 芯成分とし、 高密度ポリエチレンを鞘成分とする偏心型鞘芯構造を有す る短繊維である前記 (1) 項に記載の短繊維不織布。  (7) At least one of the short fibers is a short fiber having an eccentric sheath-core structure in which high-crystalline polypropylene is used as a core component and high-density polyethylene is used as a sheath component. The short-fiber nonwoven fabric according to the above.
(8) 前記 (1) 〜 (7) 項のいずれかに記載の短繊維不織布を用い た吸収性物 ππο 図面の簡単な説明  (8) Absorbent material using short-fiber nonwoven fabric according to any one of (1) to (7) above ππο Brief description of drawings
図 1は、 本発明の不織布を製造する装置の側面図である。  FIG. 1 is a side view of an apparatus for producing the nonwoven fabric of the present invention.
図 2は、 図 1の装置におけるエアレイ ド装置 1の一部切欠き平面図で ある。 FIG. 2 is a partially cutaway plan view of the airlaid apparatus 1 in the apparatus of FIG. is there.
図 3は、 図 2の装置の E— E ' ラインに沿った矢印方向断面図である。 発明を実施するための最良の形態  FIG. 3 is a cross-sectional view of the device of FIG. 2 taken along the line EE ′ in the direction of the arrow. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の短繊維不織布に使用される繊維としてはパルプ, コ ッ ト ン等 の天然繊維, レーヨ ン (再生繊維) , アセテー ト (半合成繊維) , 及び ナイロン, ビニロ ン, ポリエステル, アク リル, ポリエチレン, ポリプ ロピレン, ポリ スチレン等の合成繊維が挙げられる。 要はバインダーを 用いた場合に接着し、 不織布の均一性を阻害しないものであれば、 どの ような種類の繊維でも良いが、 小さな粒子として落下するパウダー状の のバインダーや乾燥を必要とする水溶性のバインダ一を用いないで熱処 理により短時間に繊維同士の交点が接着できる熱接着性を有する熱可塑 性繊維が好ましい。  The fibers used in the short-fiber nonwoven fabric of the present invention include natural fibers such as pulp and cotton, rayon (regenerated fiber), acetate (semi-synthetic fiber), and nylon, vinylon, polyester, acryl, Examples include synthetic fibers such as polyethylene, polypropylene, and polystyrene. In essence, any type of fiber can be used as long as it adheres when a binder is used and does not impair the uniformity of the nonwoven fabric, but a powdery binder that falls as small particles or a water solution that requires drying Thermoplastic fibers are preferred which have a heat-bonding property that allows the intersections of the fibers to adhere in a short period of time by heat treatment without using a conductive binder.
本発明の短繊維不織布を構成する短繊維の繊維長は 3〜 25 mmの範 囲であることが必要であり、 好ましくは 3〜15mm、 さらに好ましく は 5〜1 Ommである。 特に捲縮が螺旋状の場合、 捲縮数が 5山ノ吋 (2. 54 cm) 程度であることから、 捲縮が一回卷きする繊維長であ る 5 mm及び捲縮が 2回巻き分の繊維長である 1 Ommが最適な繊維長 である。 繊維長が 3mm未満の場合、 不織布の強力が小さくなる。 また、 繊維長が 25 mmを越える場合、 篩いまたはスク リーンを通過する前に 繊維同士が絡むため均一なゥェブが作製できにく くなる。  The fiber length of the short fibers constituting the short fiber nonwoven fabric of the present invention needs to be in the range of 3 to 25 mm, preferably 3 to 15 mm, and more preferably 5 to 1 Omm. In particular, when the crimp is helical, the number of crimps is about 5 metric inches (2.54 cm), so that the fiber length of a single crimp is 5 mm and the number of crimps is two. The optimum fiber length is 1 Omm, which is the length of the wound fiber. When the fiber length is less than 3 mm, the strength of the nonwoven fabric is reduced. If the fiber length exceeds 25 mm, it is difficult to produce a uniform web because the fibers are entangled before passing through a sieve or screen.
繊維の太さは 1〜 1 00デニール、 好ましくは 1. 5〜35デニール、 さらに好ましいのは 1. 5〜20デニールである。 繊維の太さが 1デニ ール未満の場合、 筒状のスク リ一ン内の繊維密度が大きくなり、 均一な ゥヱブが作製できなくなる。 また、 繊維の太さが 100デニールを越え る場合、 繊維同士が絡む力が大きくなるため均一なゥ ブが作製できに く い。 The thickness of the fiber is from 1 to 100 denier, preferably from 1.5 to 35 denier, more preferably from 1.5 to 20 denier. When the thickness of the fiber is less than 1 denier, the fiber density in the cylindrical screen increases, and a uniform web cannot be produced. Also, if the fiber thickness exceeds 100 denier, a uniform force can be produced because the force between the fibers increases. Peg.
本発明の短繊維不織布の比容積は 4 0〜 2 00 c m3 Zgであり、 好 ま く は 7 0〜 1 5 0 c m Zgである。 不織布の比容積が 4 O c m3 / g未満の場合、 不織布が硬く なり好ま しく ない。 また、 不織布の比容積 が 2 00 c m3 Zgを越える場合は不織布強力が小さくなり好ましく な い Specific volume of the short fiber nonwoven fabric of the present invention is 4 0~ 2 00 cm 3 Zg, good or Ku is 7 0~ 1 5 0 cm Zg. If the specific volume of the nonwoven fabric is less than 4 O cm 3 / g, the nonwoven fabric becomes hard and is not preferable. On the other hand, if the specific volume of the nonwoven fabric exceeds 200 cm 3 Zg, the strength of the nonwoven fabric becomes small, which is not preferable.
また、 本発明の短繊維不織布は、 不織布中に存在する体積 1 mm3 以 上の繊維塊の個数が不織布 20 gあたりに 5個以下であることが必要で ある。 上記特定の大きさの繊維塊の不織布中への混入量が前記範囲を越 えると、 不織布が不均一となり、 ザラツキ感が発生し、 繊維塊により不 織布の色合いも不均一になるなどのいずれかの不都合が発生し、 好ま し くない。 Further, in the short-fiber nonwoven fabric of the present invention, the number of fiber lump having a volume of 1 mm 3 or more in the nonwoven fabric needs to be 5 or less per 20 g of the nonwoven fabric. If the amount of the fiber lumps having the specific size mixed in the nonwoven fabric exceeds the above range, the nonwoven fabric becomes non-uniform, a rough feeling occurs, and the color of the nonwoven fabric becomes uneven due to the fiber lumps. Any inconvenience occurs and is not preferred.
本発明の短繊維不織布に使用される繊維が、 少なく とも 2成分 (以下、 (A) 成分、 (B) 成分と言う) からなる複合繊維の場合、 原料として 以下の樹脂等が使用できる。  When the fiber used in the short-fiber nonwoven fabric of the present invention is a composite fiber composed of at least two components (hereinafter, referred to as component (A) and component (B)), the following resins and the like can be used as a raw material.
(A) 成分の樹脂として、 例えばポリプロピレン, 高密度ポリエチレ ン, 中密度ポリエチレン, 低密度ポリエチレン, 線状低密度ポリエチレ ン, プロピレンと他の α—ォレフイ ンとの 2元または 3元共重合体等の ポリオレフイ ン類; ポリアミ ド類; ポリエチレンテレフ夕レー ト, ポリ プチレンテレフタレー ト, ジオールとテレフタル酸/イソフタル酸等を 共重合した低融点ポリエステル、 ポリエステルエラス トマ一等のポリェ ステル類; フッ素樹脂 ; 上記樹脂の混合物等、 その他紡糸可能な樹脂等 が使用できる。  Examples of the resin (A) include polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and a binary or terpolymer of propylene with another α-olefin. Polyolefins; Polyamides; Polyethylene terephthalate, Polybutylene terephthalate, Polyesters such as low-melting-point polyesters copolymerized with diol and terephthalic acid / isophthalic acid, and polyester elastomers; Fluororesins A mixture of the above resins, and other spinnable resins.
(Β) 成分の榭脂として、 例えばポリプロピレン, 高密度ポリエチレ ン, 中密度ポリエチレン, 低密度ポリエチレン, 線状低密度ポリエチレ ン, プロピレンと他の α—ォレフィ ンとの 2元または 3元共重合体等の ポリオレフイ ン類; ポリアミ ド類; ポリエチレンテレフタレ一 卜, ポリ ブチレンテレフ夕レート, ジオールとテレフタル酸/ィソフタル酸等を 共重合した低融点ポリエステル、 ポリエステルエラス トマ一等のポリェ ステル類; フッ素樹脂;上記樹脂の混合物等、 その他紡糸可能な樹脂等 が使用できる。 (Ii) As the resin of the component, for example, polypropylene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, a binary or terpolymer of propylene with other α-olefins Etc. Polyolefins; Polyamides; Polyethylene terephthalate, polybutylene terephthalate, polyesters such as low-melting polyester and polyester elastomer obtained by copolymerizing diol and terephthalic acid / isophthalic acid; Fluororesins; Other spinnable resins, such as a mixture of resins, can be used.
( A ) , ( B ) 成分樹脂の融点差は 1 0 °C以上あることが好ましい。 これにより、 低融点成分の融点以上、 高融点成分の融点未満の温度で熱 処理すれば、 複合繊維の低融点成分が溶融され、 高融点成分はそのまま で残存し、 繊維同士の交点が熱接着された三次元のネッ 卜ワーク構造の 熱接着性不織布を形成させることができる。 尚、 前記において融点が明 確でない場合には、 融点とは軟化点を意味するものとする。 軟化点の測 定は J I S K 2 5 3 1に準拠する。  The difference between the melting points of the (A) and (B) component resins is preferably 10 ° C. or more. Thus, if heat treatment is performed at a temperature equal to or higher than the melting point of the low melting point component and lower than the melting point of the high melting point component, the low melting point component of the composite fiber is melted, the high melting point component remains as it is, and the intersection of the fibers is thermally bonded. A heat-bonding nonwoven fabric having a three-dimensional network structure can be formed. In the above, when the melting point is not clear, the melting point means the softening point. The measurement of the softening point conforms to JIS K2530.
このような (A ) , ( B ) 樹脂成分の組合せとしては、 例えば、 高密 度ポリエチレン ポリプロピレン, 低密度ポリェチレン プロピレン一 エチレンーブテン— 1結晶性共重合体, 高密度ポリエチレン/ポリェチ レンテレフタレー ト, ナイロン一 6 Zナイロン 6 6, 低融点ポリエステ ル Zポリェチレンテレフタレ一 ト, ポリプロピレン Zポリェチレンテレ フタレー ト, ポリフッ化ビニリデン /ポリエチレンテレフタレー ト, 線 状低密度ポリエチレンと高密度ポリエチレンの混合物 ポリエチレンテ レフ夕レ一 ト等を例示できる。  Examples of such a combination of the resin components (A) and (B) include, for example, high-density polyethylene polypropylene, low-density polyethylene propylene-ethylene butene-1 crystalline copolymer, high-density polyethylene / polyethylene terephthalate, and nylon 6Z. Nylon 66, low melting point polyester Z polyethylene terephthalate, polypropylene Z polyethylene terephthalate, polyvinylidene fluoride / polyethylene terephthalate, mixture of linear low-density polyethylene and high-density polyethylene Polyethylene terephthalate Etc. can be exemplified.
熱可塑性複合繊維がォレフィ ン系樹脂またはポリエステル系樹脂から なるものあるいはこの両者の組み合わせが好ましく、 このような (A) , ( B ) 樹脂成分の組合せとしては、 例えば、 高密度ポリエチレン Zポリ プロピレン, 低密度ボリエチレンノプロピレン一エチレンーブテン一 1 結晶性共重合体, 高密度ポリエチレン Zポリエチレンテレフタレー ト, 低融点ポリエステル/ポリエチレンテレフタレー ト, ポリプロピレン/ ポリエチレンテレフ夕レー 卜, 線状低密度ポ リエチレン zポ リエチレン テレフ夕 レート等を例示できる。 It is preferable that the thermoplastic conjugate fiber is made of an olefin-based resin or a polyester-based resin, or a combination of both. Examples of such a combination of the (A) and (B) resin components include, for example, high-density polyethylene Z polypropylene, Low-density poly (ethylene propylene) -ethylene butene-1 crystalline copolymer, high-density polyethylene Z polyethylene terephthalate, low-melting polyester / polyethylene terephthalate, polypropylene / Examples include polyethylene terephthalate and linear low-density polyethylene zpolyethylene terephthalate.
