JP3134964B2 - Ultrafine fiber nonwoven fabric and method for producing same - Google Patents

Ultrafine fiber nonwoven fabric and method for producing same

Info

Publication number
JP3134964B2
JP3134964B2 JP18689592A JP18689592A JP3134964B2 JP 3134964 B2 JP3134964 B2 JP 3134964B2 JP 18689592 A JP18689592 A JP 18689592A JP 18689592 A JP18689592 A JP 18689592A JP 3134964 B2 JP3134964 B2 JP 3134964B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
fibers
droplets
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18689592A
Other languages
Japanese (ja)
Other versions
JPH0633358A (en
Inventor
茂樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP18689592A priority Critical patent/JP3134964B2/en
Publication of JPH0633358A publication Critical patent/JPH0633358A/en
Application granted granted Critical
Publication of JP3134964B2 publication Critical patent/JP3134964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、極細繊維よりなる不織
布に関し、更に詳しくは、その極細繊維特性を利用して
保温材やフイルター、外科医療用ドレープ、バクテリア
バリヤ等に好適に使用される極細繊維不織布およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-woven fabric made of ultra-fine fibers, and more particularly to an ultra-fine fiber suitably used for a heat insulating material, a filter, a surgical drape, a bacterial barrier, etc. by utilizing the properties of the ultra-fine fibers. The present invention relates to a fibrous nonwoven fabric and a method for producing the same.

【0002】[0002]

【従来の技術】極細繊維不織布としては、メルトブロー
法(特開昭49−10258、特開昭49−4892
1、特開昭50−121570など)により作られた平
均繊維径が0.1μm〜20μmである極細繊維からな
る不織布が知られている。
2. Description of the Related Art Ultra-fine fiber non-woven fabrics include melt blow methods (JP-A-49-10258 and JP-A-49-4892).
1, non-woven fabrics made of ultrafine fibers having an average fiber diameter of 0.1 μm to 20 μm have been known.

【0003】[0003]

【発明が解決しようとする課題】これらの不織布には、
シート中にロープと呼ばれる複数本の繊維が絡み合って
できた束状繊維が多く含まれていた。この問題の解決の
手段としてノズルとコレクター間の距離を小さくし、ロ
ープが空中で形成される前にコレクターで捕集すること
も可能であるが、従来の方法で不織布を製造するとショ
ットと呼ばれる玉状のポリマーが発生したりすることが
多く、シートの風合いがざらざらになったり、ショット
の繊維径の太さゆえに冷却が遅れ、ショットが持ち込む
顕熱でショットのまわりの繊維が溶かされ、シート中に
ピンホールと呼ばれる孔が生じたりすることがあった。
SUMMARY OF THE INVENTION These nonwoven fabrics include:
The sheet contained many bundled fibers formed by intertwining a plurality of fibers called ropes. As a means of solving this problem, it is possible to reduce the distance between the nozzle and the collector and collect the rope with a collector before the rope is formed in the air.However, when a nonwoven fabric is manufactured by a conventional method, a ball called a shot is used. Polymer often occurs, the texture of the sheet becomes rough, the cooling of the shot is delayed due to the thick fiber diameter of the shot, the fibers around the shot are melted by the sensible heat brought in by the shot, and In some cases, holes called pinholes were formed.

【0004】また、繊維の融着が大きくなりフィルター
として用いる際に濾過対象の液やガスの透過速度が大き
くなったりする。保温材として利用する際にも融着拘束
点が多いために充填密度が高く、シートが硬いために可
撓性が低く、また空隙率が小さいために、通気性に劣る
という問題点があった。かかる問題を解決するための工
夫すなわち繊維に液滴粒子を付着させ冷却を促進する方
法が考えられてきた(特公昭60−22100)。しか
しながら、液滴に微粒子を付着させるときには、繊維の
表面やノズル面が高温にあるため熱泳動の効果で粒子が
接触しにくく、粒子をノズル近傍の繊維に送ることは容
易でなかった。そのため、直径が20μmから100μ
mといった大きな液滴粒子を用い、且つ速い速度で慣性
衝突させる必要があった。
[0004] Further, the fusion of the fibers becomes large, so that when used as a filter, the permeation speed of the liquid or gas to be filtered increases. When used as a heat insulating material, there is a problem that the packing density is high due to the large number of fusion constraint points, the flexibility is low because the sheet is hard, and the air permeability is poor because the porosity is small. . A device for solving such a problem, that is, a method of adhering droplet particles to fibers to promote cooling has been considered (Japanese Patent Publication No. 60-22100). However, when the particles are attached to the droplets, the surface of the fibers and the nozzle surface are at a high temperature, so that the particles hardly come into contact due to the effect of thermophoresis, and it was not easy to send the particles to the fibers near the nozzle. Therefore, the diameter is 20μm to 100μ
It is necessary to use large droplet particles such as m and to cause inertial collision at a high speed.

