EP3133196B1 - Volume nonwoven fabric - Google Patents

Volume nonwoven fabric Download PDF

Info

Publication number
EP3133196B1
EP3133196B1 EP15181388.8A EP15181388A EP3133196B1 EP 3133196 B1 EP3133196 B1 EP 3133196B1 EP 15181388 A EP15181388 A EP 15181388A EP 3133196 B1 EP3133196 B1 EP 3133196B1
Authority
EP
European Patent Office
Prior art keywords
fibers
nonwoven fabric
volume
nonwoven
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15181388.8A
Other languages
German (de)
French (fr)
Other versions
EP3133196A1 (en
Inventor
Ulrike Herrlich
Gunter Scharfenberger
Thomas Sattler
Peter Grynaeus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54007519&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3133196(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Priority to EP15181388.8A priority Critical patent/EP3133196B1/en
Priority to RU2018109358A priority patent/RU2673762C1/en
Priority to JP2018507670A priority patent/JP6571271B2/en
Priority to KR1020187002138A priority patent/KR102035803B1/en
Priority to DE202016008648.1U priority patent/DE202016008648U1/en
Priority to PL16750836T priority patent/PL3164535T3/en
Priority to PCT/EP2016/069151 priority patent/WO2017029191A1/en
Priority to CA2993887A priority patent/CA2993887C/en
Priority to ES16750836.5T priority patent/ES2689082T3/en
Priority to US15/751,491 priority patent/US10876234B2/en
Priority to CN201680047643.9A priority patent/CN107923091B/en
Priority to EP16750836.5A priority patent/EP3164535B1/en
Priority to DK16750836.5T priority patent/DK3164535T3/en
Priority to TW105125922A priority patent/TWI610004B/en
Publication of EP3133196A1 publication Critical patent/EP3133196A1/en
Publication of EP3133196B1 publication Critical patent/EP3133196B1/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/005Making three-dimensional articles by consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/02Bed linen; Blankets; Counterpanes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/08Sleeping bags
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G9/00Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
    • A47G9/10Pillows

Definitions

  • the invention relates to a method for producing a volume nonwoven fabric, the volume nonwovens obtainable with the method and their uses.
  • Filling materials for textile applications are widely known. For example, fine feathers, down and animal hair, such as wool, have been used for a long time to fill blankets and items of clothing. Filling materials made of down are very comfortable to use, as they combine very good thermal insulation with low weight. However, the disadvantage of these materials is that they only have a low level of cohesion with one another.
  • Nonwovens are structures made of fibers of limited length (staple fibers), filaments (continuous fibers) or cut yarns of any kind and of any origin that in any way form a nonwoven (a pile of fibers) have been put together and connected to one another in some way.
  • the disadvantage of conventional nonwovens or nonwovens is that they are less fluffy than voluminous filling materials such as down.
  • the thickness of conventional nonwovens becomes thinner and thinner over a longer period of use.
  • Fiber balls contain more or less spherically entangled fibers, which usually have approximately the shape of a ball.
  • fiber balls that can be used as a filling or cushioning material.
  • These fiber balls consist of spirally crimped interwoven polyester fibers with a length of about 10 to 60 mm and a diameter between 1 and 15 mm.
  • the fiber balls are elastic and heat insulating.
  • the disadvantage of the fiber balls is that, like down, feathers, animal hair or the like, they only have a low level of cohesion with one another.
  • Such Fiber balls are consequently only poorly suited as filling material for flat textile materials, in which the fiber balls should lie loosely, since they can slip due to their poor adhesion. In order to avoid slipping in the flat textile materials, these are often stitched.
  • EP 0 257 658 B1 suggest using fiber balls with protruding fiber ends that can also have hooks.
  • the production of such materials is relatively complex and the fiber ends can kink or bend during transport, storage and processing.
  • the WO 91/14035 proposes to thermally solidify a nonwoven raw material of fiber balls and binding fibers into layers and then needling them.
  • the nonwoven raw materials are guided in an air stream to a single spiked roller and deposited on a belt by this roller.
  • a disadvantage of the products is that the stability is low without needling, since the binding fibers can only slightly stabilize the voluminous, loose fiber balls. In order to achieve sufficient stability, needling is carried out, which complicates the process and increases the density of the product in an undesirable manner.
  • the WO 2005/044529 A1 describes devices with which different materials can be homogenized in an aerodynamic process.
  • the raw materials pass through rotating spiked rollers.
  • the method can be used, for example, to process cellulose fibers, synthetic fibers, pieces of metal, plastic parts or granulates. Such relatively harsh processes are used, among other things, in waste management.
  • the invention is based on the object of providing a volume nonwoven fabric and a method for its production which combines various advantageous properties.
  • the nonwoven fabric should in particular be voluminous and have a low density, and at the same time have high stability, in particular good tensile strength. It is said to have good heat insulation property with high softness, high compressive elasticity, light weight and a good adaptation to a body to be enveloped.
  • the nonwoven should have sufficient washing stability and mechanical stability in order to be able to be handled, for example, as a web product.
  • the nonwoven should be able to be cut and rolled up.
  • the nonwoven should be suitable for textile applications.
  • a nonwoven-like product that has a relatively low density is generally referred to as volume nonwoven.
  • a nonwoven raw material is used.
  • the term “raw material” denotes a mixture of the components that are to be processed together to form the volume nonwoven.
  • the raw material is a loose mixture, i.e. the components have not been connected to one another, in particular not thermally connected, needled, glued or subjected to similar processes in which a targeted chemical or physical bond is created.
  • the nonwoven raw material in step (a) contains fiber balls.
  • Fiberballs are well known in the technical field and are used as filling materials. They are relatively small and light fiber agglomerates that can be easily separated from one another. Structure and shape can vary depending on the materials used and the desired properties of the bulk nonwoven.
  • the term fiber balls should be understood to mean both spherical and spherical shapes, for example irregular and / or deformed, for example flattened or elongated, spherical shapes. It has been found that spherical shapes and shapes approximating to the spherical shape show particularly good properties with regard to fluffiness and thermal insulation. Processes for producing fiber balls are known in the prior art and are for example in US Pat EP 0 203 469 A described.
  • the fibers can be distributed relatively evenly in a fiber ball, and the density can decrease towards the outside. It is conceivable, for example, that there is a uniform distribution of the fibers within the fiber balls and / or a fiber gradient. Alternatively, the fibers can be arranged essentially in a spherical shell, while relatively few fibers are arranged in the center of the fiber balls.
  • the fiber balls contain spherically wound and / or fluff-like fibers.
  • the fibers are curled.
  • the fibers can be disordered or have a certain order.
  • the fibers in the interior of the individual fiber balls are tangled and arranged spherically in an outer layer of the fiber balls.
  • the outer layer is comparatively small in relation to the diameter of the fiber balls. This allows the softness of the fiber balls to be increased even further.
  • the type of fibers present in the fiber balls is fundamentally uncritical, provided they are suitable for forming fiber balls, for example through a suitable surface structure and fiber length.
  • the fibers of the fiber balls are preferably selected from the group consisting of staple fibers, threads and / or yarns.
  • staple fibers in contrast to filaments which have a theoretically unlimited length, are to be understood as fibers with a limited length, preferably from 20 mm to 200 mm.
  • the threads and / or yarns also preferably have a limited length, in particular from 20 mm to 200 mm.
  • the fibers can be present as monocomponent filaments and / or composite filaments.
  • the titer of the fibers can also vary.
  • the mean titer of the fibers is preferably in the range from 0.1 to 10 dtex, preferably from 0.5 to 7.5 dtex.
  • an advantageous volume nonwoven can be obtained if a volumizing nonwoven raw material containing fiber balls and binding fibers is processed in an airlaid process with spiked rollers. It has been found that, when the mixture is processed between spiked rollers in an airlaid process, efficient opening, mixing and alignment of the nonwoven raw material is achieved without the material being destroyed in the process. This was surprising because, for example, the fiber balls used as raw material are extremely filigree, so that it was assumed that they would be destroyed in such a device, which is at the expense of the stability and function of the end product.
  • the spiked rollers are preferably arranged in pairs in the device so that the metal spokes can interlock.
  • the meshing of the metal spokes creates a dynamic sieve, whereby the nonwoven raw materials can be separated and evenly distributed.
  • treatment with spiked rollers arranged in pairs can lead to a loosening of the fiber structure without destroying the ball shape as a whole.
  • Fibers or fiber bundles can be pulled out of the balls in such a way that they are still connected to the fiber balls, but protrude from the surface. This is beneficial as the pulled out Fibers hook the individual balls together and thereby increase the tensile strength of the volume fleece.
  • a matrix of individual fibers can be formed in which the balls are embedded, which increases the softness of the volume nonwoven.
  • the method has the advantage that the binding fibers are connected very closely to the fleece balls. It is assumed that some of the binding fibers are also introduced into the fiber balls by the spines. As a result, the proportion of glue points between the fiber balls and the binding fibers increases significantly during thermal consolidation. This is one of the reasons why the nonwovens are extremely stable.
  • the nonwoven fabric according to the invention is significantly more stable than products from conventional processes in which only fiber balls are opened or carded and then mixed with binding fibers.
  • airlaid process denotes the fact that the nonwoven raw material containing fiber balls and binding fibers is processed and deposited in the air stream with the spiked rollers.
  • the nonwoven raw material is fed to the spiked rollers in an air stream and processed by them. This has the advantage that the nonwoven raw material remains in a loose, voluminous form during processing with the spiked rollers, but is intensively mixed, with the spikes penetrating the fleece balls.
  • the method differs significantly from conventional methods in which webs of nonwoven raw material are carded. In such carding processes, the nonwoven raw materials are essentially oriented.
  • the method enables a very even distribution of the raw material on the depositing belt and a very homogeneous volume fleece can be obtained in which the volumizing material is evenly distributed.
  • the homogeneous distribution of the volumizing material is of great advantage, particularly with regard to the thermal insulation properties and softness as well as for the recovery of the volume fleece.
  • a very homogeneous volume nonwoven can be obtained in which the volume-giving fiber material is present in a very homogeneous and evenly distributed manner. This was surprising as it had to be assumed that the filigree fiber balls, but also other filigree components such as down, would be destroyed when treated with spiked rollers.
  • the nonwoven raw material is placed as evenly as possible in the airlaid device, comprising at least one pair of spiked rollers, in which the components are opened and mixed with one another.
  • the fibers can then be deposited in a conventional manner for web formation, for example on a sieve belt, a sieve drum and / or a conveyor belt.
  • the formed web can then be consolidated in a conventional manner.
  • Thermal consolidation for example with a belt furnace, has proven particularly suitable according to the invention. This makes use of the fact that the binding fibers are closely connected to the fiber balls.
  • the spiked rollers are arranged in rows.
  • the spiked rollers are thus advantageously arranged in at least one row.
  • the advantage of the arrangement of the spiked rollers in at least one row is that the metal spokes of the adjacent spiked rollers can interlock.
  • each roller can simultaneously form a pair with each of its neighboring rollers, which can function as a dynamic screen.
  • the rows can also be in pairs (double rows) in order to obtain a particularly good opening and mixing of the fibers and fiber balls.
  • the spiked rollers are thus advantageously arranged in at least one double row. It is also conceivable that at least part of the fiber material is guided several times through the same spiked rollers by means of a return system.
  • a revolving endless belt or aerodynamic means such as tubes through which the material is blown upwards can be used for the return.
  • the belt can be arranged in an advantageous manner between two rows of spiked rollers.
  • the endless belt can also be guided through several double rows of spiked rollers arranged one behind the other or one above the other.
  • the device has spiked rollers.
  • the spikes When two opposing rollers rotate, which form a gap for the passage of nonwoven raw material, the spikes preferably mesh with one another in an offset manner.
  • the spikes preferably have a thin, elongated shape.
  • the spines are long enough to allow a good penetration of the materials and the fiber balls.
  • the length of the spines is preferably between 1 and 30 cm, in particular between 2 and 20 cm or between 5 and 15 cm.
  • the length of the spines can be at least 5 or at least 10 times as large as the widest diameter of the spines.
  • the gaps between the spiked rollers through which the nonwoven raw material passes are preferably so wide that the nonwoven raw material is not compressed when it passes. Rather, opening the nonwoven balls loosens up the material.
  • the spines preferably each have a length on both sides which corresponds to more than 50%, preferably at least 60%, at least 70% or at least 80% of the (narrowest) width of the gap. Preferably the spines point on both Each side has a length that corresponds to more than 50% to 99% or 60% to 95% of the (narrowest) width of the gap.
  • the device preferably has at least two pairs, preferably at least 5 pairs or at least 10 pairs of spiked rollers, and / or the device preferably has at least 2, at least 5 or at least 10 gaps between the spiked rollers.
  • Such devices allow particularly efficient processing of the nonwoven raw material.
  • the device is preferably designed so that the contact surface of the spiked rollers with the nonwoven raw material is as large as possible.
  • a plurality of spiked rollers is preferably present, for example at least 5, at least 10 or at least 20 spiked rollers. Preferably there are at least 5, at least 10 or at least 20 gaps between adjacent pairs of rollers through which the nonwoven raw material can pass.
  • the rollers can, for example, have a cylindrical shape. Usually, the cylindrical rollers are firmly connected to the spikes. It is also conceivable to equip a roller core with revolving spiked belts. There are preferably several levels so that the material is processed several times.
  • the device could have 2 to 10 rows arranged in pairs, each with 2 to 10 spiked rollers. You could have four rows arranged in two pairs, each with five spiked rollers.
  • airlaid devices are available, for example, under the brand name “SPIKE” Air-Laid -strom from the company Formfiber Denmark APS.
  • the process is an airlaid process, i.e. an aerodynamic fleece formation process, ie the fleece formation takes place with the aid of air.
  • the basic principle of this process consists in the transfer of the nonwoven raw material into an air stream, which enables a mechanical distribution of the nonwoven raw material in the machine longitudinal and / or transverse direction and finally a homogeneous deposit of the nonwoven raw material on a suction conveyor belt.
  • Air can be used in a wide variety of process steps.
  • the entire transport of the nonwoven raw material takes place aerodynamically during the formation of the nonwoven, for example by means of an installed air system. It is also conceivable, however, that only special process steps, for example the removal of the fibers from the spiked rollers, are supported by additional air.
  • the processes of nonwoven raw material preparation or nonwoven raw material dissolution are expediently placed directly upstream of the nonwoven formation process.
  • the optional mixing with non-fiber materials, for example down and / or foam parts, is preferably carried out immediately during the distribution of the fiber material in the web formation system.
  • the material (the nonwoven raw material or its components) can be transported via a supply and distribution system into the nonwoven forming unit, where a targeted opening, swirling and, at the same time, homogeneous mixing and distribution takes place.
  • the supply for each material component is advantageously carried out separately.
  • the nonwoven raw material is then preferably treated with at least two spiked rollers with which the fiber material is processed or dissolved.
  • Particularly good results are achieved when the nonwoven raw material is passed through a series of rotating shafts equipped with metal spokes (the so-called spikes) as a spiked roller.
  • the adjacent spiked rollers rotate in opposite directions.
  • particularly strong forces can act on the nonwoven raw material.
  • the meshing of the metal spokes creates a dynamic sieve that allows high throughput rates.
  • the procedure thus differs significantly from a procedure as in WO91 / 14035 , with the nonwoven raw material of only one single spiked roller is guided and deposited. In this case, forces cannot act on the material with the associated structural changes as in the method according to the invention.
  • the web is advantageously formed on a screen belt with suction.
  • a random fleece structure without pronounced fiber orientation can be created on the screen belt, the density of which is related to the intensity of the prohibition.
  • a layer structure can be implemented by arranging several web forming units in one line.
  • aerodynamic nonwoven formation is that the fibers and any further constituents that may be present in the nonwoven raw material can be arranged in a random layer, which enables a very high isotropy of properties.
  • this embodiment offers economic advantages resulting from the investment volume and the operating costs for the production systems.
  • the web formation takes place in several web-forming units arranged one behind the other. It is thus conceivable that a deposit belt, for example a screen belt with suction, is guided successively through a plurality of web forming units, in each of which a layer of a web is deposited. A multi-layer fleece can be produced in this way.
  • the fleece is thermally consolidated.
  • no pressure is exerted on the nonwoven fabric.
  • thermal consolidation can take place in an oven without applying pressure. This has the advantage that the nonwoven is very bulky, although it has a high strength.
  • the bonding of the fleece can be supported in a conventional manner, for example chemically by spraying with binding agent, thermally by melting previously added adhesive powder and / or mechanically, e.g. B. by needling and / or hydroentanglement.
  • the proportion of fiber balls is 50 to 95% by weight, preferably 60 to 95%, in particular from 70 to 90%, and / or the proportion of binding fibers in the bulk nonwoven is 5 to 40% by weight, preferably 7 to 30% by weight and particularly preferably from 10 to 25% by weight, based in each case on the total weight of the nonwoven raw material.
  • the fiber balls preferably contain or consist of fibers selected from synthetic polymers, in particular fibers made of polyester, in particular polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate; and natural fibers, in particular fibers made of wool, cotton or silk, and / or mixtures thereof and / or mixtures with other fibers.
  • synthetic polymers in particular fibers made of polyester, in particular polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate
  • natural fibers in particular fibers made of wool, cotton or silk, and / or mixtures thereof and / or mixtures with other fibers.
  • the fiber balls can consist of a wide variety of fibers.
  • the fiber balls can be natural fibers, for example wool fibers and / or synthetic fibers, for example fibers made of polyacrylic, polyacrylonitrile, pre-oxidized PAN, PPS, carbon, glass, polyvinyl alcohol, viscose, cellulose, cotton, polyaramides, polyamideimide, polyamides, especially polyamide 6 and Polyamide 6.6, PULP, preferably polyolefins and very particularly preferably polyesters, in particular polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, and / or mixtures of those mentioned hereof and / or consist thereof.
  • fiber balls made of wool fibers are used.
  • fiber balls made of polyester are used in order to achieve particularly good compatibility with the usual further components within the volume nonwoven or in a nonwoven composite.
  • the nonwoven raw material in step (a) contains binding fibers in addition to the fiber balls. These binding fibers are loose fibers and are not a component of the fiber balls.
  • these binding fibers are designed as core / sheath fibers, the sheath being polybutylene terephthalate, polyamide, copolyamides, copolyesters or polyolefins such as polyethylene or polypropylene, and / or the core being polyethylene terephthalate, polyethylene naphthalate, polyolefins such as polyethylene or polypropylene, polyphenylene sulfide , aromatic polyamides and / or polyesters.
  • the melting point of the shell polymer is usually higher than that of the core polymer, for example by more than 10 ° C.
  • Binding fibers particularly suitable according to the invention are multicomponent fibers, preferably bicomponent fibers, in particular core / sheath fibers.
  • Core / sheath fibers contain at least two fiber materials with different softening and / or melting temperatures. Core / sheath fibers preferably consist of these two fiber materials.
  • the component with the lower softening and / or melting temperature is on the fiber surface (cladding) and to find the component that has the higher softening and / or melting temperature in the core.
  • the binding function can be performed by the materials which are arranged on the surface of the fibers.
  • materials can be used for the jacket.
  • preferred materials for the jacket are PBT, PA, polyethylene, copolyamides or also copolyesters. Polyethylene is particularly preferred.
  • preferred materials for the core are PET, PEN, PO, PPS or aromatic PA and PES.
  • the advantage of the presence of binding fibers is that the volume-giving material in the volume nonwoven is held together by the binding fibers, so that a textile cover filled with the volume nonwoven can be used without the volume-providing material shifting significantly and without thermal bridges due to the lack of filler material are formed.
  • the binding fibers preferably have a length of 0.5 mm to 100 mm, more preferably 1 mm to 75 mm, and / or a titer of 0.5 to 10 dtex.
  • the binding fibers have a titer of 0.9 to 7 dtex, more preferably 1.0 to 6.7 dtex, and in particular 1.3 to 3.3 dtex.
  • the proportion of binding fibers in the volume nonwoven is set depending on the type and amount of the other components of the volume nonwoven and the desired stability of the volume nonwoven. If the proportion of binding fibers is too low, the stability of the bulk nonwoven deteriorates. If the proportion of binding fibers is too high, the volume fleece becomes too strong overall, which is at the expense of its softness. Practical tests have shown that a good compromise between stability and softness is obtained if the proportion of binding fibers is in the range from 5 to 40% by weight, preferably 7 to 30% by weight and particularly preferably from 10 to 25% by weight.
  • a volume nonwoven fabric can be obtained that is stable enough to be rolled and / or folded. This makes it easier Manageability and further processing of the volume nonwoven. Such a volume fleece is also washable. For example, it is stable enough to withstand three household washes at 40 ° C without disintegration.
  • the binding fibers can be connected to one another and / or to the other components of the volume nonwoven by thermofusion. Hot calendering with heated, smooth or engraved rolls, by pulling through a hot air tunnel oven, hot air double belt oven and / or by pulling through a drum through which hot air flows has proven particularly suitable.
  • the advantage of using a double-belt hot air oven is that the binding fibers can be activated particularly effectively while smoothing the surface while maintaining the volume.
  • volume nonwoven fabric can also be consolidated in that the optionally pre-consolidated fiber web is exposed to fluid jets, preferably water jets, at least once on each side.
  • the mixture contains at least one further component that is not fiber balls or binding fibers.
  • the total proportion of such further components is preferably up to 45% by weight, up to 30% by weight, up to 20% by weight or up to 10% by weight.
  • Such further components are preferably selected from further fibers, further volumetric materials and other functional additives.
  • further fibers that are not binding fibers are contained as a further component.
  • Such fibers can provide the nonwovens with special properties, such as softness, optical properties, fire resistance, tear resistance, conductivity, water management or the like. Since these fibers are not in the form of fiber balls, they can have a wide variety of surface properties and, in particular, can also be smooth fibers. For example, silk fibers can be used as additional fibers in order to give the volume nonwoven fabric a special sheen.
  • the proportion of further fibers in the volume nonwoven is advantageously from 2 to 40% by weight, in particular from 5 to 30% by weight.
  • the further fibers preferably have a length of 1 to 200 mm, preferably 5 mm to 100 mm, and / or a titer of 0.5 to 20 dtex.
  • further volumetric materials that are not fiber balls, in particular down, fine feathers or foam particles, are contained as a further component.
  • the other materials can influence the density and provide the material with other desired properties.
  • the use of down or fine feathers is particularly preferred in textile applications, particularly in the clothing sector, which can improve the thermal properties. If, according to the invention, down and / or fine feathers are used as volumetric material, their proportion in the volume nonwoven is, for example, 10 to 45% by weight, preferably 15 to 45% or at least 15% by weight.
  • the term down and / or fine feathers is understood according to the invention in the conventional sense. In particular, down and / or fine feathers are understood to mean feathers with a short keel and very soft and long, radially arranged feather branches, essentially without hooks.
  • the volume nonwoven contains a phase change material.
  • Phase change materials are materials whose latent heat of fusion, heat of solution or heat of absorption is significantly greater than the heat that they can store due to their normal specific heat capacity (without the phase change effect).
  • the phase change material can be in Particle shape and / or fiber-like shape contained in the material composite and be connected, for example, via the binding fibers with the remaining components of the volume nonwoven. The presence of the phase change material can support the insulating effect of the volume nonwoven.
  • the polymers used to produce the fibers of the volume nonwoven fabric can contain at least one additive selected from the group consisting of color pigments, antistatic agents, antimicrobials such as copper, silver, gold, or hydrophilicizing or hydrophobicizing additives in an amount of 150 ppm to 10% by weight .
  • additives selected from the group consisting of color pigments, antistatic agents, antimicrobials such as copper, silver, gold, or hydrophilicizing or hydrophobicizing additives in an amount of 150 ppm to 10% by weight .
  • the density of the volume nonwoven is at least 5%, preferably at least 10%, even more preferably at least 25% lower than the density of the nonwoven balls used in step (a). This is advantageous since a particularly voluminous nonwoven fabric is obtained which, regardless of this, has a very high stability.
  • the method is carried out in such a way that the volume fleece obtained in step (e) is not mechanically consolidated. This is advantageous because a product with a very low density is obtained.
  • the very voluminous nonwovens of the invention are highly stable even without such additional process steps and despite the low density.
  • the nonwoven raw materials are also not carded.
  • the bulk nonwoven can be subjected to a bonding or refinement of a chemical nature, such as, for example, an anti-pilling treatment, a hydrophilization or hydrophobization, an antistatic treatment, a treatment to improve the fire resistance and / or to change it of tactile properties or gloss, one Treatment of a mechanical nature such as roughening, sanforizing, sanding or a treatment in a tumbler and / or a treatment to change the appearance such as dyeing or printing.
  • a chemical nature such as, for example, an anti-pilling treatment, a hydrophilization or hydrophobization, an antistatic treatment, a treatment to improve the fire resistance and / or to change it of tactile properties or gloss, one Treatment of a mechanical nature such as roughening, sanforizing, sanding or a treatment in a tumbler and / or a treatment to change the appearance such as dyeing or printing.
  • the volume nonwoven according to the invention can contain further layers, whereby a nonwoven composite is formed.
  • the further layers are designed as reinforcement layers, for example in the form of a scrim, and / or that they comprise reinforcement filaments, nonwovens, woven fabrics, knitted fabrics and / or scrims.
  • Preferred materials for forming the further layers are plastics, for example polyester, and / or metals.
  • the further layers can advantageously be arranged on the surface of the volume nonwoven. According to a preferred embodiment of the invention, the further layers are arranged on both surfaces (top and bottom) of the volume nonwoven.
  • the volume nonwoven according to the invention is outstandingly suitable for the production of a wide variety of textile products, in particular products that are supposed to be light, stable and also thermophysiologically comfortable.
  • the invention therefore also relates to a method for producing a textile material, comprising producing a volume nonwoven fabric in a method according to the invention and further processing to form the textile material.
  • the textile material is selected in particular from clothing, molded materials, padding materials, filling materials, bedding, filter mats, absorbent mats, cleaning textiles, spacers, foam substitutes, wound pads and fire protection materials.
  • the volume fleece can therefore be used in particular as a molding, cushioning and / or filling material, in particular for clothing.
  • the molding, cushioning and / or filling materials are also suitable for other applications, for example for seating and reclining furniture, pillows, cushion covers, duvets, mattresses, sleeping bags, mattresses, mattress covers.
  • garment is used according to the invention in the conventional sense and preferably includes fashion, leisure, sport, outdoor and functional clothing, in particular outerwear, such as jackets, coats, vests, pants, overalls, gloves, hats and / or shoes. Due to the good heat-insulating properties of the volume nonwoven it contains, articles of clothing which are particularly preferred according to the invention are heat-insulating articles of clothing, for example jackets and coats for all seasons, especially winter jackets, coats and vests, ski and snowboard jackets, pants and overalls, thermal jackets and coats and vests, ski and snowboard gloves, winter hats, thermal hats and slippers.
  • outerwear such as jackets, coats, vests, pants, overalls, gloves, hats and / or shoes.
  • articles of clothing which are particularly preferred according to the invention are heat-insulating articles of clothing, for example jackets and coats for all seasons, especially winter jackets, coats and vests, ski and snowboard jackets, pants and overalls, thermal jackets and coats and vests, ski and
  • items of clothing which are particularly preferred according to the invention are those with shock-absorbing properties at particularly stressed areas, for example goalkeeper trousers, cycling and riding trousers.
  • the invention also relates to a volume nonwoven obtainable by the method according to the invention.
  • the volume nonwovens according to the invention are characterized by a special structure and special properties that are realized by the special manufacturing process.
  • very light nonwovens can be produced that have exceptional stability.
  • the nonwovens can also have very good heat-insulating properties and high softness, high compressive elasticity, good resilience, good washability, low weight, high insulation properties and good adaptation to a body to be wrapped.
  • the thickness of the volume fleece can for example be between 0.5 and 500 mm, in particular from 1 to 200 mm or between 2 and 100 mm.
  • the thickness of the volume fleece is preferably selected as a function of the desired insulation effect and the materials used. Usually, good results are achieved with thicknesses (measured according to test specification EN 29073 - T2: 1992) in the range from 2mm to 100mm.
  • Basis weights of the volume nonwoven according to the invention are adjusted depending on the desired application.
  • Basis weights measured according to DIN EN 29073: 1992, in the range from 15 to 1500 g / m 2 , preferably from 20 to 1200 g / m 2 and / or from 30 to 1000 g / m 2 and / or from 40 have proven to be useful for many applications up to 800 g / m 2 and / or from 50 to 500 g / m 2 .
  • the density of the volume nonwoven is low. It is preferably less than 20 g / l, less than 15 g / l, less than 10 g / l or less than 7.5 g / l.
  • the density can, for example, be in the range from 1 to 20 g / l, in particular from 2 to 15 g / l or from 3 to 10 g / l.
  • the density is not higher than 10 g / l, in particular not higher than 8 g / l. is.
  • the density is preferably calculated from the weight per unit area and the thickness. According to the invention, however, advantageous, particularly stable bulk nonwovens with higher densities can also be produced.
  • the volume nonwoven according to the invention is characterized by a high maximum tensile strength.
  • the tensile strength can be set in such a way that the volume nonwoven can be easily produced, processed and used as a web product.
  • the volume fleece can be cut and rolled up. It can also be washed without losing its functionality.
  • the volume fleece according to the invention is characterized by a stability that can be adjusted surprisingly well. For many applications it has proven to be advantageous if the volume fleece has a high maximum tensile strength, measured in accordance with DIN EN 29 073-3: 1992 in the context of this application.
  • the maximum tensile strength is generally identical in the longitudinal and transverse directions. The values given below preferably apply to both the longitudinal and the transverse direction.
  • the volume nonwoven has a high stability. It preferably has a maximum tensile force of at least 2 N / 5cm, in particular of at least 4N / 5cm or at least 5N / 5cm.
  • the volume nonwoven preferably has a maximum tensile force in at least one direction of at least 0.3N / 5cm, in particular from 0.3N / 5cm to 100N / 5cm, at a weight per unit area of 50g / m 2 .
  • the volume nonwoven has a maximum tensile strength at a weight per unit area of 15 to 1500 g / m 2 , preferably from 20 to 1200 g / m 2 and / or from 30 to 1000 g / m 2 and / or from 40 to 800 g / m 2 and / or from 50 to 500 g / m 2 in at least one direction of at least 0.3N / 5cm, in particular from 0.3N / 5cm to 100N / 5cm.
  • the volume nonwoven fabric preferably has a maximum tensile strength ratio [N / 5cm] / thickness [mm] of at least 0.10 [N / (5cm * mm)], preferably at least 0.15 [N / (5cm * mm)] or at least 0, 18 [N / (5cm * mm)].
  • the density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is unusual for a volume nonwoven fabric with a low density to achieve such a high HZK (based on the thickness).
  • the volume fleece preferably has a maximum tensile strength ratio [N / 5cm] / weight per unit area [g / m2] of at least 0.020 [N * m 2 / (5cm * g)], preferably at least 0.025 [N * m 2 / (5cm * g)] or at least 0.030 [N * m 2 / (5cm * g)].
  • the density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is unusual for a volume nonwoven fabric to achieve such a high HZK based on the weight per unit area.
  • the volume nonwoven preferably has a maximum tensile elongation of at least 20%, preferably at least 25% and in particular more than 30%, measured in accordance with DIN EN 29 073-3.
  • the density is preferably not higher than 10 g / L, in particular not higher than 8 g / L.
  • the volume fleece according to the invention is characterized by good heat-insulating properties. It preferably has a heat transfer resistance (R CT value) of more than 0.10 (K * m 2 ) / W, more than 0.20 (K * m 2 ) / W or more than 0.30 (K * m 2 ) / W on.
  • the density is preferably no higher than 10 g / L, in particular no higher than 8 g / L.
  • the heat transfer resistance is either measured in accordance with DIN 11092: 2014-12, or based on DIN 52612: 1979 in accordance with what is described below Procedure. It was found that the results for both methods are comparable.
  • the volume nonwoven fabric preferably has a quotient of heat transfer resistance R CT [Km 2 / W] / thickness [mm] of at least 0.010 [Km 2 / (W * mm)], preferably at least 0.015 [Km 2 / (W * mm)].
  • the density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is uncommon for a low density bulk nonwoven fabric to achieve such a high R CT (based on caliper).
  • the volume nonwoven fabric preferably has a quotient of heat transfer resistance R CT [Km 2 / W] / surface weight [g / m 2 ] of at least 0.0015 [Km 4 / (W * g)], preferably at least 0.0020 [Km 4 / (W * g)] or at least 0.0024 [Km 4 / (W * g)].
  • the density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is unusual for a volume nonwoven fabric to achieve such a high R CT value based on the basis weight.
  • a heat-insulating item of clothing is understood to mean an item of clothing containing a volume nonwoven fabric with a heat transfer resistance, at a weight per unit area of 15 to 1500 g / m 2 , preferably from 20 to 1200 g / m 2 and / or from 30 to 1000 g / m 2 and / or from 40 to 800 g / m 2 and / or from 50 to 500 g / m 2 , from at least 0.030 (K * m 2 ) / W, in particular from 0.030 to 7,000 (K * m 2 ) / W.
  • the volume nonwoven has a heat transfer resistance with a weight per unit area of 15 to 1500 g / m 2 , preferably 20 to 1200 g / m 2 and / or 30 to 1000 g / m 2 and / or 40 to 800 g / m 2 and / or from 50 to 500 g / m 2 , from at least 0.030 (K * m 2 ) / W, in particular from 0.030 to 7,000 (K * m 2 ) / W.
  • the heat transfer resistance (R CT ) was measured in accordance with the exemplary embodiments of this application based on DIN 52612: 1979 with a two-plate measuring device for samples with dimensions of 250 mm x 250 mm:
  • a film that can be heated by means of a constant electrical power P.
  • the film is covered both above and below with a pattern of the same material.
  • Above and below the pattern there is a copper plate, which is kept at a constant temperature (T outside ) by means of an external thermostat.
  • T outside constant temperature
  • the temperature difference between the heated and unheated side of the sample is measured by means of a temperature sensor.
  • the entire measurement setup is insulated against internal and external temperature losses by means of styrofoam.
  • the volume nonwoven can be rolled up and processed further, for example as a web product, without any problems.
  • a volume fleece can be produced as follows: 120 g / m 2 of 35% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) to which 40% mPCM 28 ° C PC temperature enthalpy, 30% by weight fiber balls are applied made of CoPES binding fiber and 35% by weight of down and / or fine feathers and feathers from Minardi in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows of five spiked rollers arranged in two pairs for opening the fiber raw material , placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 10 mm at 155 ° C. The residence time is 36 seconds. A rollable sheet material is produced.
  • 150 g / m 2 of 50% by weight fiber balls made of wool and 50% by weight fiber balls made of CoPES binding fiber are used in a "SPIKE" air-laid system from Formfiber Denmark APS, which is arranged in two pairs to open the fiber raw material Has rows with five spiked rollers each, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 12 mm at 155 ° C. The residence time is 36 seconds. A rollable sheet material is obtained.
  • 150 g / m 2 of 50% by weight fiber balls made of silk and 50% by weight fiber balls made of CoPES binding fiber are produced in a "SPIKE" air-laid system from the company Formfiber Denmark APS, which has four rows arranged in two pairs with five spiked rollers each, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 12 mm at 155 ° C. The residence time is 36 seconds. A rollable sheet material is obtained.
  • Thickness, density, basis weight, maximum tensile strength, maximum tensile force elongation, recovery and thermal resistance (R CT ) were determined according to the methods described above.
  • 125 g / m 2 of 35% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287), 30% by weight fiber balls made of CoPES binding fiber and 35% by weight of a down-feather mixture in a ratio of 90 : 10 from Minardi Piume Srl in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows of five spiked rollers arranged in two pairs for opening the fiber raw material, placed on a carrier belt and placed in a double belt oven from the company Bombi Meccania solidified with a band gap of 14 mm at 178 ° C. The residence time was 43 seconds.
  • a rollable sheet material was obtained with a thickness of 8 mm and a density of 15.2 g / l.
  • 128 g / m 2 of 80% by weight of fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) and 20% by weight of CoPES binding fiber in a "SPIKE" air-laid system from Formfiber Denmark APS , which has four rows arranged in two pairs, each with five spiked rollers, to open the fiber raw material, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 4 mm at 170 ° C.
  • a rollable sheet material was obtained with a thickness of 7.5 mm. The material had a density of 17.07 g / L.
  • 128 g / m 2 of 80% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) and 20% by weight CoPES binding fiber in the "SPIKE" air-laid system from Formfiber Denmark APS, the to open the fiber raw material has four rows arranged in two pairs, each with five spiked rollers, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 30 mm, ie without stressing the fiber web, at 170 ° C. A soft, rollable sheet material was obtained, with a thickness of 25 mm. The material had a density of 5.12 g / L.
  • 112 g / m 2 of 85% by weight of fiber balls (MICROROLLO® 222 SM from A. Molina & C.) and 15% by weight of PET / PE binding fiber are produced in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows arranged in two pairs, each with five spiked rollers, is placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 40 mm at 180 ° C. A rollable, stable web material with a thickness of 17 mm was obtained.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Volumenvliesstoffs, die mit dem Verfahren erhältlichen Volumenvliesstoffe und deren Verwendungen.The invention relates to a method for producing a volume nonwoven fabric, the volume nonwovens obtainable with the method and their uses.