複合繊維の形態は鞘芯型, 偏心鞘芯型, 並列型, 3層以上の多層型, 中空多層型, 異型 (非円形) 多層型等で、 かつ前記 (A) , (B) 樹脂 成分のうち、 低融点樹脂成分が繊維表面の少なく とも一部を形成した構 造であればよい。  The form of the composite fiber is a sheath-core type, an eccentric sheath-core type, a side-by-side type, a multilayer type having three or more layers, a hollow multilayer type, a heterogeneous (non-circular) multilayer type, etc., and the resin components (A) and (B) Among them, a structure in which the low melting point resin component forms at least a part of the fiber surface may be used.
複合繊維の構成成分とその形態の組み合わせで最も好ましいのは、 熱 可塑性複合繊維が高結晶性ポリプロピレンを芯成分とし、 高密度ポリエ チレンを鞘成分とする偏心型鞘芯構造の複合繊維であり、 かつ螺旋型の 捲縮を有するものである。 螺旋型の捲縮を有する繊維は単糸当たりの保 有空間が多いため、 積層することにより形成したゥェブは非常に嵩高に なる。  The most preferable combination of the constituent components of the composite fiber and its form is a composite fiber having an eccentric sheath-core structure in which the thermoplastic composite fiber has a highly crystalline polypropylene as a core component and a high-density polyethylene as a sheath component. And it has a spiral crimp. Since a fiber having a spiral crimp has a large storage space per single yarn, a web formed by laminating becomes extremely bulky.
ゥュブの嵩高性は使用する熱可塑性繊維の捲縮数に大きく依存し、 特 に螺旋型の捲縮を 3〜20山 Z吋 (2. 54 c m) 有する繊維であるこ とが好ましい。 ここで "3〜2 0山 吋 (2. 54 c m) " とは、 繊維 長 1イ ンチ (すなわち 2. 54 cm) 当たりの捲縮数が 3〜2 0山であ ると言う意味である。 より好ましくは 5〜15山ノ吋 (2. 54 cm) 、 さらに好ましくは 5〜 1 0山 Z吋 (2. 54 c m) の螺旋型の捲縮を有 する繊維である。 この範囲の捲縮数を有する繊維を使用した不織布は非 常に嵩高で好ましい。 螺旋型の捲縮数が 3山ノ吋 (2. 54 c m) より かなり少ない場合には、 ス ト レー ト形状の繊維と変わらず、 不織布の嵩 が小さくなる傾向になる。 一方、 螺旋型の捲縮数が 2 0山 Z吋 (2. 5 4 cm) をかなり超える場合も、 単糸当たりの保有空間が小さいため不 織布の嵩は逆に小さくなってしまう傾向がある。  The bulkiness of the tube greatly depends on the number of crimps of the thermoplastic fiber used, and it is particularly preferable that the fiber has a helical crimp of 3 to 20 mountains Z inches (2.54 cm). Here, “3 to 20 inches (2.54 cm)” means that the number of crimps per 1 inch (ie, 2.54 cm) of fiber length is 3 to 20 mountains. . More preferably, it is a fiber having a helical crimp of 5 to 15 mountain inches (2.54 cm), more preferably 5 to 10 mountain inches (2.54 cm). A nonwoven fabric using fibers having a crimp number in this range is very bulky and preferable. If the number of helical crimps is considerably smaller than three ridges (2.54 cm), the bulk of the nonwoven fabric tends to be small, as in the case of straight fibers. On the other hand, when the number of crimps of the spiral type is considerably larger than 20 mountains Z inches (2.54 cm), the bulk of the nonwoven fabric tends to decrease on the contrary because the holding space per single yarn is small. is there.
該複合繊維において、 低融点樹脂成分と高融点樹脂成分の複合比は低 融点樹脂成分が 1 0 ~ 9 0重量%、 高融点樹脂成分が 9 0〜 1 0重量% である。 より好ましく は、 低融点樹脂成分が 3 0〜 7 0重量%、 高融点 樹脂成分が 7 0〜 3 0重量%である。 低融点樹脂成分が 1 0重量%未満 の場合、 該複合繊維からなる熱接着性不織布の引っ張り強力が不足し、 9 0重量%を超える場合、 熱接着時に溶融しないで残存する芯が少なす ぎるため該複合繊維からなる熱接着不織布の嵩が小さくなる傾向にある。 短繊維が、 ス ト レ一 卜の場合、 不織布は非常に均一なものになるが、 嵩が小さく、 非常にフラッ 卜なものになってしまい、 製品としての応用 展開の範囲が狭くなつてしまう。 ところが、 顕在捲縮を有する短繊維を 使用することにより嵩高い不織布を作製することができ好ましい。 本発明の短繊維不織布に使用される短繊維の捲縮の形状としては、 例 えば螺旋 (三次元捲縮) 状、 ジグザグ状、 波状等の形状を挙げることが できる。 これらのいずれの形状の捲縮を持つ短繊維も本発明の短繊維不 織布に使用することができるが、 最も好ましいのは螺旋状の捲縮である。 短繊維の捲縮の形状が螺旋状の場合、 繊維同士の絡みが少なく、 得ら れる不織布の嵩が非常に大きくなる。 この傾向は、 前述の好ましい範囲 の繊維長を有し螺旋の形状が円形に近くなればより顕著になる。 In the composite fiber, the composite ratio of the low melting point resin component to the high melting point resin component is 10 to 90% by weight for the low melting point resin component and 90 to 10% by weight for the high melting point resin component. It is. More preferably, the low melting point resin component is 30 to 70% by weight, and the high melting point resin component is 70 to 30% by weight. When the low-melting resin component is less than 10% by weight, the heat-bondable nonwoven fabric made of the composite fiber has insufficient tensile strength, and when it exceeds 90% by weight, the core remaining without being melted at the time of thermal bonding is too small. Therefore, the bulk of the heat-bonded nonwoven fabric made of the conjugate fiber tends to be small. When the short fibers are straight, the nonwoven fabric is very uniform, but the bulk is small and very flat, which narrows the range of application and development as a product. . However, it is preferable to use a short fiber having an apparent crimp because a bulky nonwoven fabric can be produced. Examples of the crimped shape of the short fibers used in the short-fiber nonwoven fabric of the present invention include spiral (three-dimensional crimped), zigzag, and wavy shapes. Short fibers having crimps of any of these shapes can be used for the short fiber nonwoven fabric of the present invention, but spiral crimps are most preferred. When the crimped shape of the short fiber is helical, the entanglement between the fibers is small, and the bulk of the obtained nonwoven fabric is extremely large. This tendency becomes more remarkable when the fiber has a fiber length in the preferable range described above and the shape of the spiral becomes closer to a circle.
捲縮の形状がジグザグ状の場合、 捲縮の数が大きいほど深く きちんと セッ 卜されるので、 得られる不織布の嵩は高くなるが、 捲縮数が前述の 好ましい範囲を大きく越えると繊維同士が絡み易くなる傾向が現れてく るため、 均一な不織布が得にく くなる。  When the shape of the crimp is zigzag, the larger the number of crimps, the more deeply and neatly the crimp is set, so that the bulk of the obtained nonwoven fabric increases. Since a tendency to become entangled appears, it is difficult to obtain a uniform nonwoven fabric.
捲縮の形状が波状の場合、 更に繊維が絡む傾向は顕著となり、 大きな 繊維塊を生じて篩いゃスクリーン詰まりを起こし易くなるので、 不織布 の製造が困難になる。  When the shape of the crimp is corrugated, the tendency of the fibers to be entangled further becomes remarkable, and a large fiber mass is generated, which easily causes sieving and screen clogging, thereby making it difficult to produce a nonwoven fabric.
しかし、 いずれの捲縮の形状でも、 捲縮数や繊維長が前述の好ましい 範囲から大きく外れなければ本発明の効果を損なうことはない。  However, the effects of the present invention will not be impaired in any of the crimp shapes unless the number of crimps and the fiber length deviate significantly from the preferable ranges described above.
従来のカー ド機を用いてウェブを作製する場合、 繊維同士を絡ませて 引っ張るため、 ゥヱブの嵩が小さくなつてしまう。 従って本発明の好適 な態様としてはゥ ブを引っ張らない方法を考えれば良く、 例えば繊維 を降り積もらせることによってゥ ブを作製する方法がある。 繊維を順 々に分散させて降り積もらせ方式によれば繊維同士を絡めて引っ張るこ とがないので、 繊維自体の持つ嵩高性が損なわれず、 繊維の嵩高性を十 分に機能させた嵩高な不織布を作製することができる。 When fabricating a web using a conventional card machine, the fibers are entangled with each other. Because of the pull, the volume of the web becomes smaller. Therefore, as a preferred embodiment of the present invention, a method of not pulling the tube may be considered. For example, there is a method of producing the tube by dropping the fibers. According to the method of dispersing fibers one after another, the fibers are not entangled with each other and pulled, so that the bulkiness of the fibers themselves is not impaired and the bulkiness of the fibers is fully functioned. Nonwoven fabrics can be made.
繊維を分散させ、 降り積もらせることによってウェブを作製する場合、 繊維が長いと均一分散が難しく、 不織布に粗密ができやすいという問題 点がある。 これに対して繊維を短くすると繊維が均一に分散しやすくな り、 粗密のない不織布を作製できる。 さらに繊維の均一分散性を向上さ せる方法として、 篩いまたはスクリーンを通す方法がある。 篩いまたは スク リーンを通す場合、 短繊維であってもスクリーン通過前に繊維同士 が絡み、 絡んだ繊維の塊がスク リーンを通過して積層し、 繊維塊が入つ た不均一な不織布になることがある。 繊維塊が混入した不織布はザラッ キ感が発生したり、 繊維塊の微妙な反射特性により不織布の色合いが不 均一になることもある。  When fabricating a web by dispersing the fibers and allowing them to accumulate, there is a problem that if the fibers are long, uniform dispersion is difficult, and the nonwoven fabric tends to be coarse and dense. On the other hand, if the fibers are shortened, the fibers are easily dispersed uniformly, and a nonwoven fabric having no unevenness can be produced. Further, as a method of improving the uniform dispersibility of the fiber, there is a method of passing through a screen or a screen. When passing through a screen or screen, even for short fibers, the fibers become entangled with each other before passing through the screen, and the entangled fiber mass passes through the screen and is laminated, resulting in an uneven nonwoven fabric containing fiber mass Sometimes. A nonwoven fabric mixed with a fiber lump may have a rough feeling, or the color of the nonwoven cloth may be uneven due to the subtle reflection characteristics of the fiber lump.
短繊維にも絡み易いものと絡み難いものがある。 分類すると捲縮がジ グザグ形状のもので捲縮数の大きいものおよび/または捲縮セッ ト力の 大きいものは比較的絡み易い傾向がある。 また、 捲縮が波状の短繊維は 繊維の端部が釣り針状であるため絡み易い傾向があり、 捲縮が螺旋状の 短繊維は繊維の端部が同一円周上に近い所に位置するため絡みにくいの で特に好ましい。  Some short fibers are easily entangled and others are hard to be entangled. When classified, the crimps having a zigzag shape and having a large number of crimps and / or having a large crimp set force tend to be relatively easily entangled. In addition, short fibers with a crimped wavy shape tend to be easily entangled because the ends of the fibers are fishhook-shaped, and short fibers with a crimped spiral shape are located close to the circumference of the same circle. It is particularly preferable because it is difficult to get entangled.