【0005】ところで、大きい水滴を速い速度の空気流
に乗せて繊維に衝突させると、その空気の流れにより繊
維自身や繊維の周りを流れる空気を乱し、繊維同士が絡
まってロープと呼ばれるものが生じたり、繊維の振動に
よる不安定を助長して糸切れやショットと呼ばれる玉状
物などの紡糸不安定現象の発生をひき起こすという問題
点があった。ここで、繊維の固化点は、繊維の温度がガ
ラス転移温度または軟化点の状態にあり実質的に伸長さ
れにくい状態にあることをいう。
By the way, when a large water droplet is put on a high-speed air stream and collides with a fiber, the air flow disturbs the fiber itself and the air flowing around the fiber, and the fiber is entangled with one another and is called a rope. There is a problem in that the spinning phenomenon such as yarn breakage or a ball-like object called a shot is generated by promoting the instability due to fiber vibration. Here, the solidification point of the fiber means that the temperature of the fiber is in a state of a glass transition temperature or a softening point and is in a state where it is substantially difficult to elongate.

【0006】こうした糸切れやショット、太さの斑は、
フイルターや保温材として用いる際に空気や水などの流
体のチャンネリングや偏流を引き起こし性能を著しく阻
害するという問題を生じていた。本発明は、かかる課題
を解決し、フイルターや保温材に適した極細繊維不織布
およびその製造方法を提供することを目的とする。
[0006] Such yarn breaks, shots, and unevenness of thickness,
When used as a filter or a heat insulating material, there has been a problem that channeling or drifting of a fluid such as air or water is caused to significantly impair the performance. An object of the present invention is to solve such problems and to provide a microfiber nonwoven fabric suitable for a filter or a heat insulating material and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次の手段をとるものである。すなわ
ち、本発明は、平均繊維径が0.1〜3.0μmの極細
繊維よりなり、水柱0.5インチ/cm2 の圧力をかけ
た際の空気の通過流量を面積で除した値が30g/m2
目付換算で0.5〜4.5cm/秒であって、かつ、バ
ブルポイント測定法により求められる最初の気泡発生圧
力が250mmAq(水柱)以上であることを特徴とす
る極細繊維不織布、溶融ポリマーを高温高速の牽引流体
と接触させて極細繊維不織布を製造する方法において、
ポリマーを牽引流体により充分に牽引し、細化を完了し
た後、牽引流体と混合される周りのガス雰囲気中に、直
径20μm以上の水滴を個数濃度で5%以下含むミスト
繊維に液滴が接触することが無いように付与すること
を特徴とする前記記載の極細繊維不織布の製造方法。
The present invention adopts the following means in order to solve such problems. That is, according to the present invention, the value obtained by dividing the flow rate of air when applied with a pressure of 0.5 inch / cm 2 of water by the area is made of ultrafine fibers having an average fiber diameter of 0.1 to 3.0 μm. 30 g / m 2
A microfiber nonwoven fabric or a molten polymer, characterized in that the basis weight is 0.5 to 4.5 cm / sec and the initial bubble generation pressure determined by the bubble point measurement method is 250 mmAq (water column) or more. In contact with a high-temperature high-speed traction fluid to produce a microfiber nonwoven fabric,
After the polymer is sufficiently pulled by the traction fluid and the thinning is completed, a droplet containing mist containing water droplets having a diameter of 20 μm or more and a number concentration of 5% or less in the gas atmosphere is mixed with the traction fluid. The method for producing a microfiber nonwoven fabric as described above, wherein the nonwoven fabric is applied so as not to come into contact with the nonwoven fabric.

【0008】以下に、本発明を詳細に説明する。本発明
において、不織布を構成する極細繊維の平均繊維径は
0.1μm〜3.0μm、好ましくは0.5μm〜3.
μmである。繊維の細いことは、冷却効率を上げてい
くためには不可欠であり、これより繊維径が大きいとシ
ョットの発生を抑止できない。また、繊維が細すぎると
ミストの効果が余り認められなくなる。こうした繊維径
の範囲の不織布シートは、フイルターや保温材など流体
と接触する用途では性能が良好になる。
Hereinafter, the present invention will be described in detail. In the present invention, the average fiber diameter of the ultrafine fibers constituting the nonwoven fabric is from 0.1 μm to 3.0 μm, preferably from 0.5 μm to 3.0 μm .
0 μm. Fine fibers are indispensable for increasing the cooling efficiency, and if the fiber diameter is larger than this, the occurrence of shots cannot be suppressed. On the other hand, if the fibers are too thin, the effect of the mist will not be recognized much. The nonwoven fabric sheet having such a fiber diameter range has good performance in applications such as a filter and a heat insulating material that come into contact with a fluid.

