JP2008088610A - Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same - Google Patents

Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same Download PDF

Info

Publication number
JP2008088610A
JP2008088610A JP2006272623A JP2006272623A JP2008088610A JP 2008088610 A JP2008088610 A JP 2008088610A JP 2006272623 A JP2006272623 A JP 2006272623A JP 2006272623 A JP2006272623 A JP 2006272623A JP 2008088610 A JP2008088610 A JP 2008088610A
Authority
JP
Japan
Prior art keywords
fiber
sea
nonwoven fabric
ultrafine
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272623A
Other languages
Japanese (ja)
Inventor
Akinori Minami
彰則 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2006272623A priority Critical patent/JP2008088610A/en
Publication of JP2008088610A publication Critical patent/JP2008088610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of continuously producing a nonwoven fabric of dispersed ultrafine staple fibers excellent in quality without adhering in equipments the ultrafine staple derived from a sea-island type conjugate fiber, and to provide a nonwoven fabric of dispersed ultrafine staple fibers. <P>SOLUTION: The method for producing the nonwoven fabric of dispersed ultrafine staple fibers includes a step in which staple aggregate groups, composed mainly of aggregates of ultrafine staple having a fiber diameter of ≤4 μm and a fiber length of ≤3 mm and produced by removing sea components of a sea-island type conjugate fiber produced by a multicomponent fiber spinning method, are ejected into a gas from a nozzle by action of compressed air to divide the staple aggregate groups into each staple and to disperse the staples, a step in which the dispersed staples are accumulated to form fiber web, and a step in which the fiber web is bonded. In this method, as the ultrafine staple aggregates applied with ≥0.5 mass% of fiber oil solution are used. The ultrafine staple-dispersed nonwoven fabric is produced by using the producing method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は極細短繊維分散不織布の製造方法、及びその製造方法により製造された極細短繊維分散不織布に関する。   The present invention relates to a method for producing an ultrafine short fiber dispersed nonwoven fabric and an ultrafine short fiber dispersed nonwoven fabric produced by the production method.

不織布は構成繊維、繊維ウエブの形成方法、あるいは繊維ウエブの結合方法を適宜組み合わせることにより、各種機能を付与することができるため、各種用途に適用されている。   Nonwoven fabrics can be imparted with various functions by appropriately combining constituent fibers, fiber web forming methods, or fiber web bonding methods, and thus are applied to various uses.

例えば、繊維径が4μm以下の極細繊維を含む不織布は、濾過性能に優れているため、液体や気体用のフィルタとして好適に使用することができる。また、繊維径が小さいことによって柔軟性にも優れているため、衣料用の芯地としても好適に使用することができる。更には、電気絶縁性能に優れているため、電池用セパレータとしても使用することができる。   For example, since a nonwoven fabric containing ultrafine fibers having a fiber diameter of 4 μm or less is excellent in filtration performance, it can be suitably used as a liquid or gas filter. In addition, since the fiber diameter is small, it is excellent in flexibility, so that it can be suitably used as an interlining for clothing. Furthermore, since it has excellent electrical insulation performance, it can also be used as a battery separator.

このような繊維径が4μm以下の極細繊維を含む不織布を製造する1つの方法として、繊維径が4μm以下の極細短繊維を含むスラリーを抄き上げて繊維ウエブを形成した後、繊維ウエブを結合する方法があったが、この方法により製造する場合、極細短繊維を分散させるために界面活性剤や糊剤を使用することによって、また、極細短繊維を抄き上げて繊維ウエブを形成する際の繊維分散溶媒の除去によって、極細短繊維同士の密着性が高まるため、例えばフィルタとして使用した場合には圧力損失が高いものしか製造できなかった。   As one method for producing a nonwoven fabric containing ultrafine fibers having a fiber diameter of 4 μm or less, a slurry containing ultrafine fibers having a fiber diameter of 4 μm or less is drawn up to form a fiber web, and then the fiber web is bonded. In the case of manufacturing by this method, by using a surfactant or a paste to disperse the ultrafine short fibers, or when forming the fiber web by drawing up the ultrafine short fibers The removal of the fiber dispersion solvent increases the adhesion between the ultra-short fibers, so that, for example, when used as a filter, only those having a high pressure loss could be produced.

そのため、本願出願人は「繊維径が4μm以下で繊維長が3mm以下の極細短繊維の集合体若しくはそれらの集合体群、及び/又は、機械的に分割して繊維径が4μm以下で繊維長が3mm以下の極細短繊維を発生可能な分割性繊維、若しくはそれらの集合体を、圧縮気体の作用によりノズルから気体中に噴出させて、前記極細短繊維集合体若しくはそれらの集合体群を極細短繊維に分割させ、及び/又は、分割性繊維若しくはそれらの集合体を極細短繊維に分割させ、そしてそれらの極細短繊維を分散させる工程、分散した極細短繊維を集積して繊維ウエブを形成する工程、及び前記繊維ウエブを結合させる工程、を含む極細短繊維分散不織布の製造方法」を提案した(特許文献1)。   Therefore, the applicant of the present application stated that “a collection of ultra-short fibers or a group of those having a fiber diameter of 4 μm or less and a fiber length of 3 mm or less, and / or a mechanically divided fiber diameter of 4 μm or less. A splitting fiber capable of generating ultrafine fibers having a diameter of 3 mm or less, or an aggregate thereof is ejected from a nozzle into the gas by the action of a compressed gas, and the ultrafine fiber aggregates or aggregates thereof are ultrafine. The process of dividing into short fibers and / or dividing the splittable fibers or their aggregates into ultrafine short fibers and dispersing these ultrafine short fibers, collecting the dispersed ultrafine short fibers to form a fiber web And a method for producing an ultrafine short fiber-dispersed nonwoven fabric including a step of bonding and a step of bonding the fiber web ”(Patent Document 1).

特開2002−155458号公報(請求項8、実施例など)JP-A-2002-155458 (Claim 8, Examples, etc.)

この製造方法によれば、複合紡糸法により製造した海島型複合繊維の海成分を除去して製造した極細短繊維(以下、「海島複合由来極細短繊維」と表記する)を分散させた、地合いの優れる極細短繊維分散不織布を製造することができたが、例えば、ポリプロピレン樹脂やポリエチレン樹脂などの体積固有抵抗値の高い樹脂からなる海島複合由来極細短繊維の集合体を分散させて極細短繊維分散不織布を製造しようとした場合、海島複合由来極細短繊維が装置内部との摩擦によって帯電し、装置内に海島複合由来極細短繊維が付着してしまい、その付着量が一定量以上となった時に塊となって集積体上に脱落するため、品位の優れる極細短繊維分散不織布を連続して製造できない、という問題があった。   According to this production method, the ultra-fine short fiber produced by removing the sea component of the sea-island type composite fiber produced by the composite spinning method (hereinafter referred to as “sea-island composite-derived ultra-fine short fiber”) is dispersed. Can be produced, for example, an aggregate of sea-island composite-derived ultrafine fibers made of a resin having a high volume resistivity such as polypropylene resin and polyethylene resin can be dispersed. When trying to manufacture a dispersed nonwoven fabric, the sea-island composite-derived ultrafine short fibers were charged by friction with the inside of the device, and the sea-island composite-derived ultrafine short fibers were adhered to the inside of the device, and the amount of adhesion exceeded a certain amount. There is a problem that it is impossible to continuously produce an ultra-fine short fiber-dispersed nonwoven fabric of excellent quality because it sometimes becomes a lump and falls off on the aggregate.

本発明はこのような問題点を解決するためになされたもので、海島複合由来極細短繊維が装置内に付着せず、品位の優れる極細短繊維分散不織布を連続して製造できる方法、及び極細短繊維分散不織布を提供することを目的とする。   The present invention has been made to solve such problems, and a method for continuously producing an ultrafine short fiber-dispersed nonwoven fabric having excellent quality without the sea-island composite-derived ultrafine short fibers adhering to the apparatus, and the ultrafine It aims at providing a short fiber dispersion nonwoven fabric.

本発明の請求項1にかかる発明は、「複合紡糸法により製造した海島型複合繊維の海成分を除去して製造した、繊維径が4μm以下で繊維長が3mm以下の極細短繊維の集合体を主体とする短繊維集合体群を、圧縮気体の作用によりノズルから気体中に噴出させて、前記短繊維集合体群を個々の短繊維に分割させ、そしてそれら短繊維を分散させる工程、分散した短繊維を集積して繊維ウエブを形成する工程、及び前記繊維ウエブを結合させる工程、とを含む極細短繊維分散不織布の製造方法において、前記極細短繊維集合体として、0.5質量%よりも多い量の繊維油剤が付着したものを使用することを特徴とする、極細短繊維分散不織布の製造方法。」である。   The invention according to claim 1 of the present invention is “an aggregate of ultra-short fibers having a fiber diameter of 4 μm or less and a fiber length of 3 mm or less, produced by removing sea components from a sea-island composite fiber produced by a composite spinning method”. A process of dispersing a short fiber assembly group mainly composed of a short fiber aggregate group into individual short fibers by ejecting a group of short fiber aggregates into a gas by the action of a compressed gas, and dispersing the short fibers In the method for producing an ultrafine short fiber-dispersed nonwoven fabric comprising a step of accumulating the short fibers to form a fiber web and a step of bonding the fiber web, Is a method for producing an ultrafine short fiber-dispersed nonwoven fabric, characterized by using a material to which a large amount of fiber oil is adhered.

本発明の請求項2にかかる発明は、「極細短繊維がポリオレフィン系樹脂からなることを特徴とする、請求項1記載の極細短繊維分散不織布の製造方法。」である。   The invention according to claim 2 of the present invention is "the method for producing an ultrafine short fiber-dispersed nonwoven fabric according to claim 1, wherein the ultrafine short fibers are made of a polyolefin resin".

本発明の請求項3にかかる発明は、「繊維油剤が、りん酸エステル塩型アニオン性界面活性剤、第4級アンモニウム塩型カチオン性界面活性剤、ベタイン型両性界面活性剤の群の中から選ばれる少なくとも1つからなることを特徴とする、請求項1又は請求項2に記載の極細短繊維分散不織布の製造方法。」である。   The invention according to claim 3 of the present invention is as follows: “The fiber oil agent is selected from the group consisting of a phosphate ester type anionic surfactant, a quaternary ammonium salt type cationic surfactant, and a betaine type amphoteric surfactant. 3. The method for producing an ultrafine short fiber-dispersed nonwoven fabric according to claim 1 or 2, comprising at least one selected.

本発明の請求項4にかかる発明は、「繊維径が4μmを超え、50μm以下であり、繊維長が10mm以下の太短繊維の集合体も一緒に分散させることを特徴とする、請求項1〜請求項3のいずれかに記載の極細短繊維分散不織布の製造方法。」である。   The invention according to claim 4 of the present invention is characterized in that “an aggregate of thick and short fibers having a fiber diameter of more than 4 μm and not more than 50 μm and a fiber length of not more than 10 mm is dispersed together. -The manufacturing method of the ultra-fine short fiber dispersion | distribution nonwoven fabric in any one of Claim 3. ".