不織布の均一性を悪くする繊維の塊には、 繊維が絡合したものと、 繊 維が十分に開繊されていない未開繊部分の 2つがある。 未開繊部分は単 糸同士が近接しており、 開繊工程を経ても単糸同士が密接していること が原因であるため、 単糸同士が近接しないようにすることが有効な方法 である。 具体的には捲縮の形状を選択することにより未開繊部分を少な くすることができる。 捲縮の形状がジグザグ形状よりも波状、 さらに波 状よりも螺旋状のものが繊維が分散され易く、 未開繊部分が少ない。 つ まり繊維同士の絡みについても、 未開繊部分についても、 捲縮の形状に より、 その発生を抑えることができる。 There are two types of fiber clumps that degrade the nonwoven fabric uniformity: those that are entangled with fibers and those that are not fully opened. Since the single yarns are close to each other in the unspread portion and the single yarns are in close contact even after the opening process, it is an effective method to prevent the single yarns from approaching each other. It is. Specifically, the unspread portion can be reduced by selecting the shape of the crimp. The crimped shape is more wavy than the zigzag shape, and more helical than the wavy shape, in which the fibers are easily dispersed and the unspread portion is small. In other words, the occurrence of the entanglement between the fibers and the unopened portion can be suppressed by the shape of the crimp.
つまり、 捲縮の形状を調節した短い繊維を篩いまたはスク リーンを通 過させることによって、 繊維を均一に三次元に分散させて、 降り積らせ てゥュブを作製し、 該ゥュブを熱処理し繊維接点を熱接着することによ り、 繊維が不織布に寄与し得る嵩高性を十分機能させた嵩高性不織布を 提供するという本発明の目的を達成することができるのである。  In other words, by sieving or passing a short fiber whose crimp shape has been adjusted, the fiber is uniformly dispersed three-dimensionally, and the fiber is deposited to produce a tube. By subjecting the contact points to heat bonding, the object of the present invention of providing a bulky nonwoven fabric having a sufficiently high bulkiness that fibers can contribute to the nonwoven fabric can be achieved.
繊維を篩いゃスク リーンを通過させる方法で作成した不織布は、 繊維 が三次元に分散されて降り積らされたものであるため、 力一ド機により 繊維を一方向に引き揃えた不織布に較べ比容積が大きい。 比容積が大き ぃ不織布は、 ソフ ト感があり身体に直接触れる用途、 例えば紙おむつ、 ナプキン等の吸収性物品に特に適している。 また、 比容積が大きいとい うことは嵩高く緩衝性が高いということであるから、 包帯 ·眼帯, ラン チョンマッ ト, クッキング夕オル, ガラス陶器の包装材, 青果 ·切花の 包装材, 楽器 ·家具の包装材等の緩衝性が必要とされる用途に好適に用 いられる。  The nonwoven fabric made by the method of sieving the fiber and passing it through the screen is a three-dimensionally dispersed and piled down fiber, so it is compared to a nonwoven fabric in which the fiber is aligned in one direction by a force machine. Large specific volume. Large specific volume ぃ The nonwoven fabric is particularly suitable for applications that have a soft feeling and directly touch the body, for example, absorbent articles such as disposable diapers and napkins. In addition, a large specific volume means that it is bulky and has a high cushioning property, so it can be used for bandages and eye patches, ranchon mats, cooking utensils, glassware packaging materials, fruits and vegetables, cut flower packaging materials, musical instruments and furniture. It is suitable for use in applications requiring cushioning, such as packaging materials.
本発明の短繊維不織布に使用される熱接着性複合繊維は、 例えば、 以 下の工程により製造可能である。  The heat-adhesive conjugate fiber used for the short-fiber nonwoven fabric of the present invention can be produced, for example, by the following steps.
芯成分及び鞘成分の樹脂を溶融し、 例えば、 ホール数 1 0 0から 3 5 Melts the resin of the core and sheath components, for example, from 100 to 35 holes
0の複合紡糸口金より吐出させる。 この時、 口金直下を空冷することに より未延伸糸を冷却する。 吐出量 1 0 0 g /m i nから 2 0 0 g /m i n、 引き取り速度 4 0 m /m i nから 1 3 0 0 m / m i nで引き取るこ とにより、 3デニールから 4 0 0デニールの未延伸糸を作製する。 該未 延伸糸を第 1番目のロールの回転速度より第 2番目のロールの回転速度 を大きく し、 6 0 °Cから 1 2 0 °Cに加熱した 2つのロール間で延伸する。 第 1番目のロールの回転速度と第 2番目のロールの回転速度の比を 1対 2から 1対 5の間に設定し延伸することにより、 1デニールないし 1 0 0デニールの延伸糸を作製する。 該延伸糸にタツチロールで仕上剤を塗 布したのち、 ボックス型の捲縮加工機を通過させ、 捲縮を付与したトウ を作製する。 捲縮数は 1インチあたり 0〜2 5山が好ましい。 該トウは 約 1 0重量%の水分を含んでいるので、 乾燥機を用い 6 0 °Cから 1 2 0 °Cで乾燥する。 乾燥したトウを押し切りタイプのカッターを用いて、 繊 維長 3 m mから 2 5 m mの範囲で一定の繊維長に繊維をカッ トする。 こ のような繊維長は、 従来のカード法不織布に使用される繊維よりも実質 的に短いものである。 Discharge from composite spinneret 0. At this time, the undrawn yarn is cooled by air cooling just below the die. Undrawn yarn from 3 denier to 400 denier is produced by drawing at a discharge rate of 100 g / min to 200 g / min and a take-up speed of 40 m / min to 1300 m / min. I do. Not yet The drawn yarn is drawn between the two rolls heated from 60 ° C. to 120 ° C. with the rotation speed of the second roll being higher than the rotation speed of the first roll. By setting the ratio of the rotation speed of the first roll to the rotation speed of the second roll between 1: 2 and 1: 5, a drawn yarn of 1 denier or 100 denier is produced. . After a finishing agent is applied to the drawn yarn with a touch roll, it is passed through a box-type crimping machine to produce a crimped tow. The number of crimps is preferably 0 to 25 peaks per inch. Since the tow contains about 10% by weight of moisture, it is dried at 60 ° C to 120 ° C using a dryer. The dried tow is cut to a fixed fiber length within a fiber length range of 3 mm to 25 mm using a push-to-cut type cutter. Such a fiber length is substantially shorter than the fiber used for the conventional card nonwoven fabric.
また、 不織布作製時、 フォーミ ングへッ ドの部分を複数個使用しそれ ぞれのフォーミ ングの部分で異なる繊度もしくは異なる捲縮形状の短繊 維を用いることにより、 厚み方向に密度勾配を持つ不織布を作製するこ とができる。 このようにして作製した厚み方向に密度勾配を持つ不織布 は液体フィルター, エアフィルタ一等のフィルター用不織布材料として 使用できる。  Also, when fabricating non-woven fabric, use multiple forming heads and use different fineness or different crimped short fibers in each forming part to have density gradient in the thickness direction. Nonwoven fabric can be produced. The nonwoven fabric having a density gradient in the thickness direction manufactured in this way can be used as a nonwoven fabric material for filters such as liquid filters and air filters.
以上のようにして作製した短繊維不織布は吸収性物品例えば紙おむつ であれば表面材不織布, セカン ドシー ト, 裏面材シートに使用すること ができる。 特に該短繊維不織布は嵩高性であるため、 嵩高性を必要とす るセカンドシートとして好適である。 また、 パルプと熱融着繊維と高吸 水材を混ぜた不織布は尿吸収時に型崩れのない吸収体として好適である。 本発明の短繊維不織布は、 繊維長 3 m m〜 2 5 m mの短繊維を用い、 エアレイ ド装置を用いて下記のようにして製造することができる。  The short-fiber nonwoven fabric produced as described above can be used as an absorbent article, such as a disposable diaper, as a surface nonwoven fabric, a second sheet, or a backing sheet. In particular, since the short fiber nonwoven fabric is bulky, it is suitable as a second sheet requiring bulkiness. Further, a nonwoven fabric obtained by mixing pulp, heat-fusible fibers and a high water-absorbing material is suitable as an absorber that does not lose its shape during urine absorption. The short-fiber nonwoven fabric of the present invention can be produced as follows using short fibers having a fiber length of 3 to 25 mm using an air-laid apparatus.
エアレイ ド装置 1は図 1ないし図 3に示すように、 下面のみに開口部  Air raid device 1 has an opening only on the lower surface as shown in Figs.
0 を有する断面形状が台形状のケーシング 2と、 該ケーシング 2の両端部 にそれぞれ設けられた繊維送入口 3および 4と、 該送入口 3および 4に 対向し、 前記ケーシング 2の側面と平行にそれぞれ設けられた回転自在 の筒状スク リーン 5 aおよび 6 aからなるウェブフォーミ ングへッ ド 5 および 6と、 該筒状スク リーン 5 aおよび 6 aの各内壁に摺接するよう に、 それぞれ設けられたニードルロール 5 bおよび 6 bと筒状スク リ― ン 5 aおよび 6 aの両端部と、 前記ケ一シング 2の両端面との間にそれ ぞれ設けられた繊維循環ゾ一ン 7および 8から主として構成されている。 該ェアレイ ド装置 1の下面直下には、 ネッ トコンベア一 9 aが設けられ、 該ネッ トコンベア一 9 aには 1対の駆動ロール 1 7 aおよび 1 7 bとサ クシヨン装置 1 0が付設されている。 さらに次工程の装置として、 ゥヱ ブを構成する複合繊維を熱接着させるためのサクシヨ ンドライヤー 1 2 と、 ここにゥヱブを通過させるためのネッ トコンベア一 9 bが付設され、 その下方に該ネッ トコンベア一 9 bを移動させる一対の駆動ロール 1 7 c 1 7 dが付設されており、 ネッ トコンベア一 9 bを挟んで駆動ロー ル 1 7 c上に圧縮ロール 1 1が設けられている。 さらに、 作製した熱接 着性不織布 1 4を送るための送りロール 1 8と巻き取りロール 1 4を駆 動させるための 1対の駆動ロール 1 9 a , 1 9 bが設けられている。 上記装置において、 短繊維は、 開織機 (図示せず) により機械的に繊 維を開繊したのち、 繊維送入口 3, 4に通じる送綿循環ダク トに送る。 この時点で繊維の集束はほとんど解ける。 繊維送入口 3, 4に送り込ま れた繊維 1 5は、 筒状スク リ ーン 5 a , 6 a と繊維循環ゾーン 7, 8で 形成される通路を、 図 2の矢印 C 1, C 2 , C 3 , C 4の方向に、 また 矢印 D l , D 2 , D 3 , D 4の方向に移動させながら混綿され、 循環す る。 循環させた繊維は、 図 3に示す様に矢印 A A '方向に回転するニー ドルロール 5 bおよび 6 bと矢印 B B '方向に回転する筒状スクリーン 5 aおよび 6 aとの双方の回転で生じる遠心力と剪断作用により、 回転 する筒状スク リ ーン 5 aおよび 6 aを通って排出される。 排出された繊 維はケ一シング 2の下方からサク シ ョ ン装置 1 0によって吸引され、 ネ ッ トコンベア一 9 aの上部で捕集される。 捕集されたゥ プ 1 6はゥェ ブ圧縮ロール 1 1とネッ トコンベア一 9 bの駆動ロール 1 7 c間で圧縮 される。 この時点で捕集された繊維は、 ランダムな方向に配向されてい てゥヱブを形成している。 0 A casing 2 having a trapezoidal cross section, fiber inlets 3 and 4 provided at both ends of the casing 2, respectively, facing the inlets 3 and 4, and being parallel to a side surface of the casing 2. The web forming heads 5 and 6 made of rotatable cylindrical screens 5a and 6a are provided so as to be in sliding contact with the inner walls of the cylindrical screens 5a and 6a, respectively. Fiber circulating zones 7 provided between both end portions of the provided needle rolls 5b and 6b and the cylindrical screens 5a and 6a, and both end surfaces of the casing 2 respectively. And 8 mainly. A net conveyor 9a is provided directly below the lower surface of the arrayed device 1, and a pair of drive rolls 17a and 17b and a suction device 10 are attached to the net conveyor 9a. I have. Further, as an apparatus for the next step, a suction dryer 12 for thermally bonding the composite fibers constituting the web and a net conveyor 19b for passing the web here are attached, and below the net conveyor 19b. A pair of drive rolls 17c17d for moving the conveyor 9b is provided, and a compression roll 11 is provided on the drive roll 17c with the net conveyor 19b interposed therebetween. Further, a feed roll 18 for feeding the produced heat-bondable nonwoven fabric 14 and a pair of drive rolls 19 a and 19 b for driving the take-up roll 14 are provided. In the above apparatus, the short fibers are sent to a cotton feeding circulation duct communicating with the fiber inlets 3 and 4 after the fibers are opened mechanically by a weaving machine (not shown). At this point, the fiber bunching is almost completely unwound. The fibers 15 fed into the fiber inlets 3 and 4 pass through the passage formed by the cylindrical screens 5a and 6a and the fiber circulation zones 7 and 8 by arrows C1, C2 and C2 in FIG. While being moved in the directions of C 3 and C 4 and in the directions of arrows D l, D 2, D 3 and D 4, they are mixed and circulated. As shown in Fig. 3, the circulated fibers are used as needle rolls 5b and 6b that rotate in the direction of arrow AA 'and a cylindrical screen that rotates in the direction of arrow BB'. Due to the centrifugal force and shearing action that occurs in both rotations of 5a and 6a, it is discharged through the rotating cylindrical screens 5a and 6a. The discharged fiber is sucked from below the casing 2 by the suction device 10 and collected at the upper portion of the net conveyor 19a. The collected paper 16 is compressed between the web compression roll 11 and the driving roll 17c of the net conveyor 19b. The fibers collected at this point are oriented in random directions to form webs.