Füllmaterialien für textile Anwendungen sind vielfältig bekannt. Beispielsweise werden Feinfedern, Daunen und Tierhaare, wie Wolle schon seit langer Zeit zur Füllung von Decken und Kleidungsstücken eingesetzt. Füllmaterialien aus Daunen sind sehr angenehm bei der Benutzung, da sie eine sehr gute Wärmeisolation mit einem geringen Gewicht kombinieren. Nachteilig an diesen Materialien ist jedoch, dass sie nur eine geringe Kohäsion untereinander besitzen.Filling materials for textile applications are widely known. For example, fine feathers, down and animal hair, such as wool, have been used for a long time to fill blankets and items of clothing. Filling materials made of down are very comfortable to use, as they combine very good thermal insulation with low weight. However, the disadvantage of these materials is that they only have a low level of cohesion with one another.

Eine Alternative zur Verwendung von Daunen und Tierhaaren stellt die Verwendungen von Faservliesen oder Vliesstoffen als Füllmaterial dar. Vliesstoffe sind Gebilde aus Fasern begrenzter Länge (Stapelfasern), Filamenten (Endlosfasern) oder geschnittenen Garnen jeglicher Art und jeglichen Ursprungs, die auf irgendeine Weise zu einem Vlies (einem Faserflor) zusammengefügt und auf irgendeine Weise miteinander verbunden worden sind. Nachteilig an herkömmlichen Faservliesen bzw. Vliesstoffen ist, dass sie eine geringere Flauschigkeit als voluminöse Füllmaterialien wie Daunen haben. Zudem wird die Dicke üblicher Vliesstoffe über einen längeren Zeitraum der Benutzung immer dünner.An alternative to the use of down and animal hair is the use of nonwovens or nonwovens as filler material. Nonwovens are structures made of fibers of limited length (staple fibers), filaments (continuous fibers) or cut yarns of any kind and of any origin that in any way form a nonwoven (a pile of fibers) have been put together and connected to one another in some way. The disadvantage of conventional nonwovens or nonwovens is that they are less fluffy than voluminous filling materials such as down. In addition, the thickness of conventional nonwovens becomes thinner and thinner over a longer period of use.

Eine Alternative zur Verwendung solcher Füllmaterialien sind Faserbällchen. Faserbällchen enthalten mehr oder weniger sphärisch miteinander verwickelte Fasern, die üblicherweise in etwa die Form einer Kugel haben. Beispielsweise werden in der EP 0 203 469 A Faserbällchen beschrieben, die als Füll- oder Polstermaterial verwendet werden können. Diese Faserbällchen bestehen aus spiralgekräuselten miteinander verwickelten Polyesterfasern mit einer Länge von etwa 10 bis 60 mm und einem Durchmesser zwischen 1 und 15 mm. Die Faserbällchen sind elastisch und Wärme isolierend. Nachteilig an den Faserbällchen ist, dass sie, wie Daunen, Federn, Tierhaare oder dergleichen, nur eine geringe Kohäsion untereinander besitzen. Solche Faserbällchen eignen sich folglich nur schlecht als Füllmaterial für flächige textile Materialien, in denen die Faserbällchen locker liegen sollen, da sie aufgrund ihrer geringen Adhäsion verrutschen können. Um ein Verrutschen in den flächigen textilen Materialien zu vermeiden, werden diese oftmals abgesteppt.An alternative to using such filler materials are fiber balls. Fiber balls contain more or less spherically entangled fibers, which usually have approximately the shape of a ball. For example, in the EP 0 203 469 A Described fiber balls that can be used as a filling or cushioning material. These fiber balls consist of spirally crimped interwoven polyester fibers with a length of about 10 to 60 mm and a diameter between 1 and 15 mm. The fiber balls are elastic and heat insulating. The disadvantage of the fiber balls is that, like down, feathers, animal hair or the like, they only have a low level of cohesion with one another. Such Fiber balls are consequently only poorly suited as filling material for flat textile materials, in which the fiber balls should lie loosely, since they can slip due to their poor adhesion. In order to avoid slipping in the flat textile materials, these are often stitched.

Um die Verbindung von Faserbällchen zu verbessern, schlägt die EP 0 257 658 B1 vor, Faserbällchen mit hervorstehenden Faserenden einzusetzen, die auch Haken aufweisen können. Die Herstellung solcher Materialien ist aber relativ aufwändig und die Faserenden können bei Transport, Lagerung und Verarbeitung knicken oder sich verbiegen.To improve the connection between fiber balls, the suggests EP 0 257 658 B1 suggest using fiber balls with protruding fiber ends that can also have hooks. The production of such materials is relatively complex and the fiber ends can kink or bend during transport, storage and processing.

Die WO 91/14035 schlägt vor, ein Vliesstoffrohmaterial von Faserbällchen und Bindefasern thermisch zu Lagen zu verfestigen und anschließend zu vernadeln. Dabei werden die Vliesstoffrohmaterialien in einem Luftstrom zu einer einzigen Stachelwalze geleitet und von dieser auf ein Band abgelegt. Bei den Produkten ist nachteilig, dass die Stabilität ohne Vernadelung niedrig ist, da die Bindefasern die voluminösen, losen Faserbällchen nur wenig stabilisieren können. Um eine ausreichende Stabilität zu erreichen, wird eine Vernadelung durchgeführt, was das Verfahren verkompliziert und die Dichte des Produktes in unerwünschter Weise erhöht.The WO 91/14035 proposes to thermally solidify a nonwoven raw material of fiber balls and binding fibers into layers and then needling them. The nonwoven raw materials are guided in an air stream to a single spiked roller and deposited on a belt by this roller. A disadvantage of the products is that the stability is low without needling, since the binding fibers can only slightly stabilize the voluminous, loose fiber balls. In order to achieve sufficient stability, needling is carried out, which complicates the process and increases the density of the product in an undesirable manner.