本発明の請求項5にかかる発明は、「請求項1〜請求項4のいずれかに記載の製造方法により製造した極細短繊維分散不織布。」である。   The invention according to claim 5 of the present invention is “an ultrafine short fiber-dispersed nonwoven fabric produced by the production method according to any one of claims 1 to 4”.

本発明の請求項1にかかる発明は、0.5質量%よりも多い量の繊維油剤が付着していることによって、装置内部との摩擦による帯電を防ぎ、品位の優れる極細短繊維分散不織布を連続して製造できる。   The invention according to claim 1 of the present invention provides an ultra-fine short fiber dispersed nonwoven fabric having excellent quality by preventing charging due to friction with the inside of the apparatus by adhering an amount of fiber oil agent of more than 0.5% by mass. Can be manufactured continuously.

本発明の請求項2にかかる発明は、ポリオレフィン系樹脂という体積固有抵抗値の高い樹脂からなる海島複合由来極細短繊維であったとしても、装置内部との摩擦による帯電を防ぎ、品位の優れる極細短繊維分散不織布を連続して製造できる。   The invention according to claim 2 of the present invention is an ultrafine fiber that prevents charging due to friction with the inside of the device and is excellent in quality even if it is a sea-island composite-derived ultrafine short fiber made of a polyolefin-based resin having a high volume resistivity. Short fiber-dispersed nonwoven fabric can be produced continuously.

本発明の請求項3にかかる発明は、特定の油剤によれば、装置内部との摩擦による帯電防止効果が特に高い。   The invention according to claim 3 of the present invention has a particularly high antistatic effect due to friction with the inside of the apparatus according to the specific oil.

本発明の請求項4にかかる発明は、太短繊維も一緒に分散させるため、比較的厚く、空隙率が大きく、しかも保形性に優れた極細短繊維分散不織布を製造できる。   Since the invention according to claim 4 of the present invention disperses the thick and short fibers together, it is possible to produce an ultrafine short fiber-dispersed nonwoven fabric that is relatively thick, has a high porosity, and is excellent in shape retention.

本発明の請求項5にかかる発明は、品位の優れる極細短繊維分散不織布である。   The invention according to claim 5 of the present invention is an ultra-fine short fiber-dispersed nonwoven fabric having excellent quality.

本発明の極細短繊維分散不織布の製造方法においては、まず、複合紡糸法により製造した海島型複合繊維の海成分を除去して、繊維径が4μm以下で繊維長が3mm以下の海島複合由来極細短繊維の集合体を製造する。   In the method for producing an ultrafine short fiber-dispersed nonwoven fabric of the present invention, first, sea components of a sea-island type composite fiber produced by a composite spinning method are removed, and a sea-island composite-derived ultrafine fiber having a fiber diameter of 4 μm or less and a fiber length of 3 mm or less. Produce short fiber aggregates.

本発明の複合紡糸法により製造した海島型複合繊維は、常法により製造することができる。つまり、紡糸口金部で海成分中に口金規制して島成分を押し出し、複合する紡糸方法である。このような複合紡糸法により製造した海島型複合繊維は、海成分を除去することによって、島成分からなる極細繊維を製造することができる。この極細繊維は繊維軸方向において直径が実質的に変化しない(すなわち実質的に同じ直径を有する)ため、地合いの優れる極細短繊維分散不織布を製造できる。   The sea-island type composite fiber manufactured by the composite spinning method of the present invention can be manufactured by a conventional method. In other words, this is a spinning method in which the spinneret part regulates the die into the sea component to extrude the island component and combine them. Sea-island type composite fibers manufactured by such a composite spinning method can produce ultrafine fibers made of island components by removing sea components. Since the ultrafine fibers do not substantially change in diameter in the fiber axis direction (that is, have substantially the same diameter), an ultrafine short fiber-dispersed nonwoven fabric with excellent texture can be produced.

なお、海島型複合繊維は海島複合由来極細短繊維の強度が優れているように、延伸されているのが好ましい。海島型複合繊維が延伸されていることによって、結果として海島複合由来極細短繊維も延伸された状態にあるためである。この「延伸」とは、紡糸工程とは別の延伸工程(例えば、延伸ねん糸機による延伸工程)により延伸されていることをいう。例えば、メルトブロー法のように溶融押し出した樹脂に対して熱風を吹き付けて繊維化した繊維は、紡糸工程と延伸工程とが同じであるため延伸されていない。   The sea-island composite fiber is preferably drawn so that the strength of the sea-island composite-derived ultrafine short fiber is excellent. This is because the sea-island composite fiber is drawn, and as a result, the sea-island composite-derived ultrafine short fiber is also drawn. This “stretching” means that the film is stretched by a stretching process different from the spinning process (for example, a stretching process by a stretching yarn threading machine). For example, a fiber obtained by spraying hot air against a melt-extruded resin as in the melt blow method is not stretched because the spinning process and the stretching process are the same.

この海島型複合繊維は連続したフィラメントであっても良いし、切断されたトウであっても良い。前者のように連続したフィラメントである場合には、海成分を除去した後に切断するか、切断した後に海成分を除去することによって、後述の海島複合由来極細短繊維集合体とすることができる。他方、後者のように切断されたトウである場合には、海成分を除去することによって、海島複合由来極細短繊維集合体とすることができる。一般的に、海島複合由来極細短繊維は束状集合体として存在し、海島複合由来極細短繊維が相互に接近しているために絡みやすく、均一に分散させることが困難であるが、本発明の方法によれば、均一に分散させることができる。   This sea-island type composite fiber may be a continuous filament or a cut tow. In the case of the continuous filament as in the former, it is possible to obtain a sea-island composite-derived ultrafine short fiber assembly described later by cutting after removing the sea component or by removing the sea component after cutting. On the other hand, when the tow is cut as in the latter case, the sea-island composite-derived ultrafine short fiber aggregate can be obtained by removing the sea component. In general, the sea-island composite-derived ultrafine short fibers exist as bundled aggregates, and since the sea-island composite-derived ultrafine short fibers are close to each other, they are easily entangled and difficult to disperse uniformly. According to this method, it can be uniformly dispersed.

また、海島型複合繊維を構成する樹脂は島成分からなる海島複合由来極細短繊維を発生させる必要から、海成分を除去する手段によって除去されやすい樹脂が海成分を構成し、除去されにくい樹脂が島成分を構成する。この海成分を除去する手段としては、例えば、溶剤、酵素、微生物などがあるが、溶剤によって海成分を除去する場合、溶媒によって除去されやすい樹脂を海成分とし、溶媒によって除去されにくい樹脂を島成分とする。例えば、水酸化ナトリウム溶液やジメチルホルムアミドによって除去されやすい海成分として、ポリエステル、カチオンダイアブルポリエステル、ポリ乳酸などを挙げることができ、除去されにくい島成分としてポリプロピレン、ポリエチレンなどのポリオレフィン、ナイロン6、ナイロン66などのナイロンを挙げることができる。   Moreover, since the resin constituting the sea-island type composite fiber needs to generate sea-island composite-derived ultrafine short fibers composed of island components, the resin that is easily removed by the means for removing the sea component constitutes the sea component, and the resin that is difficult to remove. Consists of island components. As a means for removing the sea component, for example, there are a solvent, an enzyme, a microorganism, and the like. When the sea component is removed by a solvent, a resin that is easily removed by the solvent is a sea component, and a resin that is not easily removed by the solvent is an island. Ingredients. Examples of sea components that can be easily removed by sodium hydroxide solution or dimethylformamide include polyester, cationic diable polyester, polylactic acid, and the like, and island components that are difficult to remove include polyolefins such as polypropylene and polyethylene, nylon 6, and nylon. Mention may be made of nylon such as 66.

なお、海島型複合繊維は繊維径が4μm以下の海島複合由来極細短繊維を発生できるものであれば良く、その繊維径は特に限定するものではない。   The sea-island type composite fiber is not particularly limited as long as it can generate a sea-island composite-derived ultrafine short fiber having a fiber diameter of 4 μm or less.

このような海島型複合繊維の海成分を、前述のような除去手段によって海成分を除去して、繊維径が4μm以下で繊維長が3mm以下の極細短繊維の集合体を製造する。このように繊維径が小さく、細いことによって、濾過性能、柔軟性、電気絶縁性能などの各種特性に優れる極細短繊維分散不織布を製造できる。海島複合由来極細短繊維の繊維径は小さければ小さい程、前記性能に優れているため、繊維径は3μm以下であるのが好ましく、2μm以下であるのがより好ましい。海島複合由来極細短繊維の繊維径の下限は特に限定するものではないが、0.01μm程度が適当である。本明細書における「繊維径」は、繊維の横断面形状が円形である場合にはその直径をいい、繊維の横断面形状が非円形である場合には横断面積と面積の同じ円の直径をいう。   The sea component of the sea-island type composite fiber is removed by the above-described removing means to produce an aggregate of ultrafine short fibers having a fiber diameter of 4 μm or less and a fiber length of 3 mm or less. Thus, when the fiber diameter is small and thin, it is possible to produce an ultra-fine short fiber-dispersed nonwoven fabric excellent in various properties such as filtration performance, flexibility, and electrical insulation performance. The smaller the fiber diameter of the sea-island composite-derived ultrafine short fiber, the better the performance. Therefore, the fiber diameter is preferably 3 μm or less, and more preferably 2 μm or less. The lower limit of the fiber diameter of the sea-island composite-derived ultrafine short fiber is not particularly limited, but about 0.01 μm is appropriate. “Fiber diameter” in this specification refers to the diameter when the cross-sectional shape of the fiber is circular, and when the cross-sectional shape of the fiber is non-circular, the diameter of the circle having the same cross-sectional area and area is used. Say.

また、本発明の海島複合由来極細短繊維の繊維長は3mm以下である。このように繊維長が短いことによって、海島複合由来極細短繊維集合体を個々の海島複合由来極細短繊維に分割し、個々の海島複合由来極細短繊維が均一に分散した、地合いの優れる極細短繊維分散不織布を製造できる。より好ましい繊維長は2mm以下である。なお、海島複合由来極細短繊維の繊維長の下限は特に限定するものではないが、0.1mm程度が適当である。なお、海島複合由来極細短繊維の繊維長は海島型複合繊維の繊維長と一致するため、フィラメント状の海島型複合繊維を3mm以下にカットするか、海成分を除去して製造したフィラメント状の海島複合由来極細短繊維集合体を3mm以下にカットすれば良い。   Moreover, the fiber length of the sea-island composite-derived ultrafine short fiber of the present invention is 3 mm or less. Due to the short fiber length, the sea-island composite-derived ultrafine short fiber aggregates are divided into individual sea-island composite-derived ultrafine short fibers, and the individual sea-island composite-derived ultrafine short fibers are uniformly dispersed. A fiber-dispersed nonwoven fabric can be produced. A more preferable fiber length is 2 mm or less. In addition, the lower limit of the fiber length of the sea-island composite-derived ultrafine short fiber is not particularly limited, but about 0.1 mm is appropriate. In addition, since the fiber length of the sea-island composite-derived ultrafine short fiber matches the fiber length of the sea-island type composite fiber, the filament-like sea-island type composite fiber is cut to 3 mm or less, or the filament-like shape manufactured by removing sea components is used. What is necessary is just to cut a sea-island composite origin ultrafine short fiber aggregate to 3 mm or less.

