JP4199455B2 - 自動焦点zステージ - Google Patents

自動焦点zステージ Download PDF

Info

Publication number
JP4199455B2
JP4199455B2 JP2001532545A JP2001532545A JP4199455B2 JP 4199455 B2 JP4199455 B2 JP 4199455B2 JP 2001532545 A JP2001532545 A JP 2001532545A JP 2001532545 A JP2001532545 A JP 2001532545A JP 4199455 B2 JP4199455 B2 JP 4199455B2
Authority
JP
Japan
Prior art keywords
light
sample
focus
photodetector
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001532545A
Other languages
English (en)
Other versions
JP2003512655A (ja
JP2003512655A5 (ja
Inventor
マシュー・アール・シー・アトキンソン
オーリン・ビー・クヌドソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2003512655A publication Critical patent/JP2003512655A/ja
Publication of JP2003512655A5 publication Critical patent/JP2003512655A5/ja
Application granted granted Critical
Publication of JP4199455B2 publication Critical patent/JP4199455B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing

Description

【0001】
発明の背景
技術分野
本発明は、自動化焦点調整システムに関し、特に光走査システムの超高速自動焦点調整システムに関する。
【0002】
関連技術の説明
組合せ化学及び生物定量法の開発により、自動化結像が非常に重要になってきている。WO99/08233及びWO98/47006に開示されているようなシステムで広範囲なテストを実行することができる。これらのテストのあるもの、特に蛍光及び反射光に基づくものは、米国特許第5,900,949号に開示されたような共焦点システムを用いる。そのようなシステムでは、光は、蛍光又は燐光を発するか、或いは単に光を反射するために、サンプルを励起すべくシステムの光学部品を通して供給される。次いで、結果として生じた発光、反射又は散乱した光は、米国特許第5,900,949号に示したように、光源の側の個別の光システムを通して、又は半鍍銀ミラー又はダイクロイック・ビーム・スプリッタにより、光源として同じ最初の光システムを通って戻る反射又は発光を通して、検出される。
【0003】
一般的な走査システム(図1に示す)では、焦点が合った光線は、サンプルを横切って移動しかつ合成反射又は蛍光光が検出される。蛍光システムは、サンプル又はサンプル中の色素を励起するために、適切な波長、λexの光源10を一般的に含む。この光は、ソース光学部品12を通って焦点が合されかつサンプル16上に走査レンズ26を介してミラー14によって偏光される。蛍光を発するか又はサンプルから反射される光は、半透明鏡又はダイクロイック・ビーム・スプリッタ15を介して検出光学部品18に戻る。代替的に、発光又は蛍光した光は、米国特許第5,900,949号に示すように、システムの側から検出することができる。次いで、検出光学部品18を通過する光は、CCD又は同等な素子20を用いて検出され、CCD又は同等な素子からの出力は、分析のためにコンピュータ22に供給される。モータ24は、サンプル16を横切って励起ビームを走査するためにミラー14を移動するために用いられる。次いで、励起ビーム、モータ、光学部品及びシステムの残りの部分は、サンプル16の関連部分を走査するためにコンピュータ22によって制御される。
【0004】
本来の共焦点システムでは、システムは、実質的に焦点が合っていない光を排除する。図2に示すように、そのような共焦点システムの光は、一般的に走査レンズ26を通してミラー14によって偏光される。共焦点システムは、図2に示すように、非常に小さい被写界深度dを一般的に有する。サンプル16は、サンプル16を横切る走査に対して、走査フィールド29、即ち、被写界深度dにあり、走査の範囲を横切る。システムの焦点距離は、fであり、かつ値の相対的な大きさは、f>>d>>λである。走査の範囲は、システムにより、数十マイクロメータからセンチメータまで変化する。