ウェブ 1 6はゥヱブ圧縮ロール 1 1で圧縮された後、 サクシヨ ンドラ ィヤー 1 2に供給され、 ここで低融点成分の融点以上、 高融点成分の融 点以下、 例えば 9 0 °Cから 1 7 0 °Cの温度で 3秒間から 1 0秒間加熱処 理することにより、 複合繊維の低融点成分が溶融され、 高融点成分はそ のままで残存し、 これにより、 三次元のネーッ トヮ一ク構造の熱接着性 不織布 1 3が形成され、 卷き取りロール 1 4に卷き取られる。  The web 16 is compressed by a web compression roll 11 and then supplied to a suction dryer 12 where the melting point is higher than the low melting point component and lower than the high melting point component, for example, from 90 ° C to 170 ° C. By performing the heat treatment at a temperature of ° C for 3 to 10 seconds, the low-melting-point component of the conjugate fiber is melted, and the high-melting-point component remains as it is, thereby forming a three-dimensional net peak. The heat-bonding non-woven fabric 13 of the structure is formed and wound on the winding roll 14.
空気により搬送した短繊維をより一層ランダムに並べるためには、 製 造方法としては種々のメ ッシュからなる篩いあるいは網を通過させる方 法を用いれば良く、 具体的にはスク リ一ンを通過させることにより分散 させ、 降り積もらせる方法を用いることが好ましい。  In order to arrange the short fibers conveyed by air more randomly, a method of passing through a sieve or a net made of various meshes may be used as a manufacturing method, and specifically, a method of passing through a screen. It is preferable to use a method of dispersing and accumulating the particles by making them fall.
エアレイ ド装置に用いる筒状スク リーン 5 aおよび 6 aのスク リーン の孔の形状は、 通常は横長の長方形であるが、 縦の長さが l〜3 m m、 横の長さが 1 5〜3 O m mの長方形が好ましい。 孔の形状は、 横長の長 方形の他に円形、 三角形、 四角形、 多角形、 楕円等でも良い。 スク リー ン開孔率は 2 0 %〜5 0 %が好ましい。 このような孔径および開孔率を 選択することにより、 均一なゥヱブを製造することができる。  The shape of the holes in the cylindrical screens 5a and 6a used for the air-laid device are usually horizontally long rectangles, but the vertical length is l ~ 3mm and the horizontal length is 15 ~ A 3 O mm rectangle is preferred. The shape of the hole may be a circle, a triangle, a rectangle, a polygon, an ellipse, or the like in addition to a horizontally long rectangle. The screen porosity is preferably 20% to 50%. By selecting such a hole diameter and an opening ratio, a uniform tube can be manufactured.
本発明の短繊維不織布の中でも熱接着性複合繊維からなる不織布は、 ゥヱブ形成後、 サクシヨンドライヤ一 1 2で熱処理することにより、 繊 維の交点が熱融着されている。 この熱処理は、 サクシヨ ンドライヤー 1 2の代わりに熱カレンダーロール等の加熱装置を用いて行ってもよい。 得られた不織布の目付けは特別な制限はないが、 約 10〜1000 g/ m2 が好ましい。 紙おむつの表面材の場合約 1 0〜60 gZm2 、 ワイ パーの場合約 10〜500 gZm2 、 フィルターの場合約 10〜; I 00 0 g/m2 が好ましい。 また該不織布の見かけ密度は特別な限定はない 力、 風合いを考慮し、 約 0. 017〜0. 10 g/cm3 が好ましい。 Among the short-fiber nonwoven fabrics of the present invention, the nonwoven fabrics composed of the heat-adhesive conjugate fibers are heat-sealed at the intersections of the fibers by heat treatment with a suction dryer 112 after forming the web. This heat treatment is performed by a suction dryer 1 In place of 2, the heating may be performed using a heating device such as a heat calender roll. The basis weight of the obtained nonwoven fabric is not particularly limited, but is preferably about 10 to 1000 g / m 2 . About 1 0~60 gZm 2 For diapers surface material, about 10~500 gZm 2 For wiper, about 10 when the filter; I 00 0 g / m 2 is preferred. The apparent density of the non-woven fabric is not particularly limited, and is preferably about 0.017 to 0.10 g / cm 3 in consideration of force and texture.
さらに密度が高い不織布は、 該不織布を後加工として熱プレス加工あ るいは熱ロール加工等を行うことにより得られる。  A higher density nonwoven fabric can be obtained by subjecting the nonwoven fabric to post-processing such as hot pressing or hot roll processing.
本発明の短繊維不織布の中の熱接着性不織布は熱カレンダーロールを 用い繊維同志の交点を熱融着させる場合、 熱圧着面積率を 10〜30% とすることが望ましい。 この範囲の圧着面積率とすることにより、 耐抜 糸性ゃ不織布強力に優れ、 かつ風合の柔らかな不織布を容易に得ること ができ好ましい。  The heat-bonding nonwoven fabric of the short-fiber nonwoven fabric of the present invention preferably has a thermocompression bonding area ratio of 10 to 30% when a heat calender roll is used to thermally fuse intersections of fibers. By setting the pressure-bonding area ratio in this range, it is preferable since a nonwoven fabric having excellent thread removal resistance and excellent nonwoven fabric strength and a soft feeling can be easily obtained.
本発明の短繊維不織布は、 単独で、 または他の部材と積層、 縫製、 熱 融着等をし、 各種の用途に使用できる。 例えばパンツ型使い捨ておむつ の一部材として使用する場合、 風合いと強力の両方が要求される部位、 例えば表面材, バックシート等に使用できる。 もちろん該おむつ等に使 用する場合、 胴部や脚部を密着するための伸縮部材等、 他の部材ゃ該熱 接着性不織布と併用することができる。 また、 該熱接着性不織布は他の 不織布やティ ッ シュペーパー, ゥヱブ, フィルム等と積層し、 前記表面 材用のカバー材ゃ前記裏面材用カバー材等として使用できる。  The short-fiber nonwoven fabric of the present invention can be used for various applications either alone or by lamination, sewing, heat fusion, and the like with other members. For example, when used as a member of pants-type disposable diapers, it can be used for parts that require both texture and strength, such as surface materials and back sheets. Of course, when used for the diaper or the like, it can be used in combination with other members, such as an elastic member for tightly attaching the trunk and the legs, or the thermo-adhesive nonwoven fabric. Further, the heat-bondable nonwoven fabric can be laminated with other nonwoven fabrics, tissue papers, webs, films and the like, and used as a cover material for the front surface material ゃ a cover material for the back surface material.
本発明の短繊維不織布は、 各種の潤滑剤等を付着させて、 家具, 車等 のワイパー等に使用できる。  The short-fiber nonwoven fabric of the present invention can be used for wipers of furniture, cars, etc. by adhering various lubricants and the like.
また該短繊維不織布をひだ折りしたり、 さらに筒状に成型したり、 該 熱接着性不織布を巻いて筒状に成型したり、 該熱接着性不織布を加熱し ながら捲いて、 その層が熱融着した筒状に成型する等の後加工で濾材と することができる。 以下本発明を、 実施例によって詳細に説明するが、 本発明はこれによ つて限定されない。 In addition, the short fiber nonwoven fabric is folded or formed into a cylindrical shape, the thermoadhesive nonwoven fabric is wound into a tubular shape, or the thermoadhesive nonwoven fabric is rolled while being heated, and the layer is heated. Post-processing such as molding into a fused cylinder and filter media can do. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
本実施例における熱接着性不織布の物性値等の定義と測定方法は以下 のとおりである。  The definition and measurement method of the physical property values and the like of the heat-bondable nonwoven fabric in this example are as follows.
表 1の短繊維不織布の比容積を下記のように定義し、 測定した。 The specific volume of the short-fiber nonwoven fabric in Table 1 was defined as follows and measured.
(1 ) 比容積 (1) Specific volume
不織布の目付けと厚みを測定し、 計算値を比容積の値とした。  The basis weight and thickness of the nonwoven fabric were measured, and the calculated value was used as the value of the specific volume.
比容積- (Y l O O x l O O) /X  Specific volume-(Y l O O x l O O) / X
ここで、 Xは不織布の目付け (gZm2 ) を表し、 Yは不織布の厚さ ( c m) を示す。 Here, X represents the basis weight (gZm 2 ) of the nonwoven fabric, and Y represents the thickness (cm) of the nonwoven fabric.
尚、 不織布サンプルのサイズは縦 2 5 c m x横 2 5 c mのものを用い 表 1の短繊維不織布の繊維塊の個数を下記のように定義し、 測定した。 The size of the nonwoven fabric sample was 25 cm in length and 25 cm in width, and the number of fiber masses of the short fiber nonwoven fabric in Table 1 was defined as follows and measured.
(2) 繊維塊の個数 (2) Number of fiber mass
不織布 2 0 g中、 体積 l mm3 以上の繊維塊の個数を繊維塊の個数とIn the nonwoven fabric 2 0 g, the number of volume l mm 3 or more fibrous mass and the number of fiber masses
Ah¾ した o Ah¾ o
但し、 不織布 2 0 gを 1 0箇所サンプリ ングし、 各サンプルにっき観 察した繊維塊の個数の平均値を繊維塊の個数とした。  However, 20 g of the nonwoven fabric was sampled at 10 places, and the average value of the number of fiber clumps observed in each sample was defined as the number of fiber clumps.
(3) 不織布の風合  (3) Hand of non-woven fabric
不織布を 5人のパネラーが不織布の均一性、 ザラツキ感の有無、 不織 布の色相の均一性 (繊維塊により、 色相が不均一になる。 ) などを評価 した。 3人以上のパネラーが、 不織布が不均一であるか、 ザラツキ感が あるか、 不織布の色相が不均一であるかのいずれかの少なく とも 1つの 欠点があると評価した時に、 風台い不良とし、 それ以外の時に風合い良  Five panelists evaluated the uniformity of the nonwoven fabric, the presence or absence of roughness, and the uniformity of the hue of the nonwoven fabric (the hue becomes uneven due to the fiber mass). Poor head when three or more panelists rate the nonwoven fabric as uneven, grainy, or non-uniform in color And good texture at other times
4 と判定した。 Four It was determined.
(実施例 1 ) (Example 1)
レーョン短繊維を熱接着性繊維と混綿し、 熱処理により繊維の交点を 接着させて不織布にする方法。  A method in which rayon staple fibers are mixed with thermo-adhesive fibers, and the intersections of the fibers are bonded by heat treatment to form a nonwoven fabric.