本発明で用いる海島複合由来極細短繊維(別の見方をすれば、海島型複合繊維の島成分)は、任意の成分(例えば、有機成分又は無機成分)から構成することができ、例えば、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニリデン系樹脂、ポリ塩化ビニル系樹脂、ポリエステル系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂など)、ポリスチレン系樹脂(例えば、結晶性ポリスチレン、非晶性ポリスチレンなど)、芳香族ポリアミド系樹脂、ポリウレタン系樹脂などの有機成分、ガラス、炭素、チタン酸カリウム、炭化珪素、窒化珪素、酸化亜鉛、ホウ酸アルミニウム、ワラストナイトなどの無機成分から構成することができる。特に本発明の製造方法によれば、体積固有抵抗値が高く、装置内部との摩擦によって帯電しやすい、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂など)からなる海島複合由来極細短繊維であっても、装置内部との摩擦による帯電を防ぎ、品位の優れる極細短繊維分散不織布を連続して製造できる。   The sea-island composite-derived ultrafine short fiber used in the present invention (in other words, the island component of the sea-island type composite fiber) can be composed of any component (for example, an organic component or an inorganic component). Resin, polyvinyl alcohol resin, polyvinylidene chloride resin, polyvinyl chloride resin, polyester resin, polyacrylonitrile resin, polyolefin resin (eg, polyethylene resin, polypropylene resin, etc.), polystyrene resin (eg, , Crystalline polystyrene, amorphous polystyrene, etc.), organic components such as aromatic polyamide resins, polyurethane resins, glass, carbon, potassium titanate, silicon carbide, silicon nitride, zinc oxide, aluminum borate, wollastonite It can comprise from inorganic components, such as. In particular, according to the production method of the present invention, a sea-island composite-derived ultrafine short fiber made of a polyolefin-based resin (for example, a polyethylene-based resin, a polypropylene-based resin, etc.) that has a high volume resistivity and is easily charged by friction with the inside of the apparatus. Even so, it is possible to continuously manufacture an ultra-fine short fiber-dispersed nonwoven fabric having excellent quality by preventing electrification due to friction with the inside of the apparatus.

なお、本発明の極細短繊維分散不織布の形態を保つために、繊維同士が結合している必要があるが、海島複合由来極細短繊維が融着可能であると、海島複合由来極細短繊維の融着によって不織布形態を保つことができ、海島複合由来極細短繊維の脱落も生じにくいため好適である。この融着可能な海島複合由来極細短繊維は繊維表面を構成する成分の少なくとも一部が熱可塑性樹脂から構成されていることができる。例えば、繊維表面を構成する成分が、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂など)、ポリ塩化ビニリデン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、結晶性ポリスチレン系樹脂などの結晶性の熱可塑性樹脂、あるいはポリ塩化ビニル系樹脂、非晶性ポリスチレン系樹脂、ポリアクリロニトリル系樹脂、ポリビニルアルコール系樹脂などの非晶性の熱可塑性樹脂であることができる。   In addition, in order to maintain the form of the ultrafine short fiber-dispersed nonwoven fabric of the present invention, the fibers need to be bonded to each other, but when the sea-island composite-derived ultrafine short fibers can be fused, the sea-island composite-derived ultrafine short fibers The nonwoven fabric form can be maintained by fusing, and the sea-island composite-derived ultrafine short fibers are less likely to fall off. In the sea-island composite-derived ultrafine short fiber that can be fused, at least a part of the components constituting the fiber surface can be composed of a thermoplastic resin. For example, the component constituting the fiber surface is a crystalline resin such as a polyolefin resin (for example, a polyethylene resin, a polypropylene resin, etc.), a polyvinylidene chloride resin, a polyester resin, a polyamide resin, or a crystalline polystyrene resin. It can be a thermoplastic resin, or an amorphous thermoplastic resin such as a polyvinyl chloride resin, an amorphous polystyrene resin, a polyacrylonitrile resin, or a polyvinyl alcohol resin.

この融着可能な海島複合由来極細短繊維が2種類以上の成分から構成されていると、1種類の成分が融着したとしても、少なくとも1種類の成分によって繊維形態を維持することができるため好適である。この2種類以上の成分から構成されている場合、海島複合由来極細短繊維の横断面において、芯鞘状、偏芯状、海島状、サイドバイサイド状、多重バイメタル状、又はオレンジ状に配置していることができる。これらの中でも、融着に関与できる熱可塑性樹脂量が多く、融着力が強い芯鞘状又は海島状に配置しているのが好ましい。   If this fusion-bondable sea-island composite-derived ultrafine short fiber is composed of two or more components, even if one component is fused, the fiber form can be maintained by at least one component. Is preferred. When it is composed of two or more kinds of components, it is arranged in a core-sheath shape, an eccentric shape, a sea-island shape, a side-by-side shape, a multiple bimetal shape, or an orange shape in the cross section of the sea-island composite-derived ultrafine short fiber. be able to. Among these, it is preferable to arrange in a core-sheath or sea-island shape having a large amount of thermoplastic resin that can participate in fusion and having a strong fusion power.

本発明においては、上述のような海島複合由来極細短繊維の集合体に、0.5質量%よりも多い量の繊維油剤が付着していることによって、装置内部との摩擦による帯電を防ぎ、品位の優れる極細短繊維分散不織布を連続して製造することが可能となった。特許文献1の比較例2に記載されているように、混合紡糸法により製造した海島型複合繊維の海成分を除去して製造した極細短繊維の集合体を主体とする短繊維集合体群に0.6質量%の繊維油剤を付与しても、極細短繊維を均一に分散させることができなかったという事実からすると、0.5質量%を超える繊維油剤を付着させることによって、個々の海島複合由来極細短繊維が分散した品位の優れる極細短繊維分散不織布を製造できることは、驚くべきことである。より好ましくは、0.55質量%以上繊維油剤を付着させる。他方で、繊維油剤の付着量が多すぎると、繊維表面がべとつき、個々の海島複合由来極細短繊維に十分に分割できなかったり、余分な繊維油剤が装置内部に付着するなどの問題が生じやすくなるため、2質量%以下であるのが好ましく、1.5質量%以下であるのがより好ましく、1.2質量%以下であるのが更に好ましく、1質量%以下であるのが更に好ましい。この繊維油剤の付着率は海島複合由来極細短繊維集合体の質量に対する繊維油剤の質量の百分率であり、次の式により得られる値である。
A=(ms/mf)×100
ここで、Aは繊維油剤の付着率(%)、msは繊維油剤の付着質量(g)、mfは海島複合由来極細短繊維集合体の質量(g)をそれぞれ意味する。
In the present invention, the assembly of the sea-island composite-derived ultrafine short fibers as described above has a fiber oil agent of an amount larger than 0.5% by mass, thereby preventing charging due to friction with the inside of the device, It has become possible to continuously produce ultra-fine short fiber-dispersed nonwoven fabrics of excellent quality. As described in Comparative Example 2 of Patent Document 1, a short fiber assembly group mainly composed of an assembly of ultrafine short fibers manufactured by removing sea components of a sea-island composite fiber manufactured by a mixed spinning method. In view of the fact that even if 0.6% by mass of the fiber oil agent was applied, the ultra-short fibers could not be uniformly dispersed, by adhering more than 0.5% by mass of the fiber oil agent, each sea island It is surprising that an ultrafine short fiber-dispersed nonwoven fabric of excellent quality in which composite-derived ultrafine short fibers are dispersed can be produced. More preferably, the fiber oil agent is adhered to 0.55% by mass or more. On the other hand, if the amount of fiber oil applied is too large, the fiber surface will become sticky and may not be sufficiently divided into individual sea-island composite-derived ultrafine short fibers, or excessive fiber oil will easily adhere to the inside of the device. Therefore, it is preferably 2% by mass or less, more preferably 1.5% by mass or less, further preferably 1.2% by mass or less, and further preferably 1% by mass or less. The adhesion rate of the fiber oil agent is a percentage of the mass of the fiber oil agent with respect to the mass of the sea-island composite-derived ultrafine short fiber aggregate, and is a value obtained by the following equation.
A = (ms / mf) × 100
Here, A means the adhesion rate (%) of the fiber oil, ms means the mass (g) of the fiber oil, and mf means the mass (g) of the sea-island composite-derived ultrafine fiber aggregate.

本発明の海島複合由来極細短繊維の集合体は海島型複合繊維の海成分を除去して製造したものであり、繊維表面が洗浄された状態にあるため、単に所望量の繊維油剤を付着させれば良い。   The sea-island composite-derived ultrafine short fiber assembly of the present invention is produced by removing sea components from the sea-island composite fiber, and since the fiber surface is in a washed state, a desired amount of fiber oil agent is simply adhered. Just do it.

この繊維油剤は特に限定するものではないが、りん酸エステル塩型アニオン性界面活性剤、第4級アンモニウム塩型カチオン性界面活性剤、ベタイン型両性界面活性剤の群の中から選ばれる少なくとも1つからなると、装置内部との摩擦による帯電防止効果が特に高いことを見出した。   Although this fiber oil agent is not particularly limited, at least one selected from the group consisting of phosphate ester type anionic surfactants, quaternary ammonium salt type cationic surfactants, and betaine type amphoteric surfactants. It has been found that the antistatic effect due to friction with the inside of the apparatus is particularly high.

本発明においては、上述のような海島複合由来極細短繊維の集合体を使用するが、これ以外の短繊維集合体を、前記海島複合由来極細短繊維の集合体に加えて使用することができる。例えば、繊維径が4μmを超え、50μm以下であり、繊維長が10mm以下の太短繊維の集合体を、前記海島複合由来極細短繊維の集合体に加えて使用することができる。このような太短繊維の集合体を併用することによって、比較的厚く、空隙率が大きく、しかも保形性に優れた極細短繊維分散不織布を製造できる。この太短繊維は、あまり長すぎると繊維の分散状態が不十分となりやすいので、太短繊維の繊維長は5mm以下であるのが好ましく、3mm以下であるのがより好ましい。また、均一な長さであるように、このような長さに切断されたものであるのが好ましい。下限は特に限定するものではないが、0.1mm程度が適当である。   In the present invention, the sea-island composite-derived ultrafine short fiber aggregate as described above is used, but other short fiber aggregates can be used in addition to the sea-island composite-derived ultrafine short fiber aggregate. . For example, an aggregate of thick and short fibers having a fiber diameter of more than 4 μm and not more than 50 μm and a fiber length of 10 mm or less can be used in addition to the aggregate of sea-island composite-derived ultrafine fibers. By using such aggregates of thick and short fibers in combination, it is possible to produce an ultrafine short fiber-dispersed nonwoven fabric that is relatively thick, has a high porosity, and is excellent in shape retention. If the thick and short fibers are too long, the dispersion state of the fibers tends to be insufficient. Therefore, the fiber length of the thick and short fibers is preferably 5 mm or less, and more preferably 3 mm or less. Moreover, it is preferable that it was cut | disconnected by such length so that it may be uniform length. The lower limit is not particularly limited, but about 0.1 mm is appropriate.