Die WO 2005/044529 A1 beschreibt Vorrichtungen, mit denen in einem aerodynamischen Verfahren verschiedene Werkstoffe homogenisiert werden können. Die Rohmaterialien passieren dabei rotierende Stachelwalzen. Das Verfahren kann beispielsweise zur Verarbeitung von Cellulosefasern, synthetischen Fasern, Metallstücken, Plastikteilen oder Granulaten eingesetzt werden. Solche relativ harschen Verfahren werden unter anderem in der Abfallwirtschaft eingesetzt.The WO 2005/044529 A1 describes devices with which different materials can be homogenized in an aerodynamic process. The raw materials pass through rotating spiked rollers. The method can be used, for example, to process cellulose fibers, synthetic fibers, pieces of metal, plastic parts or granulates. Such relatively harsh processes are used, among other things, in waste management.

Der Erfindung liegt die Aufgabe zu Grunde, einen Volumenvliesstoff und Verfahren zu seiner Herstellung bereitzustellen, der verschiedene vorteilhafte Eigenschaften miteinander verbindet. Der Vliesstoff soll insbesondere voluminös sein und eine geringe Dichte aufweisen, und gleichzeitig eine hohe Stabilität aufweisen, insbesondere eine gute Zugfestigkeit. Er soll eine gute Wärmeisolationsfähigkeit mit einer hohen Weichheit, hohen Druckelastizität, einem geringem Gewicht und einer guten Anpassung an einen einzuhüllenden Körper kombinieren. Gleichzeitig soll der Vliesstoff eine ausreichende Waschstabilität und mechanische Stabilität aufweisen, um beispielsweise als Bahnenware händelbar zu sein. Insbesondere soll der Vliesstoff schneid- und aufrollbar sein. Der Vliesstoff soll für textile Anwendungen geeignet sein.The invention is based on the object of providing a volume nonwoven fabric and a method for its production which combines various advantageous properties. The nonwoven fabric should in particular be voluminous and have a low density, and at the same time have high stability, in particular good tensile strength. It is said to have good heat insulation property with high softness, high compressive elasticity, light weight and a good adaptation to a body to be enveloped. At the same time, the nonwoven should have sufficient washing stability and mechanical stability in order to be able to be handled, for example, as a web product. In particular, the nonwoven should be able to be cut and rolled up. The nonwoven should be suitable for textile applications.

Diese Aufgabe wird gelöst durch Verfahren, Volumenvliesstoffe und Verwendungen gemäß den Patentansprüchen. Weitere vorteilhafte Ausführungsformen werden in der Beschreibung beschrieben.This object is achieved by methods, volume nonwovens and uses according to the patent claims. Further advantageous embodiments are described in the description.

Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Volumenvliesstoffes, umfassend die Schritte:

  1. (a) Bereitstellen eines Vliesstoffrohmaterials enthaltend Faserbällchen und Bindefasern,
  2. (b) Bereitstellen einer Airlaid-Vorrichtung, die mindestens zwei Stachelwalzen aufweist, zwischen denen mindestens ein Spalt ausgebildet ist,
  3. (c) Verarbeiten des Vliesstoffrohmaterials in der Vorrichtung in einem Airlaid-Verfahren, wobei das Vliesstoffrohmaterial den Spalt zwischen den Stachelwalzen passiert, wobei von den Stacheln Fasern oder Faserbündel aus den Faserbällchen herausgezogen werden,
  4. (d) Ablegen auf einer Ablageeinrichtung, und
  5. (e) thermisches Verfestigen unter Erhalt des Volumenvliesstoffes.
The subject of the invention is a method for the production of a volume nonwoven, comprising the steps:
  1. (a) providing a nonwoven raw material containing fiber balls and binding fibers,
  2. (b) providing an airlaid device which has at least two spiked rollers between which at least one gap is formed,
  3. (c) processing the nonwoven raw material in the device in an airlaid process, wherein the nonwoven raw material passes the gap between the spiked rollers, fibers or fiber bundles being pulled out of the fiber balls by the spikes,
  4. (d) placing on a storage device, and
  5. (e) thermal bonding with retention of the volume nonwoven fabric.

Die Schritte werden in der Reihenfolge (a) bis (e) durchgeführt.The steps are carried out in the order (a) to (e).

Als Volumenvliesstoff wird allgemein ein vliesstoffartiges Produkt bezeichnet, das eine relativ niedrige Dichte aufweist. In Schritt (a) wird ein Vliesstoffrohmaterial eingesetzt. Mit dem Begriff "Rohmaterial" wird ein Gemisch der Komponenten bezeichnet, die gemeinsam zu dem Volumenvliesstoff verarbeitet werden sollen. Das Rohmaterial ist ein loses Gemisch, dass heißt die Komponenten wurden nicht miteinander verbunden, insbesondere nicht thermisch verbunden, vernadelt, verklebt oder ähnlichen Verfahren unterzogen, bei denen eine zielgerichtete chemische oder physikalische Bindung erzeugt wird.A nonwoven-like product that has a relatively low density is generally referred to as volume nonwoven. In step (a) a nonwoven raw material is used. The term “raw material” denotes a mixture of the components that are to be processed together to form the volume nonwoven. The raw material is a loose mixture, i.e. the components have not been connected to one another, in particular not thermally connected, needled, glued or subjected to similar processes in which a targeted chemical or physical bond is created.

Das Vliesstoffrohmaterial in Schritt (a) enthält Faserbällchen. Faserbällchen sind in dem technischen Gebiet weithin bekannt und werden als Füllmaterialien eingesetzt. Es handelt sich um relativ kleine und leichte Faseragglomerate, die ohne weiteres voneinander trennbar sind. Struktur und Form können in Abhängigkeit von den eingesetzten Materialien und den erwünschten Eigenschaften des Volumenvliesstoffs variieren. Insbesondere sollen unter dem Ausdruck Faserbällchen sowohl kugelförmige als auch der Kugelform angenäherte Formen, beispielsweise unregelmäßige und/oder deformierte, zum Beispiel abgeplattete oder verlängerte, Kugelformen verstanden werden. Es wurde gefunden, dass kugelförmige und der Kugelform angenäherte Formen besonders gute Eigenschaften im Hinblick auf Flauschigkeit und Wärmeisolation zeigen. Verfahren zu Herstellung von Faserbällchen sind im Stand der Technik bekannt und werden beispielsweise in der EP 0 203 469 A beschrieben.The nonwoven raw material in step (a) contains fiber balls. Fiberballs are well known in the technical field and are used as filling materials. They are relatively small and light fiber agglomerates that can be easily separated from one another. Structure and shape can vary depending on the materials used and the desired properties of the bulk nonwoven. In particular, the term fiber balls should be understood to mean both spherical and spherical shapes, for example irregular and / or deformed, for example flattened or elongated, spherical shapes. It has been found that spherical shapes and shapes approximating to the spherical shape show particularly good properties with regard to fluffiness and thermal insulation. Processes for producing fiber balls are known in the prior art and are for example in US Pat EP 0 203 469 A described.

Die Fasern können in einem Faserbällchen relativ gleichmäßig verteilt sein, wobei die Dichte nach außen hin abnehmen kann. Denkbar ist dabei, dass beispielsweise eine gleichmäßige Verteilung der Fasern innerhalb der Faserbällchen und/oder ein Fasergradient vorliegt. Alternativ können die Fasern im Wesentlichen in einer Kugelhülle angeordnet sein, während im Zentrum der Faserbällchen relativ wenige Fasern angeordnet sind.The fibers can be distributed relatively evenly in a fiber ball, and the density can decrease towards the outside. It is conceivable, for example, that there is a uniform distribution of the fibers within the fiber balls and / or a fiber gradient. Alternatively, the fibers can be arranged essentially in a spherical shell, while relatively few fibers are arranged in the center of the fiber balls.

Ebenfalls denkbar ist, dass in den Faserbällchen sphärisch gewickelte und/oder flaumartig ausgebildete Fasern enthalten sind. Um einen guten Zusammenhalt des Aggregats sicherzustellen, ist es vorteilhaft, wenn die Fasern gekräuselt vorliegen. Die Fasern können dabei ungeordnet sein oder auch eine gewisse Ordnung aufweisen.It is also conceivable that the fiber balls contain spherically wound and / or fluff-like fibers. In order to ensure good cohesion of the aggregate, it is advantageous if the fibers are curled. The fibers can be disordered or have a certain order.

Gemäß einer Ausführungsform sind die Fasern im Inneren der einzelnen Faserbällchen wirr und in einer Außenschicht der Faserbällchen sphärisch angeordnet. In dieser Ausgestaltung ist die Außenschicht, bezogen auf den Durchmesser der Faserbällchen, vergleichsweise klein. Hierdurch kann die Weichheit der Faserbällchen noch weiter erhöht werden.According to one embodiment, the fibers in the interior of the individual fiber balls are tangled and arranged spherically in an outer layer of the fiber balls. In this embodiment, the outer layer is comparatively small in relation to the diameter of the fiber balls. This allows the softness of the fiber balls to be increased even further.

Die Art der in den Faserbällchen vorhandenen Fasern ist grundsätzlich unkritisch, sofern sie dazu geeignet sind Faserbällchen ausbilden, beispielsweise durch eine geeignete Oberflächenstruktur und Faserlänge. Bevorzugt werden die Fasern der Faserbällchen ausgewählt aus der Gruppe bestehend aus Stapelfasern, Fäden und/oder Garnen. Hierbei sind unter Stapelfasern im Unterschied zu Filamenten, die eine theoretisch unbegrenzte Länge aufweisen, Fasern mit einer begrenzten Länge, vorzugsweise von 20 mm bis 200 mm zu verstehen. Auch die Fäden und/oder Garne weisen vorzugsweise eine begrenzte Länge, insbesondere von 20 mm bis 200 mm auf. Die Fasern können als Monokomponentenfilamente und/oder Verbundfilamente vorliegen. Der Titer der Fasern kann ebenfalls variieren. Vorzugsweise liegt der mittlere Titer der Fasern im Bereich von 0,1 bis 10 dtex, vorzugsweise von 0,5 - 7,5 dtex.The type of fibers present in the fiber balls is fundamentally uncritical, provided they are suitable for forming fiber balls, for example through a suitable surface structure and fiber length. The fibers of the fiber balls are preferably selected from the group consisting of staple fibers, threads and / or yarns. Here, staple fibers, in contrast to filaments which have a theoretically unlimited length, are to be understood as fibers with a limited length, preferably from 20 mm to 200 mm. The threads and / or yarns also preferably have a limited length, in particular from 20 mm to 200 mm. The fibers can be present as monocomponent filaments and / or composite filaments. The titer of the fibers can also vary. The mean titer of the fibers is preferably in the range from 0.1 to 10 dtex, preferably from 0.5 to 7.5 dtex.

Überraschend wurde gefunden, dass ein vorteilhafter Volumenvliesstoff erhalten werden kann, wenn ein volumengebendes Vliesstoffrohmaterial enthaltend Faserbällchen und Bindefasern in einem Airlaid-Verfahrens mit Stachelwalzen verarbeitet wird. So wurde gefunden, dass bei Verarbeitung der Mischung zwischen Stachelwalzen in einem Airlaid-Verfahren eine effiziente Öffnung, Vermischung und Ausrichtung des Vliesstoffrohmaterials erreicht wird, ohne dass das Material dabei zerstört wird. Dies war überraschend, da beispielsweise als Rohmaterial eingesetzte Faserbällchen äußerst filigran sind, sodass davon ausgegangen wurde, dass sie in einer solchen Vorrichtung zerstört werden, was zu Lasten der Stabilität und Funktion des Endproduktes geht.It has surprisingly been found that an advantageous volume nonwoven can be obtained if a volumizing nonwoven raw material containing fiber balls and binding fibers is processed in an airlaid process with spiked rollers. It has been found that, when the mixture is processed between spiked rollers in an airlaid process, efficient opening, mixing and alignment of the nonwoven raw material is achieved without the material being destroyed in the process. This was surprising because, for example, the fiber balls used as raw material are extremely filigree, so that it was assumed that they would be destroyed in such a device, which is at the expense of the stability and function of the end product.

Bevorzugt sind die Stachelwalzen in der Vorrichtung paarweise angeordnet, so dass die Metallspeichen ineinandergreifen können. Mit dem Ineinandergreifen der Metallspeichen entsteht ein dynamisches Sieb, wodurch die Vliesstoffrohmaterialien vereinzelt und gleichmäßig verteilt werden können. Darüber hinaus kann eine Behandlung mit paarweise angeordneten Stachelwalzen im Fall der Faserbällchen zu einer Lockerung der Faserstruktur führen, ohne die Bällchenform als Ganzes zu zerstören. Dabei können Fasern oder Faserbündel so aus den Bällchen herausgezogen werden, dass sie zwar noch mit den Faserbällchen verbunden sind, aber aus der Oberfläche herausragen. Dies ist vorteilhaft, da die herausgezogenen Fasern die einzelnen Bällchen untereinander verhaken und dadurch die Zugfestigkeit des Volumenvliesstoffs erhöhen. Darüber hinaus kann sich eine Matrix aus Einzelfasern bilden, in die die Bällchen eingebettet sind, wodurch sich die Weichheit des Volumenvliesstoffs erhöht.The spiked rollers are preferably arranged in pairs in the device so that the metal spokes can interlock. The meshing of the metal spokes creates a dynamic sieve, whereby the nonwoven raw materials can be separated and evenly distributed. In addition, in the case of the fiber balls, treatment with spiked rollers arranged in pairs can lead to a loosening of the fiber structure without destroying the ball shape as a whole. Fibers or fiber bundles can be pulled out of the balls in such a way that they are still connected to the fiber balls, but protrude from the surface. This is beneficial as the pulled out Fibers hook the individual balls together and thereby increase the tensile strength of the volume fleece. In addition, a matrix of individual fibers can be formed in which the balls are embedded, which increases the softness of the volume nonwoven.

Gleichzeitig hat das Verfahren den Vorteil, dass die Bindefasern sehr eng mit den Vliesstoffbällchen verbunden werden. Es wird angenommen, dass von den Stacheln auch ein Teil der Bindefasern in die Faserbällchen eingeführt wird. Dadurch erhöht sich bei der thermischen Verfestigung signifikant der Anteil der Klebestellenzwischen den Faserbällchen und den Bindefasern. Die Vliesstoffe weisen auch aus diesem Grund eine außergewöhnlich hohe Stabilität auf. Somit ist der erfindungsgemäße Vliesstoff deutlich stabiler als Produkte aus üblichen Verfahren, bei denen lediglich Faserbällchen geöffnet oder kardiert und anschließend mit Bindefasern vermischt werden.At the same time, the method has the advantage that the binding fibers are connected very closely to the fleece balls. It is assumed that some of the binding fibers are also introduced into the fiber balls by the spines. As a result, the proportion of glue points between the fiber balls and the binding fibers increases significantly during thermal consolidation. This is one of the reasons why the nonwovens are extremely stable. Thus, the nonwoven fabric according to the invention is significantly more stable than products from conventional processes in which only fiber balls are opened or carded and then mixed with binding fibers.

Die besonderen Eigenschaften des Produktes werden unter anderem erhalten, weil das Verfahren als Airlaid-Verfahren durchgeführt wird. Mit dem Begriff "Airlaid-Verfahren" (aerodynamisches Verfahren) wird die Tatsache bezeichnet, dass das Vliesstoffrohmaterial enthaltend Faserbällchen und Bindefasern im Luftstrom mit den Stachelwalzen verarbeitet und abgelegt wird. So wird das Vliesstoffrohmaterial im Luftstrom zu den Stachelwalzen geführt und von ihnen bearbeitet. Dies hat den Vorteil, dass das Vliesstoffrohmaterial beim Verarbeiten mit den Stachelwalzen zwar in loser, voluminöser Form bleibt, aber intensiv durchmischt wird, wobei die Stacheln die Vliesbällchen durchdringen. Das Verfahren unterscheidet sich dadurch signifikant von üblichen Verfahren, bei denen Bahnen von Vliesstoffrohmaterial kardiert werden. Bei solchen Kardierverfahren werden die Vliesstoffrohmaterialien im Wesentlichen ausgerichtet. Wegen der Unbeweglichkeit der Bahnware wird nicht eine Vermischung, Öffnung und gegenseitige Durchdringung der Komponenten erreicht wie bei dem erfindungsgemäßen Airlaid-Verfahren, wo das Vliesstoffrohmaterial die Stachelwalzen in loser Form im Luftstrom passieren. Erfindungsgemäß kann so ein Produkt erhalten werden, dessen Dichte sogar niedriger ist als die der eingesetzten Faserbällchen.The special properties of the product are preserved, among other things, because the process is carried out as an airlaid process. The term "airlaid process" (aerodynamic process) denotes the fact that the nonwoven raw material containing fiber balls and binding fibers is processed and deposited in the air stream with the spiked rollers. The nonwoven raw material is fed to the spiked rollers in an air stream and processed by them. This has the advantage that the nonwoven raw material remains in a loose, voluminous form during processing with the spiked rollers, but is intensively mixed, with the spikes penetrating the fleece balls. The method differs significantly from conventional methods in which webs of nonwoven raw material are carded. In such carding processes, the nonwoven raw materials are essentially oriented. Because of the immobility of the web material, a mixing, opening and mutual penetration of the components is not achieved as in the airlaid process according to the invention, where the nonwoven raw material passes the spiked rollers in loose form in the air stream. According to the invention, it is thus possible to obtain a product whose density is even lower than that of the fiber balls used.

Es konnte festgestellt werden, dass das Verfahren eine sehr gleichmäßige Verteilung des Rohmaterials auf dem Ablageband ermöglicht und ein sehr homogener Volumenvliesstoff erhalten werden kann, in dem das volumengebende Material gleichmäßig verteilt vorliegt. Die homogene Verteilung des volumengebenden Materials ist besonders im Hinblick auf die Wärmeisolationsfähigkeit und Weichheit sowie für die Wiedererholung des Volumenvliesstoffs von großem Vorteil.It was found that the method enables a very even distribution of the raw material on the depositing belt and a very homogeneous volume fleece can be obtained in which the volumizing material is evenly distributed. The homogeneous distribution of the volumizing material is of great advantage, particularly with regard to the thermal insulation properties and softness as well as for the recovery of the volume fleece.

Erfindungsgemäß kann ein sehr homogener Volumenvliesstoff erhalten werden, in dem das volumengebende Fasermaterial sehr homogen und gleichmäßig verteilt vorliegt. Dies war überraschend, da davon ausgegangen werden musste, dass die filigranen Faserbällchen, aber auch andere filigrane Komponenten, wie Daunen, beim Behandeln mit Stachelwalzen zerstört werden.According to the invention, a very homogeneous volume nonwoven can be obtained in which the volume-giving fiber material is present in a very homogeneous and evenly distributed manner. This was surprising as it had to be assumed that the filigree fiber balls, but also other filigree components such as down, would be destroyed when treated with spiked rollers.

Praktische Versuche haben ergeben, dass mit dem erfindungsgemäßen Verfahren besonders gute Ergebnisse erhalten werden, wenn es einen oder mehreren der folgenden Schritte umfasst:
Das Vliesstoffrohmaterial wird möglichst gleichmäßig in die Airlaidvorrichtung, umfassend mindestens ein Paar Stachelwalzen, vorgelegt, in der die Komponenten geöffnet und miteinander vermischt werden. Anschließend kann die Faserablage zur Vliesbildung auf herkömmliche Weise, beispielsweise auf einem Siebband, einer Siebtrommel und/oder einem Transportband erfolgen. Das gebildete Vlies kann daraufhin auf herkömmliche Art und Weise verfestigt werden. Als besonders geeignet hat sich erfindungsgemäß die thermische Verfestigung, beispielsweise mit einem Bandofen, erwiesen. Auf diese Weise wird ausgenutzt, dass die Bindefasern eng mit den Faserbällchen verbunden sind. Auch kann eine unerwünschte Verdichtung des Volumenvliesstoffs, wie sie beispielsweise bei einer Wasserstrahlverfestigung oder beim Vernadeln stattfinden würde, vermieden werden kann. Als besonders geeignet hat sich die Verwendung eines Doppelband Heißluftofens erwiesen. Vorteilhaft an der Verwendung eines solchen Heißluftofens ist, dass eine besonders effektive Aktivierung der Bindefasern bei gleichzeitiger Glättung der Oberfläche und Erhalt des Volumens erhalten werden kann.
Practical tests have shown that particularly good results are obtained with the method according to the invention if it comprises one or more of the following steps:
The nonwoven raw material is placed as evenly as possible in the airlaid device, comprising at least one pair of spiked rollers, in which the components are opened and mixed with one another. The fibers can then be deposited in a conventional manner for web formation, for example on a sieve belt, a sieve drum and / or a conveyor belt. The formed web can then be consolidated in a conventional manner. Thermal consolidation, for example with a belt furnace, has proven particularly suitable according to the invention. This makes use of the fact that the binding fibers are closely connected to the fiber balls. It is also possible to avoid undesired compression of the volume nonwoven, as would occur, for example, in the case of hydroentanglement or needling. The use of a double-belt hot air oven has proven particularly suitable. The advantage of using such a hot air oven is that a particularly effective activation of the binding fibers can be obtained while at the same time smoothing the surface and maintaining the volume.