【0009】本発明における極細繊維を構成するポリマ
ーの材質としては、熱可塑性樹脂であれば良く、一般に
メルトブロー法紡糸に供されるポリプロピレンやポリエ
ステル、ポリフェニレンスルフイド、ポリアミドなどが
よく用いられるが、特に限定されるものでない。特に最
近では生物分解性を有する新たなポリマーが出現してき
ており、それらの利用も好ましい形態の一つである。
The material of the polymer constituting the ultrafine fibers in the present invention may be a thermoplastic resin, and polypropylene, polyester, polyphenylene sulfide, polyamide, etc., which are generally used for melt-blowing, are often used. It is not particularly limited. Particularly recently, new polymers having biodegradability have appeared, and their use is also one of the preferable forms.

【0010】本発明の不織布は、バブルポイント法によ
り最大バブルポイント圧すなわち、バブルポイント測定
法により求められる最初の気泡発生圧力が250mmA
q(水柱)以上であること、好ましくは270mmAq
以上であることが必要である。これにより、不織布中の
繊維により形成されるミクロな孔径(ミクロポアーサイ
ズ)が小さく、また、流体の透過抵抗が小さいバランス
の取れた不織布を得ることができる。
In the nonwoven fabric of the present invention, the maximum bubble point pressure by the bubble point method, that is, the initial bubble generation pressure determined by the bubble point measurement method is 250 mmA.
q (water column) or more, preferably 270 mmAq
It is necessary to be above. This makes it possible to obtain a well-balanced nonwoven fabric having a small micropore size (micropore size) formed by the fibers in the nonwoven fabric and having a low fluid permeation resistance.

【0011】透過流体が空気であったときの通過抵抗と
反比例の関係にある通気度は30g/m2目付換算で
0.5〜4.5cm/秒であることが、好ましくは0.
〜4.5cm/秒である。これは、フイルターや保温
材特性の上で好ましいことである。
The air permeability, which is inversely proportional to the passage resistance when the permeating fluid is air, is preferably 0.5 to 4.5 cm / sec in terms of a basis weight of 30 g / m 2 , and more preferably 0.5 to 4.5 cm / sec.
7 to 4.5 cm / sec. This is preferable in terms of the characteristics of the filter and the heat insulating material.

【0012】この条件は、前述のバブルポイント測定法
の最大バブルポイント圧が大きいと云うことと相反する
性質であり、これを達成するため製造法を工夫すること
で、従来両立できなかった濾過精度と濾過速度という二
つの相反する特性のバランスに優れた不織布とすること
ができることが判明した。すなわち、通気度と初期バブ
ルポイント圧の関係は一方が大きくなると他方が小さく
なるというのが自然であったが、本発明の不織布は、そ
のバラスンが非常に優れたシートになり、フイルターや
保温材、バクテリアバリアーなどの用途に適している。
This condition is inconsistent with the fact that the maximum bubble point pressure of the above-mentioned bubble point measurement method is large, and to achieve this, by devising a manufacturing method, it is possible to obtain a filtration accuracy which has been incompatible with the prior art. It has been found that a nonwoven fabric having an excellent balance between the two contradictory characteristics of the nonwoven fabric and the filtration speed can be obtained. That is, it was natural that the relationship between the air permeability and the initial bubble point pressure was such that as one became larger, the other became smaller, but the nonwoven fabric of the present invention became a sheet whose balun was very excellent, and a filter or heat insulating material. Suitable for applications such as bacterial barrier.

【0013】ロープやヒモが少なく可とう性に優れた不
織布は、従来の不織布に較べ、繊維で形成されるポアー
サイズも均一に揃っており、フイルターや保温材などに
適した特性を示すことが判明した。すなわち、ロープや
ショット、ピンホールがないことによりチャンネリング
がなく、また、流体がまったく通過しないデッドスペー
スが著しく減少する。従って、同じ最大ポアーサイズで
は通気度が大きくでき、同じ通気度では最大ポアーサイ
ズが小さくできることになる。
[0013] The non-woven fabric, which has less rope and string, and is excellent in flexibility, has a uniform pore size formed of fibers as compared with the conventional non-woven fabric, and has been found to exhibit characteristics suitable for filters, heat insulating materials, and the like. did. That is, since there is no rope, shot, or pinhole, there is no channeling, and the dead space where no fluid passes at all is significantly reduced. Therefore, the air permeability can be increased at the same maximum pore size, and the maximum pore size can be reduced at the same air permeability.