この太短繊維も海島複合由来極細短繊維と同様の単一成分、又は二種以上の複数成分(横断面における配置状態も同様)から構成することができる。特に、太短繊維がポリオレフィン系樹脂(例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂など)からなる場合であっても、装置内部との摩擦による帯電を防ぎ、品位の優れる極細短繊維分散不織布を連続して製造できる。また、この太短繊維は未延伸状態であっても良いが、海島複合由来極細短繊維と同様に、延伸されているのが好ましい。   These thick and short fibers can also be composed of a single component similar to the sea-island composite-derived ultrafine short fibers, or two or more types of plural components (the arrangement state in the cross section is also the same). In particular, even when the thick and short fibers are made of polyolefin resin (for example, polyethylene resin, polypropylene resin, etc.), continuous charging of ultrafine short fiber-dispersed nonwoven fabric that prevents charging due to friction with the inside of the device and has excellent quality. Can be manufactured. The thick and short fibers may be in an unstretched state, but are preferably stretched in the same manner as the sea-island composite-derived ultrafine short fibers.

本発明においては、上述のように、海島複合由来極細短繊維の集合体に0.5質量%よりも多い量の繊維油剤が付着しているが、装置内部との摩擦による帯電を防ぎ、装置内部に付着するのを防ぐために、太短繊維の集合体にも繊維油剤が付着しているのが好ましい。この太短繊維の集合体における油剤付着量は帯電を防ぐことができる量であれば良く、特に限定するものではないが、0.1質量%以上であるのが好ましく、0.2質量%以上であるのがより好ましい。他方で、海島複合由来極細短繊維の集合体の場合と同様の理由で、1.5%以下であるのが好ましく、1%以下であるのがより好ましい。この繊維油剤の付着率は太短繊維の集合体の質量に対する繊維油剤の質量の百分率である。なお、繊維油剤は海島複合由来極細短繊維の集合体と同様のものを使用できる。また、市販の太短繊維の集合体を使用する場合、既に繊維油剤が付着している場合が多いため、既に付着している繊維油剤を除去した後に、所望の繊維油剤を所望量だけ付着させるのが好ましい。   In the present invention, as described above, the fiber oil agent in an amount of more than 0.5% by mass is attached to the aggregate of the sea-island composite-derived ultrafine short fibers. In order to prevent adhesion to the inside, it is preferable that the fiber oil agent also adheres to the aggregate of thick and short fibers. The oil agent adhesion amount in the aggregate of thick and short fibers is not particularly limited as long as it is an amount capable of preventing electrification, but is preferably 0.1% by mass or more, and 0.2% by mass or more. It is more preferable that On the other hand, it is preferably 1.5% or less, and more preferably 1% or less, for the same reason as in the case of the aggregate of sea-island composite-derived ultrafine short fibers. The adhesion rate of the fiber oil agent is a percentage of the mass of the fiber oil agent with respect to the mass of the aggregate of thick and short fibers. In addition, the thing similar to the aggregate | assembly of a sea-island composite origin ultrafine short fiber can be used for a fiber oil agent. In addition, when using an aggregate of commercially available thick and short fibers, since the fiber oil agent is already attached in many cases, after removing the already attached fiber oil agent, a desired amount of the fiber oil agent is attached. Is preferred.

このように、本発明においては太短繊維の集合体を、海島複合由来極細短繊維の集合体と併用することができるが、本発明においては、海島複合由来極細短繊維を含んでいることによる極細短繊維分散不織布の性能を低下させないように、海島複合由来極細短繊維の集合体を主体とする短繊維集合体群を使用する。つまり、海島複合由来極細短繊維の集合体を短繊維集合体群の50質量%以上を占めているように配合する。好ましくは、60質量%以上を占めるように配合し、より好ましくは70質量%以上を占めるように配合する。   As described above, in the present invention, the aggregate of thick and short fibers can be used in combination with the aggregate of sea-island composite-derived ultrafine short fibers, but in the present invention, by including the sea-island composite-derived ultrafine short fibers. In order not to deteriorate the performance of the ultrafine short fiber-dispersed nonwoven fabric, a short fiber aggregate group mainly composed of an aggregate of sea-island composite-derived ultrafine short fibers is used. That is, the aggregate of sea-island composite-derived ultrafine short fibers is blended so as to occupy 50% by mass or more of the short fiber aggregate group. Preferably, it mix | blends so that 60 mass% or more may be occupied, More preferably, it mix | blends so that 70 mass% or more may be occupied.

なお、海島複合由来極細短繊維の集合体、太短繊維の集合体のいずれも、繊維径、繊維長、及び/又は成分の相違する2種類以上の繊維集合体を併用しても良い。   In addition, two or more types of fiber aggregates having different fiber diameters, fiber lengths, and / or components may be used in combination for the aggregates of the sea-island composite-derived ultrafine short fibers and the aggregates of thick and short fibers.

次いで、前述のような海島複合由来極細短繊維の集合体を主体とする短繊維集合体群(以下、単に「短繊維集合体群」と表記することがある)をノズルへ供給する。このノズルは特に限定するものではないが、短繊維集合体群の供給側から噴出側へ向かって、連続的に横断面積が大きくなるノズルは、繊維が詰まりにくく、繊維を均一に分散させることができるため好適に使用できる。このようなノズルとして、ベンチュリー管を挙げることができる。   Next, a short fiber aggregate group (hereinafter sometimes simply referred to as a “short fiber aggregate group”) mainly composed of the aggregate of ultrathin short fibers derived from the sea-island composite as described above is supplied to the nozzle. Although this nozzle is not particularly limited, the nozzle whose cross-sectional area continuously increases from the supply side to the ejection side of the short fiber assembly group is less likely to clog the fibers and can uniformly disperse the fibers. Therefore, it can be preferably used. An example of such a nozzle is a venturi tube.

このようにノズルへ供給した短繊維集合体群は、圧縮気体の作用によってノズルから気体中(特に空気中)に噴出される際に、個々の海島複合由来極細短繊維に分割され、分散する。なお、太短繊維の集合体も含む場合には、同様に個々の太短繊維に分割され、分散する。   The short fiber aggregate group supplied to the nozzle in this way is divided and dispersed into individual sea-island composite-derived ultrafine short fibers when ejected from the nozzle into the gas (particularly in the air) by the action of the compressed gas. In addition, when including the aggregate of thick and short fibers, it is similarly divided into individual thick and short fibers and dispersed.

なお、ノズルへ供給される圧縮気体の流れは、短繊維集合体群の絡みを防ぐために、実質的に層流であるのが好ましい。圧縮気体はどのような気体を利用しても良いが、空気を用いるのが製造上好適である。また、圧縮気体は海島複合由来極細短繊維集合体から個々の海島複合由来極細短繊維に分割し、それら個々の海島複合由来極細短繊維を十分に分散させることができるように、ノズル噴出口における気体通過速度が100m/sec.以上であるのが好ましい。同様の理由で、圧縮気体の圧力は2kg/cm以上であるのが好ましい。なお、この「気体通過速度」は、ノズルから噴出された気体の1気圧における流量(m/sec)を、ノズル噴出口における横断面積(m)で除した値をいう。 In addition, it is preferable that the flow of the compressed gas supplied to the nozzle is substantially laminar in order to prevent entanglement of the short fiber aggregate group. Any gas may be used as the compressed gas, but it is preferable in manufacturing to use air. Further, the compressed gas is divided from the sea-island composite-derived ultrafine short fiber aggregates into individual sea-island composite-derived ultrafine short fibers, and the individual sea-island composite-derived ultrafine short fibers can be sufficiently dispersed at the nozzle outlet. The gas passage speed is 100 m / sec. The above is preferable. For the same reason, the pressure of the compressed gas is preferably 2 kg / cm 2 or more. The “gas passage speed” refers to a value obtained by dividing the flow rate (m 3 / sec) of the gas ejected from the nozzle at 1 atm by the cross-sectional area (m 2 ) at the nozzle ejection port.

本発明においては、ノズル噴出口の前方に、短繊維集合体群と衝突して、個々の海島複合由来極細短繊維への分割(太短繊維への分割も含む場合あり)を促進したり、分割した海島複合由来極細短繊維(太短繊維への分割も含む場合あり)の分割及び/又は分散を促進するために、衝突部材を設けるのが好ましい。この衝突部材としては、例えば、釣鐘状の衝突部材、円錐状の衝突部材、釣鐘状の突起部と平板状の衝突部とが一体化した衝突部材、円錐状の突起部と平板状の衝突部とが一体化した衝突部材、などを使用することができる。これらの中でも、釣鐘状の突起部と平板状の衝突部とが一体化した衝突部材、又は円錐状の突起部と平板状の衝突部とが一体化した衝突部材は、突起部との衝突による分割、その突起部の表面に沿って平板状の衝突部へ到達した時の衝突部との衝突による分割、及び短繊維の移動方向を変更させる短繊維の分散性に優れているため好適である。   In the present invention, in front of the nozzle outlet, it collides with a group of short fiber aggregates to promote division into individual sea-island composite-derived ultrafine short fibers (may include division into thick and short fibers), In order to promote the division and / or dispersion of the divided sea-island composite-derived ultrafine short fibers (which may include division into thick and short fibers), it is preferable to provide a collision member. Examples of the collision member include a bell-shaped collision member, a cone-shaped collision member, a collision member in which a bell-shaped projection and a flat collision portion are integrated, and a conical projection and a flat collision portion. A collision member integrated with can be used. Among these, the collision member in which the bell-shaped projection and the flat collision portion are integrated, or the collision member in which the conical projection and the flat collision portion are integrated is caused by the collision with the projection. Suitable for splitting, splitting by collision with the collision part when reaching the flat collision part along the surface of the protruding part, and dispersibility of the short fiber changing the moving direction of the short fiber is preferable. .