Gemäß einer vorteilhaften Ausführungsform der Erfindung liegen die Stachelwalzen in Reihen angeordnet vor. Somit liegen die Stachelwalzen vorteilhafterweise in zumindest einer Reihe angeordnet vor. Vorteilhaft an der Anordnung der Stachelwalzen in zumindest einer Reihe ist, dass die Metallspeichen der benachbarten Stachelwalzen ineinandergreifen können. Somit kann jede Walze gleichzeitig zu jeder ihrer benachbarten Walzen ein Paar ausbilden, das als dynamisches Sieb fungieren kann. Dabei können die Reihen auch paarweise vorliegen (Doppelreihen), um eine besonders gute Öffnung und Vermischung der Fasern und Faserbällchen zu erhalten. Somit liegen die Stachelwalzen vorteilhafterweise in zumindest einer Doppelreihe angeordnet vor. Ebenfalls denkbar ist, dass zumindest ein Teil des Fasermaterials mittels eines Rückführsystems mehrfach durch die gleichen Stachelwalzen geführt wird. Zur Rückführung können beispielsweise ein umlaufendes Endlosband oder aerodynamische Mittel verwendet werden, wie Röhren, durch die das Material nach oben geblasen wird. Das Band kann in vorteilhafter Weise zwischen zwei Reihen von Stachelwalzen angeordnet sein. Ferner kann das Endlosband auch durch mehrere hintereinander bzw. übereinander angeordnete Doppelreihen von Stachelwalzen geführt werden.According to an advantageous embodiment of the invention, the spiked rollers are arranged in rows. The spiked rollers are thus advantageously arranged in at least one row. The advantage of the arrangement of the spiked rollers in at least one row is that the metal spokes of the adjacent spiked rollers can interlock. Thus, each roller can simultaneously form a pair with each of its neighboring rollers, which can function as a dynamic screen. The rows can also be in pairs (double rows) in order to obtain a particularly good opening and mixing of the fibers and fiber balls. The spiked rollers are thus advantageously arranged in at least one double row. It is also conceivable that at least part of the fiber material is guided several times through the same spiked rollers by means of a return system. For example, a revolving endless belt or aerodynamic means such as tubes through which the material is blown upwards can be used for the return. The belt can be arranged in an advantageous manner between two rows of spiked rollers. Furthermore, the endless belt can also be guided through several double rows of spiked rollers arranged one behind the other or one above the other.

Die Vorrichtung weist Stachelwalzen auf. Beim Rotieren von zwei gegenüberliegenden Walzen, die einen Spalt zum Durchtritt von Vliesstoffrohmaterial bilden, greifen die Stacheln bevorzugt versetzt ineinander. Die Stacheln (Spikes) weisen bevorzugt eine dünne, längliche Form auf. Die Stacheln sind ausreichen lang, um eine gute Durchdringung der Materialien und der Faserbällchen zu erreichen. Die Länge der Stacheln ist bevorzugt zwischen 1 und 30 cm, insbesondere zwischen 2 und 20 cm oder zwischen 5 und 15 cm. Die Länge der Stacheln kann dabei mindestens 5- oder mindestens 10-mal so groß sein wie der breiteste Durchmesser der Stacheln.The device has spiked rollers. When two opposing rollers rotate, which form a gap for the passage of nonwoven raw material, the spikes preferably mesh with one another in an offset manner. The spikes preferably have a thin, elongated shape. The spines are long enough to allow a good penetration of the materials and the fiber balls. The length of the spines is preferably between 1 and 30 cm, in particular between 2 and 20 cm or between 5 and 15 cm. The length of the spines can be at least 5 or at least 10 times as large as the widest diameter of the spines.

Die Spalte zwischen den Stachelwalzen, durch die das Vliesstoffrohmaterial passiert, sind bevorzugt so breit, dass das Vliesstoffrohmaterial beim Passieren nicht verdichtet wird. Durch das Öffnen der Vliesstoffbällchen wird das Material vielmehr aufgelockert. Bevorzugt weisen die Stacheln auf beiden Seiten jeweils eine Länge auf, die mehr als 50%, bevorzugt mindestens 60%, mindestens 70% oder mindestens 80% der (engsten) Breite des Spaltes entspricht. Bevorzugt weisen die Stacheln auf beiden Seiten jeweils eine Länge auf, die mehr als 50% bis 99% oder 60% bis 95% der (engsten) Breite des Spaltes entspricht.The gaps between the spiked rollers through which the nonwoven raw material passes are preferably so wide that the nonwoven raw material is not compressed when it passes. Rather, opening the nonwoven balls loosens up the material. The spines preferably each have a length on both sides which corresponds to more than 50%, preferably at least 60%, at least 70% or at least 80% of the (narrowest) width of the gap. Preferably the spines point on both Each side has a length that corresponds to more than 50% to 99% or 60% to 95% of the (narrowest) width of the gap.

Bevorzugt weist die Vorrichtung mindestens zwei Paar, bevorzugt mindestens 5 Paar oder mindestens 10 Paar Stachelwalzen auf, und/oder die Vorrichtung weist bevorzugt mindestens 2, mindestens 5 oder mindestens 10 Spalte zwischen den Stachelwalzen auf. Mit solchen Vorrichtungen kann eine besonders effiziente Bearbeitung des Vliesstoffrohmaterials erfolgen.The device preferably has at least two pairs, preferably at least 5 pairs or at least 10 pairs of spiked rollers, and / or the device preferably has at least 2, at least 5 or at least 10 gaps between the spiked rollers. Such devices allow particularly efficient processing of the nonwoven raw material.

Die Vorrichtung ist bevorzugt so ausgestaltet, dass die Kontaktfläche der Stachelwalzen mit dem Vliesstoffrohmaterial möglichst groß ist. Bevorzugt ist eine Vielzahl von Stachelwalzen vorhanden, beispielsweise mindestens 5, mindestens 10 oder mindestens 20 Stachelwalzen. Bevorzugt sind mindestens 5 mindestens 10 oder mindestens 20 Spalte zwischen angrenzenden Walzenpaaren vorhanden, durch die das Vliesstoffrohmaterial passieren kann. Die Walzen können beispielsweise zylindrisch ausgestaltet sein. Üblicherweise sind die zylindrischen Walzen dabei fest mit den Stacheln verbunden. Es ist auch denkbar, einen Walzenkern mit umlaufenden Stachelbändern auszustatten. Bevorzugt sind mehrere Ebenen vorhanden, so dass das Material mehrfach verarbeitet wird.The device is preferably designed so that the contact surface of the spiked rollers with the nonwoven raw material is as large as possible. A plurality of spiked rollers is preferably present, for example at least 5, at least 10 or at least 20 spiked rollers. Preferably there are at least 5, at least 10 or at least 20 gaps between adjacent pairs of rollers through which the nonwoven raw material can pass. The rollers can, for example, have a cylindrical shape. Usually, the cylindrical rollers are firmly connected to the spikes. It is also conceivable to equip a roller core with revolving spiked belts. There are preferably several levels so that the material is processed several times.

Die Vorrichtung könnte zur Öffnung des Faserrohmaterials 2 bis 10 in Paaren angeordnete Reihen mit jeweils 2 bis 10 Stachelwalzen aufweisen. Sie könnte dabei vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweisen. Solche Airlaid-Vorrichtungen sind beispielsweise erhältlich unter der Markenbezeichnung "SPIKE" Air-Laid-Anlage von der Firma Formfiber Denmark APS. Das Verfahren ist ein Airlaid-Verfahren, also ein aerodynamischer Vliesbildungsprozess, d.h die Vliesbildung findet unter Zuhilfenahme von Luft statt. Das Grundprinzip dieses Verfahrens besteht in der Übergabe des Vliesstoffrohmaterials in einen Luftstrom, der eine mechanische Verteilung des Vliesstoffrohmaterials in Maschinen Längs- und/oder Querrichtung und schließlich eine homogene Ablage des Vliesstoffrohmaterials auf einem untersaugten Transportband ermöglicht.For opening the fiber raw material, the device could have 2 to 10 rows arranged in pairs, each with 2 to 10 spiked rollers. You could have four rows arranged in two pairs, each with five spiked rollers. Such airlaid devices are available, for example, under the brand name “SPIKE” Air-Laid -anlage from the company Formfiber Denmark APS. The process is an airlaid process, i.e. an aerodynamic fleece formation process, ie the fleece formation takes place with the aid of air. The basic principle of this process consists in the transfer of the nonwoven raw material into an air stream, which enables a mechanical distribution of the nonwoven raw material in the machine longitudinal and / or transverse direction and finally a homogeneous deposit of the nonwoven raw material on a suction conveyor belt.

Dabei kann Luft bei den verschiedensten Verfahrensschritten eingesetzt werden. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung findet der gesamte Transport des Vliesstoffrohmaterials während der Vliesbildung aerodynamisch, beispielsweise mittels eines installierten Luftsystems, statt. Ebenfalls denkbar ist jedoch, dass nur spezielle Verfahrensschritte, beispielsweise die Abnahme der Fasern von den Stachelwalzen durch Zusatzluft unterstützt werden.Air can be used in a wide variety of process steps. According to a particularly preferred embodiment of the invention, the entire transport of the nonwoven raw material takes place aerodynamically during the formation of the nonwoven, for example by means of an installed air system. It is also conceivable, however, that only special process steps, for example the removal of the fibers from the spiked rollers, are supported by additional air.

Praktische Versuche haben ergeben, dass das Airlaid-Verfahren insbesondere mit einem oder mehreren der folgenden Schritte durchgeführt wird:
Zweckmäßigerweise werden die Prozesse der Vliesstoffrohmaterialaufbereitung bzw. Vliesstoffrohmaterialauflösung dem Vliesbildungsprozess direkt vorgelagert. Das optionale Vermischen mit nicht-Fasermaterialien, beispielsweise Daunen und/oder Schaumstoffteilen, erfolgt vorzugsweise unmittelbar während der Verteilung des Fasermaterials im Vliesbildungssystem.
Practical tests have shown that the airlaid process is carried out in particular with one or more of the following steps:
The processes of nonwoven raw material preparation or nonwoven raw material dissolution are expediently placed directly upstream of the nonwoven formation process. The optional mixing with non-fiber materials, for example down and / or foam parts, is preferably carried out immediately during the distribution of the fiber material in the web formation system.

Unter Zuhilfenahme von Luft als Transportmedium kann das Material (das Vliesstoffrohmaterial oder dessen Komponenten) über ein Zufuhr- und Verteilungssystem in die Vliesformungseinheit transportiert werden, wo eine gezielte Öffnung, Verwirbelung und gleichzeitig homogene Vermischung und Verteilung stattfindet. Um die Materialzufuhr einfach steuern zu können, erfolgt die Zuführung für jede Materialkomponente vorteilhafter Weise separat.With the aid of air as a transport medium, the material (the nonwoven raw material or its components) can be transported via a supply and distribution system into the nonwoven forming unit, where a targeted opening, swirling and, at the same time, homogeneous mixing and distribution takes place. In order to be able to easily control the material supply, the supply for each material component is advantageously carried out separately.

Anschließend wird das Vliesstoffrohmaterial vorzugsweise mit mindestens zwei Stachelwalzen behandelt, mit denen eine Aufbereitung bzw. Auflösung des Fasermaterials durchgeführt wird. Besonders gute Ergebnisse werden erzielt, wenn das Vliesstoffrohmaterial durch eine Reihe von rotierenden, mit Metallspeichen bestückten Wellen (den so genannten Spikes) als Stachelwalze durchgeführt wird. In einer bevorzugten Ausführungsform sind die benachbarten Stachelwalzen gegenläufig. Dadurch können besonders starke Kräfte auf das Vliesstoffrohmaterial wirken. Mit dem Ineinandergreifen der Metallspeichen entsteht ein dynamisches Sieb, das hohe Durchsatzmengen erlaubt. Das Verfahren unterscheidet sich damit signifikant von einem Verfahren wie in WO91/14035 , bei dem Vliesstoffrohmaterial von nur einer einzigen Stachelwalze geführt und abgelegt wird. Dabei können nicht Kräfte auf das Material mit den damit verbundenen Strukturveränderungen wirken wie bei dem erfindungsgemäßen Verfahren.The nonwoven raw material is then preferably treated with at least two spiked rollers with which the fiber material is processed or dissolved. Particularly good results are achieved when the nonwoven raw material is passed through a series of rotating shafts equipped with metal spokes (the so-called spikes) as a spiked roller. In a preferred embodiment, the adjacent spiked rollers rotate in opposite directions. As a result, particularly strong forces can act on the nonwoven raw material. The meshing of the metal spokes creates a dynamic sieve that allows high throughput rates. The procedure thus differs significantly from a procedure as in WO91 / 14035 , with the nonwoven raw material of only one single spiked roller is guided and deposited. In this case, forces cannot act on the material with the associated structural changes as in the method according to the invention.

Vorteilhafter Weise erfolgt die Vliesformung auf einem untersaugten Siebband. Auf dem Siebband kann eine Wirrvliesstruktur ohne ausgeprägte Faserorientierung erzeugt werden, deren Dichte mit der Intensität der Untersagung in Zusammenhang steht. Durch die Anordnung von mehreren Vliesformungseinheiten in einer Linie kann ein Schichtenaufbau realisiert werden.The web is advantageously formed on a screen belt with suction. A random fleece structure without pronounced fiber orientation can be created on the screen belt, the density of which is related to the intensity of the prohibition. A layer structure can be implemented by arranging several web forming units in one line.

Vorteilhaft an der aerodynamischen Vliesbildung ist, dass die Fasern und die gegebenenfalls vorhandenen weiteren Bestandteile im Vliesstoffrohmaterial in einer Wirrlage angeordnet werden können, die eine sehr hohe Eigenschaftsisotropie ermöglicht. Neben den strukturbezogenen Aspekten, bietet diese Ausführungsform wirtschaftliche Vorteile, die sich aus dem Investitionsvolumen und den Betriebskosten für die Produktionsanlagen ergeben.The advantage of aerodynamic nonwoven formation is that the fibers and any further constituents that may be present in the nonwoven raw material can be arranged in a random layer, which enables a very high isotropy of properties. In addition to the structure-related aspects, this embodiment offers economic advantages resulting from the investment volume and the operating costs for the production systems.

Gemäß einer Ausführungsform der Erfindung findet die Vliesbildung in mehreren hintereinander angeordneten Vliesformungseinheiten statt. So ist denkbar, dass ein Ablageband, beispielsweise ein untersaugtes Siebband, nacheinander durch mehrere Vliesformungseinheiten geführt wird, in denen jeweils die Ablage einer Schicht eines Vlieses erfolgt. Hierdurch kann ein mehrschichtiges Vlies erzeugt werden.According to one embodiment of the invention, the web formation takes place in several web-forming units arranged one behind the other. It is thus conceivable that a deposit belt, for example a screen belt with suction, is guided successively through a plurality of web forming units, in each of which a layer of a web is deposited. A multi-layer fleece can be produced in this way.

In einem weiteren Schritt (e) wird das Vlies thermisch verfestigt. Bevorzugt wird dabei kein Druck auf den Vliesstoff ausgeübt. Beispielsweise kann eine thermische Verfestigung ohne Ausübung von Druck in einem Ofen erfolgen. Dies hat den Vorteil, dass der Vliesstoff sehr voluminös ist, obwohl er eine hohe Festigkeit aufweist. Die Vliesverfestigung kann auf herkömmliche Weise unterstützt werden, beispielsweise chemisch durch besprühen mit Bindemittel, thermisch durch Schmelzen zuvor zugesetzter Klebepulver und/oder mechanisch, z. B. durch Vernadelung und/oder Wasserstrahlverfestigung.In a further step (e) the fleece is thermally consolidated. Preferably, no pressure is exerted on the nonwoven fabric. For example, thermal consolidation can take place in an oven without applying pressure. This has the advantage that the nonwoven is very bulky, although it has a high strength. The bonding of the fleece can be supported in a conventional manner, for example chemically by spraying with binding agent, thermally by melting previously added adhesive powder and / or mechanically, e.g. B. by needling and / or hydroentanglement.

Praktische Versuche haben ergeben, dass die Vliesbildung vorzugsweise mit einer Vorrichtung zur Herstellung eines Faservlieses, beschrieben in der Druckschrift WO 2005/044529 , mit sehr guten Ergebnissen durchgeführt werden kann. Auf die darin beschriebenen vorteilhaften Ausgestaltungen der Vorrichtung von Seite 2, Zeile 25 bis Seite 4; Zeile 9, von Seite 4, Zeile 15 bis Seite 5, Zeile 9, und auf Seite 6, Zeile 22 bis Seite 7, Zeile 19 wird hiermit ausdrücklich Bezug genommen.Practical tests have shown that the web formation is preferably carried out with a device for producing a fiber web, described in the publication WO 2005/044529 , can be done with very good results. On the advantageous embodiments of the device described therein from page 2, line 25 to page 4; Line 9, from page 4, line 15 to page 5, line 9, and on page 6, line 22 to page 7, line 19 are hereby incorporated by reference.

In einer bevorzugten Ausführungsform beträgt der Anteil der Faserbällchen 50 bis 95 Gew.-%, bevorzugt 60 bis 95%, insbesondere von 70 bis 90%, und/oder beträgt der Anteil der Bindefasern im Volumenvliesstoff 5 bis 40 Gew.%, vorzugsweise 7 bis 30 Gew.% und besonders bevorzugt von 10 bis 25 Gew.%, jeweils bezogen auf das Gesamtgewicht des Vliesstoffrohmateriales.In a preferred embodiment, the proportion of fiber balls is 50 to 95% by weight, preferably 60 to 95%, in particular from 70 to 90%, and / or the proportion of binding fibers in the bulk nonwoven is 5 to 40% by weight, preferably 7 to 30% by weight and particularly preferably from 10 to 25% by weight, based in each case on the total weight of the nonwoven raw material.

Die Faserbällchen enthalten oder bestehen bevorzugt aus Fasern, die ausgewählt sind aus künstlichen Polymeren, insbesondere Fasern aus Polyester, insbesondere Polyethylenterephthalat, Polyethylennaphthalat und Polybutylenterephthalat; und natürlichen Fasern, insbesondere Fasern aus Wolle, Baumwolle oder Seide, und/oder Mischungen hiervon und/oder Mischungen mit weiteren Fasern.The fiber balls preferably contain or consist of fibers selected from synthetic polymers, in particular fibers made of polyester, in particular polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate; and natural fibers, in particular fibers made of wool, cotton or silk, and / or mixtures thereof and / or mixtures with other fibers.

Grundsätzlich können die Faserbällchen aus den verschiedensten Fasern bestehen. So können die Faserbällchen natürliche Fasern, beispielsweise Wollfasern und/oder synthetische Fasern, beispielsweise Fasern aus Polyacryl, Polyacrylnitril, preoxidiertem PAN, PPS, Kohlenstoff, Glas, Polyvinylalkohol, Viskose-, Cellulose-, Baumwolle Polyaramide, Polyamidimid, Polyamide, insbesondere Polyamid 6 und Polyamid 6.6, PULP, bevorzugt Polyolefine und ganz besonders bevorzugt Polyester, insbesondere Polyethylenterephthalat, Polyethylennaphthalat und Polybutylenterephthalat, und/oder Gemische aus den hiervon genannten umfassen und/oder hieraus bestehen. Gemäß einer bevorzugten Ausführungsform werden Faserbällchen aus Wollfasern eingesetzt. Hierbei können besonders formstabile und gut isolierende Volumenvliesstoffe erhalten werden. Gemäß einer weiteren bevorzugten Ausführungsform werden Faserbällchen aus Polyester eingesetzt, um eine besonders gute Kompatibilität zu den üblichen weiteren Komponenten innerhalb des Volumenvliesstoffs bzw. in einem Vliesstoffverbund zu erreichen. In einer bevorzugten Ausführungsform enthalten die Faserbällchen zusätzlich selbst Bindefasern, die vorzugsweise eine Länge von 0,5 mm bis 100 mm aufweisen.In principle, the fiber balls can consist of a wide variety of fibers. The fiber balls can be natural fibers, for example wool fibers and / or synthetic fibers, for example fibers made of polyacrylic, polyacrylonitrile, pre-oxidized PAN, PPS, carbon, glass, polyvinyl alcohol, viscose, cellulose, cotton, polyaramides, polyamideimide, polyamides, especially polyamide 6 and Polyamide 6.6, PULP, preferably polyolefins and very particularly preferably polyesters, in particular polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, and / or mixtures of those mentioned hereof and / or consist thereof. According to a preferred embodiment, fiber balls made of wool fibers are used. Particularly dimensionally stable and well insulating bulk nonwovens can be obtained here. According to a further preferred embodiment, fiber balls made of polyester are used in order to achieve particularly good compatibility with the usual further components within the volume nonwoven or in a nonwoven composite. In a preferred embodiment, contain Fiber balls additionally themselves binding fibers, which preferably have a length of 0.5 mm to 100 mm.

Das Vliesstoffrohmaterial in Schritt (a) enthält zusätzlich zu den Faserbällchen Bindefasern. Diese Bindefasern sind lose Fasern und nicht eine Komponente der Faserbällchen. In einer bevorzugten Ausführungsform sind diese Bindefasern als Kern/Mantel-Fasern ausgestaltet, wobei der Mantel Polybutylenterephthalat, Polyamid, Copolyamide, Copolyester oder Polyolefine, wie Polyethylen oder Polypropylen, und/oder der Kern Polyethylenterephthalat, Polyethylennaphthalat, Polyolefine, wie Polyethylen oder Polypropylen, Polyphenylensulfid, aromatische Polyamide und/oder Polyester umfasst. Der Schmelzpunkt des Mantelpolymers ist üblicherweise höher als der des Kernpolymers, beispielsweise um mehr als 10°C.The nonwoven raw material in step (a) contains binding fibers in addition to the fiber balls. These binding fibers are loose fibers and are not a component of the fiber balls. In a preferred embodiment, these binding fibers are designed as core / sheath fibers, the sheath being polybutylene terephthalate, polyamide, copolyamides, copolyesters or polyolefins such as polyethylene or polypropylene, and / or the core being polyethylene terephthalate, polyethylene naphthalate, polyolefins such as polyethylene or polypropylene, polyphenylene sulfide , aromatic polyamides and / or polyesters. The melting point of the shell polymer is usually higher than that of the core polymer, for example by more than 10 ° C.