捲縮数 1 2山/吋 (2. 54 c m) のジグザグ形状の捲縮を有する太 さ 1. 5 dZ f で長さ 5 mm (以下、 1. 5 d Z f x 5 m mと言う様な 表現型式で表す。 ) のレーヨ ン繊維を 4 0重量 と、 芯にポリプロピレ ン、 鞘に高密度ポリエチレンを配した捲縮数 7山 Z吋 (2. 54 c m) の螺旋状の捲縮を有する 3 dZ f X 5mmの偏心鞘芯型複合繊維 6 0重 量%を開繊機に投入通過させ、 機械的に繊維を開繊したのち、 図 1〜3 に示したエアレイ ド装置に供給して処理した。 すなわち開繊機を通した レーヨ ン繊維と熱融着繊維 1 5を送綿循環ダク トを経由し、 繊維送入口 3および 4に送入し、 回転する筒状スク リ ーン 5 aおよび 6 aから繊維 を排出させた。 排出された繊維を 9 Om/m i nで運転するサクシヨ ン 装置 1 0のネッ トコンベア一 9 aで捕集しゥヱブ 1 6を作製した。 ゥェ ブ圧縮ロール 1 1で圧縮した後、 サクシヨンドライヤー 1 2を使用して 1 50°Cで 3秒間加熱処理することにより、 鞘成分の高密度ポリエチレ ンを溶融接着させ、 不織布 1 3を作製し、 巻き取りロール 1 4に巻き取 つた。  Number of crimps 12 With a zigzag crimp of 2.5 ridges / inch (2.54 cm), a thickness of 1.5 dZf and a length of 5 mm (hereinafter referred to as 1.5 dZ fx 5 mm) It has a 40-weight rayon fiber with a core of polypropylene and a high-density polyethylene sheath, and has a spiral crimp of 7 crimps and 7 inches (2.54 cm). 60% by weight of eccentric sheath-core composite fiber with dZfX of 5 mm was put into and passed through the opening machine, and the fiber was opened mechanically, and then supplied to the air-laid apparatus shown in Figs. 1 to 3 for processing. . That is, the rayon fiber and the heat-fused fiber 15 passed through the opening machine are fed to the fiber feed ports 3 and 4 via the cotton feeding circulation duct, and the rotating cylindrical screens 5a and 6a are rotated. The fiber was discharged from. The discharged fibers were collected by a net conveyor 19a of a suction device 10 operated at 9 Om / min, and a web 16 was produced. After being compressed with a web compression roll 11, it is heat-treated at 150 ° C for 3 seconds using a suction dryer 12 to melt and bond the high-density polyethylene of the sheath component to form the nonwoven fabric 13. It was prepared and wound on a take-up roll 14.
得られた不織布の物性は、 目付け 25 gZm2 , 厚み 3. 6 mm, 比 容積 1 4 3 c m3 Zg, 繊維塊の個数 2. 1個/ "20 gであった。 結果 を表 1に示す。 (実施例 2) The physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 3.6 mm, a specific volume of 144 cm 3 Zg, and a number of fiber clumps of 2.1 / "20 g. The results are shown in Table 1. (Example 2)
熱融着性の短繊維製造法。  A method for producing heat-fusible short fibers.
5 芯成分として MFR (メ ル トフローレー ト) = l l gZ1 0分 (J I S K 7210 条件 14) の高結晶性ポリプロピレン、 鞘成分として M l (メノレトイ ンデッ クス) = 16. 5 gZ1 0分 (J I S K 721 0 条件 4) の高密度ポリエチレンを吐出比 5対 5でホール数 621の 偏心鞘芯型複合紡糸口金から吐出量 450 gZm i nで紡糸し、 引き取 り速度 592mZm i nで引き取ることにより、 1 1デニールの未延伸 糸を作製した。 紡糸時に、 口金直下を空冷することにより糸を冷却し、 夕ツチロールでラウリルホスフュー 卜カリゥム塩を主成分とする仕上剤 を塗布した。 Five MFR (melt flow rate) = ll gZ10 min (JISK7210 condition 14) as the core component Highly crystalline polypropylene with Ml (menolein index) = 16.5 gZ10 min (JISK7210 condition 4) as the sheath component ) Is spun from an eccentric sheath-core composite spinneret with a discharge ratio of 5: 5 and an eccentric sheath-core composite spinneret with 621 holes at a discharge rate of 450 gZin, and is drawn at a take-up speed of 592 mZm in to produce 11 denier undrawn yarn. Was prepared. At the time of spinning, the yarn was cooled by air cooling just below the spinneret, and a finishing agent containing lauryl phosphate potassium salt as a main component was applied with evening roll.
この未延伸糸を第 1番目のロール温度が 90°C、 第 2番目のロール温 度が 20°Cで、 かつ第 1番目のロールと第 2番目のロールの回転速度比 を 1対 4. 5に設定した 2つのロール間で延伸し、 3デニールの螺旋状 の捲縮を有する延伸糸を作製した。 この螺旋状の捲縮を有する延伸糸を 押し切りタイプの力ッターを用いて切断し、 繊維長 5 mmの繊維を作製 した。  The temperature of the first roll is 90 ° C, the temperature of the second roll is 20 ° C, and the rotational speed ratio of the first roll to the second roll is 1: 4. Stretching was performed between two rolls set at 5, to produce a drawn yarn having a helical crimp of 3 denier. The drawn yarn having the helical crimp was cut by using a push-off type force cutter to produce a fiber having a fiber length of 5 mm.
以下、 熱融着性繊維を用いた不織布製造法について説明する。  Hereinafter, a nonwoven fabric manufacturing method using the heat-fusible fiber will be described.
この複合繊維を開織機に投入通過させ、 機械的に繊維を開織したのち、 図 1〜5に示したエアレイ ド装置に供給して処理した。 すなわち開繊さ れた複合繊維 18を送綿循環ダク トを経由し、 繊維送入口 3および 4に 送入し、 回転する筒状スク リ ーン 5 aおよび 6 aから繊維を排出させた。 排出された繊維を 9 Om/m i nで運転するサクショ ン装置 10を有す るネッ トコンベア一 9 aで捕集しウェブ 16を作製した。 ウェブ圧縮口 ール 1 1で圧縮した後、 サク シヨ ン ドライヤー 12を使用して 150°C で 3秒間加熱処理することにより、 鞘成分の高密度ポリエチレンを溶融 接着させ、 不織布 13を作製し、 巻き取りロール 14に巻き取った。 得られた不織布の物性は、 目付け 25 gZm2 , 厚み 4. 6mm, 比 容積 1 8 5 c m3 Zg, 繊維塊の個数 1. 2個 /2 0 gであった。 結果 を表 1に示す。 The composite fiber was passed through a weaving machine, mechanically opened the fiber, and then supplied to an air-laid apparatus shown in Figs. 1 to 5 for processing. That is, the opened composite fiber 18 was fed into the fiber inlets 3 and 4 via the cotton circulation duct, and the fibers were discharged from the rotating cylindrical screens 5a and 6a. The discharged fibers were collected by a net conveyor 9a having a suction device 10 operating at 9 Om / min to produce a web 16. After compression with the web compression port 11 1, heat treatment at 150 ° C for 3 seconds using a suction dryer 12 to melt-bond the high-density polyethylene of the sheath component to produce a nonwoven fabric 13. It was wound on a take-up roll 14. The physical properties of the obtained nonwoven fabric were as follows: basis weight 25 gZm 2 , thickness 4.6 mm, The volume was 18.5 cm 3 Zg, and the number of fiber masses was 1.2 pieces / 20 g. Table 1 shows the results.
(実施例 3) (Example 3)
複合繊維の繊維長を 1 Ommにした以外は、 実施例 2と同様の条件で 不織布を作製した。  A nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length of the conjugate fiber was set to 1 Omm.
得られた不織布の物性は、 目付け 2 5 g/m2 , 厚み 4. 4mm, 比 容積 1 7 6 c m3 Zg, 繊維塊の個数 1. 9個 Z2 0 gであった。 結果 を表 1に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 g / m 2 , a thickness of 4.4 mm, a specific volume of 176 cm 3 Zg, and a number of fiber masses of 1.9 Z20 g. Table 1 shows the results.
(実施例 4) (Example 4)
複合繊維の繊維長を 1 5mmにした以外は、 実施例 2と同様の条件で 不織布を作製した。  A nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length of the conjugate fiber was changed to 15 mm.
得られた不織布の物性は、 目付け 2 5 gZm2 , 厚み 4. 2 5 mm, 比容積 1 7 0 c m3 Zg, 繊維塊の個数 3. 8個 Z2 0 gであった。 結 果を表 1 に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 4.25 mm, a specific volume of 170 cm 3 Zg, and a number of fiber masses of 3.8 Z20 g. Table 1 shows the results.
(実施例 5) (Example 5)
ポリエステル短繊維と並列型複合繊維を用いて不織布を製造する方法。 捲縮数 1 4山 吋 (2. 5 4 c m) のジグザグ形状の捲縮を有する 2 d/ f X 5 mmのポリエステル繊維 3 0重量%と、 ポリプロピレン成分 と高密度ポリエチレン成分とからなる並列型複合繊維であつて捲縮数 6 山 /吋 (2. 5 4 c m) の螺旋状の捲縮を有する 2 d/ f x 5 mmの複 合繊維 7 0重量%とを開繊機に投入通過させ、 機械的に繊維を開織した のち、 図 1〜 3に示したエアレイ ド装置に供給して処理した。 すなわち 開繊されたポリエステル繊維と並列型複合繊維 1 5を送綿循環ダク トを 経由し、 繊維送入口 3および 4に送入し、 回転する筒状スク リーン 5 a および 6 aから繊維を排出させた。 排出された繊維を 9 OmZm i nで 運転するサクショ ン装置 1 0を有するネッ トコンベア一 9 aで捕集しゥ エブ 1 6を作製した。 このゥヱブをゥヱブ圧縮ロール 1 1で圧縮した後、 サクシヨンドライヤー 1 2を使用して 1 5 0。Cで 3秒間加熱処理するこ とにより、 鞘成分の高密度ポリエチレンを溶融接着させ、 不織布 1 3を 作製し、 巻き取りロール 1 4に巻き取った。 A method for producing a nonwoven fabric using polyester short fibers and parallel type composite fibers. Number of crimps 14 Parallel type consisting of 30% by weight of 2 d / f X 5 mm polyester fiber having a zigzag crimp of 14 inches (2.54 cm), polypropylene component and high density polyethylene component 70% by weight of a 2 d / fx 5 mm conjugate fiber having a helical crimp of 6 crimps / inch (2.54 cm), which is a conjugate fiber, is fed into the opening machine and passed therethrough. After mechanically weaving the fibers, they were fed to the air-laid apparatus shown in Figs. In other words, the opened polyester fiber and the parallel type composite fiber 15 Then, the fibers were fed into fiber inlets 3 and 4 and the fibers were discharged from the rotating cylindrical screens 5a and 6a. The discharged fibers were collected by a net conveyor 19a having a suction device 10 operated at 9 OmZmin to produce a web 16. After compressing this tube with a tube compression roll 11, use a suction drier 12 to 150. By heat-treating with C for 3 seconds, the high-density polyethylene of the sheath component was melt-bonded to produce a nonwoven fabric 13, which was taken up on a take-up roll 14.
得られた不織布の物性は、 目付け 25 gZm2 , 厚み 3. 4mm, 比 容積 1 3 7 c m3 /g, 繊維塊の個数 2. 2個 Z2 0 gであった。 結果 を表 1に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 3.4 mm, a specific volume of 13.7 cm 3 / g, and a number of fiber masses of 2.2 pieces Z20 g. Table 1 shows the results.
(実施例 6) (Example 6)
熱融着性短繊維の製造法。  A method for producing heat-fusible short fibers.
MFR= l l gZ1 0分 (J I S K 72 1 0 条件 1 4) の高結晶 性ポリプロピレンと M I = 1 6. 5 gZ1 0分 (J I S K 72 1 0 条件 4) の高密度ポリエチレンを吐出比 5対 5でホール数 62 1の並列 型複合紡糸口金を用い、 吐出量 4 5 0 g/m i nで紡糸し、 引き取り速 度 5 92 mZm i nで引き取ることにより、 8. 1デニールの未延伸糸 を作製した点を除いて他の条件は実施例 2と同様の条件で不織布を作製 した。  MFR = ll gZ1 0 minutes High crystalline polypropylene with JISK 72 10 conditions 14) and high density polyethylene with MI = 16.5 gZ1 0 minutes (JISK 72 10 conditions 4) Hole at discharge ratio 5: 5 Except that an undrawn yarn of 8.1 denier was produced by spinning at a discharge rate of 450 g / min and using a take-up speed of 592 mZmin using a parallel composite spinneret of number 62 1 The other conditions were the same as in Example 2 to produce a nonwoven fabric.
得られた不織布の物性は、 目付け 25 gZm2 , 厚み 4. 5 mm, 比 容積 1 8 1 c m3 Zg, 繊維塊の個数 1. 3個/ /2 0 gであった。 結果 を表 1に示す。 (実施例 7) The properties of the obtained nonwoven fabric, the basis weight 25 gZm 2, thickness 4. 5 mm, the specific volume 1 8 1 cm 3 Zg, was the number 1.3 pieces / / 2 0 g of fiber masses. Table 1 shows the results. (Example 7)
紡糸口金のホール数 60、 紡糸時の吐出量が 2 00 g/m i n、 引き 取り速度が 4 1 7 mZm i n、 72デニールの未延伸糸、 1 8デニール の延伸糸、 螺旋状の捲縮数が 6山 Z吋 (2. 54 cm) とした点以外は、 実施例 6と同様の条件で繊維を作製した。 The number of holes in the spinneret is 60, the discharge rate during spinning is 200 g / min, Example 6 was the same as Example 6 except that the take-up speed was 4 17 mZm in, the undrawn yarn of 72 denier, the drawn yarn of 18 denier, and the number of spiral crimps was 6 mountains Z inches (2.54 cm). Fibers were produced under the same conditions.