このような衝突部材は噴出された短繊維、短繊維集合体と衝突できるように、ノズル噴出口の前方に配置されていれば良いが、個々の短繊維への分割性及び分散性に優れているように、この衝突部材の平坦部(例えば、突起部と衝突部とを有する衝突部材の場合には、衝突部のノズル噴出口側表面、円錐状の衝突部材の場合は円錐の底面、釣鐘状の衝突部材の場合は釣鐘の底面)とノズル噴出口との最短距離が1〜100mmであるのが好ましく、5〜40mmであるのがより好ましく、5〜30mmであるのが更に好ましく、10〜30mmであるのが更に好ましく、10〜20mmであるのが最も好ましい。また、衝突部材が釣鐘状の衝突部材、円錐状の衝突部材、釣鐘状の突起部と平板状の衝突部とが一体化された衝突部材、或いは円錐状の突起部と平板状の衝突部とが一体化された衝突部材からなる場合、短繊維への分割性及び分散性に優れているように、釣鐘状、円錐状、或いは突起部の軸がノズル噴出口の中心と一致するように配置するのが好ましい。また、これら衝突部材を設置する場合には、短繊維への分割性及び分散性に優れているように、釣鐘状、円錐状、或いは突起部の頂点がノズル噴出口と対向するように設置するのが好ましい。衝突部材の平坦部(例えば、平板状衝突部を有する場合はそのノズル噴出口側表面、円錐状の衝突部材の場合は円錐の底面、釣鐘状の衝突部材の場合は釣鐘の底面)の形状や面積は、ノズル側から見た投影面積において、前記ノズル噴出口から噴出された圧縮気体を十分に受けることができれば良く、ノズル噴出口の径、ノズルの広がり角、ノズル噴出口から衝突部材までの距離、などにより適宜設計される。   Such a collision member may be arranged in front of the nozzle outlet so that it can collide with the ejected short fibers and short fiber aggregates, but it has excellent splitting and dispersibility into individual short fibers. As shown in the figure, the flat part of the collision member (for example, in the case of a collision member having a protrusion and a collision part, the nozzle outlet surface of the collision part, in the case of a conical collision member, the bottom of the cone, the bell In the case of a collision member, the shortest distance between the bottom of the bell) and the nozzle outlet is preferably 1 to 100 mm, more preferably 5 to 40 mm, still more preferably 5 to 30 mm. More preferably, it is -30 mm, and it is most preferable that it is 10-20 mm. In addition, the collision member is a bell-shaped collision member, a cone-shaped collision member, a collision member in which a bell-shaped projection and a flat collision are integrated, or a cone-shaped projection and a flat collision If it is made of an impact member that is integrated, the bell-shaped, conical, or protruding shaft is aligned with the center of the nozzle outlet so that it can be divided into short fibers and dispersed well. It is preferable to do this. In addition, when these collision members are installed, they are installed so that the bell shape, the conical shape, or the apex of the protruding portion faces the nozzle outlet so that the splitting into short fibers and the dispersibility are excellent. Is preferred. The shape of the flat part of the collision member (for example, if it has a flat collision part, the nozzle outlet surface, the bottom of the cone in the case of a conical collision member, the bottom of the bell in the case of a bell-shaped collision member) The area only needs to be able to sufficiently receive the compressed gas ejected from the nozzle outlet in the projected area as viewed from the nozzle side. The diameter of the nozzle outlet, the spread angle of the nozzle, the nozzle outlet to the collision member It is designed as appropriate depending on the distance.

次いで、この分散した海島複合由来極細短繊維(太短繊維を含む場合もある)を集積部材に集積して、繊維ウエブを形成する。この集積部材としては、例えば、多孔性のロールやネットなどの支持体を利用して集積することができる。なお、海島複合由来極細短繊維等の短繊維は自然落下させて集積しても良いし、集積部材の下方から気体を吸引して集積しても良い。後者の場合、吸引によって繊維ウエブの形成を安定して行なうことができることに加えて、地合いを向上させる作用が生じるため好適である。すなわち吸引すると、支持体上の短繊維の集積が少ない部分は、短繊維が多く集積している部分よりも圧損が低いため、相対的に吸引力が高くなり、この部分に短繊維が多く集積する現象が生じ、短繊維の集積量を平均化して、地合いを向上させる。吸引力が大きいほどこの効果が高いため、ノズルからの圧縮気体の噴出風量に対する集積部材側の吸引風量を1.1倍以上、好ましくは1.2倍以上、より好ましくは1.3倍以上とするのが良く、特に上限はないが3倍以下が経済的である。   Subsequently, the dispersed sea-island composite-derived ultrafine short fibers (which may include thick and short fibers) are accumulated on an accumulation member to form a fiber web. As this stacking member, for example, it is possible to stack using a support such as a porous roll or a net. Short fibers such as sea-island composite-derived ultrafine short fibers may be naturally dropped and accumulated, or may be accumulated by sucking gas from below the accumulation member. In the latter case, the formation of the fiber web can be stably performed by suction, and in addition, the effect of improving the texture is preferable. That is, when sucked, the portion where the short fibers are less accumulated on the support has a lower pressure loss than the portion where many short fibers are accumulated, so the suction force is relatively high, and many short fibers are accumulated in this portion. Phenomenon occurs, and the amount of short fibers accumulated is averaged to improve the texture. Since this effect is higher as the suction force is larger, the suction air volume on the accumulation member side is 1.1 times or more, preferably 1.2 times or more, more preferably 1.3 times or more with respect to the air flow rate of the compressed gas from the nozzle. There is no particular upper limit, but it is economical not more than three times.

次いで、この繊維ウエブを結合して極細短繊維分散不織布を製造することができる。この結合方法は特に限定されるものではないが、例えば、繊維ウエブ構成材(海島複合由来極細短繊維、太短繊維など)を融着させる方法、エマルジョンやラテックスなどのバインダーにより接着する方法、水流などの流体流により絡合する方法、などを単独で、あるいは併用する方法がある。これらの中でも繊維ウエブ構成材を融着させる方法であると、海島複合由来極細短繊維等が均一に分散した、地合いの優れる極細短繊維分散不織布とすることができるため好適である。   Subsequently, the fiber web can be bonded to produce an ultrafine short fiber dispersed nonwoven fabric. This bonding method is not particularly limited. For example, a method of fusing fiber web constituent materials (sea-island composite-derived ultrafine short fibers, thick short fibers, etc.), a method of bonding with a binder such as emulsion or latex, There are methods such as a method of entanglement with a fluid flow such as singly or in combination. Among these, the method of fusing the fiber web constituent material is preferable because it can be an ultrafine short fiber-dispersed nonwoven fabric having excellent texture in which sea-island composite-derived ultrafine short fibers and the like are uniformly dispersed.

なお、各種用途に適合するように、極細短繊維分散不織布に対して後加工を実施することができる。例えば、帯電処理、撥水処理、親水化処理、カレンダー処理などを実施することができる。   In addition, post-processing can be implemented with respect to an ultrafine short fiber dispersion | distribution nonwoven fabric so that it may suit various uses. For example, charging treatment, water repellent treatment, hydrophilic treatment, calendar treatment, and the like can be performed.

本発明の極細短繊維分散不織布の製造に用いることのできる製造装置について、その具体的態様を示す図1に沿って簡単に説明する。なお、海島複合由来極細短繊維の集合体のみからなる短繊維集合体群を用いる場合について説明する。   A production apparatus that can be used for producing the ultrafine short fiber-dispersed nonwoven fabric of the present invention will be briefly described with reference to FIG. In addition, the case where the short fiber aggregate group which consists only of an aggregate of sea-island composite origin ultrafine short fibers is demonstrated is demonstrated.

本発明の極細短繊維分散不織布の製造装置は、図1に示されるように、混合装置10、供給管11、圧縮気体導入口20、ノズル30、分散室40、衝突部材45、集積部材50、気体吸引装置60、熱融着装置90、および巻き取り装置100を有している。   As shown in FIG. 1, the production apparatus for an ultrafine short fiber-dispersed nonwoven fabric of the present invention includes a mixing device 10, a supply pipe 11, a compressed gas inlet 20, a nozzle 30, a dispersion chamber 40, a collision member 45, an accumulation member 50, It has a gas suction device 60, a heat fusion device 90, and a winding device 100.

混合装置10として、例えば、ミキサーを挙げることができ、この混合装置10によって、繊維径が4μm以下で繊維長が3mm以下、かつ油剤付着率が5質量%を超える海島複合由来極細短繊維の集合体群を、小さい集合体群に分割したり、解したりすることができる。   As the mixing device 10, for example, a mixer can be mentioned. By this mixing device 10, a collection of sea-island composite-derived ultrafine short fibers having a fiber diameter of 4 μm or less, a fiber length of 3 mm or less, and an oil agent adhesion rate exceeding 5 mass%. A body group can be divided into small aggregate groups or solved.

供給管11は、前記混合装置10で解された海島複合由来極細短繊維の集合体群をノズル30へ導く。   The supply pipe 11 guides the aggregate group of sea-island composite-derived ultrafine short fibers solved by the mixing apparatus 10 to the nozzle 30.

ノズル30は海島複合由来極細短繊維の詰まりが発生せず、海島複合由来極細短繊維を均一に分散させることのできるベンチュリー管を使用するのが好ましい。このノズル30の上方には、圧縮気体導入口20が設けられ、圧縮気体発生装置(図示せず)により発生させた圧縮気体を導入できるようになっている。この圧縮気体はどのような気体を使用しても良いが、空気を用いるのが製造上好適である。圧縮気体発生装置としては、例えば、コンプレッサーを使用することができる。   The nozzle 30 is preferably a Venturi tube that does not cause clogging of the sea-island composite-derived ultrafine short fibers and can uniformly disperse the sea-island composite-derived ultrafine short fibers. A compressed gas inlet 20 is provided above the nozzle 30 so that compressed gas generated by a compressed gas generator (not shown) can be introduced. Any gas may be used as the compressed gas, but air is suitable for manufacturing. As the compressed gas generator, for example, a compressor can be used.

ノズル30の噴出口の前方には、突起を有する衝突部材45が設けられており、ノズル30から噴出された海島複合由来極細短繊維、海島複合由来極細短繊維の集合体若しくはそれらの集合体群が衝突して、個々の海島複合由来極細短繊維に分割され、分散する。   An impingement member 45 having a protrusion is provided in front of the nozzle 30 outlet, and the sea-island composite-derived ultrafine short fibers, the sea-island composite-derived ultrafine short fibers, or a group of those ejected from the nozzle 30 Collide and divide into individual sea-island composite-derived ultrafine short fibers and disperse.

分散室40は前記衝突部材45を囲むようにノズル30の噴出口側に付設され、後述する集積部材50まで伸びている。そのため、ノズル30から噴出され、衝突部材45と衝突することによって個々の海島複合由来極細短繊維に分割された海島複合由来極細短繊維は飛散することなく、分散室40内で分散する。   The dispersion chamber 40 is attached to the ejection port side of the nozzle 30 so as to surround the collision member 45 and extends to the accumulation member 50 described later. Therefore, the sea-island composite-derived ultrafine fibers that are ejected from the nozzle 30 and divided into individual sea-island composite-derived ultrafine short fibers by colliding with the collision member 45 are dispersed in the dispersion chamber 40 without being scattered.

集積部材50は分散室40の底部に位置し、分散室40内の気体40a中に分散し、分散室40内を降下した海島複合由来極細短繊維70を集積し、繊維ウエブ80を形成できる。集積部材50として多孔性のロールやネットなどを用いることができ、集積部材50の下方にサクションボックスなどの気体吸引装置60を設ければ、分散室40内の気体40aを吸引して、繊維ウエブの地合いを良くする効果が得られる。なお、この集積部材50は移動可能であり、移動速度を調整することにより、繊維ウエブの目付を調整できる。   The accumulating member 50 is located at the bottom of the dispersion chamber 40, disperses in the gas 40 a in the dispersion chamber 40, and accumulates the sea-island composite-derived ultrafine fibers 70 descending in the dispersion chamber 40 to form the fiber web 80. A porous roll, a net, or the like can be used as the accumulating member 50. If a gas suction device 60 such as a suction box is provided below the accumulating member 50, the gas 40a in the dispersion chamber 40 is sucked and the fiber web is drawn. The effect of improving the texture of the. The accumulation member 50 is movable, and the basis weight of the fiber web can be adjusted by adjusting the moving speed.