Als Bindefasern können die üblichen zu diesem Zweck verwendeten Fasern eingesetzt werden. Bindefasern können einheitliche Fasern oder auch Mehrkomponentenfasern sein. Erfindungsgemäß besonders geeignete Bindefasern sind Fasern der folgenden Gruppen:

  • Fasern mit einem Schmelzpunkt, der unterhalb des Schmelzpunkts des zu bindenden volumengebenden Materials liegt, vorzugsweise unterhalb von 250°C insbesondere von 70 bis 230°C, besonders bevorzugt von 125 bis 200°C. Geeignete Fasern sind insbesondere thermoplastische Polyester und oder Copolyester, insbesondere PBT, Polyolefine, insbesondere Polypropylen, Polyamide, Polyvinylalkohol, oder auch Copolymere sowie deren Copolymere und Gemische
  • verklebende Fasern, wie unverstreckte Polyesterfasern.
The fibers commonly used for this purpose can be used as the binding fibers. Binding fibers can be uniform fibers or also multi-component fibers. Particularly suitable binding fibers according to the invention are fibers of the following groups:
  • Fibers with a melting point which is below the melting point of the volumizing material to be bound, preferably below 250 ° C, in particular from 70 to 230 ° C, particularly preferably from 125 to 200 ° C. Suitable fibers are in particular thermoplastic polyesters and / or copolyesters, in particular PBT, polyolefins, in particular polypropylene, polyamides, polyvinyl alcohol, or also copolymers and their copolymers and mixtures
  • adhesive fibers, such as undrawn polyester fibers.

Erfindungsgemäß besonders geeignete Bindefasern sind Mehrkomponentenfasern, vorzugsweise Bikomponentenfasern, insbesondere Kern/Mantel-Fasern. Kern/Mantel-Fasern enthalten mindestens zwei Fasermaterialien mit unterschiedlicher Erweichungs- und/oder Schmelztemperatur. Bevorzugt bestehen Kern/Mantel-Fasern aus diesen zwei Fasermaterialien. Dabei ist diejenige Komponente, die die niedrigere Erweichungs- und/oder Schmelztemperatur aufweist, an der Faseroberfläche (Mantel) und diejenige Komponente, die die höhere Erweichungs- und/oder Schmelztemperatur aufweist, im Kern zu finden.Binding fibers particularly suitable according to the invention are multicomponent fibers, preferably bicomponent fibers, in particular core / sheath fibers. Core / sheath fibers contain at least two fiber materials with different softening and / or melting temperatures. Core / sheath fibers preferably consist of these two fiber materials. The component with the lower softening and / or melting temperature is on the fiber surface (cladding) and to find the component that has the higher softening and / or melting temperature in the core.

Bei Kern/Mantel-Fasern kann die Bindefunktion durch die Materialien, die an der Oberfläche der Fasern angeordnet sind, ausgeübt werden. Für den Mantel können die verschiedensten Materialien eingesetzt werden. Bevorzugte Materialien für den Mantel sind erfindungsgemäß PBT, PA, Polyethylen, Copolyamide oder auch Copolyester. Besonders bevorzugt ist Polyethylen. Für den Kern können ebenfalls die verschiedensten Materialien eingesetzt werden. Bevorzugte Materialien für den Kern sind erfindungsgemäß PET, PEN, PO, PPS oder aromatische PA und PES.In the case of core / sheath fibers, the binding function can be performed by the materials which are arranged on the surface of the fibers. A wide variety of materials can be used for the jacket. According to the invention, preferred materials for the jacket are PBT, PA, polyethylene, copolyamides or also copolyesters. Polyethylene is particularly preferred. A wide variety of materials can also be used for the core. According to the invention, preferred materials for the core are PET, PEN, PO, PPS or aromatic PA and PES.

Vorteilhaft an dem Vorhandensein von Bindefasern ist, dass das volumengebende Material im Volumenvliesstoff durch die Bindefasern zusammengehalten wird, so dass eine textile Hülle, die mit dem Volumenvliesstoff gefüllt ist, benutzt werden kann, ohne dass sich das volumengebende Material wesentlich verschiebt und durch fehlendes Füllmaterial Kältebrücken gebildet werden.The advantage of the presence of binding fibers is that the volume-giving material in the volume nonwoven is held together by the binding fibers, so that a textile cover filled with the volume nonwoven can be used without the volume-providing material shifting significantly and without thermal bridges due to the lack of filler material are formed.

Vorzugsweise weisen die Bindefasern eine Länge von 0,5 mm bis 100 mm, noch bevorzugter von 1 mm bis 75 mm, und/oder einen Titer von 0,5 bis 10 dtex auf. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung weisen die Bindefasern einen Titer von 0,9 bis 7 dtex, noch bevorzugter von 1,0 bis 6,7 dtex, und insbesondere von 1,3 bis 3,3 dtex auf.The binding fibers preferably have a length of 0.5 mm to 100 mm, more preferably 1 mm to 75 mm, and / or a titer of 0.5 to 10 dtex. According to a particularly preferred embodiment of the invention, the binding fibers have a titer of 0.9 to 7 dtex, more preferably 1.0 to 6.7 dtex, and in particular 1.3 to 3.3 dtex.

Der Anteil an Bindefasern im Volumenvliesstoff wird in Abhängigkeit von der Art und Menge der weiteren Bestandteile des Volumenvliesstoffs und der erwünschten Stabilität des Volumenvliesstoffs eingestellt. Ist der Anteil an Bindefasern zu gering, so verschlechtert sich die Stabilität des Volumenvliesstoffs. Ist der Anteil an Bindefasern zu hoch, so wird der Volumenvliesstoff insgesamt zu fest, was auf Kosten seiner Weichheit geht. Praktische Versuche haben ergeben, dass ein guter Kompromiss zwischen Stabilität und Weichheit erhalten wird, wenn der Anteil an Bindefasern im Bereich von 5 bis 40 Gew.%, vorzugsweise 7 bis 30 Gew.% und besonders bevorzugt von 10 bis 25 Gew.% liegt. Dabei kann ein Volumenvliesstoff erhalten werden, der stabil genug ist um gerollt und/oder gefaltet zu werden. Dies erleichtert die Handhabbarkeit und Weiterverarbeitung des Volumenvliesstoffs. Ferner ist ein solcher Volumenvliesstoff waschbar. Beispielsweise ist er stabil genug, um drei Haushaltswäschen bei 40 °C ohne Desintegration auszuhalten.The proportion of binding fibers in the volume nonwoven is set depending on the type and amount of the other components of the volume nonwoven and the desired stability of the volume nonwoven. If the proportion of binding fibers is too low, the stability of the bulk nonwoven deteriorates. If the proportion of binding fibers is too high, the volume fleece becomes too strong overall, which is at the expense of its softness. Practical tests have shown that a good compromise between stability and softness is obtained if the proportion of binding fibers is in the range from 5 to 40% by weight, preferably 7 to 30% by weight and particularly preferably from 10 to 25% by weight. A volume nonwoven fabric can be obtained that is stable enough to be rolled and / or folded. This makes it easier Manageability and further processing of the volume nonwoven. Such a volume fleece is also washable. For example, it is stable enough to withstand three household washes at 40 ° C without disintegration.

Die Bindefasern können durch eine Thermofusion untereinander und/oder mit den weiteren Komponenten des Volumenvliesstoffs verbunden werden. Als besonders geeignet hat sich die Warmkalandrierung mit geheizten, glatten oder gravierten Walzen, durch Durchziehen durch einen Heißluft-Tunnelofen, Heißluft Doppelbandofen und/oder durch Durchziehen auf eine von heißer Luft durchströmte Trommel erwiesen. Vorteilhaft an der Verwendung eines Doppelband Heißluftofen ist, dass eine besonders effektive Aktivierung der Bindefasern bei gleichzeitiger Glättung der Oberfläche, bei gleichzeitigem Erhalt des Volumens stattfinden kann.The binding fibers can be connected to one another and / or to the other components of the volume nonwoven by thermofusion. Hot calendering with heated, smooth or engraved rolls, by pulling through a hot air tunnel oven, hot air double belt oven and / or by pulling through a drum through which hot air flows has proven particularly suitable. The advantage of using a double-belt hot air oven is that the binding fibers can be activated particularly effectively while smoothing the surface while maintaining the volume.

Ergänzend kann der Volumenvliesstoff auch dadurch verfestigt sein, dass der gegebenenfalls vorverfestigte Faserflor mindestens einmal auf jeder Seite mit Fluidstrahlen, vorzugsweise mit Wasserstrahlen, beaufschlagt wird.In addition, the volume nonwoven fabric can also be consolidated in that the optionally pre-consolidated fiber web is exposed to fluid jets, preferably water jets, at least once on each side.

In einer bevorzugten Ausführungsform enthält das Gemisch mindestens eine weitere Komponente, die kein Faserbällchen oder Bindefasern ist. Der Gesamtanteil solcher weiterer Komponenten, ist bevorzugt bis zu 45 Gew.%, bis zu 30 Gew.%, bis zu 20 Gew.% oder bis zu 10 Gew.%.In a preferred embodiment, the mixture contains at least one further component that is not fiber balls or binding fibers. The total proportion of such further components is preferably up to 45% by weight, up to 30% by weight, up to 20% by weight or up to 10% by weight.

Bevorzugt sind solche weiteren Komponenten ausgewählt aus weiteren Fasern, weiteren volumengebenden Materialien und sonstigen funktionalen Zusatzstoffen.Such further components are preferably selected from further fibers, further volumetric materials and other functional additives.

Gemäß einer Ausführungsform sind als weitere Komponente weitere Fasern enthalten, die keine Bindefasern sind. Solche Fasern können die Vliesstoffe mit besonderen Eigenschaften ausstatten, wie Weichheit, optische Eigenschaften, Feuerfestigkeit, Reißfestigkeit, Leitfähigkeit, Wassermanagement oder ähnliches. Da diese Fasern nicht in Form von Faserbällchen vorliegen, können sie die verschiedenste Oberflächenbeschaffenheit haben und insbesondere auch glatte Fasern sein. So können beispielsweise Seidefasern als weitere Fasern eingesetzt werden, um den Volumenvliesstoff mit einem besonderen Glanz auszustatten. Ebenfalls denkbar ist der Einsatz von Polyacryl, Polyacrylnitril, preoxidiertes PAN, PPS, Kohlenstofffasern, Glasfasern, Polyaramide, Polymanidimid, Melaminharz, Phenolharz, Polyvinylalkohol, Polyamide, insbesondere Polyamid 6 und Polyamid 6.6, Polyolefine Viskose-, Cellulose-, und bevorzugt Polyester, insbesondere Polyethylenterephthalat Polyethylennaphthalat und Polybutylenterephthalat, und/oder Gemischen hiervon. Vorteilhafterweise beträgt der Anteil der weiteren Fasern im Volumenvliesstoff von 2 bis 40 Gew.-%, insbesondere von 5 bis 30 Gew.-%. Vorzugsweise weisen die weiteren Fasern eine Länge von 1 bis 200 mm, vorzugsweise von 5 mm bis 100, und/oder einen Titer von 0,5 bis 20 dtex auf.According to one embodiment, further fibers that are not binding fibers are contained as a further component. Such fibers can provide the nonwovens with special properties, such as softness, optical properties, fire resistance, tear resistance, conductivity, water management or the like. Since these fibers are not in the form of fiber balls, they can have a wide variety of surface properties and, in particular, can also be smooth fibers. For example, silk fibers can be used as additional fibers in order to give the volume nonwoven fabric a special sheen. The is also conceivable Use of polyacrylic, polyacrylonitrile, pre-oxidized PAN, PPS, carbon fibers, glass fibers, polyaramides, polymanimide, melamine resin, phenolic resin, polyvinyl alcohol, polyamides, in particular polyamide 6 and polyamide 6.6, polyolefins, viscose, cellulose and preferably polyester, especially polyethylene terephthalate, polyethylene naphthalate and polybutylene , and / or mixtures thereof. The proportion of further fibers in the volume nonwoven is advantageously from 2 to 40% by weight, in particular from 5 to 30% by weight. The further fibers preferably have a length of 1 to 200 mm, preferably 5 mm to 100 mm, and / or a titer of 0.5 to 20 dtex.

Gemäß einer Ausführungsform sind als weitere Komponente weitere volumengebende Materialien enthalten, die keine Faserbällchen sind, insbesondere Daunen, Feinfedern oder Schaumstoffteilchen. Die weiteren Materialien können die Dichte beeinflussen und das Material mit anderen gewünschten Eigenschaften ausstatten. Besonders bevorzugt ist der Einsatz von Daunen oder Feinfedern bei textilen Anwendungen insbesondere im Bekleidungsbereich, der die thermischen Eigenschaften verbessern kann. Werden erfindungsgemäß Daunen und/oder Feinfedern als volumengebendes Material eingesetzt, so beträgt deren Anteil im Volumenvliesstoff beispielsweise 10 bis 45 Gew.%, vorzugsweise von 15 bis 45% oder mindestens 15 Gew.-%. Der Begriff Daunen und/oder Feinfedern wird erfindungsgemäß im herkömmlichen Sinne verstanden. Insbesondere werden unter Daunen und/oder Feinfedern Federn mit kurzem Kiel und sehr weichen und langen, strahlenförmig angeordneten Federästen im Wesentlichen ohne Häkchen verstanden.According to one embodiment, further volumetric materials that are not fiber balls, in particular down, fine feathers or foam particles, are contained as a further component. The other materials can influence the density and provide the material with other desired properties. The use of down or fine feathers is particularly preferred in textile applications, particularly in the clothing sector, which can improve the thermal properties. If, according to the invention, down and / or fine feathers are used as volumetric material, their proportion in the volume nonwoven is, for example, 10 to 45% by weight, preferably 15 to 45% or at least 15% by weight. The term down and / or fine feathers is understood according to the invention in the conventional sense. In particular, down and / or fine feathers are understood to mean feathers with a short keel and very soft and long, radially arranged feather branches, essentially without hooks.

Gemäß einer Ausführungsform sind als weitere Komponente weitere funktionale Materialien enthalten, die keine Fasern oder volumengebenden Materialien sind. In dem technischen Gebiet sind zahlreiche solche Zusätze bekannt, wie Farbstoffe, antibakterielle Stoffe oder Geruchsstoffe. In einer bevorzugten Ausführungsform enthält der Volumenvliesstoff ein Phasenwechselmaterial. Phasenwechselmaterialien (phase change materials, PCM) sind Materialien, deren latente Schmelzwärme, Lösungswärme oder Absorptionswärme wesentlich größer ist als die Wärme, die sie aufgrund ihrer normalen spezifischen Wärmekapazität (ohne den Phasenumwandlungseffekt) speichern können. Das Phasenwechselmaterial kann in Partikelform und/oder faserartiger Form im Materialverbund enthalten und beispielsweise über die Bindefasern mit den restlichen Komponenten des Volumenvliesstoffs verbunden sein. Die Anwesenheit des Phasenwechselmaterials kann die Isolationswirkung des Volumenvliesstoffs unterstützen.According to one embodiment, further functional materials that are not fibers or volume-giving materials are contained as a further component. Numerous such additives are known in the technical field, such as colorants, antibacterial substances or odorous substances. In a preferred embodiment, the volume nonwoven contains a phase change material. Phase change materials (PCM) are materials whose latent heat of fusion, heat of solution or heat of absorption is significantly greater than the heat that they can store due to their normal specific heat capacity (without the phase change effect). The phase change material can be in Particle shape and / or fiber-like shape contained in the material composite and be connected, for example, via the binding fibers with the remaining components of the volume nonwoven. The presence of the phase change material can support the insulating effect of the volume nonwoven.

Die zur Herstellung der Fasern des Volumenvliesstoffs eingesetzten Polymere können zumindest ein Additiv, ausgewählt aus der Gruppe bestehend aus Farbpigmenten, Antistatika, Antimikrobia wie Kupfer, Silber, Gold, oder Hydrophilierungs- oder Hydrophobierungsadditive in einer Menge von 150 ppm bis 10 Gew.%, enthalten. Die Verwendung der genannten Additive in den eingesetzten Polymeren gestattet die Anpassung an kundenspezifische Anforderungen.The polymers used to produce the fibers of the volume nonwoven fabric can contain at least one additive selected from the group consisting of color pigments, antistatic agents, antimicrobials such as copper, silver, gold, or hydrophilicizing or hydrophobicizing additives in an amount of 150 ppm to 10% by weight . The use of the named additives in the polymers used allows adaptation to customer-specific requirements.

In einer bevorzugten Ausführungsform ist die Dichte des Volumenvliesstoffes um mindestens 5%, bevorzugt um mindestens 10%, noch mehr bevorzugt um mindestens 25% niedriger ist als die Dichte der in Schritt (a) eingesetzten Vliesstoffbällchen. Dies ist vorteilhaft, da ein besonders voluminöser Vliesstoff erhalten wird, der ungeachtet dessen eine sehr hohe Stabilität aufweist.In a preferred embodiment, the density of the volume nonwoven is at least 5%, preferably at least 10%, even more preferably at least 25% lower than the density of the nonwoven balls used in step (a). This is advantageous since a particularly voluminous nonwoven fabric is obtained which, regardless of this, has a very high stability.

In einer bevorzugten Ausführungsform wird das Verfahren so durchgeführt, dass der in Schritt (e) erhaltene Volumenvliesstoff nicht mechanisch verfestigt wird. Dies ist vorteilhaft, da ein Produkt mit einer sehr geringen Dichte erhalten wird.In a preferred embodiment, the method is carried out in such a way that the volume fleece obtained in step (e) is not mechanically consolidated. This is advantageous because a product with a very low density is obtained.

Insbesondere erfolgt in dem Verfahren der Schritte (a) bis (e) keine Vernadelung, Wasserstrahlverfestigung und/oder kein Kalandrieren. Überraschenderweise sind die sehr voluminösen Vliesstoffe der Erfindung auch ohne solche zusätzlichen Verfahrensschritte und trotz der geringen Dichte in hohem Maße stabil. Bevorzugt erfolgt auch kein Kardieren der Vliesstoffrohmaterialien.In particular, in the process of steps (a) to (e) there is no needling, hydroentanglement and / or no calendering. Surprisingly, the very voluminous nonwovens of the invention are highly stable even without such additional process steps and despite the low density. Preferably, the nonwoven raw materials are also not carded.

Der Volumenvliesstoff kann nach der thermischen Verfestigung in Schritt (e) einer Bindung oder Veredelung chemischer Art unterzogen werden, wie beispielsweise einer Anti-Pilling-Behandlung, einer Hydrophilisierung oder Hydrophobisierung, einer antistatischen Behandlung, einer Behandlung zur Verbesserung der Feuerfestigkeit und/oder zur Veränderung der taktilen Eigenschaften oder des Glanzes, einer Behandlung mechanischer Art wie Aufrauen, Sanforisieren, Schmirgeln oder einer Behandlung im Tumbler und/oder einer Behandlung zur Veränderung des Aussehens wie Färben oder Bedrucken.After the thermal bonding in step (e), the bulk nonwoven can be subjected to a bonding or refinement of a chemical nature, such as, for example, an anti-pilling treatment, a hydrophilization or hydrophobization, an antistatic treatment, a treatment to improve the fire resistance and / or to change it of tactile properties or gloss, one Treatment of a mechanical nature such as roughening, sanforizing, sanding or a treatment in a tumbler and / or a treatment to change the appearance such as dyeing or printing.

Der erfindungsgemäße Volumenvliesstoff kann weitere Lagen enthalten, wodurch ein Vliesstoffverbund ausgebildet wird. Denkbar ist dabei, dass die weiteren Lagen als Verstärkungslagen, beispielsweise in Form eines Scrims ausgebildet sind und/oder dass sie Verstärkungsfilamente, Vliesstoffe, Gewebe, Gewirke und/oder Gelege umfassen. Bevorzugte Materialien zur Bildung der weiteren Lagen sind Kunststoffe, beispielsweise Polyester, und/oder Metalle. Dabei können die weiteren Lagen vorteilhafter Weise auf der Oberfläche des Volumenvliesstoffs angeordnet sein. Gemäß einer bevorzugten Ausführungsform der Erfindung sind die weiteren Lagen auf beiden Oberflächen (Ober- und Unterseite) des Volumenvliesstoffs angeordnet.The volume nonwoven according to the invention can contain further layers, whereby a nonwoven composite is formed. It is conceivable that the further layers are designed as reinforcement layers, for example in the form of a scrim, and / or that they comprise reinforcement filaments, nonwovens, woven fabrics, knitted fabrics and / or scrims. Preferred materials for forming the further layers are plastics, for example polyester, and / or metals. The further layers can advantageously be arranged on the surface of the volume nonwoven. According to a preferred embodiment of the invention, the further layers are arranged on both surfaces (top and bottom) of the volume nonwoven.