【0005】
共焦点システムのまったく平坦でかつ水平な面に対して、一度収集システムとサンプルが焦点を合わされたならば、+z又は−z軸(図2に示すように、上又は下)に沿った焦点調整をもはや必要としない。光ビームが走査された場合には、ミラー14の回転が公称焦点面から光ビームを移動させないようなシステムの設計を想定する、即ち、走査フィールド29がサンプルが配置されるエリアにおいて略平坦である。
【0006】
明らかなように、サンプルは、走査中、焦点が連続的に合っていなければならない。自動又は手動でこれを行う一つの技法は、たった一度だけ、定常合焦ビームの下でサンプルに焦点を合わせ、そしてそれをx−y変換ステージ上で移動させることによってサンプルを走査する。走査中ずっとサンプルが上下に移動しないので、サンプルから対物レンズまでの距離は、一定のままである。この方法は、多くの結像製作者によって用いられている。
【0007】
光スキャナ用自動焦点調整システムは、図3a、b、cに示しかつ1996年にマグロー・ヒル(McGraw Hill)よって出版された米国光学ハンドブック第1巻(Optical Society of America’s Handbook of Optics Vol.1)(CD−ROM版)のセクション31.4に詳細に記述されるように、サンプルに焦点を合わせるために半遮断又は掩蔽技法をよく用いる。そのようなシステムでは、サンプル16から反射又は発光された光41は、レンズ26を通過する。レンズ26を通過する光の大部分は、次いで、分析のために検出光学部品に向けられるが、図1に示すように、光のあるものは、図3a、b、cの上部に詳細に示された、低反射ビーム・スプリッタ40によって自動焦点調整システム42に向けられる。(説明を明確にするために、ビーム・スプリッタ40は、図3a、b、cから省略されている)。
【0008】
図3bに示すように、サンプル16に焦点が合っている場合には、光41は、平行にされて、レンズ46を通過する光47は、焦点49に正確に焦が合わされる。サンプル16がレンズ26からあまりにも遠い場合(−z方向)には、光41は、図3aに示すように、収束しすぎる傾向がある。サンプル16がレンズ26にあまりにも近い場合(+z方向)には、光41は、図3cに示すように、発散しすぎる傾向がある。
【0009】
一般的な自動焦点調整システムでは、光ビーム41の半分は、ナイフエッジ44によって遮られる。光41の残りの部分は、光47になるためにレンズ46を通過して光検出器48に衝突する。光検出器48は、光検出器48の焦点49に中心がある半分A、Bを一般的に有し、各半分A、Bは、独立検出領域として役割を果たす。
【0010】
図3bに示すように、正確に焦点が合ったときには、光47は、半分A、Bの間の、光検出器48の中心49に衝突するか、または少なくとも半分A、Bに均等に衝突する。対照的に、図3aに示すように、サンプル16がレンズ26からあまりにも遠いときには、光47の多くは、Aよりも光検出器部分Bに衝突し、そして同様に、図3cに示すように、サンプル16がレンズ26にあまりにも近いときには、光47の多くは、Bよりも光検出器Aに衝突する。従って、レンズ26に対するサンプル16の位置は、光検出器部分A及びBによって生成される相対信号強度を分析することによって決定することができる。これは、あらゆる適当な方法を通して行うことができるが、焦点エラー信号(FES)50を生成するために回路51の光検出器の二つの部分A及びBの出力の値を引き算することによってうまく行うことができる。
【0011】
理論では、FES50の絶対値は、サンプル16が焦点からずれている距離を表し、FES50の正又は負の値は、サンプル16が焦点からずれている方向を表す。サンプル16に焦点が合っているときには、光47は、光検出器の中心49に衝突するか、又はFES50の値が0でありかつz軸調整が不要であるという結果を伴って、少なくとも部分A、B間で均衡される(値は、正確に0である必要はないということが理解される−−0の周辺のある範囲が0に等しいと通常考えられる)。光47の多くが検出器の半分Bに衝突する場合(図3aに示すように)には、FES50は、正の信号であり、z変換ステージが−z方向にずれているということを示し、ステージは、システムに焦点を合わせるために+z方向に移動されるべきである。サンプル16がレンズ46にあまりに近い場合には、より多くの光47がBよりもAに衝突し、かつFES50は、負であり、ステージが+z方向に焦点がずれているということを示し、ステージは、システムに焦点を合わせるために−z方向に移動されるべきである。このような方式でFES信号に応答するZ軸変換ステージが市販されている。