【0014】また、不織布の乾熱収縮率が3%より大き
くなると、フイルター濾材として利用する際に、殺菌し
たり保温材のクリーニングの目的で加熱した際に、繊維
が収縮することにより繊維の分布がバラツクためか良好
な濾過特性が実現できないため好ましくない。
If the non-woven fabric has a dry heat shrinkage ratio of more than 3%, the fibers shrink when heated for the purpose of sterilization or cleaning of the heat insulating material when used as a filter medium, and the distribution of the fibers is reduced. However, it is not preferable because good filtration characteristics cannot be realized due to variation.

【0015】このような優れたフイルター及び保温材特
性を示す不織布を製造する方法の一としては、溶融ポリ
マーを高温高速の牽引流体と、接触させて極細繊維不織
布の製造プロセスにおいて、ポリマーが充分に牽引され
て細化が完了した後の繊維の冷却を促進するために、噴
射ジェットと混合される周りの雰囲気中に直径が0.1
μmから20μmの水滴をネプライザー等により付与
し、その水滴が蒸発する潜熱を利用して、繊維周りの牽
引流体と雰囲気の温度を下げることにより、繊維の冷却
効率を向上させうるが、コレクターへの落下途中の繊維
に液滴が接触することが無いようにする手段により実施
が可能である。また、繊維の飛散を防ぐ目的やコンベア
ネットからの剥離性向上のため、完全に固化した繊維に
水又は溶剤などの液体を付与する方法や、新たな特性を
付与するために発泡剤や親水化剤などを含む液の液滴を
付与する方法を併用した不織布の製造方法もまた好まし
い。
One of the methods for producing such a non-woven fabric exhibiting excellent filter and heat insulating properties is to contact the molten polymer with a high-temperature, high-speed traction fluid to sufficiently prepare the polymer in the process for producing a micro-fiber non-woven fabric. In order to facilitate cooling of the fibers after traction has been completed and thinning has been completed, a diameter of 0.1 m
A water droplet of 20 μm to 20 μm is applied by a nepliser or the like, and the cooling efficiency of the fiber can be improved by lowering the temperature of the traction fluid around the fiber and the atmosphere by using the latent heat of evaporation of the water droplet. This can be implemented by means for preventing the droplet from coming into contact with the fiber in the middle of falling. In addition, for the purpose of preventing the scattering of the fibers and for improving the releasability from the conveyor net, a method of applying a liquid such as water or a solvent to the completely solidified fibers, or a foaming agent or a hydrophilic agent for imparting new properties. A method for producing a nonwoven fabric using a method for applying a liquid droplet containing an agent or the like in combination is also preferable.

【0016】このように優れた特性を発現させるために
紡糸過程に於いて使用されるミスト液滴の発生方法とし
ては、アトマイザーやネプライザーといった液滴の発生
装置を用いればよく、特に限定されるものではない。特
に好ましいものとしては、超音波を利用したミスト発生
器が細かい粒径の液滴を得るのに適している。
As a method for generating mist droplets used in the spinning process in order to express such excellent characteristics, a droplet generating device such as an atomizer or a nebulizer may be used. is not. Particularly preferably, a mist generator using ultrasonic waves is suitable for obtaining droplets having a small particle diameter.

【0017】本発明に利用される液滴の粒径としては2
0μm以上の液滴の個数濃度が5%以下であることが必
要である。さらには、15μmを超えないことが好まし
い。20μm以上の大きな粒子は製造される繊維の径よ
り大きく、繊維に慣性衝突して付着し、繊維の冷却ムラ
を生じさせ、従って繊維径の太細を発生させたり、応力
集中による糸切れを発生させたりする。20μm以上の
ミスト水滴が繊維に付着して生じたと考えられる繊維の
太さムラは繊維径のばらつきであるCV%(繊維径の標
準偏差を平均値で割って百分率で表わした数字)に反映
されると考えられ、大きなミスト径の液滴を減少させる
ことで少なくとも5〜10%はCV%が低下することが
実験により明らかとなった。また、大きな液滴の存在は
同伴流の流れを乱す要因となったり、ノズル面などに付
着し温度を低下させるなどの問題を生じ易い。
The droplet size used in the present invention is 2
It is necessary that the number concentration of droplets of 0 μm or more is 5% or less. More preferably, it does not exceed 15 μm. Large particles of 20 μm or more are larger than the diameter of the fiber to be manufactured, and they adhere to the fiber by inertial collision and cause cooling unevenness of the fiber, thus causing the fiber diameter to become thicker or thinner due to stress concentration. Or let it. The thickness unevenness of the fiber, which is considered to be caused by mist water droplets of 20 μm or more adhering to the fiber, is reflected in the CV% (fiber diameter standard deviation divided by the average value and expressed as a percentage), which is the fiber diameter variation. Experiments have shown that reducing the droplets with a large mist diameter reduces CV% by at least 5-10%. In addition, the presence of large droplets tends to cause problems such as disturbing the flow of the entrained flow, and the adhesion of droplets to a nozzle surface or the like to lower the temperature.