Der erfindungsgemäße Volumenvliesstoff eignet sich hervorragend für die Herstellung der verschiedensten textilen Produkte, insbesondere von Produkten, die leicht, stabil und außerdem thermophysiologisch komfortabel sein sollen. Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung eines textilen Materials, umfassend Herstellen eines Volumenvliesstoffes in einem erfindungsgemäßen Verfahren und Weiterverarbeiten zu dem textilen Material.The volume nonwoven according to the invention is outstandingly suitable for the production of a wide variety of textile products, in particular products that are supposed to be light, stable and also thermophysiologically comfortable. The invention therefore also relates to a method for producing a textile material, comprising producing a volume nonwoven fabric in a method according to the invention and further processing to form the textile material.

Das textile Material ist insbesondere ausgewählt aus Bekleidungsstücken, Formmaterialen, Polstermaterialien, Füllmaterialien, Bettwaren, Filtermatten, Saugmatten, Reinigungstextilien, Abstandshaltern, Schaumersatz, Wundauflagen und Feuerschutzmaterialien.The textile material is selected in particular from clothing, molded materials, padding materials, filling materials, bedding, filter mats, absorbent mats, cleaning textiles, spacers, foam substitutes, wound pads and fire protection materials.

Der Volumenvliesstoff kann daher insbesondere als Form-, Polster- und/oder Füllmaterial eingesetzt werden, insbesondere für Bekleidung. Die Form-, Polster- und/oder Füllmaterialien sind aber auch für andere Anwendungen geeignet, beispielsweise für Sitz- und Liegemöbel, Kissen, Kissenhüllen, Bettdecken, Unterbetten, Schlafsäcke, Matratzen, Matratzenauflagen.The volume fleece can therefore be used in particular as a molding, cushioning and / or filling material, in particular for clothing. The molding, cushioning and / or filling materials are also suitable for other applications, for example for seating and reclining furniture, pillows, cushion covers, duvets, mattresses, sleeping bags, mattresses, mattress covers.

Der Begriff Bekleidungsstück wird erfindungsgemäß im herkömmlichen Sinne verwendet und umfasst vorzugsweise Mode-, Freizeit-, Sport-, Outdoor- und Funktionsbekleidung, insbesondere Überbekleidung, wie beispielsweise Jacken, Mäntel, Westen, Hosen, Overalls, Handschuhe, Mützen und/oder Schuhe. Aufgrund der guten wärmeisolierenden Eigenschaften des in ihm enthaltenen Volumenvliesstoffs sind erfindungsgemäß besonders bevorzugte Bekleidungsstücke wärmeisolierende Bekleidungsstücke, beispielsweise Jacken und Mäntel für alle Jahreszeiten, insbesondere Winterjacken, -mäntel und -westen, Ski- und Snowboardjacken, -hosen und -overalls, Thermojacken, -mäntel und -westen, Ski- und Snowboardhandschuhe, Wintermützen, Thermomützen und Hausschuhe.The term garment is used according to the invention in the conventional sense and preferably includes fashion, leisure, sport, outdoor and functional clothing, in particular outerwear, such as jackets, coats, vests, pants, overalls, gloves, hats and / or shoes. Due to the good heat-insulating properties of the volume nonwoven it contains, articles of clothing which are particularly preferred according to the invention are heat-insulating articles of clothing, for example jackets and coats for all seasons, especially winter jackets, coats and vests, ski and snowboard jackets, pants and overalls, thermal jackets and coats and vests, ski and snowboard gloves, winter hats, thermal hats and slippers.

Aufgrund der guten stoßdämpfenden und atmungsaktiven Eigenschaften des in ihm enthaltenen Volumenvliesstoffs sind weiterhin erfindungsgemäß besonders bevorzugte Bekleidungsstücke solche mit stoßdämpfenden Eigenschaften an besonders beanspruchten Stellen, beispielsweise Torwarthosen, Fahrrad- und Reiterhosen.Due to the good shock-absorbing and breathable properties of the volume nonwoven it contains, items of clothing which are particularly preferred according to the invention are those with shock-absorbing properties at particularly stressed areas, for example goalkeeper trousers, cycling and riding trousers.

Gegenstand der Erfindung ist auch ein Volumenvliesstoff, erhältlich gemäß dem erfindungsgemäßen Verfahren. Die erfindungsgemäßen Volumenvliesstoffe zeichnen sich durch eine besondere Struktur und besondere Eigenschaften aus, die durch das besondere Herstellungsverfahren verwirklicht werden. Insbesondere können sehr leichte Vliesstoffe hergestellt werden, die eine außergewöhnliche Stabilität aufweisen. Die Vliesstoffe können außerdem sehr gute wärmeisolierende Eigenschaften und eine hohe Weichheit, hohe Druckelastizität, gutes Rückstellvermögen, gute Waschbarkeit, ein geringes Gewicht, hohe Isolationsfähigkeit und eine gute Anpassung an einen einzuhüllenden Körper aufweisen.The invention also relates to a volume nonwoven obtainable by the method according to the invention. The volume nonwovens according to the invention are characterized by a special structure and special properties that are realized by the special manufacturing process. In particular, very light nonwovens can be produced that have exceptional stability. The nonwovens can also have very good heat-insulating properties and high softness, high compressive elasticity, good resilience, good washability, low weight, high insulation properties and good adaptation to a body to be wrapped.

Die Dicke des Volumenvliesstoffes kann beispielsweise zwischen 0,5 und 500 mm liegen, insbesondere von 1 bis 200 mm oder zwischen 2 und 100 mm. Die Dicke des Volumenvliesstoffs wird vorzugsweise in Abhängigkeit von der gewünschten Isolationswirkung und den eingesetzten Materialien gewählt. Üblicherweise werden mit Dicken (gemessen nach Prüfvorschrift EN 29073 - T2:1992) im Bereich von 2mm bis 100mm gute Ergebnisse erzielt.The thickness of the volume fleece can for example be between 0.5 and 500 mm, in particular from 1 to 200 mm or between 2 and 100 mm. The thickness of the volume fleece is preferably selected as a function of the desired insulation effect and the materials used. Usually, good results are achieved with thicknesses (measured according to test specification EN 29073 - T2: 1992) in the range from 2mm to 100mm.

Die Flächengewichte des erfindungsgemäßen Volumenvliesstoffs werden in Abhängigkeit von dem gewünschten Anwendungszweck eingestellt. Als für viele Anwendungen zweckmäßig haben sich Flächengewichte, gemessen nach DIN EN 29073:1992, im Bereich von 15 bis 1500g/m2, vorzugsweise von 20 bis 1200g/m2 und/oder von 30 bis 1000g/m2 und/oder von 40 bis 800 g/m2 und/oder von 50 bis 500 g/m2 erwiesen.The basis weights of the volume nonwoven according to the invention are adjusted depending on the desired application. Basis weights, measured according to DIN EN 29073: 1992, in the range from 15 to 1500 g / m 2 , preferably from 20 to 1200 g / m 2 and / or from 30 to 1000 g / m 2 and / or from 40 have proven to be useful for many applications up to 800 g / m 2 and / or from 50 to 500 g / m 2 .

In einer bevorzugten Ausführungsform ist die Dichte des Volumenvliesstoffes niedrig. Sie ist bevorzugt kleiner als 20 g/l, kleiner als 15 g/l, kleiner als 10 g/l oder kleiner als 7,5 g/l. Die Dichte kann beispielsweise im Bereich von 1 bis 20 g/l, insbesondere von 2 bis 15 g/l oder von 3 bis 10 g/l liegen. Es ist für viele Anwendungen von Volumenvliesstoffen bevorzugt, dass die Dichte nicht höher als 10 g/L, insbesondere nicht höher als 8 g/l ist. ist. Die Dichte wird bevorzugt aus dem Flächengewicht und der Dicke errechnet. Erfindungsgemäß können aber auch vorteilhafte, besonders stabile Volumenvliesstoffe mit höheren Dichten hergestellt werden.In a preferred embodiment, the density of the volume nonwoven is low. It is preferably less than 20 g / l, less than 15 g / l, less than 10 g / l or less than 7.5 g / l. The density can, for example, be in the range from 1 to 20 g / l, in particular from 2 to 15 g / l or from 3 to 10 g / l. For many applications of volume nonwovens it is preferred that the density is not higher than 10 g / l, in particular not higher than 8 g / l. is. The density is preferably calculated from the weight per unit area and the thickness. According to the invention, however, advantageous, particularly stable bulk nonwovens with higher densities can also be produced.

Im Unterschied zu den bekannten Produkten, die volumengebende Materialien enthalten, zeichnet sich der erfindungsgemäße Volumenvliesstoff durch eine hohe Höchstzugkraft aus. Beispielsweise kann die Zugfestigkeit so eingestellt werden, dass der Volumenvliesstoff auf einfache Weise als Bahnenware hergestellt, weiterverarbeitet und eingesetzt werden kann. Dabei kann der Volumenvliesstoff geschnitten und aufgerollt werden. Zudem kann er ohne Funktionsverlust gewaschen werden.In contrast to the known products which contain volumizing materials, the volume nonwoven according to the invention is characterized by a high maximum tensile strength. For example, the tensile strength can be set in such a way that the volume nonwoven can be easily produced, processed and used as a web product. The volume fleece can be cut and rolled up. It can also be washed without losing its functionality.

Der erfindungsgemäße Volumenvliesstoff zeichnet sich durch eine überraschend gut einstellbare Stabilität aus. Für viele Anwendungen hat es sich als vorteilhaft erwiesen, wenn der Volumenvliesstoff eine hohe Höchstzugkraft aufweist, im Rahmen dieser Anmeldung gemessen nach DIN EN 29 073-3:1992. Die Höchstzugkraft ist dabei in Längs- und Querrichtung im allgemeinen identisch. Bevorzugt gelten die nachfolgend angegebenen Werte sowohl für die Längs- als auch die Querrichtung.The volume fleece according to the invention is characterized by a stability that can be adjusted surprisingly well. For many applications it has proven to be advantageous if the volume fleece has a high maximum tensile strength, measured in accordance with DIN EN 29 073-3: 1992 in the context of this application. The maximum tensile strength is generally identical in the longitudinal and transverse directions. The values given below preferably apply to both the longitudinal and the transverse direction.

In einer weiteren Ausführungsform ist es bevorzugt, dass der Volumenvliesstoff eine hohe Stabilität aufweist. Er weist dabei bevorzugt eine Höchstzugkraft von mindestens 2 N/5cm, insbesondere von mindestens 4N/5cm oder mindestens 5N/5cm auf.In a further embodiment it is preferred that the volume nonwoven has a high stability. It preferably has a maximum tensile force of at least 2 N / 5cm, in particular of at least 4N / 5cm or at least 5N / 5cm.

Der Volumenvliesstoff weist bevorzugt bei einem Flächengewicht von 50g/m2 eine Höchstzugkraft in mindestens einer Richtung von mindestens 0,3N/5cm, insbesondere von 0,3N/5cm bis 100N/5cm auf.The volume nonwoven preferably has a maximum tensile force in at least one direction of at least 0.3N / 5cm, in particular from 0.3N / 5cm to 100N / 5cm, at a weight per unit area of 50g / m 2 .

Gemäß einer bevorzugten Ausführungsform der Erfindung weist der Volumenvliesstoff eine Höchstzugkraft bei einem Flächengewicht von 15 bis 1500g/m2, vorzugsweise von 20 bis 1200g/m2 und/oder von 30 bis 1000g/m2 und/oder von 40 bis 800 g/m2 und/oder von 50 bis 500 g/m2 in mindestens einer Richtung von mindestens 0,3N/5cm, insbesondere von 0,3N/5cm bis 100N/5cm auf.According to a preferred embodiment of the invention, the volume nonwoven has a maximum tensile strength at a weight per unit area of 15 to 1500 g / m 2 , preferably from 20 to 1200 g / m 2 and / or from 30 to 1000 g / m 2 and / or from 40 to 800 g / m 2 and / or from 50 to 500 g / m 2 in at least one direction of at least 0.3N / 5cm, in particular from 0.3N / 5cm to 100N / 5cm.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung weist der Volumenvliesstoff eine Höchstzugkraft

  1. (i) bei einem Flächengewicht von 15-50 g/m2 in mindestens einer Richtung von mindestens 0,3N/5cm, insbesondere von 0,3N/5cm bis 100N/5cm auf,
  2. (ii) bei einem Flächengewicht zwischen 50 und 100 g/m2 in mindestens einer Richtung von mindestens 0,4N/5cm, insbesondere von 0,4N/5cm bis 100N/5cm auf,
  3. (iii) bei einem Flächengewicht von 100-150 g/m2 in mindestens einer Richtung von mindestens 0,8N/5cm, insbesondere von 0,8N/5cm bis 100N/5cm auf,
  4. (iv) bei einem Flächengewicht zwischen 150 und 200 g/m2 in mindestens einer Richtung von mindestens 1,2N/5cm, insbesondere von 1,2N/5cm bis 100N/5cm auf,
  5. (v) bei einem Flächengewicht von 200 bis 300 g/m2 in mindestens einer Richtung von mindestens 1,6N/5cm, insbesondere von 1,6N/5cm bis 100N/5cm auf,
  6. (vi) bei einem Flächengewicht zwischen 300 und 500 g/m2 in mindestens einer Richtung von mindestens 2,5N/5cm, insbesondere von 2,5N/5cm bis 100N/5cm auf,
  7. (vii)bei einem Flächengewicht von 500 bis 800 g/m2 in mindestens einer Richtung von mindestens 4N/5cm, insbesondere von 4N/5cm bis 100N/5cm auf, und
  8. (viii) bei einem Flächengewicht zwischen 800 und 1500 g/m2 in mindestens einer Richtung von mindestens 6,5N/5cm, insbesondere von 6,5N/5cm bis 100N/5cm auf.
Gegenstand der Erfindung sind auch Volumenvliesstoffe gemäß jeder einzelnen der Fallgruppen (i) bis (viii).According to a further preferred embodiment of the invention, the volume fleece has a maximum tensile strength
  1. (i) with a basis weight of 15-50 g / m 2 in at least one direction of at least 0.3N / 5cm, in particular from 0.3N / 5cm to 100N / 5cm,
  2. (ii) with a basis weight between 50 and 100 g / m 2 in at least one direction of at least 0.4N / 5cm, in particular from 0.4N / 5cm to 100N / 5cm,
  3. (iii) with a basis weight of 100-150 g / m 2 in at least one direction of at least 0.8N / 5cm, in particular from 0.8N / 5cm to 100N / 5cm,
  4. (iv) at a basis weight between 150 and 200 g / m 2 in at least one direction of at least 1.2N / 5cm, in particular from 1.2N / 5cm to 100N / 5cm,
  5. (v) with a basis weight of 200 to 300 g / m 2 in at least one direction of at least 1.6N / 5cm, in particular from 1.6N / 5cm to 100N / 5cm,
  6. (vi) with a basis weight between 300 and 500 g / m 2 in at least one direction of at least 2.5N / 5cm, in particular from 2.5N / 5cm to 100N / 5cm,
  7. (vii) with a basis weight of 500 to 800 g / m 2 in at least one direction of at least 4N / 5cm, in particular from 4N / 5cm to 100N / 5cm, and
  8. (viii) at a basis weight between 800 and 1500 g / m 2 in at least one direction of at least 6.5N / 5cm, in particular from 6.5N / 5cm to 100N / 5cm.
The invention also relates to volume nonwovens according to each of the case groups (i) to (viii).

Der Volumenvliesstoff weist bevorzugt einen Quotienten Höchstzugkraft [N/5cm] / Dicke [mm] von mindestens 0,10 [N/(5cm*mm)], bevorzugt mindestens 0,15 [N/(5cm*mm)] oder mindestens 0,18 [N/(5cm*mm)] auf. Dabei ist die Dichte bevorzugt nicht höher als 10 g/L, insbesondere nicht höher als 8 g/L Es ist ungewöhnlich, dass ein Volumenvliesstoff mit geringer Dichte eine derartig hohe HZK (bezogen auf die Dicke) erreicht.The volume nonwoven fabric preferably has a maximum tensile strength ratio [N / 5cm] / thickness [mm] of at least 0.10 [N / (5cm * mm)], preferably at least 0.15 [N / (5cm * mm)] or at least 0, 18 [N / (5cm * mm)]. The density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is unusual for a volume nonwoven fabric with a low density to achieve such a high HZK (based on the thickness).

Der Volumenvliesstoff weist bevorzugt einen Quotienten Höchstzugkraft [N/5cm] / Flächengewicht [g/m2] von mindestens 0,020 [N*m2/(5cm*g)], bevorzugt mindestens 0,025 [N*m2/(5cm*g)] oder mindestens 0,030 [N*m2/(5cm*g)] auf. Dabei ist die Dichte bevorzugt nicht höher als 10 g/L, insbesondere nicht höher als 8 g/L Es ist ungewöhnlich, dass ein Volumenvliesstoff eine derartig hohe HZK bezogen auf das Flächengewicht erreicht.The volume fleece preferably has a maximum tensile strength ratio [N / 5cm] / weight per unit area [g / m2] of at least 0.020 [N * m 2 / (5cm * g)], preferably at least 0.025 [N * m 2 / (5cm * g)] or at least 0.030 [N * m 2 / (5cm * g)]. The density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is unusual for a volume nonwoven fabric to achieve such a high HZK based on the weight per unit area.

Der Volumenvliesstoff weist bevorzugt eine Höchstzugkraftdehnung von mindestens 20%, bevorzugt mindestens 25% und insbesondere mehr als 30% auf, gemessen nach DIN EN 29 073-3. Dabei ist die Dichte bevorzugt nicht höher als 10 g/L, insbesondere nicht höher als 8 g/L.The volume nonwoven preferably has a maximum tensile elongation of at least 20%, preferably at least 25% and in particular more than 30%, measured in accordance with DIN EN 29 073-3. The density is preferably not higher than 10 g / L, in particular not higher than 8 g / L.

Der erfindungsgemäße Volumenvliesstoff zeichnet sich durch gute wärmeisolierende Eigenschaften aus. Bevorzugt weist er einen Wärmedurchgangswiderstand (RCT-Wert) von mehr als 0,10 (K*m2)/W, mehr als 0,20 (K*m2)/W oder mehr als 0,30 (K*m2)/W auf. Dabei ist die Dichte bevorzugt nicht höher als 10 g/L, insbesondere nicht höher als 8 g/L Im Rahmen dieser Anmeldung wird der Wärmedurchgangswiderstand entweder gemessen gemäß DIN 11092:2014-12, oder in Anlehnung an DIN 52612:1979 gemäß dem nachfolgend beschriebenen Verfahren. Es wurde gefunden, dass die Ergebnisse bei beiden Verfahren vergleichbar sind. Das Verfahren gemäß DIN 11092:2014-12 wird mit einem Thermoregulationsmodell der menschlichen Haut durchgeführt bei Ta = 20°C, ϕa = 65% r.F.The volume fleece according to the invention is characterized by good heat-insulating properties. It preferably has a heat transfer resistance (R CT value) of more than 0.10 (K * m 2 ) / W, more than 0.20 (K * m 2 ) / W or more than 0.30 (K * m 2 ) / W on. The density is preferably no higher than 10 g / L, in particular no higher than 8 g / L. In the context of this application, the heat transfer resistance is either measured in accordance with DIN 11092: 2014-12, or based on DIN 52612: 1979 in accordance with what is described below Procedure. It was found that the results for both methods are comparable. The procedure according to DIN 11092: 2014-12 is carried out with a thermoregulation model of human skin at T a = 20 ° C, ϕ a = 65% RH

Der Volumenvliesstoff weist bevorzugt einen Quotienten Wärmedurchgangswiderstand RCT [Km2/W] / Dicke [mm] von mindestens 0,010 [Km2/(W*mm)], bevorzugt mindestens 0,015 [Km2/(W*mm)] auf. Dabei ist die Dichte bevorzugt nicht höher als 10 g/L, insbesondere nicht höher als 8 g/L. Es ist ungewöhnlich, dass ein Volumenvliesstoff mit geringer Dichte einen derartig hohen RCT-Wert (bezogen auf die Dicke) erreicht.The volume nonwoven fabric preferably has a quotient of heat transfer resistance R CT [Km 2 / W] / thickness [mm] of at least 0.010 [Km 2 / (W * mm)], preferably at least 0.015 [Km 2 / (W * mm)]. The density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is uncommon for a low density bulk nonwoven fabric to achieve such a high R CT (based on caliper).

Der Volumenvliesstoff weist bevorzugt einen Quotienten Wärmedurchgangswiderstand RCT [Km2/W] / Flächengewicht [g/m2] von mindestens 0,0015 [Km4/(W*g)], bevorzugt mindestens 0,0020 [Km4/(W*g)] oder mindestens 0,0024 [Km4/(W*g)] auf. Dabei ist die Dichte bevorzugt nicht höher als 10 g/L, insbesondere nicht höher als 8 g/L. Es ist ungewöhnlich, dass ein Volumenvliesstoff einen derartig hohen RCT-Wert bezogen auf das Flächengewicht erreicht.The volume nonwoven fabric preferably has a quotient of heat transfer resistance R CT [Km 2 / W] / surface weight [g / m 2 ] of at least 0.0015 [Km 4 / (W * g)], preferably at least 0.0020 [Km 4 / (W * g)] or at least 0.0024 [Km 4 / (W * g)]. The density is preferably not higher than 10 g / L, in particular not higher than 8 g / L. It is unusual for a volume nonwoven fabric to achieve such a high R CT value based on the basis weight.