【0012】
発明の概要
サンプルを保持するための新しい材料を研究しているときに、発明者は、サンプル表面自体がかなり起伏するときに従来技術のシステムを焦点調整することに伴う問題に直面した。図4に示すように、サンプル16の表面が滑らかでない場合には、全体としてサンプル16がレンズ26から同じ距離にあったとしても、表面の一部分は、焦点がずれている。これは、走査ビーム及び走査ステージ・システムの両方にあてはまる。
【0013】
特に、図4は、基板16の表面に配置された一組のDNAオリゴヌクレオチド・プローブ30を示す。そのようなプローブは、たいていの場合、様々なDNA構造の存在又は欠如を識別するために固定化クリップ型DNA断片と組合せる化学システムである。
【0014】
図4で明らかなように、基板の最小厚みであるベース高さhが存在するが、基板の表面の高さのばらつきΔhも存在する。用いる基板により、Δhは、焦点が合った光ビーム34に対する被写界深度dよりもかなり大きい。その結果、DNAプローブ30は、基板16の垂直移動がなくても焦点が合っているか又はずれている。
【0015】
そのような基板起伏は、最小化できるが、通常かなりの機械加工又はシリコン・ウェハまたはガラスのような相当に高価な材料の使用を必要とする。WO99/53319に教示されているような、安価な材料は、とりわけそのような起伏面を有すると思われるが、使用することが大いに望ましい。
【0016】
従って、図4に示すように、サンプル表面の高さのばらつきΔhが被写界深度dよりも大きい場合には、プローブ30を被写界深度d内に保つために、あるシステムを設置しなければならないか、又は像の領域は、非共焦点システムでぼやけ、または共焦点システムで暗くなる。そのようなシステムは、異なる深度で容易に再び焦点を合わせることができるように構成されていなければならないが、同時に、システムは、かなり高速でなければならない。これは、集束レンズを移動することによって行うことができるが、圧電ステージ、ソレノイド又はボイス・コイルに取付けられたステージ、又は変換ステージのような、ステージを移動することによってより一般的に行われる。いずれの場合でも、ステージの位置は、コンピュータの出力に応答する。
【0017】
問題は、システムが再び焦点を合わせなければならない回数である。例えば、5秒で512画素×512画素の像(フレーム)を取り込むために、自動焦点変更は、画素から画素までの自動焦点をたった19マイクロセカンド(5秒を512×512画素で割ったもの)で行わなければならない。これは、超高速自動焦点システムを必要とする。
【0018】
発明者は、実際には、FESの絶対値が、サンプルが焦点からあまりずれていない場合にのみ、サンプルが焦点からずれている距離を表すということを理解している。サンプルが焦点からあまりにもずれている場合には、方向は、FESの正又は負の値から決定することができるが、FESが飽和してしまう、即ち、FESが安定状態に到達してしまうので、適切な焦点位置までの距離は、正確に決定することができない。FESが飽和したときには、FESの絶対値は、飽和レベルだけを表しかつ正確な焦点までの距離をもはや表さない。次いで、システムまたはオペレータは、焦点を合わせるためにサンプルを移動するための程度を“推量”しなければならない、即ち、サンプルをある任意の量だけ移動する。最初の移動が十分に大きくない場合には、別の推量が必要であり、それがあまりにも大きい場合には、反対方向への移動が必要である。この繰返し推量は、システムが一つの点から次の点まで走査するときにシステムが再び焦点を合わせることができるスピードをかなり制限する。
【0019】
従って、本発明は、半遮断自動焦点システムをサンプルに供給される光の量における変化と組合せることによって一貫した高速焦点調整を提供する。
【0020】
本発明の第1の実施形態は、FESが曖昧であるときを決定し、かつFESが曖昧であるときに光検出器に到達する光の量を変更することによって高速焦点調整を達成する。特に、FESが曖昧である場合には、光ビームの径又はエリアは、ある所定量だけ低減される。これは、次いでFESを不飽和にしかつシステムにレンズ又はサンプルを最適焦点に比較的近い位置まで素早く移動させる。次いで、光ビーム径又はエリアは、バックアップしながら増大することができ、そして最終的な焦点調整が行われうる。
【0021】