【0018】ミスト発生器で20μm以上の液滴の発生
を抑えられない場合には、インパクターを用い、慣性と
抗力のバランスより分離することが可能である。万一、
20μm以上の粒子が混入したとしても個数濃度で5%
以下であればその影響は小さい。0.1μmより小さい
粒子については、その存在があっても別段問題がない
が、潜熱量が小さく本発明に対してきわめて効果が小さ
いことが明らかとなった。
When the generation of droplets of 20 μm or more cannot be suppressed by the mist generator, it is possible to use an impactor to separate the droplets from the balance between inertia and drag. By any chance
5% in number concentration even if particles of 20 μm or more are mixed
Below, the effect is small. Particles smaller than 0.1 μm have no problem even if they are present, but it has been found that the latent heat is small and the effect on the present invention is extremely small.

【0019】このようにして発生したミスト液滴は、同
伴流および牽引流体の温度を冷却するのに消費される。
すなわち、液滴が蒸発することにより必要な潜熱分の熱
量を同伴流が奪われることになる。この冷却により繊維
の収縮や粘弾性体としてのポリマー伸長回復効果による
緩和によって繊維径が太くなったり、シートにシワが発
生するのを防止することが可能である。また、同様の原
因からシートの端部が支持体上で上に反る現象がみられ
るときがあるが、ミストの付与により改善が可能であ
る。
The mist droplets thus generated are consumed to cool down the temperature of the entrainment and traction fluids.
In other words, the entrainment flow loses the necessary amount of latent heat due to the evaporation of the droplets. By this cooling, it is possible to prevent the fiber diameter from being increased and the sheet from being wrinkled due to the relaxation due to the contraction of the fibers and the effect of the polymer elongation recovery as a viscoelastic body. In addition, a phenomenon in which the end of the sheet is warped upward on the support may be observed for the same reason, but improvement can be achieved by applying mist.

【0020】紡子ノズルと捕集体(支持体、コレクター
ともよばれる。)との間の距離は6cm〜30cmの間
にあることが好ましい。さらには、8cm〜25cmの
間が好ましい。この距離を大きく取ることは冷却の観点
からみると好ましい方向にあるが、距離が大きくなるに
従い、複数本の繊維が絡み合ってできるロープが増加す
る。ロープが存在すると、その近傍で繊維の分布が疎と
なるために偏流を生じ易くなると考えられ、また、風合
いも滑らかでなくなる。
The distance between the spinneret and the collector (also called a support or a collector) is preferably between 6 cm and 30 cm. Further, the distance is preferably between 8 cm and 25 cm. It is preferable to increase the distance from the viewpoint of cooling. However, as the distance increases, the number of ropes formed by entanglement of a plurality of fibers increases. When the rope is present, it is considered that the distribution of the fibers becomes sparse in the vicinity of the rope, so that the drift is likely to occur, and the texture is not smooth.

【0021】他方、ノズルと捕集体間の距離を小さくす
ると、ポリマーが細化途中で切断され玉状になったショ
ットの発生が増加しシートの肌触りを著しく低下させ
る。また、繊維の太さ故に冷却が遅れ、落下した周りの
繊維を溶かしてピンホールを生じ、フイルター性能等に
悪影響を及ぼすことになる。このようなショット、ロー
プとも極めて少ないシートは現在まで手に入れることが
極めて困難であったが、ミストの付与により初めて可能
となった。なお、ノズルと捕集体との距離はポリマーの
単孔吐出量が大きくなるに従い大きく取る必要がある。
すなわち、ポリマー単孔吐出量が大きくなると細化の完
了する距離が長くなり、また、ポリマーや同伴エアー流
の持ち込む熱量が大きくなるためピンホールを生じやす
くなるためである。単孔吐出量が0.5g/分・孔より
小さい場合に於いてはミストの付与を行なわなくても噴
射ジェットに巻きこまれる同伴エアー流温度を低下させ
ることなどの条件を適正化することなどの条件を適正化
することでショットの発生をかなり抑制することも可能
であるが、ミストを付与した方がさらに良好な不織布が
得られる。
On the other hand, when the distance between the nozzle and the collector is reduced, the number of shots that are cut into balls in the course of thinning of the polymer increases and the texture of the sheet is significantly reduced. Also, cooling is delayed due to the thickness of the fibers, and the fibers around the fall are melted to form pinholes, which adversely affects filter performance and the like. It has been extremely difficult to obtain such a sheet with very few shots and ropes until now, but it has become possible for the first time by providing a mist. Note that the distance between the nozzle and the collector needs to be increased as the amount of single-hole discharge of the polymer increases.
That is, when the discharge amount of the polymer single hole increases, the distance at which the thinning is completed increases, and the amount of heat brought in by the polymer and the accompanying air flow increases, so that pinholes are easily generated. If the single hole discharge rate is less than 0.5 g / min. Per hole, it is necessary to optimize conditions such as lowering the temperature of the entrained air flow entrained in the jet without applying mist. Although the occurrence of shots can be considerably suppressed by optimizing the conditions, it is possible to obtain a better nonwoven fabric by applying mist.