Unter einem wärmeisolierenden Bekleidungsstück wird erfindungsgemäß ein Bekleidungsstück verstanden, enthaltend einen Volumenvliesstoff mit einem Wärmedurchgangswiderstand, bei einem Flächengewicht von 15 bis 1500g/m2, vorzugsweise von 20 bis 1200g/m2 und/oder von 30 bis 1000g/m2 und/oder von 40 bis 800 g/m2 und/oder von 50 bis 500 g/m2, von mindestens 0,030 (K*m2)/W, insbesondere von 0,030 bis 7,000 (K*m2)/W.According to the invention, a heat-insulating item of clothing is understood to mean an item of clothing containing a volume nonwoven fabric with a heat transfer resistance, at a weight per unit area of 15 to 1500 g / m 2 , preferably from 20 to 1200 g / m 2 and / or from 30 to 1000 g / m 2 and / or from 40 to 800 g / m 2 and / or from 50 to 500 g / m 2 , from at least 0.030 (K * m 2 ) / W, in particular from 0.030 to 7,000 (K * m 2 ) / W.

Darüber hinaus weist der Volumenvliesstoff einen Wärmedurchgangswiderstand bei einem Flächengewicht von 15 bis 1500g/m2, vorzugsweise von 20 bis 1200g/m2 und/oder von 30 bis 1000g/m2 und/oder von 40 bis 800 g/m2 und/oder von 50 bis 500 g/m2, von mindestens 0,030 (K*m2)/W, insbesondere von 0,030 bis 7,000 (K*m2)/W auf.In addition, the volume nonwoven has a heat transfer resistance with a weight per unit area of 15 to 1500 g / m 2 , preferably 20 to 1200 g / m 2 and / or 30 to 1000 g / m 2 and / or 40 to 800 g / m 2 and / or from 50 to 500 g / m 2 , from at least 0.030 (K * m 2 ) / W, in particular from 0.030 to 7,000 (K * m 2 ) / W.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung weist der Volumenvliesstoff einen Wärmedurchgangswiderstand

  1. a. bei einem Flächengewicht von 15-50 g/m2 von mindestens 0,030 (K*m2)/W, insbesondere von 0,030 (K*m2)/W bis 0,235 (K*m2)/W auf.
  2. b. bei einem Flächengewicht zwischen 50 und 100 g/m2 von mindestens 0,100 (K*m2)/W, insbesondere von 0,100 bis 0,470 (K*m2)/W auf.
  3. c. bei einem Flächengewicht von 100-150 g/m2 von mindestens 0,200 (K*m2)/W, insbesondere von 0,200 bis 0,705 (K*m2)/W auf.
  4. d. bei einem Flächengewicht zwischen 150 und 200 g/m2 von mindestens 0,300 (K*m2)/W, insbesondere von 0,300 bis 0,940 (K*m2)/W auf.
  5. e. bei einem Flächengewicht von 200-300 g/m2 von mindestens 0,400 (K*m2)/W, insbesondere von 0,400 bis 1,410 (K*m2)/W auf.
  6. f. bei einem Flächengewicht zwischen 300 und 500 g/m2 von mindestens 0,600 (K*m2)/W, insbesondere von 0,600 bis 2,350 (K*m2)/W auf.
  7. g. bei einem Flächengewicht von 500-800 g/m2 von mindestens 1,000 (K*m2)/W, insbesondere von 1,000 bis 3,760 (K*m2)/W auf, und
  8. h. bei einem Flächengewicht zwischen 800 und 1500 g/m2 von mindestens 1,600 (K*m2)/W, insbesondere von 1,600 bis 7,000 (K*m2)/W auf.
Gegenstand der Erfindung sind auch Volumenvliesstoffe gemäß jeder einzelnen der Fallgruppen (a.) bis (h.).According to a further preferred embodiment of the invention, the volume nonwoven has a heat transfer resistance
  1. a. at a basis weight of 15-50 g / m 2 of at least 0.030 (K * m 2 ) / W, in particular from 0.030 (K * m 2 ) / W to 0.235 (K * m 2 ) / W.
  2. b. at a basis weight between 50 and 100 g / m 2 of at least 0.100 (K * m 2 ) / W, in particular from 0.100 to 0.470 (K * m 2 ) / W.
  3. c. with a basis weight of 100-150 g / m 2 of at least 0.200 (K * m 2 ) / W, in particular from 0.200 to 0.705 (K * m 2 ) / W.
  4. d. at a basis weight between 150 and 200 g / m 2 of at least 0.300 (K * m 2 ) / W, in particular from 0.300 to 0.940 (K * m 2 ) / W.
  5. e. at a basis weight of 200-300 g / m 2 of at least 0.400 (K * m 2 ) / W, in particular from 0.400 to 1.410 (K * m 2 ) / W.
  6. f. at a basis weight between 300 and 500 g / m 2 of at least 0.600 (K * m 2 ) / W, in particular from 0.600 to 2.350 (K * m 2 ) / W.
  7. G. at a basis weight of 500-800 g / m 2 of at least 1,000 (K * m 2 ) / W, in particular from 1,000 to 3,760 (K * m 2 ) / W, and
  8. H. at a basis weight between 800 and 1500 g / m 2 of at least 1,600 (K * m 2 ) / W, in particular from 1,600 to 7,000 (K * m 2 ) / W.
The invention also relates to volume nonwovens according to each of the case groups (a.) To (h.).

Der Wärmedurchgangswiderstand (RCT) wurde gemäß den Ausführungsbeispielen dieser Anmeldung in Anlehnung an DIN 52612:1979 mit einem Zweiplatten-Messgerät für Proben mit den Ausmaßen 250mm x 250mm gemessen: Im Zentrum des Messaufbaus befindet sich eine mittels einer konstanten elektrischen Leistung P beheizbare Folie. Die Folie wird sowohl oberhalb als auch unterhalb mit je einem Muster des gleichen Materials bedeckt. Oberhalb und unterhalb der Muster befindet sich je eine Kupferplatte, die mittels eines externen Thermostats auf konstanter Temperatur (Taußen) gehalten wird. Mittels eines Temperatursensors wird die Temperaturdifferenz zwischen der beheizten und unbeheizten Seite der Probe gemessen. Der gesamte Messaufbau ist mittels Styropor gegen innere und äußere Temperaturverluste isoliert.The heat transfer resistance (R CT ) was measured in accordance with the exemplary embodiments of this application based on DIN 52612: 1979 with a two-plate measuring device for samples with dimensions of 250 mm x 250 mm: In the center of the measurement setup is a film that can be heated by means of a constant electrical power P. The film is covered both above and below with a pattern of the same material. Above and below the pattern there is a copper plate, which is kept at a constant temperature (T outside ) by means of an external thermostat. The temperature difference between the heated and unheated side of the sample is measured by means of a temperature sensor. The entire measurement setup is insulated against internal and external temperature losses by means of styrofoam.

Der Wärmedurchgangswiderstand wird mit dem beschriebenen Messaufbau auf folgende Weise gemessen.

  1. 1. Zwei Muster werden auf 250 mm x 250 mm ausgestanzt.
  2. 2. Jedes der zwei ausgestanzten Muster wird mit einem Dickentaster mit 0,4g Anpressdruck auf seine Dicke gemessen und ein Mittelwert gebildet (d).
  3. 3. Der oben beschriebene Messaufbau wird zusammengesetzt und das Thermostat auf Taußen = 25°C eingestellt. Dabei wird der Abstand der beiden Metallplatten so eingestellt, dass die Muster um 10 % komprimiert werden, damit ein ausreichender Kontakt der Muster zu den Platten und der beheizbaren Folie gewährleistet wird.
  4. 4. Eine Temperaturdifferenz ΔT wird generiert, indem die elektrisch beheizbare Folie mit einer Leistung P (P = 10V oder 30V) geheizt wird und Taußen über einen Thermostat konstant gehalten wird.
  5. 5. Nach dem Erreichen des thermischen Gleichgewichts wird die Temperaturdifferenz ΔT übernommen.
  6. 6. Die Wärmeleitfähigkeit des Materials wird nach folgender Formel berechnet: λ = P * d / A * ΔT W / m * K
    Figure imgb0001
  7. 7. Der Wärmedurchgangswiderstand (RCT) wird nach folgender Formel berechnet: R CT = d / λ = Δ T * A / P K * m 2 / W .
    Figure imgb0002
The heat transfer resistance is measured with the measurement setup described in the following way.
  1. 1. Two patterns are punched out to 250 mm x 250 mm.
  2. 2. Each of the two punched-out samples is measured with a thickness probe with 0.4 g of contact pressure on its thickness and an average value is formed (d).
  3. 3. The measurement setup described above is put together and the thermostat is set to T outside = 25 ° C. The distance between the two metal plates is set so that the pattern is compressed by 10% so that sufficient contact between the pattern and the plates and the heatable film is ensured.
  4. 4. A temperature difference ΔT is generated by heating the electrically heatable film with a power P (P = 10V or 30V) and keeping T constant outside via a thermostat.
  5. 5. After reaching thermal equilibrium, the temperature difference ΔT is adopted.
  6. 6. The thermal conductivity of the material is calculated using the following formula: λ = P * d / A. * ΔT W. / m * K
    Figure imgb0001
  7. 7. The thermal resistance (R CT ) is calculated using the following formula: R. CT = d / λ = Δ T * A. / P K * m 2 / W. .
    Figure imgb0002

Darüber hinaus weist der erfindungsgemäße Volumenvliesstoff vorteilhafter Weise eine hohe Rückstellkraft aus. So weist der Volumenvliesstoff vorzugsweise eine Wiedererholung von mehr als 50, 60, 70, 80 oder mehr als 90 % auf, wobei die Wiedererholung auf die folgende Art und Weise gemessen wird:

  1. (1) Es werden 6 Proben übereinander gestapelt (10x10cm)
  2. (2) die Höhe wird mit einem Zollstock gemessen
  3. (3) die Proben werden mit einer Eisenplatte beschwert (1300g)
  4. (4) nach einer Minute Belastung wird die Höhe mit einem Zollstock gemessen
  5. (5) das Gewicht wird entfernt
  6. (6) nach 10 Sekunden wird die Höhe der Proben mit dem Zollstock gemessen
  7. (7) nach einer Minute wird die Höhe der Proben mit dem Zollstock gemessen
  8. (8) die Wiedererholung wird errechnet indem die Werte aus den Punkten 7 und 2 ins Verhältnis gesetzt werden.
Es werden 5, 20 oder 100 Messungen an unterschiedlichen Probestücken durchgeführt und die Messwerte werden gemittelt.In addition, the volume fleece according to the invention advantageously has a high restoring force. For example, the volume nonwoven fabric preferably has a recovery of more than 50, 60, 70, 80 or more than 90%, the recovery being measured in the following manner:
  1. (1) 6 samples are stacked on top of each other (10x10cm)
  2. (2) the height is measured with a folding rule
  3. (3) the samples are weighted with an iron plate (1300g)
  4. (4) after one minute of loading, the height is measured with a folding rule
  5. (5) the weight is removed
  6. (6) after 10 seconds, the height of the specimen is measured with a folding rule
  7. (7) After one minute, the height of the samples is measured with a folding rule
  8. (8) the repetition is calculated by comparing the values from points 7 and 2.
5, 20 or 100 measurements are carried out on different test pieces and the measured values are averaged.

Aufgrund seiner hohen Stabilität kann der Volumenvliesstoff, beispielsweise als Bahnenware, problemlos aufgerollt und weiterverarbeitet werden.Due to its high stability, the volume nonwoven can be rolled up and processed further, for example as a web product, without any problems.

Bevorzugt weist der Volumenvliesstoff folgende Eigenschaften auf:

  • eine Dichte nicht höher als 10 g/l, insbesondere nicht höher als 8 g/L und
  • eine Höchstzugkraft von mindestens 2 N/5cm, und
  • einen Wärmedurchgangswiderstand RCT von mindestens 0,20 Km2/W, und
  • gegebenenfalls einen Quotienten Wärmedurchgangswiderstand RCT [Km2/W] / Dicke [mm] von mindestens 0,010 [Km2/(W*mm)].
The volume fleece preferably has the following properties:
  • a density not higher than 10 g / l, in particular not higher than 8 g / l and
  • a maximum tensile force of at least 2 N / 5cm, and
  • a thermal resistance R CT of at least 0.20 Km 2 / W, and
  • if necessary, a quotient of thermal resistance R CT [Km 2 / W] / thickness [mm] of at least 0.010 [Km 2 / (W * mm)].

In besonderen Ausführungsformen der Erfindung kann ein Volumenvliesstoff wie folgt hergestellt werden:
Es werden 120 g/m2 aus 35 Gew.% Faserbällchen aus 7 dtex/32mm PES silikonisiert (Dacron Polyester Fiberfill Type 287), die beaufschlagt sind mit 40 %mPCM 28°C-PC-Temperatur-Enthalpie, 30 Gew.% Faserbällchen aus CoPES Bindefaser und 35 Gew.% Daunen und/oder Feinfedern und Federn der Firma Minardi in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 10 mm bei 155 °C verfestigt. Die Verweilzeit beträgt 36 Sekunden. Es wird ein aufrollbares Bahnmaterial hergestellt.
In particular embodiments of the invention, a volume fleece can be produced as follows:
120 g / m 2 of 35% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) to which 40% mPCM 28 ° C PC temperature enthalpy, 30% by weight fiber balls are applied made of CoPES binding fiber and 35% by weight of down and / or fine feathers and feathers from Minardi in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows of five spiked rollers arranged in two pairs for opening the fiber raw material , placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 10 mm at 155 ° C. The residence time is 36 seconds. A rollable sheet material is produced.

Es werden 150 g/m2 aus 50 Gew.% Faserbällchen aus Wolle, 50 Gew.% Faserbällchen aus CoPES Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 12 mm bei 155 °C verfestigt. Die Verweilzeit beträgt 36 Sekunden. Es wird ein aufrollbares Bahnmaterial erhalten.150 g / m 2 of 50% by weight fiber balls made of wool and 50% by weight fiber balls made of CoPES binding fiber are used in a "SPIKE" air-laid system from Formfiber Denmark APS, which is arranged in two pairs to open the fiber raw material Has rows with five spiked rollers each, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 12 mm at 155 ° C. The residence time is 36 seconds. A rollable sheet material is obtained.

Es werden 150 g/m2 aus 50 Gew.% Faserbällchen aus Seide, 50 Gew.% Faserbällchen aus CoPES Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 12 mm bei 155 °C verfestigt. Die Verweilzeit beträgt 36 Sekunden. Es wird ein aufrollbares Bahnmaterial erhalten.150 g / m 2 of 50% by weight fiber balls made of silk and 50% by weight fiber balls made of CoPES binding fiber are produced in a "SPIKE" air-laid system from the company Formfiber Denmark APS, which has four rows arranged in two pairs with five spiked rollers each, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 12 mm at 155 ° C. The residence time is 36 seconds. A rollable sheet material is obtained.

AusführungsbeispieleEmbodiments

Es wurden verschiedene Volumenvliesstoffe hergestellt und die Eigenschaften ermittelt. Dicke, Dichte, Flächengewicht, Höchstzugkraft, Höchstzugkraftdehnung, Wiedererholung und Wärmedurchgangswiderstand (RCT) wurden gemäß den Methoden wie oben beschrieben bestimmt.Various volume nonwovens were produced and the properties determined. Thickness, density, basis weight, maximum tensile strength, maximum tensile force elongation, recovery and thermal resistance (R CT ) were determined according to the methods described above.

Ausführungsbeispiel 1Embodiment 1

Es werden 125 g/m2 aus 35 Gew.% Faserbällchen aus 7 dtex/32mm PES silikonisiert (Dacron Polyester Fiberfill Type 287), 30 Gew.% Faserbällchen aus CoPES Bindefaser und 35 Gew.% einer Daunen-Federn-Mischung im Verhältnis 90:10 der Firma Minardi Piume S.r.l. in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 14 mm bei 178 °C verfestigt. Die Verweilzeit betrug 43 Sekunden. Es wurde ein aufrollbares Bahnmaterial erhalten mit einer Dicke von 8 mm und einer Dichte von 15,2 g/L.125 g / m 2 of 35% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287), 30% by weight fiber balls made of CoPES binding fiber and 35% by weight of a down-feather mixture in a ratio of 90 : 10 from Minardi Piume Srl in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows of five spiked rollers arranged in two pairs for opening the fiber raw material, placed on a carrier belt and placed in a double belt oven from the company Bombi Meccania solidified with a band gap of 14 mm at 178 ° C. The residence time was 43 seconds. A rollable sheet material was obtained with a thickness of 8 mm and a density of 15.2 g / l.

Ausführungsbeispiel 2Embodiment 2

Es werden 56 g/m2 aus 80 Gew.% Faserbällchen aus 7 dtex/32mm PES silikonisiert (Dacron Polyester Fiberfill Type 287) und 20 Gew.% CoPES Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 1 mm bei 170 °C verfestigt. Es wurde ein aufrollbares Bahnmaterial erhalten, mit einer Dicke von 6,1 mm. Das Material wies eine Dichte von 9,18 g/L auf.56 g / m 2 of 80% by weight fiber balls made of 7 dtex / 32mm PES are siliconized (Dacron Polyester Fiberfill Type 287) and 20% by weight CoPES binding fiber in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows arranged in two pairs, each with five spiked rollers, to open the fiber raw material, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 1 mm at 170 ° C. A rollable sheet material was obtained with a thickness of 6.1 mm. The material had a density of 9.18 g / L.

Ausführungsbeispiel 3Embodiment 3

Es werden 128 g/m2 aus 80 Gew.% Faserbällchen aus 7 dtex/32mm PES silikonisiert (Dacron Polyester Fiberfill Type 287) und 20 Gew.% aus CoPES Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 4 mm bei 170 °C verfestigt. Es wurde ein aufrollbares Bahnmaterial erhalten, mit einer Dicke von 7,5 mm. Das Material wies eine Dichte von 17,07 g/L auf.128 g / m 2 of 80% by weight of fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) and 20% by weight of CoPES binding fiber in a "SPIKE" air-laid system from Formfiber Denmark APS , which has four rows arranged in two pairs, each with five spiked rollers, to open the fiber raw material, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 4 mm at 170 ° C. A rollable sheet material was obtained with a thickness of 7.5 mm. The material had a density of 17.07 g / L.

Ausführungsbeispiel 4Embodiment 4

Es werden 128 g/m2 aus 80 Gew.% Faserbällchen aus 7 dtex/32mm PES silikonisiert (Dacron Polyester Fiberfill Type 287) und 20 Gew.% CoPES Bindefaser in "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 30 mm, d.h. ohne Belastung des Faserflores, bei 170 °C verfestigt. Es wurde ein weiches, aufrollbares Bahnmaterial erhalten, mit einer Dicke von 25 mm. Das Material wies eine Dichte von 5,12 g/L auf.128 g / m 2 of 80% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) and 20% by weight CoPES binding fiber in the "SPIKE" air-laid system from Formfiber Denmark APS, the to open the fiber raw material has four rows arranged in two pairs, each with five spiked rollers, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 30 mm, ie without stressing the fiber web, at 170 ° C. A soft, rollable sheet material was obtained, with a thickness of 25 mm. The material had a density of 5.12 g / L.

Ausführungsbeispiel 5Embodiment 5

Es werden 723 g/m2 aus 80 Gew.% Faserbällchen aus 7 dtex/32mm PES silikonisiert (Dacron Polyester Fiberfill Type 287) und 20 Gew.% CoPES Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 50 mm bei 170 °C verfestigt. Es wurde ein aufrollbares, stabiles Bahnmaterial erhalten, mit einer Dicke von 50 mm. Das Material wies eine Dichte von 14,5 g/L auf.723 g / m 2 of 80% by weight fiber balls made of 7 dtex / 32 mm PES are siliconized (Dacron Polyester Fiberfill Type 287) and 20% by weight CoPES binding fiber in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows arranged in two pairs, each with five spiked rollers, to open the fiber raw material, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 50 mm at 170 ° C. A rollable, stable web material with a thickness of 50 mm was obtained. The material had a density of 14.5 g / L.

Ausführungsbeispiel 6Embodiment 6

Es werden 112 g/m2 aus 85 Gew.% Faserbällchen (MICROROLLO® 222 SM der Firma A. Molina & C.) und 15 Gew.% PET/PE Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 40 mm bei 180 °C verfestigt. Es wurde ein aufrollbares, stabiles Bahnmaterial erhalten, mit einer Dicke von 17 mm. Das Material wies eine Dichte von 6,5 g/L auf, eine Höchstzugkraft von 3,84 N/5cm und eine Höchstzugkraftdehnung von 29 %, sowie einen RCT-Wert von 0,323 Km2/W (bei P=10V).112 g / m 2 of 85% by weight of fiber balls (MICROROLLO® 222 SM from A. Molina & C.) and 15% by weight of PET / PE binding fiber are produced in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows arranged in two pairs, each with five spiked rollers, is placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 40 mm at 180 ° C. A rollable, stable web material with a thickness of 17 mm was obtained. The material had a density of 6.5 g / L, a maximum tensile force of 3.84 N / 5 cm and a maximum tensile force elongation of 29%, as well as an R CT value of 0.323 Km 2 / W (at P = 10V).