本発明の第2の実施形態は、正確な焦点までのおおよその距離を決定するための追加の機構を供給することによって高速焦点調整を達成する。これは、光検出器に衝突する光ビームの径方向オフセットを直接検出することができる光検出器を供給することによって行われ、距離は、光検出器の両側の信号間の差の絶対値に依存しないで決定することができる。
【0022】
更にまた、両方の実施形態は、システムが素早く焦点を合わせることができる距離を最大化するために組合せられる。
【0023】
上記実施形態のいずれによっても、結果は、かなり高速で焦点を合わせることができ、かつ通常の半遮断システムだけによって行われるよりも平均してかなり高速で焦点を合わせることができる二段階処理である。圧電高速応答システム、及び適合高速電子制御回路又はソフトウェアのような非常に高速なzステージ制御との組合せにより、システムは、走査システムに対して望ましい高速応答時間を達成することができる。
【0024】
明らかなように、そのような高速自動焦点を有することは、起伏表面を有するより安価な基板の使用を許容し、同時に結果として生じる生成物の高速画像取り込みを許容する。
【0025】
好適な実施形態の説明
簡単に言えば、発明者は、FESが飽和するので従来技術の半遮断システムによる問題が生じるということを理解した。従って、本発明は、光検出器に入射する光のエリアを低減し、かつそれによってシステムが適切に動作する捕獲領域を拡げる機構を提供する。代替的に、本発明は、光検出器に入射する光ビームの径方向の拡がりを決定することによってサンプルが焦点からずれる距離を測定する機構を提供する。
【0026】
本発明の第1の実施形態を図5a、bに示す。図5a、bにおいて、図3a、b、cで示したものに類似する素子は、プライム記号(′)を有する同じ番号で示されている。
【0027】
本発明のこの実施形態によれば、アイリス52は、レンズ26′とナイフエッジ44′との間で、主要光学部品18に向って進行している光と干渉を起すことを回避するためにビーム・スプリッタ40よりもレンズ46′の近くに追加されるのが好ましい。図5aに示すように、アイリス52が全開されるときには、図3a、b、cにおいて光検出器48に既に到達していた光47′の全ては、まだ光検出器48′に到達している。発明者によって理解されているように、サンプル16′が焦点からあまりにもずれている場合には、FES50′の絶対値は、FES50′が飽和しているかまたはほとんど飽和しているということを示すある所定値よりも上である。これが起ったときには、コンピュータ22′は、図5bに示すように、光検出器48′に到達する光の量を低減するためにアイリス52を収縮するために光低減信号(デジタルまたはアナログのいずれか)を生成する。
【0028】
このような方式でアイリス52を供給しかつ使用することの効果は、図6を参照して示すことができる。図6の応答曲線60は、(図3a、b、cからの)FES50の強度対サンプル16が焦点からずれる距離のグラフである。グラフの例は、5cmの焦点距離を有する走査レンズ26、488nmの光波長、2mmの対物レンズにおけるビーム径、走査レンズ26から走査光学部品を通って1cmのレンズ46までの公称距離、及び±1に正規化されたFES50の出力を有する、2mmの検出器レンズ46におけるアパーチャを用いる。正確な焦点位置(図で0のところに示した)から約±500μmの捕獲範囲61内で、回路51は、FES50の絶対値が正確な焦点位置からの距離のよい指標であるような出力を供給する。約±500μmを超えると、FES50は、飽和に近づきそして飽和し、かつFES50の絶対値は、もはや正確な焦点位置からの距離を正しく表さない。その結果、システムに対する実効捕獲範囲61は、正確な焦点位置から±500μmよりわずかに少ない。
【0029】
応答曲線60に対するシステムと比較して光検出器48′に到達している光ビーム47′の径を50%低減するために検出器レンズ46′のアパーチャが1mmであるように収縮されたアイリス52で、図5bからのFES50′のグラフである、応答曲線62とこれとを比較する。応答曲線62の捕獲領域63は、おおよそ±2500μm、または捕獲領域61の大きさのおおよそ5倍の精度である。これは、システムが適切な方向及びサンプルに焦点を合わせるためにz−ステージが移動されるべき量の両方を決定することができるより広い範囲を供給する。一度その段階が実行されたならば、アイリス52は、再び開くことができかつ全入射光ビームを用いて微焦点調整が行われる。
【0030】