熱融着装置90は集積部材50の移動によって搬送された繊維ウエブ80を熱処理し、海島複合由来極細短繊維を融着させて、極細短繊維分散不織布を形成できる。この熱融着装置90は、例えば、熱風乾燥機から構成することができる。   The heat fusion apparatus 90 can heat-treat the fiber web 80 conveyed by the movement of the accumulation member 50 and fuse the sea-island composite-derived ultrafine short fibers to form an ultrafine short fiber dispersed nonwoven fabric. This heat sealing | fusion apparatus 90 can be comprised from a hot air dryer, for example.

巻き取り装置100は極細短繊維分散不織布83を巻き取ることができる。   The winding device 100 can wind up the ultrafine short fiber dispersed nonwoven fabric 83.

本発明の極細短繊維分散不織布は上述の製造方法により製造されたものであるため、品位の優れる極細短繊維分散不織布である。また、海島複合由来極細短繊維は束の状態にはなく、個々の繊維状態で分散した状態にあるため、海島複合由来極細短繊維を含んでいることによる諸特性(濾過性、柔軟性、電気絶縁性など)に優れている。   Since the ultrafine short fiber dispersed nonwoven fabric of the present invention is produced by the above-described production method, it is an ultrafine short fiber dispersed nonwoven fabric having excellent quality. In addition, since the sea-island composite-derived ultrafine short fibers are not in a bundle state but are dispersed in individual fiber states, various characteristics (filterability, flexibility, electricity, etc.) due to the inclusion of sea-island composite-derived ultrafine short fibers. It has excellent insulation properties.

なお、本発明の製造方法においては、海島複合由来極細短繊維の分散媒体である気体(特には空気)を吸引するのが好ましいものの、湿式法により繊維ウエブを形成した場合よりも繊維同士が密着しにくく、つまり、見掛密度が低い、厚みが厚い、嵩高である、という空隙の多い状態の極細短繊維分散不織布であることができる。例えば、極細短繊維分散不織布の見掛密度、目付、厚さは特に限定するものではないが、0.01〜0.3g/cmの見掛密度の低いものであることができ、3〜300g/mの目付の軽いものであることができ、厚さ(20g/cm加重時の値)0.06〜10mmの薄いものであることができる。なお、カレンダー処理を実施することによって、厚さを薄くし、見掛密度を高めることができる。この場合には、前記範囲をはずれた範囲の値となることがある。 In the production method of the present invention, it is preferable to suck a gas (particularly air) that is a dispersion medium of sea-island composite-derived ultrafine short fibers, but the fibers are more closely bonded than when a fiber web is formed by a wet method. In other words, it can be an ultrafine short fiber-dispersed nonwoven fabric having a large number of voids such as low apparent density, low thickness, and high bulk. For example, the apparent density, basis weight, and thickness of the ultrafine short fiber-dispersed nonwoven fabric are not particularly limited, but may be as low as 0.01 to 0.3 g / cm 3 in apparent density, It can be a light one with a basis weight of 300 g / m 2 , and can be a thin one with a thickness (value when 20 g / cm 2 is applied) 0.06 to 10 mm. Note that by performing the calendar process, the thickness can be reduced and the apparent density can be increased. In this case, the value may be a value outside the range.

本発明の極細短繊維分散不織布は、海島複合由来極細短繊維を主体としていることによる各種特性(例えば、濾過性能、柔軟性、電気絶縁性能、払拭性、及び/又は隠蔽性など)に優れているため、本発明の極細短繊維分散不織布は、例えば、気体又は液体用フィルタ(ヘパフィルタ、バグフィルタ、カートリッジフィルタなど)、脱臭フィルタ用基材、消臭フィルタ用基材、マスク用基材(手術用、産業用など)、フィルタプレス、手術用ドレープ、手術用ガウン、おむつカバーリング、電池用セパレータ、吸水シート(加湿器用など)などの各種用途に使用することができる。   The ultrafine short fiber-dispersed nonwoven fabric of the present invention is excellent in various properties (for example, filtration performance, flexibility, electrical insulation performance, wiping property, and / or concealment property) due to being mainly composed of sea-island composite-derived ultrafine short fibers. Therefore, the ultrafine short fiber-dispersed nonwoven fabric of the present invention includes, for example, a gas or liquid filter (hepa filter, bag filter, cartridge filter, etc.), a deodorizing filter substrate, a deodorizing filter substrate, a mask substrate (surgical operation) And industrial use), filter presses, surgical drapes, surgical gowns, diaper coverings, battery separators, water absorbent sheets (such as humidifiers), and the like.

以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.

(実施例1)
ポリ乳酸からなる海成分中に、高密度ポリエチレンとポリプロピレンとからなる島成分が25個存在する、複合紡糸法により製造した海島型複合繊維(繊度:1.7dtex、長さ1mmに切断されたもの)を用意した。この海島型複合繊維を10mass%水酸化ナトリウム水溶液中に浸漬して、海成分であるポリ乳酸を除去した後、風乾し、高密度ポリエチレンとポリプロピレンとが混在した海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Aを得た。次いで、この束状集合体Aを、第4級アンモニウム塩型カチオン性界面活性剤水溶液(固形分濃度:0.25質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が1質量%付着した束状集合体Aを製造した。
(Example 1)
A sea-island type composite fiber manufactured by a composite spinning method, in which 25 island components made of high-density polyethylene and polypropylene are present in a sea component made of polylactic acid (fineness: 1.7 dtex, cut to a length of 1 mm) ) Was prepared. This sea-island type composite fiber is immersed in a 10 mass% sodium hydroxide aqueous solution to remove polylactic acid, which is a sea component, and then air-dried. A sea-island composite-derived ultrafine short fiber (fiber diameter) mixed with high-density polyethylene and polypropylene is mixed. : 2 μm, fiber length: 1 mm, unfibrillated, stretched, cross-sectional shape (sea-island type) having substantially the same diameter in the fiber axis direction. Next, the bundle assembly A was immersed in a quaternary ammonium salt type cationic surfactant aqueous solution (solid content concentration: 0.25% by mass) and squeezed so that the pickup became 500%. Was put into a hot air dryer for one day and night to evaporate the water, thereby producing a bundled assembly A to which 1% by mass of the fiber oil was adhered.

次いで、図1に示すような製造装置により、極細短繊維分散不織布を製造した。つまり、前記束状集合体Aをミキサー10へ供給して解し、ノズル噴出口における横断面形状が円形(直径:8.5mm)のベンチュリー管30へ、コンプレッサーから圧縮気体導入口20を通じて圧縮空気(圧力=6kg/cm、実質的に層流)を導入することにより、前記解した束状集合体Aを材料供給口11からベンチュリー管30へ供給し、ベンチュリー管30から海島複合由来極細短繊維及び束状集合体Aを空気中に噴出(ベンチュリー管30の噴出口における気体通過速度:147m/s、噴出口からの噴出量:約0.5m/min.)し、ベンチュリー管の噴出口前方に設けた、円錐状の突起部と平板状衝突部(横断面形状:円形、直径:25mm)とを備えた衝突部材45に衝突させて、個々の海島複合由来極細短繊維に分割し、分散させた。なお、衝突部材45はノズル噴出口から平板状衝突部までの距離が15mmであり、しかも突起部の軸が、ノズル噴出口の中心と一致するように、突起部の頂点がノズル噴出口と対向するように配置した。 Subsequently, an ultrafine short fiber-dispersed nonwoven fabric was produced by a production apparatus as shown in FIG. That is, the bundle assembly A is supplied to the mixer 10 to be solved, and the compressed air is supplied from the compressor through the compressed gas inlet 20 to the venturi tube 30 having a circular cross section at the nozzle outlet (diameter: 8.5 mm). By introducing (pressure = 6 kg / cm 2 , substantially laminar flow), the above-described bundled aggregate A is supplied from the material supply port 11 to the Venturi tube 30, and from the Venturi tube 30 to the sea-island composite-derived ultrafine The fiber and bundle assembly A are ejected into the air (the gas passage speed at the outlet of the venturi tube 30 is 147 m / s, the amount of ejection from the outlet is about 0.5 m 3 / min.), And the venturi tube is ejected. It is made to collide with the collision member 45 provided with the conical protrusion part and flat plate-shaped collision part (cross-sectional shape: circular, diameter: 25 mm) provided in front of the exit, and each sea-island composite origin ultrafine short fiber It was divided into fibers and dispersed. The collision member 45 has a distance of 15 mm from the nozzle outlet to the flat collision part, and the apex of the protrusion faces the nozzle outlet so that the axis of the protrusion coincides with the center of the nozzle outlet. Arranged to be.

次いで、この分散させた個々の海島複合由来極細短繊維を、前記衝突部材45を囲むとともにベンチュリー管30と連結しており、海島複合由来極細短繊維を集積できるネットの方向へ直線状に伸びている分散室40により、ネット(集積部材50)へ供給し、移動するネット上に載置しておいたポリエチレンテレフタレート繊維からなる湿式不織布(目付:10g/m、平均繊維径:3.2μm)上に集積させて、極細短繊維ウエブを形成した。なお、集積させる際にはネットの下方に配置したサクションボックス60により、0.7m/min.で吸引した。また、ノズル噴出口から分散室40の集積部材側端部までの距離は8cmであり、分散室40の集積部材側端部における空気流速は4.6m/sであった。 Next, the dispersed individual sea-island composite ultra-short fibers are surrounded by the collision member 45 and connected to the Venturi tube 30, and extend linearly in the direction of the net where the sea-island composite-derived ultra-short fibers can be accumulated. Wet non-woven fabric made of polyethylene terephthalate fiber (weighing: 10 g / m 2 , average fiber diameter: 3.2 μm) supplied to the net (accumulating member 50) by the dispersion chamber 40, which has been placed on the moving net It was accumulated on top to form an ultrafine short fiber web. In addition, when accumulating, it is 0.7 m < 3 > / min. By the suction box 60 arrange | positioned under the net | network. Sucked in. The distance from the nozzle outlet to the end of the dispersion chamber 40 on the stacking member side was 8 cm, and the air flow rate at the end of the dispersion chamber 40 on the stacking member side was 4.6 m / s.

この極細短繊維ウエブ−湿式不織布積層体を、温度135℃のオーブン(熱融着装置90)に1分間通し、海島複合由来極細短繊維の高密度ポリエチレン成分によって極細短繊維ウエブを結合し、次いでリライアントプレス機(温度:130℃、20秒間)に通し、放冷却した後、極細短繊維ウエブ−湿式不織布積層体から湿式不織布基材を剥離して、目付20g/m、厚さ0.1mm、見掛密度0.2g/cmの極細短繊維分散不織布を製造した。この極細短繊維分散不織布の製造を1000m行ったが、海島複合由来極細短繊維が極細短繊維ウエブ上に塊となって落下することなく、非常に品位の高い極細短繊維分散不織布を連続して製造することができた。 This ultrafine short fiber web-wet non-woven fabric laminate is passed through an oven (heat fusion apparatus 90) at a temperature of 135 ° C. for 1 minute, and the ultrashort fiber web is bonded by the high-density polyethylene component of the sea-island composite-derived ultrafine short fiber, After passing through a reliant press machine (temperature: 130 ° C., 20 seconds) and allowing to cool, the wet nonwoven fabric substrate was peeled from the ultrafine short fiber web-wet nonwoven fabric laminate, and the basis weight was 20 g / m 2 and the thickness was 0.1 mm. An ultrafine short fiber-dispersed nonwoven fabric having an apparent density of 0.2 g / cm 3 was produced. The production of this ultrafine short fiber-dispersed nonwoven fabric was carried out for 1000 m, and the ultra-short fiber-dispersed non-woven fabric of very high quality was continuously produced without the sea-island composite-derived ultrafine short fibers falling as a lump onto the ultrafine short fiber web. Could be manufactured.