Ausführungsbeispiel 7Embodiment 7

Es werden 151 g/m2 aus 85 Gew.% Faserbällchen (MICROROLLO® 222 SM der Firma A. Molina & C.) und 15 Gew.% PET/PE Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 40 mm bei 180 °C verfestigt. Es wurde ein aufrollbares, stabiles Bahnmaterial erhalten, mit einer Dicke von 19 mm. Das Material wies eine Dichte von 6,1 g/L auf. Ein an einer anderen Stelle entnommenes Muster mit 167 g/m2 wies eine Höchstzugkraft von 5,14 N/5cm und eine Höchstzugkraftdehnung von 33 %, sowie einen RCT-Wert von 0,398 Km2/W (bei P=10V) auf.151 g / m 2 of 85% by weight of fiber balls (MICROROLLO® 222 SM from A. Molina & C.) and 15% by weight of PET / PE binding fiber are produced in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows arranged in two pairs, each with five spiked rollers, is placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 40 mm at 180 ° C. A rollable, stable web material with a thickness of 19 mm was obtained. The material had a density of 6.1 g / L. A sample taken at another point with 167 g / m 2 had a maximum tensile force of 5.14 N / 5 cm and a maximum tensile force elongation of 33%, as well as an R CT value of 0.398 Km 2 / W (at P = 10V).

Ausführungsbeispiel 8Embodiment 8

Es werden 218 g/m2 aus 85 Gew.% Faserbällchen (MICROROLLO® 222 SM der Firma A. Molina & C.), 15 Gew.% PET/PE Bindefaser in einer "SPIKE" Air-Laid-Anlage der Firma Formfiber Denmark APS, die zur Öffnung des Faserrohmaterials vier in zwei Paaren angeordnete Reihen mit jeweils fünf Stachelwalzen aufweist, auf einem Trägerband abgelegt und in einem Doppelbandofen der Firma Bombi Meccania mit einem Bandabstand von 50 mm bei 180 °C verfestigt. Es wurde ein aufrollbares, stabiles Bahnmaterial erhalten, mit einer Dicke von 31 mm. Das Material wies eine Dichte von 7,0 g/L auf. Ein an einer anderen Stelle entnommenes Muster mit 259 g/m2 wies eine Höchstzugkraft von 5,45 N/5cm und eine Höchstzugkraftdehnung von 34 %, sowie einen RCT-Wert von 0,534 Km2/W (bei P=10V) auf.There are 218 g / m 2 of 85% by weight fiber balls (MICROROLLO® 222 SM from A. Molina & C.), 15% by weight PET / PE binding fiber in a "SPIKE" air-laid system from Formfiber Denmark APS, which has four rows arranged in two pairs, each with five spiked rollers, placed on a carrier belt and solidified in a double belt furnace from Bombi Meccania with a belt gap of 50 mm at 180 ° C for opening the fiber raw material. A rollable, stable web material with a thickness of 31 mm was obtained. The material had a density of 7.0 g / L. A sample taken at another point with 259 g / m 2 had a maximum tensile force of 5.45 N / 5cm and a maximum tensile force elongation of 34%, as well as an R CT value of 0.534 Km 2 / W (at P = 10V).

Ausführungsbeispiel 9Embodiment 9

Es wurden weitere Eigenschaften der gemäß den Beispielen hergestellten Vliesstoffe untersucht. Die Ergebnisse sind in Tabelle 1 zusammengefasst. Zum Vergleich sind in Tabelle 2 die Dichten der Vliesstoffbällchen angegeben. Der Vergleich zeigt, dass es erfindungsgemäß ohne weiteres möglich ist, Produkte mit deutlich niedrigerer Dichte als die der eingesetzten Vliesstoffbällchen zu erhalten, und dass obwohl die Dichte der Bindefasern viel höher ist. Daher können besonders leichte Volumenvliesstoffe hergestellt werden, die ungeachtet dessen außergewöhnlich hohe Flächengewichte aufweisen. Die Volumenvliesstoffe weisen auch sehr gute Wiedererholungswerte auf, was für textile Anwendungen von hoher Bedeutung ist. Tabelle 1: Dichte der Volumenvliesstoffe (Bsp. = Beispiel, FG = Flächengewicht, HZK = Höchstzugkraft, HZKD = Höchstzugkraftdehnung, WE = Wiedererholung, RCT = Wärmedurchgangswiderstand, gemessen bei P = 10V): Bsp. Dicke FG Dichte HZK HZKD WE RCT HZK/Dicke HZK/FG RCT/Dicke RCT/FG [mm] [g/m2] [g/L] [N/5cm] [%] [%] [Km2/W] [N/(5cm*mm)] [N*m2/(5cm*g)] [Km2/(W*mm)] [Km4/(W*g)] 1 8 125 15,2 89,5 2 6,1 56 9,2 3 7,5 128 17,1 4 25 128 5,1 5 50 723 14,5 6 17 112 6,5 3,84 29 82% 0,323 0,22 0,034 0,019 0,0029 7 19 151 6,1 5,14 33 84% 0,398 0,27 0,034 0,021 0,0026 8 31 218 7,0 5,45 34 76% 0,534 0,18 0,025 0,017 0,0024 Tabelle 2: Eigenschaften der eingesetzten Vliesstoffbällchen: Rohmaterialien Volumen Gewicht Dichte [ml] [g] [g/L] Dacron Polyester Fiberfill Type 287 500 5,795 11,59 Microrollo 222 SM 500 6,518 13,04 Further properties of the nonwovens produced according to the examples were investigated. The results are summarized in Table 1. For comparison, the densities of the nonwoven balls are given in Table 2. The comparison shows that according to the invention it is easily possible to obtain products with a significantly lower density than that of the nonwoven balls used, and that although the density of the binding fibers is much higher. Therefore, particularly light volume nonwovens can be produced, which regardless of this have exceptionally high basis weights. The volume nonwovens also have very good recovery values, which is of great importance for textile applications. <u> Table 1 </u>: Density of the volume nonwovens (e.g. = example, FG = weight per unit area, HZK = maximum tensile force, HZKD = maximum tensile force elongation, WE = repetition, R <sub> CT </sub> = heat transfer resistance, measured at P = 10V): E.g. thickness FG density HZK HZKD WE R CT HZK / thickness HZK / FG R CT / thickness R CT / FG [mm] [g / m 2 ] [g / L] [N / 5cm] [%] [%] [Km 2 / W] [N / (5cm * mm)] [N * m 2 / (5cm * g)] [Km 2 / (W * mm)] [Km 4 / (W * g)] 1 8th 125 15.2 89.5 2 6.1 56 9.2 3 7.5 128 17.1 4th 25th 128 5.1 5 50 723 14.5 6th 17th 112 6.5 3.84 29 82% 0.323 0.22 0.034 0.019 0.0029 7th 19th 151 6.1 5.14 33 84% 0.398 0.27 0.034 0.021 0.0026 8th 31 218 7.0 5.45 34 76% 0.534 0.18 0.025 0.017 0.0024 Raw materials volume Weight density [ml] [G] [g / L] Dacron Polyester Fiberfill Type 287 500 5.795 11.59 Microrollo 222 SM 500 6.518 13.04

Claims (15)

  1. A method for the manufacture of a volume nonwoven fabric, comprising the steps of:
    (a) providing a nonwoven fabric raw material, comprising fiber balls and binder fibers,
    (b) providing an airlaid device, comprising at least two spiked rolls, between which a gap is constituted,
    (c) processing of the nonwoven fabric raw material in the device in an airlaid process, wherein the nonwoven fabric raw material passes the gap between the spiked roles, wherein fibers or fiber bundles are pulled out of the fiber balls by the spikes,
    (d) depositing on a depositing facility; and
    (e) thermal consolidation to obtain a volume nonwoven fabric.
  2. A method according to claim 1, wherein the device has at least 2 pairs, preferably at least 5 pairs or at least 10 pairs of spiked roles, and/or the device preferably has at least 2, at least 5 or at least 10 gaps between the spiked roles.
  3. A method according to at least one of the preceding claims, wherein the portion of the fiber balls is 50 to 95 wt. %, preferably 60 to 95 %, especially from 70 to 90 %, and/or the portion of binder fibers in the volume nonwoven fabric is 5 to 40 wt. %, preferably 7 to 30 wt. %, and especially preferred 10 to 25 wt. %., each in relation to the total weight of the nonwoven fabric raw material.
  4. A method according to at least one of the preceding claims, wherein the fiber balls comprise or consist of fibers selected from synthetic fibers, such as fibers of polyester, in particular polyethylene terephthalate, polyethylene naphthalene and polybutylene terephthalate, and natural fibers, such as wool, cotton or silk fibers and/or blends of the afore-mentioned and/or blends with additional fibers.
  5. A method according to at least one of the preceding claims, wherein the binder fibers are configured as core/shell fibers, wherein the shell comprises polyethylene, polypropylene, polybutylene terephthalate, polyamide, copolyamide or copolyester, and/or wherein the core comprises polyethylene terephthalate, polyethylene naphthalate, polyolefines, such as polyethylene or polypropylene, polyphenylene sulfide, aromatic polyamide and/or polyester.
  6. A method according to at least one of the preceding claims, wherein the nonwoven fabric raw material comprises at least one additional component, selected from additional fibers, additional volume-giving materials and further functional additives.
  7. A method according to at least one of the preceding claims, wherein the density of the volume nonwoven fabric is at least 5%, preferably more than 10%, even more preferred at least 25% lower than the density of the fiber balls employed in step (a).
  8. A method for the manufacture of a textile material, comprising the manufacture of a volume nonwoven fabric according to any of the preceding claims and further processing to a textile material, wherein the textile material is particularly selected from garments, shaping material, upholstering, filler material, bedspreads, filter mats, suction mats, cleaning textiles, spacers, foam replacement, wound dressings and fire protection materials.
  9. A volume nonwoven fabric, obtainable according to a method of at least one of the preceding claims.
  10. A volume nonwoven fabric according to claim 9, having a density in the range from 1 to 20 g/l, particularly from 2 to 15 g/l, especially preferred from 3 g/l to 10 g/l, wherein the density is preferably lower than 10 g/l.
  11. A volume nonwoven fabric according to any of the preceding claims, which has at least one of the following properties:
    - a maximum tensile strength of at least 2 N/5cm, measured according to DIN EN 29 073-3,
    - a maximum tensile elongation of at least 20% measured according to DIN EN 29 073-3,
    - a thermal resistance RCT of at least 0.20 Km2/W, and
    - a recovery of at least 70%, determined according to the method with the steps (1) to (8) as disclosed in the description.
  12. A volume nonwoven fabric according to any of the preceding claims, which has the following properties:
    - a ratio of maximum tensile strength [N/5cm] / thickness [mm] of at least 0.10 [N/(5cm*mm)], and/or
    - a ratio of maximum tensile strength [N/5cm] / basis weight [g/m2] of at least 0.020 [N*m2/(5cm*g)], and/or
    - a ratio of thermal resistance RCT [Km2/W] / thickness [mm] of at least 0.010 [Km2/(W*mm)].
  13. A volume nonwoven fabric according to any of the preceding claims, which has the following properties:
    - a density lower than 10 g/l, und
    - an maximum tensile strength of at least 2 N/5cm, and
    - a thermal resistance RCT of at least 0.20 Km2/W,
    - and optionally a ratio of thermal resistance RCT [Km2/W] / thickness [mm] of at least 0.010.
  14. A textile material, comprising a volume nonwoven fabric according to at least one of claims 9 to 13, wherein the textile material is particularly selected from garments, shaping material, upholstering, filler material, bedspreads, filter mats, suction mats, cleaning textiles, spacers, foam replacement, wound dressings and fire protection materials.
  15. Use of a volume nonwoven fabric according to at least one of claims 9 to 13 for the manufacture of a textile material, wherein the textile material is particularly selected from garments, shaping material, upholstering, filler material, bedspreads, filter mats, suction mats, cleaning textiles, spacers, foam replacement, wound dressings and fire protection materials.
EP15181388.8A 2015-08-18 2015-08-18 Volume nonwoven fabric Active EP3133196B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP15181388.8A EP3133196B1 (en) 2015-08-18 2015-08-18 Volume nonwoven fabric
ES16750836.5T ES2689082T3 (en) 2015-08-18 2016-08-11 Nonwoven fabric with volume
CN201680047643.9A CN107923091B (en) 2015-08-18 2016-08-11 Bulky nonwoven fabric
KR1020187002138A KR102035803B1 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric
DE202016008648.1U DE202016008648U1 (en) 2015-08-18 2016-08-11 Volume nonwoven
PL16750836T PL3164535T3 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric
PCT/EP2016/069151 WO2017029191A1 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric
CA2993887A CA2993887C (en) 2015-08-18 2016-08-11 Volume nonwoven fabric
RU2018109358A RU2673762C1 (en) 2015-08-18 2016-08-11 Bulk nonwoven material
US15/751,491 US10876234B2 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric
JP2018507670A JP6571271B2 (en) 2015-08-18 2016-08-11 Nonwoven fabric with volume
EP16750836.5A EP3164535B1 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric
DK16750836.5T DK3164535T3 (en) 2015-08-18 2016-08-11 Nonwoven fabric for volume formation
TW105125922A TWI610004B (en) 2015-08-18 2016-08-15 Volume nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15181388.8A EP3133196B1 (en) 2015-08-18 2015-08-18 Volume nonwoven fabric

Publications (2)

Publication Number Publication Date
EP3133196A1 EP3133196A1 (en) 2017-02-22
EP3133196B1 true EP3133196B1 (en) 2020-10-14

Family

ID=54007519

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15181388.8A Active EP3133196B1 (en) 2015-08-18 2015-08-18 Volume nonwoven fabric
EP16750836.5A Active EP3164535B1 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16750836.5A Active EP3164535B1 (en) 2015-08-18 2016-08-11 Volume nonwoven fabric

Country Status (13)

Country Link
US (1) US10876234B2 (en)
EP (2) EP3133196B1 (en)
JP (1) JP6571271B2 (en)
KR (1) KR102035803B1 (en)
CN (1) CN107923091B (en)
CA (1) CA2993887C (en)
DE (1) DE202016008648U1 (en)
DK (1) DK3164535T3 (en)
ES (1) ES2689082T3 (en)
PL (1) PL3164535T3 (en)
RU (1) RU2673762C1 (en)
TW (1) TWI610004B (en)
WO (1) WO2017029191A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389592A1 (en) * 2015-12-14 2018-10-24 H. Hoffnabb-La Roche Ag Medical delivery device
DE102019133239A1 (en) * 2019-12-05 2021-06-10 Carl Freudenberg Kg Articles for mechanical wound cleaning
RU198724U1 (en) * 2020-02-26 2020-07-23 Общество с Ограниченной Ответственностью "Фабрика Нетканых Материалов "Весь Мир" NON-WOVEN MULTI-LAYER MATERIAL FOR THE MATTRESS
KR102124148B1 (en) * 2020-04-08 2020-06-18 최현수 Flame-retardant non-woven fabric and method of manufacturing thereof
US11641960B2 (en) * 2020-05-05 2023-05-09 Mlilyusa, Inc Cooling bedding product
EP4124684B1 (en) * 2021-07-26 2024-04-03 Carl Freudenberg KG Fiberball padding with different fiberball shape for higher insulation

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794038A (en) * 1985-05-15 1988-12-27 E. I. Du Pont De Nemours And Company Polyester fiberfill
US4618531A (en) * 1985-05-15 1986-10-21 E. I. Du Pont De Nemours And Company Polyester fiberfill and process
JPS5868196U (en) * 1981-11-04 1983-05-09 帝人株式会社 feathery structure
CH676358A5 (en) 1986-08-29 1991-01-15 Breveteam Sa
US4813948A (en) * 1987-09-01 1989-03-21 Minnesota Mining And Manufacturing Company Microwebs and nonwoven materials containing microwebs
FI85033C (en) 1990-03-08 1992-02-25 Scanwoven Ab Oy VADDMATTA SAMT FOERFARANDE FOER TILLVERKNING AV DENSAMMA.
JPH04146250A (en) * 1990-10-03 1992-05-20 Hayashi Telempu Co Ltd Felt
EP0861342B1 (en) * 1995-10-13 2001-08-16 E.I. Du Pont De Nemours And Company Process for lofty battings
US5618364A (en) * 1995-10-13 1997-04-08 E. I. Du Pont De Nemours And Company Process for lofty battings
US20020016120A1 (en) * 1996-06-19 2002-02-07 Chisso Corporation Non-woven fabric comprising staple fibers and an absorbent article using the same
TW360727B (en) 1997-05-22 1999-06-11 Kang Na Hsiung Entpr Co Ltd Method for making nonwoven of composite yarn and product thereof
TW464706B (en) 1999-08-31 2001-11-21 Mau-Shing Kan Process for manufacturing far infrared nonwoven fabric and product made thereby
EP1468133A2 (en) * 2002-01-04 2004-10-20 Invista Technologies S.à.r.l. Bonded polyester fiberfill battings with a sealed outer surface having improved stretch capabilities
US6613431B1 (en) * 2002-02-22 2003-09-02 Albany International Corp. Micro denier fiber fill insulation
TW552330B (en) 2002-07-26 2003-09-11 Chin-Hua Hsiao Nonwoven fluffy yarn and its manufacturing method and device
ATE426492T1 (en) * 2003-11-07 2009-04-15 Formfiber Denmark Aps FIBER DISTRIBUTION DEVICE FOR DRY FORMING A FIBER PRODUCT
CN2832859Y (en) * 2005-06-22 2006-11-01 东华大学 Down-like materials
US8563449B2 (en) 2008-04-03 2013-10-22 Usg Interiors, Llc Non-woven material and method of making such material
JP5233053B2 (en) 2008-05-19 2013-07-10 Esファイバービジョンズ株式会社 Composite fiber for producing air laid nonwoven fabric and method for producing high density air laid nonwoven fabric
RU93404U1 (en) * 2009-12-15 2010-04-27 ОАО "Монтем" FIBROUS NONWOVEN MATERIAL (OPTIONS)
KR101052591B1 (en) * 2010-04-23 2011-07-29 박태근 Preparation method for fiber board using ball fiber and fiber board thereby
CN103025941B (en) * 2010-07-07 2016-08-10 3M创新有限公司 The gas of patterning spins non-woven webs and preparation and application thereof
KR101379249B1 (en) 2011-05-26 2014-03-31 (주)비엠씨친환경산업 Antimicrobial sanitary non-weaven fabric, and sanitary products using thereof, and method of producing the same
JP6336912B2 (en) * 2011-12-30 2018-06-06 スリーエム イノベイティブ プロパティズ カンパニー Apparatus and method for producing a nonwoven fibrous web
DE102014002060B4 (en) 2014-02-18 2018-01-18 Carl Freudenberg Kg Bulk nonwovens, uses thereof, and methods of making same
WO2016100616A1 (en) 2014-12-17 2016-06-23 Primaloft, Inc. Fiberball batting and articles comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20180230630A1 (en) 2018-08-16
CN107923091B (en) 2021-02-26
TW201713817A (en) 2017-04-16
EP3164535A1 (en) 2017-05-10
EP3133196A1 (en) 2017-02-22
PL3164535T3 (en) 2019-03-29
CN107923091A (en) 2018-04-17
EP3164535B1 (en) 2018-08-08
US10876234B2 (en) 2020-12-29
WO2017029191A1 (en) 2017-02-23
TWI610004B (en) 2018-01-01
ES2689082T3 (en) 2018-11-08
CA2993887C (en) 2020-10-06
JP2018530680A (en) 2018-10-18
KR20180019735A (en) 2018-02-26
DE202016008648U1 (en) 2018-10-25
KR102035803B1 (en) 2019-10-23
RU2673762C1 (en) 2018-11-29
DK3164535T3 (en) 2018-10-15
JP6571271B2 (en) 2019-09-04
CA2993887A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
DE102014002060B4 (en) Bulk nonwovens, uses thereof, and methods of making same
EP3133196B1 (en) Volume nonwoven fabric
DE102005030484B4 (en) Elastic nonwoven fabric, process for its preparation and its use
EP0013428B1 (en) Textile fabric and its use
DE1560653B1 (en) Process for producing a bonded fiber fleece
AT390970B (en) METHOD FOR PRODUCING FLEECE MATERIALS
EP3165655B1 (en) Verwendung von endlosfilamentvliesstoffen zum verhindern des austretens von daunen bei mit daunen gefüllten textilprodukten
DE2856902A1 (en) INTER-LINING FIBROUS MATERIAL
DE1099983B (en) Washable non-woven fiber
EP3128057B1 (en) Stretchable nonwoven material, method of making a stretchable nonwoven fabric and use of the same
DE60031487T2 (en) Gel-like composite nonwoven fabric
DE1560856A1 (en) Non-woven textile fabric and process for its manufacture
DE1929346C (en) Filling for blankets, pillows and the like in the form of flakes and processes for their manufacture
DE102015201783A1 (en) Process for the preparation of a filler from textile fibers and textile with such a filler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170809

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1234793

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015013636

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D04H0001000000

Ipc: A47G0009080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 1/42 20120101ALI20200408BHEP

Ipc: D04H 1/54 20120101ALI20200408BHEP

Ipc: D04H 1/72 20120101ALI20200408BHEP

Ipc: D04H 1/00 20060101ALI20200408BHEP

Ipc: A47G 9/08 20060101AFI20200408BHEP

Ipc: A47G 9/02 20060101ALI20200408BHEP

Ipc: D04H 1/732 20120101ALI20200408BHEP

Ipc: D04H 1/02 20060101ALI20200408BHEP

Ipc: D04H 1/70 20120101ALI20200408BHEP

Ipc: D04H 1/558 20120101ALI20200408BHEP

Ipc: A47G 9/10 20060101ALI20200408BHEP

INTG Intention to grant announced

Effective date: 20200428

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRYNAEUS, PETER

Inventor name: SATTLER, THOMAS

Inventor name: SCHARFENBERGER, GUNTER

Inventor name: HERRLICH, ULRIKE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1322726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013636

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013636

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

26N No opposition filed

Effective date: 20210715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1322726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230831

Year of fee payment: 9