透過光を低減する素子は、アイリス52である必要はない−光低減は、可動プリズムのようなあらゆる適切な機構、又はサンプル16′と光検出器48′との間の光透過を制御するために電磁気的に制御することができる液晶のセグメンテッド・リングのような材料によって達成することができる。更に、アイリス52がレンズ26′とナイフエッジ44′との間に配置されて示されているが、アイリス52は、サンプル16′と光検出器48′との間のどこにでも配置することができるということが理解されるであろう。しかしながら、レンズ26′とナイフエッジ44′との間に光低減素子を配置することは、光検出器48′全体の使用を許容するという利点を有し、光低減素子を光検出器48′に近づけて配置することは、光検出器48′の一部を遮ることができる。
【0031】
システムの焦点がかなりずれている場合には、本発明のシステムでさえも、アイリス52が再び開かれたときには飽和を回避するために最適合焦位置にシステムを十分近づけられないということがあり得る。次いで、これは、解像力モードの発振を結果としてもたらし、アイリスが収縮されたり開放されたりを繰り返す。これを防ぐために、アイリス52は、いくつかのアパーチャ・サイズ(又は連続的変化)を許容するように設定されたステッパー・モータ又は連続モータによって駆動することができ、アイリス52は、システムが全入射光ビームを受け入れるために焦点を合わせるために十分近づくまで一つのアパーチャ・サイズから次のサイズに移動することができる。代替的に、ソフトウェア・ヒステリシス・システムは、連続発振を制限するために用いることができる。これらの技法は、複数の段階を必要とするが、従来の半遮断システムで同じことを試みることよりもよい。
【0032】
本発明による第2の実施形態を図7に示す。図7において、図3a、b、cで示したものに類似する素子は、ダブル・プライム記号(″)を有する同じ番号で示されている。
【0033】
光検出器48の半分A、Bが焦点中心49から光検出器の外部端まで拡張しているが、図7に示す光検出器48″の類似素子は、一連の素子A−n、...、A−1、A、B、B+1、...、B+nに分割される。各素子は、独立して動作しかつそれ自体のFES回路51A−n、...、51A−1、51A0、51B0、51B+1、...、51B+nに接続され、FES回路は、その結果、アナログ/デジタル変換器54を通ってコンピュータ22″に接続され、コンピュータは、z−ステージ位置を制御する。
【0034】
光検出器48″の複数の素子により、光検出器48″に入射する光ビーム47″の中心からのオフセットは、素子A−n、...、A−1、A、B、B+1、...、B+nによって検出された光の分布に基づき正確な精度で検出することができる。これは、その結果、サンプル16″が焦点からずれている量の概算を与える。
【0035】
明らかなように、第1及び第2の実施形態は、組合せることができ、システムが素早く焦点を合わせることができる被写界深度に対するより広い範囲を供給する。
【0036】
これらの例示的実施形態は、本発明の範疇を決して限定するものではないということが理解されるであろう。焦点調整処理における段階は、ここに記述された順番で厳密に実行されることを必ずしも必要としない。同じ目標を達成するあらゆる順番が作用する。本発明の他の変更は、上述した説明を考慮して当業者に明らかであろう。これらの説明は、本発明を明瞭に開示する実施形態の特定の例を単に供給することを意図するものである。従って、本発明は、説明した実施形態又は特定の要素、寸法、材料又はそれに含まれた構成の使用に限定されない。添付した特許請求の範囲の精神及び範疇内に入る本発明の全ての代替的変更及び変形を含む。
【図面の簡単な説明】
本発明は、以下の図面を参照して説明される。
【図1】 一般的な先行技術の光走査システムの略図である。
【図2】 図1の光走査システムの走査部分の略図である。
【図3a】 焦点合わせの異なるステージにおける一般的な先行技術の半遮蔽焦点調整システムの略図である。
【図3b】 焦点合わせの異なるステージにおける一般的な従来技術の半遮蔽焦点調整システムの略図である。
【図3c】 焦点合わせの異なるステージにおける一般的な従来技術の半遮蔽焦点調整システムの略図である。
【図4】 光走査システムによって走査される可能なサンプルの略断面図である。
【図5a】 本発明による第1の実施形態により変更された図3a、b、cの半遮蔽焦点調整システムの略図である。
【図5b】 本発明による第1の実施形態により変更された図3a、b、cの半遮蔽焦点調整システムの略図である。
【図6】 図3a、b、c及び図5a、bのそれぞれの焦点調整システムに対する焦点エラー信号対デフォーカスの量のグラフである。
【図7】 本発明による第2の実施形態により変更された図3a、b、cの半遮蔽焦点調整システムの略図である。