不織布の作製条件は実施例 5と同様にした。  The conditions for producing the nonwoven fabric were the same as in Example 5.
得られた不織布の物性は、 目付け 2 5 gZm" , 厚み 3. 9 mm, 比 容積 1 56 c m3 Zg, 繊維塊の個数 0. 5個/ "2 0 gであった。 結果 を表 1に示す。 The properties of the obtained nonwoven fabric having a basis weight 2 5 gZm ", thickness 3. 9 mm, specific volume 1 56 cm 3 Zg, the number of fiber masses 0.5 cells /" was 2 0 g. Table 1 shows the results.
(実施例 8) (Example 8)
熱融着性短繊維の製造法。  A method for producing heat-fusible short fibers.
芯成分として MFR= 16 gZl 0分 (J I S K 72 1 0 条件 1 4) のポリプロピレン、 鞘成分として M I = 16. 52 10分 (】 1 S K 7210 条件 4) の高密度ポリエチレンを吐出比 5対 5でホー ル数 621の鞘芯型複合紡糸口金を用い、 吐出量 450 g/m i nで紡 糸し、 引き取り速度 9 1 9 mZm i nで引き取ることにより、 7. 1デ ニールの未延伸糸を作製した。 紡糸時に、 口金直下を空冷することによ り糸を冷却した。  MFR = 16 gZl 0 min as the core component (JISK7210 condition 14) polypropylene and MI = 16.52 10 min as the sheath component () 1 SK7210 condition 4) high density polyethylene at a discharge ratio of 5 to 5. Using a sheath-core composite spinneret with 621 holes, spinning was performed at a discharge rate of 450 g / min, and drawing was performed at a take-up speed of 919 mZmin, thereby producing 7.1-denier undrawn yarn. During spinning, the yarn was cooled by air cooling just below the spinneret.
この未延伸糸を第 1のロールと第 2のロールの回転速度比を 1対 4に 設定し、 それぞれ 90DCに加熱された 2つのロール間で延伸し、 2デニ —ルの延伸糸を作製した。 この延伸糸に夕ツチロールでラウリルホスフ エ ートカリゥム塩を主成分とする仕上剤を塗布したのち、 ボックス型の 捲縮加工機を通過させて 1ィンチ当たり 14山のジグザグ捲縮を付与し たトウを作製した。 The unstretched yarn is stretched between two rolls heated to 90 DC each by setting the rotation speed ratio of the first roll and the second roll to 1: 4, and the 2 denier stretched yarn is formed. Produced. After applying a finishing agent containing lauryl phosphate potassium salt as a main component to the drawn yarn using evening rolls, the yarn is passed through a box-type crimping machine to form a tow having 14 zigzag crimps per inch. Produced.
このトウは水分を含んでいるので、 乾燥機を用い 90°Cで乾燥したの ち、 押し切りタイプのカツ夕一を用いて切断して、 繊維長 10 mmの繊 維を作製した。  Since the tow contained moisture, it was dried at 90 ° C using a dryer, and then cut using a push-cut type cutlet to produce a fiber with a fiber length of 10 mm.
9 T 7 9 T 7
不織布の作製条件は実施例 5と同様にした。 The conditions for producing the nonwoven fabric were the same as in Example 5.
得られた不織布の物性は、 目付け 2 5 g/m2 , 厚み 2. 8 mm, 比 容積 7 9 c m3 Zg, 繊維塊の個数 4. 5個 Z2 0 gであった。 結果を 表 1に示す。 The physical properties of the obtained nonwoven fabric were a basis weight of 25 g / m 2 , a thickness of 2.8 mm, a specific volume of 79 cm 3 Zg, and the number of fiber masses 4.5 Z 20 g. Table 1 shows the results.
(実施例 9) (Example 9)
熱融着繊維の短繊維製造法。  A method for producing short fibers of heat-sealed fibers.
紡糸口金のホール数 6 0、 吐出量 2 0 0 gZm i n、 引き取り速度 2 6 3 m/m i nで引き取ることにより、 1 1 4デニールの未延伸糸を作 製し、 3 2デニールの延伸糸を作製した。 1インチ当たり 1 2山のジグ ザグ捲縮を付与し、 繊維長を 1 O mmとした以外は、 実施例 8と同様の 条件で熱融着性複合繊維を作製した。  By drawing the spinneret with 60 holes, a discharge rate of 200 gZmin, and a take-up speed of 26 3 m / min, an undrawn yarn of 114 denier is made and a drawn yarn of 32 denier is made. did. A heat-fusible conjugate fiber was produced under the same conditions as in Example 8, except that 12 zig-zag crimps were applied per inch and the fiber length was set to 1 Omm.
不織布の作製条件は実施例 5と同様にした。  The conditions for producing the nonwoven fabric were the same as in Example 5.
得られた不織布の物性は、 目付け 2 5 g/m2 , 厚み 2. 6 mm, 比 容積 4 5 c m3 /g, 繊維塊の個数 3. 6個ノ2 0 gであった。 結果を 表 1に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 g / m 2 , a thickness of 2.6 mm, a specific volume of 45 cm 3 / g, and the number of fiber masses was 3.6 g / 20 g. Table 1 shows the results.
(実施例 1 0) (Example 10)
ホール数 1 0 0の紡糸口金を用い、 紡糸時の吐出量が 2 0 0 g/m i nで、 紡糸時に糸を水冷するとともに、 引き取り速度が 5 3mXm i n で引き取ることにより 3 4 0デニールの未延伸糸、 1 0 0デニールの延 伸糸、 1ィンチ当たり 1 0山のジグザグ捲縮、 繊維長 2 5 mmである点 以外は実施例 8と同様の条件で繊維を作製した。  Using a spinneret with 100 holes, the discharge rate during spinning is 200 g / min, the yarn is water-cooled during spinning, and the drawing speed is 53 mXmin. A fiber was produced under the same conditions as in Example 8 except that the yarn, 100 denier drawn yarn, 10 zigzag crimps per inch, and a fiber length of 25 mm were used.
不織布の作製条件は実施例 5と同様にした。  The conditions for producing the nonwoven fabric were the same as in Example 5.
得られた不織布の物性は、 目付け 2 5 gZm2 , 厚み 2. 6 5 mm, 比容積 5 8 c m° /g, 繊維塊の個数 2. 4個 Z2 0 gであった。 結果 を表 1に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 2.65 mm, a specific volume of 58 cm ° / g, and a number of fiber masses of 2.4 pieces Z0 g. result Are shown in Table 1.
(実施例 1 1) (Example 11)
熱融着繊維の短繊維製造法。  A method for producing short fibers of heat-sealed fibers.
芯成分として MFR= 1 1 g/1 0分 ( J I S K 721 0 条件 1 4) の高結晶性ポリプロピレン、 鞘成分として M I - 16. 5 gXl 0 分 (J I S K 7210 条件 4) の高密度ポリエチレンを吐出比 5対 5でホール数 621の鞘芯型複合紡糸口金を用い、 吐出量 350 g/m i nで紡糸し、 引き取り速度 995 mZm i nで引き取ることにより、 5. 1デニールの未延伸糸を作製した。 紡糸時に、 口金直下を空冷する ことにより糸を冷却した。  Discharge ratio of high crystalline polypropylene with MFR = 1 1 g / 10 min (JISK7210 condition 14) as core component and high density polyethylene of MI-16.5 gXl 0 min (JISK7210 condition 4) as sheath component A 5-denier undrawn yarn was produced by spinning at a discharge rate of 350 g / min and a take-up speed of 995 mZmin using a sheath-core composite spinneret having 5 to 5 holes and 621 holes. During spinning, the yarn was cooled by air cooling just below the spinneret.
この未延伸糸を第 1番目のロール温度を 90°C、 第 2番目のロール温 度を 20°Cに設定し、 かつ第 1番目のロールと第 2番目のロールの回転 速度比を 1対 4. 5に設定した 2つのロールの間で延伸した。 この延伸 糸に夕ツチロールでラウリルホスフヱー トカリゥム塩を主成分とする仕 上剤を塗布したのち、 ボックス型の捲縮加工機を通過させて 1インチ (2. 54 cm) 当たり 9山の波状捲縮を有する トウを作製した。 この 波状捲縮を有する延伸糸を押し切りタイプのカツターを用いて切断し、 繊維長 5 mmの繊維を作製した。  For the undrawn yarn, the first roll temperature was set to 90 ° C, the second roll temperature was set to 20 ° C, and the rotation speed ratio of the first roll to the second roll was 1: 1. 4. Stretched between two rolls set at 5. After applying a finishing agent containing lauryl phosphate potassium salt as the main component to this drawn yarn with Tytrol, it is passed through a box-type crimping machine to produce 9 wavy ridges per inch (2.54 cm). A tow having a crimp was produced. The drawn yarn having the wavy crimp was cut using a push-cut type cutter to produce a fiber having a fiber length of 5 mm.
不織布の作製条件は実施例 5と同様にした。  The conditions for producing the nonwoven fabric were the same as in Example 5.
得られた不織布の物性は、 目付け 23 g , 厚み 3. 75 mm, 比容積 1 63 cm3 /g, 繊維塊の個数 1 8個 Z20 gであった。 結 果を表 1に示す。 The physical properties of the obtained nonwoven fabric were 23 g in weight, 3.75 mm in thickness, specific volume of 163 cm 3 / g, and 18 pieces of fiber mass Z20 g. Table 1 shows the results.
(実施例 12) (Example 12)
熱融着性短繊維の製造法。 MFR = 1 0 g/1 0分 (J I S K 721 0 条件 14) のポリプ ロピレンとMFR = 23 gZ10分 (J I S K 721 0 条件 14 ) のポリプロピレンを吐出比 5対 5でホール数 350の並列型複合紡糸口 金を用い、 吐出量 200 g/m i nで紡糸し、 引き取り速度 635 mZ m i nで引き取ることにより、 8. 1デニールの未延伸糸を作製した。 紡糸時に、 口金直下を空冷することにより糸を冷却し、 タツチロールで ラウリルホスフヱ一 トカリゥム塩を主成分とする仕上剤を塗布した。 この未延伸糸を第 1番目のロール温度を 90°C、 第 2番目のロール温 度を 20°Cに設定し、 かつ第 1番目のロールと第 2番目のロールの回転 速度比を 1対 4. 5に設定した 2つのロール間で延伸し、 2デニールの 螺旋状の捲縮を有する延伸糸を作製した。 この螺旋状の捲縮を有する延 伸糸を押し切りタイプのカッターを用いて切断し、 繊維長 1 Ommの繊 維を作製した。 A method for producing heat-fusible short fibers. Polypropylene with MFR = 10 g / 10 min (JISK 721 0 condition 14) and polypropylene with MFR = 23 gZ 10 min (JISK 721 0 condition 14) Dispensing ratio 5: 5 Parallel type composite spinneret with 350 holes Spinning was performed using gold at a discharge rate of 200 g / min, and drawing was performed at a drawing speed of 635 mZ min to produce an undrawn yarn of 8.1 denier. At the time of spinning, the yarn was cooled by air cooling just below the spinneret, and a finishing agent mainly composed of lauryl phosphate potassium salt was applied with tatty roll. For the undrawn yarn, the first roll temperature was set to 90 ° C, the second roll temperature was set to 20 ° C, and the rotation speed ratio of the first roll to the second roll was 1: 1. The film was drawn between two rolls set to 4.5 to produce a drawn yarn having a spiral crimp of 2 denier. The extended drawn yarn having the helical crimp was cut using a push-cut type cutter to produce a fiber having a fiber length of 1 Omm.
不織布は、 実施例 5と同様の条件で作製した。  The nonwoven fabric was produced under the same conditions as in Example 5.
得られた不織布の物性は、 目付け 25 gZm2 , 厚み 3. 25mm, 比容積 1 30 cm3 Zg, 繊維塊の個数 1. 4個 20 gであった。 結 果を表 1に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 3.25 mm, a specific volume of 130 cm 3 Zg, and a number of fiber masses of 1.4 pieces 20 g. Table 1 shows the results.
(実施例 13) (Example 13)
熱融着性短繊維の製造法。  A method for producing heat-fusible short fibers.
芯成分として極限粘度が 0. 68 d 1 Zgの結晶性ポリエチレンテレ フタレー ト、 鞘成分として M 1 = 16. 5 gZ10分 (J I S K 72 1 0 条件 4) の高密度ポリエチレンを吐出比 5対 5でホール数 621 の鞘芯型複合紡糸口金を用い、 吐出量 450 gZm i nで紡糸し、 引き 取り速度 1 035 mZm i nで引き取ることにより、 6, 3デニールの 未延伸糸を作製した。 紡糸時に、 口金直下を空冷することにより糸を冷 却した。 Crystalline polyethylene terephthalate with intrinsic viscosity of 0.68 d1 Zg as the core component, and high-density polyethylene with M1 = 16.5 gZ10 min (JISK 7210 condition 4) as the sheath component at a discharge ratio of 5 to 5. Using a sheath-core type composite spinneret with 621 holes, spinning was performed at a discharge rate of 450 gZmin, and drawing was performed at a drawing speed of 1035 mZmin to produce an undrawn yarn of 6,3 denier. During spinning, the yarn is cooled by air cooling just below the spinneret. Rejected.