【0022】本発明において繊維の飛散を防ぐためにコ
レクターの極近傍でミストを付与したり、後加工のため
に完全に固化した繊維に水等の液体をシートの浸漬など
により付与する方法との併用は好ましい形態のひとつで
ある。また、新たな特性を付与するために発泡剤や親水
化剤などの液をミスト液滴に添加する方法も好ましい形
態のひとつである。この場合には、液滴の粒径は特に限
定されるものではないが、20μm以上の大きな液滴は
繊維の飛散を抑えるのに好ましい形態である。また、2
0μm未満の液滴は薬剤たとえば発泡剤や親水化剤など
を均一に付与することに効果を発揮する。後加工による
それらの薬剤付与がミクロポアーへの液滴の進入が遅い
ために均一性に劣ったり、処理時間を要するのに対し
て、容易かつ迅速に付与が可能である。たとえ、ミスト
による薬剤付与が不十分な場合でも、後加工時にその濡
れ速度が速くなる効果も認められる。
In the present invention, a mist is applied in the vicinity of the collector in order to prevent scattering of the fibers, or a method of applying a liquid such as water to completely solidified fibers for post-processing by dipping a sheet or the like. Is one of preferred modes. In addition, a method of adding a liquid such as a foaming agent or a hydrophilizing agent to the mist droplets in order to impart new characteristics is also one of the preferable embodiments. In this case, the particle size of the droplet is not particularly limited, but a large droplet of 20 μm or more is a preferable form for suppressing scattering of the fiber. Also, 2
Droplets of less than 0 μm are effective in uniformly applying a drug such as a foaming agent or a hydrophilizing agent. The application of these agents by post-processing is easy and quick, while the uniformity is poor due to the slow entry of the droplets into the micropores and the processing time is required. Even when the agent is not sufficiently applied by the mist, the effect of increasing the wetting speed during post-processing is also recognized.

【0023】[0023]

【実施例】【Example】

実施例1〜4 以下の実施例をあげて、本発明を具体的に説明するが、
本発明の実施形態をなんら制約するものではない。メル
トインデックス300及び1000のポリプロピレンを
牽引流体としてエアーを用いてメルトブロー法により繊
維径の異なる何種類かの極細繊維の製造を行なった。エ
アーの噴射圧は元圧で2.0〜3.0kg/cm2 、ポ
リマーの吐出量は単孔当たり0.1〜1.0g/分でエ
アー、ポリマー温度は表1のとおりであった。このと
き、ノズル面の直下で最大粒径が8〜20μmの液滴ミ
ストを付与したエアーをコレクターに捕集する前の繊維
に均一にブローした。得られた結果を表1に示す。
Examples 1 to 4 The present invention will be specifically described with reference to the following examples.
It does not limit the embodiments of the present invention at all. Several types of ultrafine fibers having different fiber diameters were produced by melt blow method using polypropylene having a melt index of 300 or 1000 as a traction fluid and air. The injection pressure of air was 2.0 to 3.0 kg / cm 2 at the original pressure, the discharge amount of the polymer was 0.1 to 1.0 g / min per single hole, and the temperature of the air and the polymer were as shown in Table 1. At this time, air provided with a droplet mist having a maximum particle size of 8 to 20 μm immediately below the nozzle surface was blown uniformly on the fibers before being collected by the collector. Table 1 shows the obtained results.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、実施例1〜4の
不織布は繊維径が0.5〜10μmのショットの無いも
ので通気度と濾過性能のバランスの良いものであった。
また、ミスト中に濃厚親水化剤を付与することで20〜
50%前後、水系後加工材の濡れ速度が上昇した。な
お、測定法は、以下の方法を用いた。比較例についても
同様である。 繊維径 走査型電子顕微鏡によりシートの任意の
場所3カ所を1000倍の倍率で10枚撮影し、繊維径
をその写真から各カ所100点ずつ測定し、その平均値
を取った。 バブルポイント ASTMF316−70に準じ
て測定した。使用する液体は特級試薬イソプロパノール
を用い、圧力の増加にともない最初の気泡が発生したと
きのその圧力を求めた。 通気度(フラジール) ASTMD737に準じ
て測定を行なった。0.5インチ水柱圧での通気量を断
面積で除して通気度を求めた値を30g/m2の目付に
換算したものである。 粒子径 市販のダストカウンター(リオン 形式
KC14)を用いて測定を行なった。 乾熱収縮率 ポリプロピレンで130℃、ポリエ
ステルで160℃など融点の約60〜80%の適当な温
度で測定する。 濾過精度 粒子径を測定したのと同じ装置で大気
を5.3cm/秒で濾材に供給し、大気塵中の0.3μ
m粒子の人口濃度と出口濃度を測定し、その差を入口濃
度で割った値を濾過精度とした。
As is evident from Table 1, the nonwoven fabrics of Examples 1 to 4 had no shot having a fiber diameter of 0.5 to 10 μm and had a good balance between air permeability and filtration performance.
Further, by adding a thick hydrophilizing agent to the mist,
About 50%, the wetting rate of the aqueous post-processed material increased. In addition, the following method was used for the measuring method. The same applies to the comparative example. Fiber diameter Ten images were taken at three arbitrary positions on the sheet at a magnification of 1000 times using a scanning electron microscope. The fiber diameter was measured at 100 points at each position from the photograph, and the average value was obtained. Bubble point was measured according to ASTM 316-70. As a liquid to be used, a special grade reagent isopropanol was used, and the pressure when the first bubble was generated with the increase in pressure was determined. Air permeability (Fragile) The measurement was performed according to ASTM D737. The value obtained by dividing the air permeability at a 0.5 inch water column pressure by the cross-sectional area to obtain the air permeability was converted to a basis weight of 30 g / m 2. Particle size The measurement was performed using a commercially available dust counter (Rion type KC14). Dry heat shrinkage Measured at an appropriate temperature of about 60 to 80% of the melting point, such as 130 ° C for polypropylene and 160 ° C for polyester. Filtration accuracy Using the same device as used for measuring the particle diameter, supply the air to the filter medium at 5.3 cm / sec,
The population concentration and outlet concentration of m particles were measured, and the difference between the difference and the inlet concentration was defined as the filtration accuracy.