Claims (1)

  1. サンプルからの光を結像するための光システム用焦点調整システムであって、前記システムは、
    a)光路に沿って前記サンプルからの光ビームを受取りかつ検出するための光検出器であり、それぞれがそれに当たる前記光ビームの強度を表す光強度信号を独立して生成する、少なくとも二つの部分を有している光検出器、
    b)前記サンプルから来る前記光ビームを焦点調整するための、前記サンプルと前記光検出器との間の前記光路の少なくとも1つのレンズ、
    c)前記サンプルからの光を受取ることから前記光検出器の前記部分の全てではなく少なくとも一つを遮るための、前記サンプルと前記光検出器との間の前記光路に配置されたナイフエッジ、
    d)前記サンプルを保持するためのステージ、及び
    e)前記システムの前記焦点を調整するために焦点信号に応答して前記光路に沿って前記少なくとも一つのレンズ又は前記ステージを制御可能に移動するための焦点機構、
    を有し、
    前記システムは、
    f)光調整信号に応答して前記光ビームの前記エリアを制御可能に調整するための、前記サンプルと前記光検出器との間の前記光路に配置された光調整器、及び
    g)i)前記サンプルの像が焦点からずれている方向及び量を表す焦点エラー信号を生成するために前記光検出器の実質的に両方の部分から光強度信号を取り去ることと、
    ii)前記焦点エラー信号の絶対値が第1の所定の許容値よりも大きい場合には、前記光調整器に前記光ビームの前記エリアを低減させるために光調整信号を生成ることと、
    iii)前記焦点機構に前記方向にかつ前記焦点エラー信号をゼロに近づけるために十分な量だけ前記システムの前記焦点を調整させるために焦点信号を生成することと、
    によって、前記光強度信号に応答して前記光調整信号及び前記焦点信号を生成するためのコントローラ、
    を更に備えていることを特徴とするシステム。
JP2001532545A 1999-10-21 2000-04-11 自動焦点zステージ Expired - Fee Related JP4199455B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16083699P 1999-10-21 1999-10-21
US60/160,836 1999-10-21
US09/441,731 1999-11-16
US09/441,731 US6548795B1 (en) 1999-10-21 1999-11-16 Autofocus Z stage
PCT/US2000/009621 WO2001029836A1 (en) 1999-10-21 2000-04-11 Autofocus z stage