この未延伸糸を第 1のロールと第 2のロールの回転速度比を 1対 3. 3に設定し、 それぞれ 9 0°Cに加熱された 2つのロール間で延伸した。 この延伸糸に夕ツチロールでラウリルホスフヱ一トカリゥム塩を主成分 とする仕上剤を塗布したのち、 ボックス型の捲縮加工機を通過させて 1 イ ンチ (2. 54 c m) 当たり 5山の波状捲縮を有するトウを作製した。 この波状捲縮を有する延伸糸を押し切りタイプのカツターを用いて切断 し、 繊維長 1 Ommの繊維を作製した。  The undrawn yarn was drawn between two rolls each heated to 90 ° C. with the rotation speed ratio of the first roll and the second roll set to 1: 3.3. After applying a finishing agent containing lauryl phosphate potassium salt as a main component to the drawn yarn with evening rolls, the yarn is passed through a box-type crimping machine to form a wavy crimp of 5 peaks per inch (2.54 cm). Was produced. The drawn yarn having the wavy crimp was cut using a push-type cutter to produce a fiber having a fiber length of 1 Omm.
不織布の作製条件は実施例 5と同様にした。  The conditions for producing the nonwoven fabric were the same as in Example 5.
得られた不織布の物性は、 目付け 2 5 gZm2 , 厚み 3. 0mm, 比 容積 1 0 1 c m3 Zg, 繊維塊の個数 2. 6個 /2 0 gであった。 結果 を表 1に示す。 Physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 3.0 mm, a specific volume of 101 cm 3 Zg, and a number of fiber masses of 2.6 pieces / 20 g. Table 1 shows the results.
(比較例 1) (Comparative Example 1)
繊維長が 38mmであることとウェブの製造時にカード機を用いるこ とを除いて実施例 2と同様の条件で不織布を作製した。  A nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length was 38 mm and a carding machine was used during the production of the web.
得られた不織布の物性は、 目付け 2 5 gZm2 , 厚み 0. 9mm, 比 容積 3 6 c m3 Zg, 繊維塊の数 0. 9個/ 2 0 gであった。 The physical properties of the obtained nonwoven fabric were a basis weight of 25 gZm 2 , a thickness of 0.9 mm, a specific volume of 36 cm 3 Zg, and the number of fiber masses was 0.9 / 20 g.
カー ド法不織布であるため、 他の実施例に比べ比容積が小さい不織布 になった。  Since it was a card nonwoven fabric, the nonwoven fabric had a smaller specific volume than the other examples.
結果を表 1に示す。 Table 1 shows the results.
(比較例 2) (Comparative Example 2)
繊維長が 3 0mmであること以外は実施例 2と同様の条件で不織布を 作製した。  A nonwoven fabric was produced under the same conditions as in Example 2 except that the fiber length was 30 mm.
得られた不織布の物性は、 目付け 2 5 g/n^ , 厚み 2. 75 mm, 比容積 1 1 0 c m 3 Z g, 繊維塊の数 8 . 5個 Z 2 0 gであった。 エアレイ ド法不織布であるが、 繊維長が 2 5 m mより長いため、 繊維 が絡み易くなり繊維塊の数が多い不織布になった。 従って得られた不織 布は均一性が劣り、 ザラツキ感があり、 繊維塊による白色の部分が目立 ち、 色相が不均一であった。 よって、 この不織布は風合い不良と判断さ れた。 結果を表 1に示した。 The physical properties of the obtained nonwoven fabric are as follows: basis weight 25 g / n ^, thickness 2.75 mm, The specific volume was 110 cm 3 Z g and the number of fiber mass was 8.5 Z 20 g. Although it is an airlaid nonwoven fabric, since the fiber length is longer than 25 mm, the fibers are easily entangled and the nonwoven fabric has a large number of fiber clumps. Therefore, the obtained non-woven fabric was poor in uniformity, had a feeling of graininess, noticeable white portions due to fiber mass, and non-uniform hue. Therefore, this nonwoven fabric was judged to have a poor texture. The results are shown in Table 1.
(実施例 1 4 ) (Example 14)
平面形状がほぼ鉄道レールの横断面状である略 I型の形状を有する市 販の紙おむつを用い、 該紙おむつの表面材のみ、 実質的に実施例 2記載 の熱接着性不織布におきかえた。  A commercially available disposable diaper having a substantially I-shaped planar cross section substantially similar to that of a railroad rail was used, and only the surface material of the disposable diaper was substantially replaced with the heat-adhesive nonwoven fabric described in Example 2.
該市販の紙おむつは、 ポリェチレン/ポリプロピレン系熱融着性複合 繊維ステープルを用い、 かつその繊維の交差点が熱融着された不織布を 表面材とし、 パルプおよび高吸水性樹脂を主成分とする吸水材、 および ポリエチレンフィルムを裏面材とするおむつであつた。 該おむつから表 面材のみナイフで切断除去した。 前記実施例 3で得た熱接着性不織布を、 切断除去した表面材に代えて同じ部位に積層した。 さらに前記熱接着性 不織布と残余の脚部近傍の不織布とを熱融着した。 余分な熱接着性不織 布をハサミで切り取って除去し、 熱融着性不織布が表面材として配設さ れた紙おむつを得た。 このおむつは、 表面材の横手方向 (長手方向に対 しての) の強力が大きく、 嵩高でソフ トな風合いであり、 紙おむっとし て好適であつた。 \ SB ÷* -一ノレ 鋤維長 繊 i*n維塊 捲 縮 捲縮数 ゾ aft a 山ノ吋 d f mm cm3/ g 個 Z20g 形 状 (山 /2.54cm) 難例 1 3 5 143 2. 1 螺旋 7 良 The commercially available disposable diaper uses a polyethylene / polypropylene-based heat-fusible composite fiber staple, and has a surface material of a non-woven fabric in which intersections of the fibers are heat-sealed, and a water-absorbing material mainly composed of pulp and a highly water-absorbent resin. , And a diaper with a polyethylene film as the backing material. Only the surface material was cut off from the diaper with a knife. The heat-adhesive nonwoven fabric obtained in Example 3 was laminated on the same portion instead of the cut and removed surface material. Further, the heat-bonding nonwoven fabric and the nonwoven fabric near the remaining leg portions were heat-sealed. Excess heat-bondable nonwoven fabric was cut off with scissors and removed to obtain a disposable diaper on which a heat-fusible nonwoven fabric was provided as a surface material. The diaper had a large strength in the lateral direction (in the longitudinal direction) of the surface material, a bulky and soft texture, and was suitable as a paper diaper. \ SB ÷ *-レ レ 鋤 * i * n a 維 ft aft a a ft df mm cm3 / g pcs Z20g Shape (mountain / 2.54cm) Difficult 1 3 5 143 2. 1 spiral 7 good
1. 5 5 ジグザグ 12 趣例 2 3 5 185 1. 2 螺旋 7 良 錢例 3 3 10 176 1. 9 螺旋 8 良 餓例 4 3 15 170 3. 8 螺旋 7 良 1.5 5 zigzag 12 example 2 3 5 185 1.2 spiral 7 good example 3 3 10 176 1.9 spiral 8 good starvation 4 3 15 170 3.8 spiral 7 good
H½例 5 2 5 137 2. 2 嫘旋 6 良 H example 5 2 5 137 2.2 spiral 6 good
2 5 ジグザグ 14 例 6 2 5 181 1. 3 嫘旋 7 良 例 7 18 5 156 0. 5 蜾旋 6 良 難例 8 2 10 79 4. 5 ジグザグ 14 良 例 9 32 3 45 3. 6 ジグザグ 12 良 錢例 10 100 25 58 2. 4 ジグザグ 10 良 難例 11 1. 5 5 163 1. 8 波 9 良 麵例 12 2 10 130 1. 4 螺旋 8 良 諭例 13 2 10 101 2. 6 ジグザグ 5 良 赚例 1 3 38 36 0. 9 螺旋 7 良 m 2 3 30 110 8. 5 螺旋 7 不良 表 1の結果から明らかなとおり、 本発明のデニール、 繊維長、 捲縮形 状及び捲縮数の構成にすることによって、 繊維による嵩高性への寄与を 十分機能させた嵩高性で繊維塊の少ない地合いの良い不織布が得られた。 加えて本発明の熱接着性不織布に用いた繊維の繊維長は、 カード法不織 布に比べ短いため、 構成本数が多くなることで繊維の分散に粗密が少な くなり、 均一な不織布が得られた。 さらに繊維が分散して降り積もらさ れて不織布が形成されているため、 繊維を引っ掛けて配向させるカード 法不織布に比べ密度が小さくなり、 通気度が大きくなった。 本発明の短繊維不織布は、 短い繊維を用い繊維が分散して降り積もら されて不織布が形成されているので、 力一ド法で得られる不織布が繊維 が引っ張られることによって嵩高性を阻害されるという欠点を解決し、 嵩高でソフ トな不織布を得ることができる。 2 5 zigzag 14 example 6 2 5 181 1.3 spiral 7 good example 7 18 5 156 0.5 0.5 spiral 6 good example 8 2 10 79 4.5 zigzag 14 good example 9 32 3 45 3.6 zigzag 12 Good example 10 100 25 58 2.4 Zigzag 10 Good Difficult example 11 1.5 5 163 1.8 Wave 9 Good Example 12 2 10 130 1.4 Spiral 8 Good example 13 2 10 101 2.6 Zigzag 5 Good example 1 3 38 36 0.9 spiral 7 good m 2 3 30 110 8.5 spiral 7 bad As is clear from the results in Table 1, the configuration of the denier, the fiber length, the crimped shape, and the number of crimps according to the present invention allows the fiber to sufficiently function to contribute to the bulkiness, and the bulky fiber mass A good nonwoven fabric with a small texture was obtained. In addition, since the fiber length of the fibers used in the heat-bondable nonwoven fabric of the present invention is shorter than that of the nonwoven fabric by the card method, the number of fibers increases, so that the dispersion of fibers becomes less dense and dense, and a uniform nonwoven fabric is obtained. Was done. Furthermore, since the non-woven fabric is formed by dispersing the fibers and being deposited, the density and the air permeability are lower than those of the card nonwoven fabric in which the fibers are hooked and oriented. The short-fiber nonwoven fabric of the present invention is formed by dispersing and depositing short fibers using short fibers to form a nonwoven fabric, so that the nonwoven fabric obtained by the force method is hindered in bulkiness by pulling the fibers. Thus, a bulky and soft nonwoven fabric can be obtained.
加えて本発明の短繊維不織布は、 繊維長がカード法不織布に比べ短い ため、 ランダムな分散状態で積層されるので、 繊維の粗密ムラが少なく なり、 均一な不織布が得られる。 さらに繊維が三次元方向に分散して降 り積もらされて不織布が形成されているため、 繊維を引っ掛けて配向さ せるカー ド法不織布に比べ密度が小さくなり、 通気度が大きく、 ソフ ト 感に優れている。 産業上の利用可能性  In addition, since the short fiber nonwoven fabric of the present invention has a shorter fiber length than the card method nonwoven fabric, it is laminated in a randomly dispersed state, so that unevenness in the density of fibers is reduced and a uniform nonwoven fabric is obtained. Furthermore, since the nonwoven fabric is formed by dispersing the fibers in a three-dimensional direction and accumulating them, the density is lower than that of the card nonwoven fabric in which the fibers are hooked and oriented. Are better. Industrial applicability
以上の効果を奏することから、 本発明の不織布はソフ ト感があり身体 に直接触れる用途、 例えば紙おむつ、 ナプキン、 失禁用パッ ト、 母乳パ ッ ト等の吸収性物品に好適に用いられる。 また、 比容積が大きく、 嵩高 で緩衝性がよいので、 包帯 '眼帯, ランチョンマッ ト, クッキング夕ォ ル, ガラス陶器の包装材, 青果 ·切花の包装材, 楽器 ·家具の包装材等 の緩衝性が必要とされる用途に好適に用いられる。 また、 厚み方向に密 度勾配を有する不織布とした場台には、 液体フィ ルター, エアフィ ルタ —等のフィ ルター用不織布材料と して使用できる。 Due to the above effects, the nonwoven fabric of the present invention is suitably used for applications that have a soft feeling and directly touch the body, for example, absorbent articles such as disposable diapers, napkins, incontinence pads, and breast milk pads. In addition, it has a large specific volume, is bulky and has good cushioning properties, so it can be used for bandages, eyeglasses, luncheon mats, cooking dishes, glassware packaging, fruits and vegetables, cut flowers, musical instruments and furniture. It is suitably used for applications that require buffering properties. In addition, a non-woven fabric base having a non-woven fabric having a density gradient in the thickness direction can be used as a non-woven fabric material for filters such as liquid filters and air filters.