(実施例2)
ポリ乳酸からなる海成分中に、ポリプロピレンからなる島成分が25個存在する、複合紡糸法により製造した海島型複合繊維(繊度:1.7dtex、長さ1mmに切断されたもの)を用意した。この海島型複合繊維を10mass%水酸化ナトリウム水溶液中に浸漬して、海成分であるポリ乳酸を除去した後、風乾し、ポリプロピレンからなる海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Bを得た。次いで、この束状集合体Bを、ベタイン型両性界面活性剤水溶液(固形分濃度:0.2質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.8質量%付着した束状集合体Bを製造した。
(Example 2)
A sea-island composite fiber (fineness: 1.7 dtex, cut to a length of 1 mm) produced by a composite spinning method in which 25 island components made of polypropylene are present in a sea component made of polylactic acid was prepared. This sea-island type composite fiber is immersed in a 10 mass% sodium hydroxide aqueous solution to remove polylactic acid, which is a sea component, and then air-dried. A sea-island composite-derived ultrafine short fiber made of polypropylene (fiber diameter: 2 μm, fiber length: 1 mm, unfibrillated, stretched, and bundle assembly B having a cross-sectional shape (sea-island type) having substantially the same diameter in the fiber axis direction was obtained. Next, the bundle assembly B was immersed in an aqueous solution of a betaine-type amphoteric surfactant (solid content concentration: 0.2% by mass), squeezed to a pickup of 500%, and then placed in a hot air dryer at a temperature of 65 ° C. One day and night was added to evaporate the water, and bundle assembly B with 0.8% by mass of the fiber oil agent was produced.

他方、実施例1と全く同様にして、高密度ポリエチレンとポリプロピレンとが混在した海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Aを得た。次いで、この束状集合体Aを、ベタイン型両性界面活性剤水溶液(固形分濃度:0.2質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.8質量%付着した束状集合体Aを製造した。   On the other hand, in the same manner as in Example 1, a sea-island composite-derived ultrafine short fiber in which high-density polyethylene and polypropylene are mixed (fiber diameter: 2 μm, fiber length: 1 mm, unfibrillated, stretched, fiber axis direction , A bundle assembly A having a cross-sectional shape (sea-island type) having substantially the same diameter was obtained. Next, this bundle assembly A was immersed in an aqueous solution of betaine type amphoteric surfactant (solid content concentration: 0.2% by mass) and squeezed to a pickup of 500%, and then placed in a hot air dryer at a temperature of 65 ° C. One day and night was added to evaporate the water to produce a bundled assembly A to which 0.8% by mass of the fiber oil was adhered.

その後、前記束状集合体Bと束状集合体Aとを1:1の質量比率でミキサー10へ供給して解し、この解した束状集合体Aと束状集合体Bの混合短繊維集合体群をベンチュリー管30へ供給したこと以外は実施例1と全く同様にして、目付20g/m、厚さ0.1mm、見掛密度0.2g/cmの極細短繊維分散不織布を製造した。この極細短繊維分散不織布の製造を1000m行ったが、海島複合由来極細短繊維が極細短繊維ウエブ上に塊となって落下することなく、非常に品位の高い極細短繊維分散不織布を連続して製造することができた。 Thereafter, the bundle assembly B and the bundle assembly A are supplied to the mixer 10 at a mass ratio of 1: 1, and the mixed short fibers of the bundle assembly A and the bundle assembly B are solved. Except that the assembly group was supplied to the venturi tube 30, an ultrafine short fiber dispersed nonwoven fabric having a basis weight of 20 g / m 2 , a thickness of 0.1 mm and an apparent density of 0.2 g / cm 3 was used in the same manner as in Example 1. Manufactured. The production of this ultrafine short fiber-dispersed nonwoven fabric was carried out for 1000 m, and the ultra-short fiber-dispersed non-woven fabric of very high quality was continuously produced without the sea-island composite-derived ultrafine short fibers falling as a lump onto the ultrafine short fiber web. Could be manufactured.

(実施例3)
ポリ乳酸からなる海成分中に、ナイロン6からなる島成分が25個存在する、複合紡糸法により製造した海島型複合繊維(繊度:1.7dtex、長さ1mmに切断されたもの)を用意した。この海島型複合繊維を10mass%水酸化ナトリウム水溶液中に浸漬して、海成分であるポリ乳酸を除去した後、風乾し、ナイロン6からなる海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Cを得た。次いで、この束状集合体Cを、りん酸エステル塩型アニオン性界面活性剤水溶液(固形分濃度:0.15質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.6質量%付着した束状集合体Cを製造した。
(Example 3)
A sea-island type composite fiber (fineness: 1.7 dtex, cut to a length of 1 mm) produced by a composite spinning method in which 25 island components made of nylon 6 are present in a sea component made of polylactic acid was prepared. . This sea-island type composite fiber is immersed in a 10 mass% sodium hydroxide aqueous solution to remove polylactic acid, which is a sea component, and then air-dried. A sea-island composite-derived ultrafine short fiber made of nylon 6 (fiber diameter: 2 μm, fiber length) 1 mm, unfibrillated, stretched, and substantially the same diameter in the fiber axis direction, a cross-sectional shape: sea-island type). Next, the bundle assembly C was immersed in a phosphate ester salt type anionic surfactant aqueous solution (solid content concentration: 0.15% by mass) and squeezed to a pickup of 500%. A bundle of aggregates C with 0.6% by mass of the fiber oil agent was produced by putting it in a hot air drier for one day to evaporate the water.

他方、実施例1と全く同様にして、高密度ポリエチレンとポリプロピレンとが混在した海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Aを得た。次いで、この束状集合体Aを、りん酸エステル塩型アニオン性界面活性剤水溶液(固形分濃度:0.15質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.6質量%付着した束状集合体Aを製造した。   On the other hand, in the same manner as in Example 1, a sea-island composite-derived ultrafine short fiber in which high-density polyethylene and polypropylene are mixed (fiber diameter: 2 μm, fiber length: 1 mm, unfibrillated, stretched, fiber axis direction , A bundle assembly A having a cross-sectional shape (sea-island type) having substantially the same diameter was obtained. Next, the bundle assembly A was immersed in a phosphoric ester salt type anionic surfactant aqueous solution (solid content concentration: 0.15% by mass) and squeezed to a pickup of 500%. The bundled assembly A with 0.6% by mass of the fiber oil agent was produced by putting it in a hot air dryer for one day to evaporate the water.

その後、前記束状集合体Cと束状集合体Aとを1:1の質量比率でミキサー10へ供給して解し、この解した束状集合体Aと束状集合体Cの混合短繊維集合体群をベンチュリー管30へ供給したこと以外は実施例1と全く同様にして、目付20g/m、厚さ0.1mm、見掛密度0.2g/cmの極細短繊維分散不織布を製造した。この極細短繊維分散不織布の製造を1000m行ったが、海島複合由来極細短繊維が極細短繊維ウエブ上に塊となって落下することなく、非常に品位の高い極細短繊維分散不織布を連続して製造することができた。 Thereafter, the bundle assembly C and the bundle assembly A are supplied to the mixer 10 at a mass ratio of 1: 1, and the mixed short fibers of the bundle assembly A and the bundle assembly C are solved. Except that the assembly group was supplied to the venturi tube 30, an ultrafine short fiber dispersed nonwoven fabric having a basis weight of 20 g / m 2 , a thickness of 0.1 mm and an apparent density of 0.2 g / cm 3 was used in the same manner as in Example 1. Manufactured. The production of this ultrafine short fiber-dispersed nonwoven fabric was carried out for 1000 m, and the ultra-short fiber-dispersed non-woven fabric of very high quality was continuously produced without the sea-island composite-derived ultrafine short fibers falling as a lump onto the ultrafine short fiber web. Could be manufactured.

(実施例4)
実施例2と全く同様にして、ポリプロピレンからなる海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Bを得た。次いで、この束状集合体Bを、りん酸エステル塩型アニオン性界面活性剤水溶液(固形分濃度:0.15質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.6質量%付着した束状集合体Bを製造した。
Example 4
In exactly the same manner as in Example 2, sea-island composite-derived ultrafine short fibers made of polypropylene (fiber diameter: 2 μm, fiber length: 1 mm, unfibrillated, stretched, having substantially the same diameter in the fiber axis direction. , Cross-sectional shape: sea-island type). Next, this bundled assembly B was immersed in a phosphoric ester salt type anionic surfactant aqueous solution (solid content concentration: 0.15% by mass) and squeezed to a pickup of 500%. The bundle assembly B to which 0.6 mass% of the fiber oil agent was adhered was manufactured by putting it in a hot air dryer for one day and night to evaporate the water.

他方、芯成分がポリプロピレンからなり、鞘成分が高密度ポリエチレンからなり、繊度0.8dtex(繊維径:10.5μm)で、繊維長が5mmの太短繊維の束状集合体Dを用意した。その後、イオン交換水とエタノールとを1:1の重量比で混合した混合溶媒を40℃に加温し、この混合溶媒中に前記束状集合体Dを1時間浸漬し、遠心脱水する操作を2回繰り返した後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、前記束状集合体Dに付着していた繊維油剤を除去した。次いで、この束状集合体Dを、りん酸エステル塩型アニオン性界面活性剤水溶液(固形分濃度:0.1質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.4質量%付着した束状集合体Dを製造した。   On the other hand, a bundled assembly D of thick and short fibers having a core component made of polypropylene, a sheath component made of high-density polyethylene, a fineness of 0.8 dtex (fiber diameter: 10.5 μm), and a fiber length of 5 mm was prepared. Thereafter, a mixed solvent in which ion-exchanged water and ethanol are mixed at a weight ratio of 1: 1 is heated to 40 ° C., and the bundled assembly D is immersed in this mixed solvent for 1 hour, followed by centrifugal dehydration. After repeating twice, the fiber oil agent adhering to the bundle assembly D was removed by putting it in a hot air dryer at a temperature of 65 ° C. for one day to evaporate the water. Next, the bundle assembly D was immersed in a phosphoric ester salt type anionic surfactant aqueous solution (solid content concentration: 0.1% by mass) and squeezed to a pickup of 500%. A bundled assembly D having a fiber oil agent adhered to 0.4% by mass was produced by putting it in a hot air drier for one day to evaporate the water.