Publications (3)

Publication Number Publication Date
JP2003512655A JP2003512655A (ja) 2003-04-02
JP2003512655A5 JP2003512655A5 (ja) 2007-06-07
JP4199455B2 true JP4199455B2 (ja) 2008-12-17

Family

ID=26857266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001532545A Expired - Fee Related JP4199455B2 (ja) 1999-10-21 2000-04-11 自動焦点zステージ

Country Status (6)

Country Link
US (2) US6548795B1 (ja)
EP (1) EP1234304B1 (ja)
JP (1) JP4199455B2 (ja)
AU (1) AU4228900A (ja)
DE (1) DE60028813T2 (ja)
WO (1) WO2001029836A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044862A1 (de) * 2000-09-11 2002-04-04 Ratte Polle Clemens Optisches System für ein Laufwerk für optische Speicher und Laufwerk für optische Speicher mit demselben
US6918538B2 (en) * 2002-12-18 2005-07-19 Symbol Technologies, Inc. Image scanning device having a system for determining distance to a target
US7025271B2 (en) 2002-12-18 2006-04-11 Symbol Technologies, Inc. Imaging optical code reader having selectable depths of field
AU2007203527B2 (en) * 2002-12-18 2010-05-27 Symbol Technologies, Llc. Image scanning device having a system for determining the distance to a target
EP1720113A3 (en) * 2003-02-13 2010-03-10 Symbol Technologies, Inc. Electrical code reader with autofocus and interface unit
US7073715B2 (en) 2003-02-13 2006-07-11 Symbol Technologies, Inc. Interface for interfacing an imaging engine to an optical code reader
US7097101B2 (en) * 2003-02-13 2006-08-29 Symbol Technologies, Inc. Interface for interfacing an imaging engine to an optical code reader
TW200608475A (en) * 2004-08-26 2006-03-01 Adv Lcd Tech Dev Ct Co Ltd Method of picking up sectional image of laser light
HUP0401802A2 (en) * 2004-09-02 2006-03-28 3D Histech Kft Focusing method object carriers on fast-moving digitalization and object carrier moving mechanics, focusing optic, optical distance-measuring instrument
US20060072005A1 (en) * 2004-10-06 2006-04-06 Thomas-Wayne Patty J Method and apparatus for 3-D electron holographic visual and audio scene propagation in a video or cinematic arena, digitally processed, auto language tracking
US20070031056A1 (en) * 2005-08-02 2007-02-08 Perz Cynthia B System for and method of focusing in automated microscope systems
SE530750C2 (sv) * 2006-07-19 2008-09-02 Hemocue Ab En mätapparat, en metod och ett datorprogram
JP5072688B2 (ja) * 2008-04-02 2012-11-14 キヤノン株式会社 走査型撮像装置
US8860948B2 (en) * 2010-01-22 2014-10-14 Ben Gurion University of the Negev Research and Development Authority Ltd.; Bar Ilan University High resolution extended depth of field optical coherence tomography
US11754680B2 (en) * 2020-04-20 2023-09-12 Raytheon Company Optical system that detects and blocks backscatter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885940A (ja) * 1981-11-17 1983-05-23 Hitachi Ltd 光デイスクの自動焦点引込み方法
US5033856A (en) 1984-07-05 1991-07-23 Canon Kabushiki Kaisha Three-dimensional shape measuring apparatus
GB9014263D0 (en) 1990-06-27 1990-08-15 Dixon Arthur E Apparatus and method for spatially- and spectrally- resolvedmeasurements
US5386112A (en) 1990-06-29 1995-01-31 Dixon; Arthur E. Apparatus and method for transmitted-light and reflected-light imaging
US5159412A (en) 1991-03-15 1992-10-27 Therma-Wave, Inc. Optical measurement device with enhanced sensitivity
US5248992A (en) 1991-08-23 1993-09-28 Eastman Kodak Company High numerical aperture image forming apparatus using optical fibers for both writing and focus control
GB9218482D0 (en) 1992-09-01 1992-10-14 Dixon Arthur E Apparatus and method for scanning laser imaging of macroscopic samples
GB9216461D0 (en) 1992-08-03 1992-09-16 Smith James A Eucentric goniometer or motion system
US5400093A (en) 1992-12-28 1995-03-21 U.S. Philips Corporation Image projection system with autofocusing
US5381224A (en) 1993-08-30 1995-01-10 A. E. Dixon Scanning laser imaging system
US5532873A (en) 1993-09-08 1996-07-02 Dixon; Arthur E. Scanning beam laser microscope with wide range of magnification
KR100422887B1 (ko) * 1995-03-16 2005-02-02 가부시키가이샤 니콘 노광장치및방법
GB9525867D0 (en) 1995-12-19 1996-02-21 Bio Rad Micromeasurements Ltd Dual beam automatic focus system
US5900949A (en) 1996-05-23 1999-05-04 Hewlett-Packard Company CCD imager for confocal scanning microscopy
EP0867771A3 (en) 1997-03-24 2000-10-25 Nikon Corporation Exposure apparatus, exposure method, and circuit making method
AUPO625497A0 (en) 1997-04-16 1997-05-15 Macquarie Research Limited Analysis of molecules
US6002789A (en) 1997-06-24 1999-12-14 Pilot Industries, Inc. Bacteria colony counter and classifier
WO1999008233A1 (en) 1997-08-07 1999-02-18 Imaging Research Inc. A digital imaging system for assays in well plates, gels and blots
US6376619B1 (en) 1998-04-13 2002-04-23 3M Innovative Properties Company High density, miniaturized arrays and methods of manufacturing same