【0026】比較例1〜4 ミストの付与を行なわずに、実施例1〜4と同条件で紡
糸した。その結果を表2に示した。
Comparative Examples 1-4 Spinning was carried out under the same conditions as in Examples 1-4, without applying mist. The results are shown in Table 2.

【0027】表2で明らかなように、バブルポイント圧
と通気度とのバランスが悪く、ミスト付与の効果を新た
に認識させるものであった。
As is clear from Table 2, the balance between the bubble point pressure and the air permeability was poor, and the effect of the mist application was newly recognized.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例5、比較例5 実施例2、比較例2のシートをカレンダープレス処理し
て充填率が0.6になるように調整した。液体フイルタ
ーとしての性能を測定すると表3のような結果を示し
た。なお、液相捕集効率は、単分散0.47μm、ポリ
スチレンラテックスを0.02wt%を3cm/分の線
速度で濾過を実施し、入口濃度と出口濃度を測定し、そ
の差を入口濃度で除した値をいう。
Example 5, Comparative Example 5 The sheets of Example 2 and Comparative Example 2 were subjected to a calender press treatment to adjust the filling ratio to 0.6. When the performance as a liquid filter was measured, the results shown in Table 3 were shown. The liquid phase collection efficiency was as follows: 0.47 μm of monodispersion, 0.02 wt% of polystyrene latex was filtered at a linear speed of 3 cm / min, and the inlet and outlet concentrations were measured. It means the divided value.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】極細繊維よりなり、バブルポイント圧、
通気度、濾過精度とのバランスにすぐれた不織布、及び
この不織布を確実に製造する方法を提供するという効果
が奏される。
EFFECT OF THE INVENTION It is made of ultrafine fiber, and has a bubble point pressure,
The effect is to provide a nonwoven fabric having a good balance between air permeability and filtration accuracy, and a method for reliably producing this nonwoven fabric.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均繊維径が0.1〜3.0μmの極細繊
維よりなり、水柱0.5インチ/cm2 の圧力をかけた
際の空気の通過流量を面積で除した値が30g/m2
付換算で0.5〜4.5cm/秒であって、かつ、バブ
ルポイント測定法により求められる最初の気泡発生圧力
が250mmAq(水柱)以上であることを特徴とする
極細繊維不織布。
An average fiber diameter of 0.1 to 3.0 μm is made of ultrafine fibers, and the flow rate of air when a pressure of 0.5 inch / cm 2 of water is applied is divided by the area to obtain 30 g. / m a 0.5 ~ 4.5 cm / sec 2 basis weight terms, and microfine fiber nonwoven fabric first bubble generation pressure obtained by the bubble point measurement method is characterized in that it is 250 mmAq (water column) or .
【請求項2】溶融ポリマーを高温高速の牽引流体と接触
させて極細繊維不織布を製造する方法において、ポリマ
ーを牽引流体により充分に牽引し、細化を完了した後、
牽引流体と混合される周りのガス雰囲気中に、直径20
μm以上の水滴を個数濃度で5%以下含むミストを繊維
に液滴が接触することが無いように付与することを特徴
とする請求項1記載の極細繊維不織布の製造方法。
2. A method for producing a microfiber nonwoven fabric by bringing a molten polymer into contact with a high-temperature, high-speed traction fluid, wherein the polymer is sufficiently drawn by the traction fluid to complete the thinning.
In the surrounding gas atmosphere, which is mixed with the traction fluid, a diameter of 20
Fiber containing mist containing water droplets of μm or more in number concentration of 5% or less
The method for producing a microfiber nonwoven fabric according to claim 1, wherein the non-woven fabric is applied so that the droplets do not come into contact with the non-woven fabric.
JP18689592A 1992-07-14 1992-07-14 Ultrafine fiber nonwoven fabric and method for producing same Expired - Lifetime JP3134964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18689592A JP3134964B2 (en) 1992-07-14 1992-07-14 Ultrafine fiber nonwoven fabric and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18689592A JP3134964B2 (en) 1992-07-14 1992-07-14 Ultrafine fiber nonwoven fabric and method for producing same