その後、前記束状集合体Bと束状集合体Dとを1:1の質量比率でミキサー10へ供給して解し、この解した束状集合体Bと束状集合体Dの混合短繊維集合体群をベンチュリー管30へ供給したこと以外は実施例1と全く同様にして、目付40g/m、厚さ0.5mm、見掛密度0.08g/cmの極細短繊維分散不織布を製造した。この極細短繊維分散不織布の製造を1000m行ったが、海島複合由来極細短繊維及び太短繊維が極細短繊維ウエブ上に塊となって落下することなく、非常に品位の高い極細短繊維分散不織布を連続して製造することができた。 Thereafter, the bundle assembly B and the bundle assembly D are supplied to the mixer 10 at a mass ratio of 1: 1, and the mixed short fibers of the bundle assembly B and the bundle assembly D are solved. Except for supplying the assembly group to the Venturi tube 30, an ultrafine short fiber dispersed nonwoven fabric having a basis weight of 40 g / m 2 , a thickness of 0.5 mm, and an apparent density of 0.08 g / cm 3 was used. Manufactured. The production of this ultra-fine short fiber-dispersed non-woven fabric was carried out for 1000 m, and the ultra-thin short fiber-dispersed non-woven fabric of very high quality without the ultra-short fiber and the thick and short fibers originating from the sea-island composite falling as a lump on the ultra-short short fiber web. Could be manufactured continuously.

(比較例1)
実施例1と全く同様にして、高密度ポリエチレンとポリプロピレンとが混在した海島複合由来極細短繊維(繊維径:2μm、繊維長:1mm、フィブリル化していない、延伸されている、繊維軸方向において実質的に同じ直径を有する、断面形状:海島型)の束状集合体Aを得た。次いで、この束状集合体Aを、ポリオキシエチレン型非イオン性界面活性剤水溶液(固形分濃度:0.125質量%)に浸漬し、ピックアップ500%になるよう絞った後、温度65℃の熱風乾燥機に1昼夜入れて水分を蒸発させて、繊維油剤が0.5質量%付着した束状集合体Aを製造した。
(Comparative Example 1)
In exactly the same manner as in Example 1, a sea-island composite-derived ultrafine short fiber in which high-density polyethylene and polypropylene are mixed (fiber diameter: 2 μm, fiber length: 1 mm, unfibrillated, stretched, substantially in the fiber axis direction Thus, a bundled assembly A having a cross-sectional shape (sea-island type) having the same diameter was obtained. Next, the bundle assembly A was immersed in a polyoxyethylene-type nonionic surfactant aqueous solution (solid content concentration: 0.125% by mass) and squeezed to a pickup of 500%. The bundle assembly A to which the fiber oil agent adhered 0.5 mass% was manufactured by putting in a hot air dryer for one day and night to evaporate the water.

その後、前記束状集合体Aをベンチュリー管30へ供給したこと以外は実施例1と全く同様にして、目付20g/m、厚さ0.1mm、見掛密度0.2g/cmの極細短繊維分散不織布を製造した。この極細短繊維分散不織布の製造を500m行ったが、極細短繊維ウエブ上に海島複合由来極細短繊維の塊が時折落下し、品位の悪い極細短繊維分散不織布しか製造することができなかった。 Then, except that the bundle assembly A was supplied to the Venturi tube 30, it was exactly the same as in Example 1 and was extremely fine with a basis weight of 20 g / m 2 , a thickness of 0.1 mm, and an apparent density of 0.2 g / cm 3 . A short fiber dispersed nonwoven fabric was produced. Production of this ultrafine short fiber-dispersed nonwoven fabric was carried out for 500 m, but a lump of ultrathin short fibers derived from the sea-island composite occasionally dropped on the ultrafine short fiber web, and only a poor quality ultrafine short fiber dispersed nonwoven fabric could be produced.

本発明の極細短繊維分散不織布を製造することのできる製造装置の模式的断面図Schematic cross-sectional view of a production apparatus capable of producing the ultrafine short fiber dispersed nonwoven fabric of the present invention

符号の説明Explanation of symbols

10 混合装置
11 供給管
20 圧縮気体導入口
30 ノズル
40 分散室
45 衝突部材
50 集積部材
60 気体吸引装置
70 海島複合由来極細短繊維
80 繊維ウエブ
83 極細短繊維分散不織布
90 熱融着装置
100 巻き取り装置
DESCRIPTION OF SYMBOLS 10 Mixing device 11 Supply pipe 20 Compressed gas inlet 30 Nozzle 40 Dispersion chamber 45 Collision member 50 Accumulation member 60 Gas suction device 70 Ultra-short fiber 80 derived from sea island composite 80 Fiber web 83 Ultra-short fiber dispersion nonwoven fabric 90 Heat-sealing device 100 apparatus

Claims (5)

複合紡糸法により製造した海島型複合繊維の海成分を除去して製造した、繊維径が4μm以下で繊維長が3mm以下の極細短繊維の集合体を主体とする短繊維集合体群を、圧縮気体の作用によりノズルから気体中に噴出させて、前記短繊維集合体群を個々の短繊維に分割させ、そしてそれら短繊維を分散させる工程、分散した短繊維を集積して繊維ウエブを形成する工程、及び前記繊維ウエブを結合させる工程、とを含む極細短繊維分散不織布の製造方法において、前記極細短繊維集合体として、0.5質量%よりも多い量の繊維油剤が付着したものを使用することを特徴とする、極細短繊維分散不織布の製造方法。 A short fiber assembly group mainly composed of an assembly of ultrafine short fibers having a fiber diameter of 4 μm or less and a fiber length of 3 mm or less, produced by removing sea components of a sea-island type composite fiber manufactured by a composite spinning method, is compressed. A process of dispersing the short fiber aggregates into individual short fibers by discharging the nozzle into the gas by the action of a gas, and collecting the short fibers to form a fiber web. In the method for producing an ultrafine short fiber-dispersed nonwoven fabric comprising a step and a step of bonding the fiber web, the ultrafine short fiber aggregate having a fiber oil agent of an amount of more than 0.5% by mass attached thereto is used. A method for producing an ultrafine short fiber-dispersed nonwoven fabric, characterized in that: 極細短繊維がポリオレフィン系樹脂からなることを特徴とする、請求項1記載の極細短繊維分散不織布の製造方法。 The method for producing an ultra-fine short fiber-dispersed nonwoven fabric according to claim 1, wherein the ultra-short fiber is made of a polyolefin resin. 繊維油剤が、りん酸エステル塩型アニオン性界面活性剤、第4級アンモニウム塩型カチオン性界面活性剤、ベタイン型両性界面活性剤の群の中から選ばれる少なくとも1つからなることを特徴とする、請求項1又は請求項2に記載の極細短繊維分散不織布の製造方法。 The fiber oil agent is composed of at least one selected from the group consisting of a phosphate ester type anionic surfactant, a quaternary ammonium salt type cationic surfactant, and a betaine type amphoteric surfactant. The manufacturing method of the ultra-fine short fiber dispersion | distribution nonwoven fabric of Claim 1 or Claim 2. 繊維径が4μmを超え、50μm以下であり、繊維長が10mm以下の太短繊維の集合体も一緒に分散させることを特徴とする、請求項1〜請求項3のいずれかに記載の極細短繊維分散不織布の製造方法。 The ultra-short fiber according to any one of claims 1 to 3, wherein an aggregate of thick and short fibers having a fiber diameter of more than 4 µm and not more than 50 µm and a fiber length of not more than 10 mm is dispersed together. A method for producing a fiber-dispersed nonwoven fabric. 請求項1〜請求項4のいずれかに記載の製造方法により製造した極細短繊維分散不織布。 An ultrafine short fiber-dispersed nonwoven fabric produced by the production method according to any one of claims 1 to 4.
JP2006272623A 2006-10-04 2006-10-04 Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same Pending JP2008088610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272623A JP2008088610A (en) 2006-10-04 2006-10-04 Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272623A JP2008088610A (en) 2006-10-04 2006-10-04 Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008088610A true JP2008088610A (en) 2008-04-17

Family

ID=39373049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272623A Pending JP2008088610A (en) 2006-10-04 2006-10-04 Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008088610A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350544A (en) * 2013-06-20 2013-10-16 江南大学 Fabric with warm-keeping and thermal insulation functions and preparation method thereof
US10245537B2 (en) 2012-05-07 2019-04-02 3M Innovative Properties Company Molded respirator having outer cover web joined to mesh
JP2022071565A (en) * 2020-10-28 2022-05-16 本田技研工業株式会社 Material layer formation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10245537B2 (en) 2012-05-07 2019-04-02 3M Innovative Properties Company Molded respirator having outer cover web joined to mesh
CN103350544A (en) * 2013-06-20 2013-10-16 江南大学 Fabric with warm-keeping and thermal insulation functions and preparation method thereof
JP2022071565A (en) * 2020-10-28 2022-05-16 本田技研工業株式会社 Material layer formation device
JP7194719B2 (en) 2020-10-28 2022-12-22 本田技研工業株式会社 Material layer forming device

Similar Documents

Publication Publication Date Title
JP5654356B2 (en) Composite nonwoven web and method for making and using the same
US7837814B2 (en) Fine-fibers-dispersed nonwoven fabric, process and apparatus for manufacturing same, and sheet material containing same
CN103458987B (en) Filtering medium for filter, and water filtering apparatus provided with filtering medium
JP6054866B2 (en) Airlaid non-woven electret fiber web with pattern, and method for making and using the same
JP5767113B2 (en) Patterned spunbond fiber web and method of making the same
JP5905400B2 (en) Method for producing melt blown nonwoven fabric comprising ultrafine fibers and apparatus for producing melt blown nonwoven fabric comprising ultrafine fibers
JP4209734B2 (en) Nonwoven fabric and method for producing the same
JP4905661B2 (en) Fiber laminate for filter
WO2015195648A2 (en) Multi-die melt blowing system for forming co-mingled structures and method thereof
JP2007054778A (en) Air filter material and air filter unit
JP3860465B2 (en) Powder fixed nonwoven fabric, production method thereof, and sheet material containing the same
JP2010275663A (en) Fibrous aggregate and method for producing heat-bonded nonwoven fabric
JP2008184701A (en) Nonwoven fabric and method for producing the same
JP5846621B2 (en) Filter material and method for producing the same
JP2016030866A (en) Melt-blown nonwoven fabric
JP2008088610A (en) Nonwoven fabric of dispersed ultrafine staple fibers and method for producing the same
JP4670471B2 (en) Chargeable fiber and non-woven fabric, processed non-woven fabric using them
KR20180127653A (en) High molecular weight and low molecular weight fine fibers and TPU fine fibers
JP5305960B2 (en) Manufacturing method of ultra-fine fiber nonwoven fabric and manufacturing apparatus thereof
JPH03279452A (en) High-strength nonwoven sheet
JP4744747B2 (en) Ultrafine fiber-dispersed nonwoven fabric, process for producing the same, apparatus for producing the same, and sheet material including the same
JP4491183B2 (en) Laminated fiber sheet
JP4464433B2 (en) Cylindrical filter
JP3931098B2 (en) Fiber web manufacturing method, manufacturing apparatus therefor, and nonwoven fabric including the same
JP2009161889A (en) Manufacturing equipment of spunbond web