Claims

請 求 の 範 囲 The scope of the claims
1. 繊維長が 3〜 2 5 mmであり、 単糸繊度が 1〜 1 0 0デニールであ る 1種類以上の短繊維が分散して降り積もらされてなり、 かつ該短繊維 同士の交点が接着されている不織布であって、 該不織布の比容積が 4 0 〜20 0 ε ιηϋ Ζ8であり、 該不織布中に存在する前記短繊維からなる 体積 l mm" 以上の繊維塊の個数が該不織布 20 gあたりに 5個以下で ある短繊維不織布。 1. One or more types of short fibers having a fiber length of 3 to 25 mm and a single fiber fineness of 1 to 100 denier are dispersed and deposited, and the intersection of the short fibers is A bonded nonwoven fabric, wherein the specific volume of the nonwoven fabric is 40 to 200 ε ιη ϋ Ζ8, and the number of fiber lumps having a volume of lmm ″ or more composed of the short fibers present in the nonwoven fabric is Short-fiber non-woven fabric with 5 or less per 20 g non-woven fabric.
2. 短繊維の繊維長が、 5〜 1 Ommである請求の範囲第 1項記載の短 繊維不織布。  2. The short-fiber nonwoven fabric according to claim 1, wherein the short fiber has a fiber length of 5 to 1 Omm.
3. 短繊維のうちの少なく とも 1種が、 捲縮数 3〜 20山 Z吋 (2. 5 3. At least one of the short fibers has a crimp count of 3 to 20 mountains Z inches (2.5
4 cm) の螺旋型捲縮を有する短繊維である請求の範囲第 1項に記載の 短繊維不織布。 2. The short-fiber nonwoven fabric according to claim 1, which is a short fiber having a helical crimp of 4 cm).
4. 短繊維のうちの少なく とも 1種が、 熱可塑性繊維である請求の範囲 第 1項に記載の短繊維不織布。  4. The short-fiber nonwoven fabric according to claim 1, wherein at least one of the short fibers is a thermoplastic fiber.
5. 短繊維のうちの少なく とも 1種が、 ォレフィ ン系またはポリエステ ル系の熱可塑性短繊維である請求の範囲第 1項に記載の短繊維不織布。 5. The short-fiber nonwoven fabric according to claim 1, wherein at least one of the short fibers is an olefin- or polyester-based thermoplastic short fiber.
6. 短繊維のうちの少なく とも 1種が、 該繊維中に熱融着可能な成分を 1成分として含む熱可塑性複合短繊維である請求の範囲第 1項に記載の 短繊維不織布。 6. The short-fiber nonwoven fabric according to claim 1, wherein at least one of the short fibers is a thermoplastic conjugate short fiber containing a heat-fusible component as one component in the fiber.
7. 短繊維のうちの少なく とも 1種が、 高結晶性ポリプロピレンを芯成 分とし、 高密度ポリェチレンを鞘成分とする偏心型鞘芯構造を有する短 繊維である請求の範囲第 1項に記載の短繊維不織布。  7. Claim 1 wherein at least one of the short fibers is a short fiber having an eccentric sheath-core structure having a core component of highly crystalline polypropylene and a sheath component of high-density polyethylene. Short fiber non-woven fabric.
8. 請求の範囲第 1〜7項のいずれかに記載の短繊維不織布を用いた吸 収性物品。  8. An absorbent article using the short-fiber nonwoven fabric according to any one of claims 1 to 7.
PCT/JP1997/002073 1996-06-19 1997-06-16 Nonwoven short fibre fabric and absorbent article made by using same WO1997048846A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002256550A CA2256550A1 (en) 1996-06-19 1997-06-16 Nonwoven short fibre fabric and absorbent article made by using same
JP50266798A JP3219250B2 (en) 1996-06-19 1997-06-16 Short fiber nonwoven fabric and absorbent article using the same
EP97926261A EP0906981A4 (en) 1996-06-19 1997-06-16 Nonwoven short fibre fabric and absorbent article made by using same
AU31077/97A AU3107797A (en) 1996-06-19 1997-06-16 Nonwoven short fibre fabric and absorbent article made by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17996496 1996-06-19
JP8/179964 1996-06-19
JP35186396 1996-12-11
JP8/351863 1996-12-11

Publications (1)

Publication Number Publication Date
WO1997048846A1 true WO1997048846A1 (en) 1997-12-24

Family

ID=26499651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002073 WO1997048846A1 (en) 1996-06-19 1997-06-16 Nonwoven short fibre fabric and absorbent article made by using same

Country Status (6)

Country Link
US (1) US20020016120A1 (en)
EP (1) EP0906981A4 (en)
JP (1) JP3219250B2 (en)
AU (1) AU3107797A (en)
CA (1) CA2256550A1 (en)
WO (1) WO1997048846A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526279A (en) * 1998-10-05 2002-08-20 エスシーエー・ハイジーン・プロダクツ・アーベー Absorbent product comprising at least one thermoplastic component for bonding layers
US7131171B2 (en) 2002-09-25 2006-11-07 Kao Corporation Method for restoring bulkiness of nonwoven fabric
WO2008053741A1 (en) * 2006-10-30 2008-05-08 Kinsei Seishi Co., Ltd. Highly rigid air filters
JP2008533348A (en) * 2005-02-04 2008-08-21 ドナルドソン カンパニー,インコーポレイティド Aerosol separator and method
US7560159B2 (en) 2004-02-23 2009-07-14 Teijin Fibers Limited Synthetic staple fibers for an air-laid nonwoven fabric
JP4792391B2 (en) * 2003-06-16 2011-10-12 ハックル−キンバリー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Airlaid process with improved processing speed
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
WO2021131302A1 (en) * 2019-12-27 2021-07-01 ユニ・チャーム株式会社 Non-woven fabric and absorbent article

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2322461C (en) * 1998-03-12 2007-02-06 The Procter & Gamble Company Proton donating actives in absorbent articles
JP3404555B2 (en) 1999-09-24 2003-05-12 チッソ株式会社 Hydrophilic fibers and nonwoven fabrics, processed nonwoven fabrics using them
US7888275B2 (en) * 2005-01-21 2011-02-15 Filtrona Porous Technologies Corp. Porous composite materials comprising a plurality of bonded fiber component structures
US20030018970A1 (en) * 2001-07-19 2003-01-23 Digeo, Inc. Object representation of television programs within an interactive television system
EP1504741A1 (en) * 2003-08-07 2005-02-09 The Procter & Gamble Company Latex bonded acquisition layer having pressure insensitive liquid handling properties
EP1858618B1 (en) * 2005-02-22 2009-09-16 Donaldson Company, Inc. Aerosol separator
GB201210851D0 (en) * 2012-06-19 2012-08-01 Eads Uk Ltd Extrusion-based additive manufacturing system
TW201420054A (en) * 2012-11-21 2014-06-01 Kang Na Hsiung Entpr Co Ltd Hygroscopic non-woven fabric and fabricating method thereof
DE102014002060B4 (en) * 2014-02-18 2018-01-18 Carl Freudenberg Kg Bulk nonwovens, uses thereof, and methods of making same
EP3133196B1 (en) 2015-08-18 2020-10-14 Carl Freudenberg KG Volume nonwoven fabric
JP7220020B2 (en) 2017-01-06 2023-02-09 モリリン株式会社 Mixed cotton batting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860441A (en) * 1994-08-11 1996-03-05 Chisso Corp Thermally fusible conjugate fiber and thermally fusible nonwoven fabric

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183708A (en) * 1990-05-28 1993-02-02 Teijin Limited Cushion structure and process for producing the same
JP3534193B2 (en) * 1993-09-24 2004-06-07 東洋紡績株式会社 Cushion structure and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860441A (en) * 1994-08-11 1996-03-05 Chisso Corp Thermally fusible conjugate fiber and thermally fusible nonwoven fabric

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526279A (en) * 1998-10-05 2002-08-20 エスシーエー・ハイジーン・プロダクツ・アーベー Absorbent product comprising at least one thermoplastic component for bonding layers
US7131171B2 (en) 2002-09-25 2006-11-07 Kao Corporation Method for restoring bulkiness of nonwoven fabric
JP4792391B2 (en) * 2003-06-16 2011-10-12 ハックル−キンバリー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Airlaid process with improved processing speed
US7560159B2 (en) 2004-02-23 2009-07-14 Teijin Fibers Limited Synthetic staple fibers for an air-laid nonwoven fabric
US10610813B2 (en) 2004-11-05 2020-04-07 Donaldson Company, Inc. Filter medium and breather filter structure
US11504663B2 (en) 2004-11-05 2022-11-22 Donaldson Company, Inc. Filter medium and breather filter structure
USRE49097E1 (en) 2004-11-05 2022-06-07 Donaldson Company, Inc. Filter medium and structure
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
JP2008533348A (en) * 2005-02-04 2008-08-21 ドナルドソン カンパニー,インコーポレイティド Aerosol separator and method
JP5344465B2 (en) * 2006-10-30 2013-11-20 金星製紙株式会社 Air filter with high rigidity
WO2008053741A1 (en) * 2006-10-30 2008-05-08 Kinsei Seishi Co., Ltd. Highly rigid air filters
WO2021131302A1 (en) * 2019-12-27 2021-07-01 ユニ・チャーム株式会社 Non-woven fabric and absorbent article
WO2021132714A1 (en) * 2019-12-27 2021-07-01 ユニ・チャーム株式会社 Nonwoven fabric and absorbent article

Also Published As

Publication number Publication date
AU3107797A (en) 1998-01-07
EP0906981A1 (en) 1999-04-07
US20020016120A1 (en) 2002-02-07
JP3219250B2 (en) 2001-10-15
EP0906981A4 (en) 2004-11-17
CA2256550A1 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
WO1997048846A1 (en) Nonwoven short fibre fabric and absorbent article made by using same
JP3852637B2 (en) Short fiber nonwoven fabric
AU2018268805B2 (en) Hydroentangled airlaid process and industrial wipe products
US6867156B1 (en) Materials having z-direction fibers and folds and method for producing same
EP2456585B1 (en) High cellulose content, laminiferous nonwoven fabric
EP1050612A1 (en) Bulky non-woven fabric, method for manufacturing it and absorbent products using such fabric
US6635136B2 (en) Method for producing materials having z-direction fibers and folds
JPH09143853A (en) Laminated nonwoven fabric and its production
JP3760599B2 (en) Laminated nonwoven fabric and absorbent article using the same
MXPA05005755A (en) Tufted fibrous web.
JP2003531306A (en) Soft and thick non-woven fabric without fiber loss
JP3550810B2 (en) Composite nonwoven fabric and method for producing the same
JPH1086256A (en) Composite nonwoven fabric and absorbent article using the same
EP1961059B1 (en) Multitubular sheathing for industrial battery electrodes
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JPH101856A (en) Heat seal type nonwoven fabric
WO2001074281A1 (en) Materials having z-direction fibers and folds and method for producing same
JP4303505B2 (en) Composite nonwoven fabric
JP5902257B2 (en) Method for producing composite nonwoven sheet
JP2022503858A (en) Self-crimping multi-component fiber and method for producing it
JPH09111635A (en) Laminated nonwoven fabric
EP4038226A1 (en) Biopolymer-containing nonwoven fabric
JPH1161614A (en) Staple fiber non-woven fabric
JP4301398B2 (en) Stacked and integrated food absorbent mat
JP4201131B2 (en) Water absorption mat for foods with excellent water absorption capacity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08973533

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2256550

Country of ref document: CA

Ref country code: CA

Ref document number: 2256550

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997926261

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997926261

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642