Publications (2)

Publication Number Publication Date
JPH0633358A JPH0633358A (en) 1994-02-08
JP3134964B2 true JP3134964B2 (en) 2001-02-13

Family

ID=16196569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18689592A Expired - Lifetime JP3134964B2 (en) 1992-07-14 1992-07-14 Ultrafine fiber nonwoven fabric and method for producing same

Country Status (1)

Country Link
JP (1) JP3134964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415262B2 (en) 2003-10-22 2013-04-09 E I Du Pont De Nemours And Company Porous fibrous sheets of nanofibers
KR101668004B1 (en) 2014-05-09 2016-10-28 션전 브레오 테크놀로지 컴퍼니 리미티드 Head massager and helmet size adjusting structure thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125404A (en) * 2008-11-28 2010-06-10 Mitsui Chemicals Inc Liquid filter
JP6190687B2 (en) * 2013-10-02 2017-08-30 三井化学株式会社 Liquid filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415262B2 (en) 2003-10-22 2013-04-09 E I Du Pont De Nemours And Company Porous fibrous sheets of nanofibers
KR101668004B1 (en) 2014-05-09 2016-10-28 션전 브레오 테크놀로지 컴퍼니 리미티드 Head massager and helmet size adjusting structure thereof

Also Published As

Publication number Publication date
JPH0633358A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
KR101730663B1 (en) Non-Woven Polymeric Webs
Almetwally et al. Technology of nano-fibers: Production techniques and properties-Critical review
KR950006868B1 (en) Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
JP4881544B2 (en) High loft, low density nonwoven web of crimped filaments and method for making the same
KR101432325B1 (en) Fibrous web comprising microfibers dispersed among bonded meltspun fibers
US9610588B2 (en) Electret nanofibrous web as air filtration media
JP4209734B2 (en) Nonwoven fabric and method for producing the same
US8808594B1 (en) Coform fibrous materials and method for making same
JP2001500201A (en) Melt-blown ionomer microfibers and nonwoven webs made therefrom for gas filters
JP2010504444A (en) Improved nanoweb
JP6496009B2 (en) Nonwoven fabric and method for producing the same
JP6816268B2 (en) Methods for Producing Pleated Fibers with Electrostatically Charged Fibers and Pleated Fibers
JP4133830B2 (en) Electret body manufacturing method and manufacturing apparatus
US20120318752A1 (en) High porosity high basis weight filter media
JP2017185422A (en) Depth filter
JP4069057B2 (en) High performance air filter
JP3134964B2 (en) Ultrafine fiber nonwoven fabric and method for producing same
JP3753522B2 (en) Melt blown nonwoven fabric and nozzle piece for melt blown nonwoven fabric
JPH0798131B2 (en) Cylindrical filter and manufacturing method thereof
JP4207485B2 (en) Rod-like fiber molded body
JP5305960B2 (en) Manufacturing method of ultra-fine fiber nonwoven fabric and manufacturing apparatus thereof
JP3164172B2 (en) Nonwoven fabric and method for producing the same
WO2016081937A1 (en) In-situ charging fiber spinning method for producing a nonwoven electret
JP2003268660A (en) Ultrafine fiber dispersed nonwoven fabric, sheet material, method for producing the same and apparatus for producing the same
JP2008088610A (en) Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091201

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121201