Also Published As

Publication number Publication date
JP2003512655A (ja) 2003-04-02
AU4228900A (en) 2001-04-30
US20030197112A1 (en) 2003-10-23
WO2001029836A1 (en) 2001-04-26
EP1234304B1 (en) 2006-06-14
DE60028813D1 (de) 2006-07-27
US6717124B2 (en) 2004-04-06
EP1234304A1 (en) 2002-08-28
US6548795B1 (en) 2003-04-15
DE60028813T2 (de) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4199455B2 (ja) 自動焦点zステージ
US5763870A (en) Method and system for operating a laser device employing an integral power-regulation sensor
US20010009473A1 (en) Confocal microscope and wide field microscope
US20040129858A1 (en) Automatic focussing device for an optical appliance
US10401149B2 (en) Method for determining the thickness of a specimen holder in the beam path of a microscope
US6594006B1 (en) Method and array for detecting the position of a plane scanned with a laser scanner
JP4021183B2 (ja) 合焦状態信号出力装置
EP1760455A1 (en) Measuring apparatus
JP2018516380A (ja) 光学機器の連続非同期オートフォーカスのためのシステムおよび方法
JPH0623808B2 (ja) 光学器械の自動焦点調節装置
JPH09281384A (ja) オートフォーカス制御装置
US6486964B2 (en) Measuring apparatus
EP0735563B1 (en) Scanning electron microscope
JPH09218355A (ja) 走査型レーザ顕微鏡
JP2002228421A (ja) 走査型レーザ顕微鏡
JPH1172308A (ja) 高さ測定方法及びその装置
WO2003060589A1 (en) Auto focussing device and method
JPH077653B2 (ja) 走査電子顕微鏡による観察装置
JP2002277746A (ja) 走査型光学顕微鏡および該走査型光学顕微鏡の共焦点ピンホール調整方法
JP2000509825A (ja) 光走査デバイス
JP2008261829A (ja) 表面測定装置
JP3256865B2 (ja) 欠陥検査装置及び光学走査装置
JP2008046361A (ja) 光学システム及び光学システムの制御方法
JPH08334317A (ja) 測定顕微鏡
JP3141470B2 (ja) 3次元形状検出方法および装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees