JP4199047B2 - 薄膜インダクタ素子及びその製造方法 - Google Patents

薄膜インダクタ素子及びその製造方法 Download PDF

Info

Publication number
JP4199047B2
JP4199047B2 JP2003138195A JP2003138195A JP4199047B2 JP 4199047 B2 JP4199047 B2 JP 4199047B2 JP 2003138195 A JP2003138195 A JP 2003138195A JP 2003138195 A JP2003138195 A JP 2003138195A JP 4199047 B2 JP4199047 B2 JP 4199047B2
Authority
JP
Japan
Prior art keywords
thin film
film
inductor element
inductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003138195A
Other languages
English (en)
Other versions
JP2004342864A (ja
Inventor
正宜 竹内
眞司 村田
敏喜 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003138195A priority Critical patent/JP4199047B2/ja
Publication of JP2004342864A publication Critical patent/JP2004342864A/ja
Application granted granted Critical
Publication of JP4199047B2 publication Critical patent/JP4199047B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の技術分野】
本発明は、薄膜高周波回路に用いられる薄膜インダクタ素子及びその製造方法に関する。
【0002】
【従来技術およびその問題点】
薄膜回路では一般に、薄膜抵抗素子や薄膜コンデンサ素子、薄膜インダクタ素子が混在しており、薄膜コンデンサ素子の下電極又は上電極と薄膜インダクタ素子とが同一工程で形成されている。このような薄膜回路は、例えば携帯電話や小型モバイル等に代表される通信機器に搭載されるため、これら通信機器の高周波化に伴って高いQ値が要求されるようになった。
【0003】
薄膜回路のQ値を高めるためには、薄膜抵抗素子や薄膜コンデンサ素子等の電極を厚い膜厚で形成することが考えられる。しかし、薄膜コンデンサ素子の電極を厚い膜厚で形成すると、薄膜コンデンサ素子と同一工程で形成される薄膜インダクタ素子の電極の膜厚も厚くなり、この結果、浮遊容量が増大して薄膜インダクタ素子のQ値は低下してしまう。このように従来では、薄膜回路全体のQ値を向上させようとすると、薄膜インダクタ素子の特性を低下させることになっていた。
【0004】
従来の薄膜インダクタ素子1’は、図12に示すように、スパイラル状の薄膜突条を起立させて形成したインダクタ電極20’を有している。最近では、薄膜回路の高集積密度化が進められているため、インダクタ電極20’のピッチ間隔d’が狭くなっている。このようにピッチ間隔d’が狭いと、隣り合うインダクタ電極20’の間で相互に影響を及ぼし合い、インダクタ電極20’の膜厚が厚くなるにつれて容量成分が発生することとなる。この容量成分が、薄膜インダクタ素子1’のQ値を低下させる要因と考えられている。
【0005】
【特許文献】
特開平8−235527号公報
特開2000−58758号公報
特開2002−133611号公報
【0006】
【発明の目的】
本発明は、容量成分の発生を防止して高いQ値が得られる薄膜インダクタ素子及びその製造方法を得ることを目的とする。
【0007】
【発明の概要】
本発明は、スパイラル状の薄膜突条を起立させて形成したインダクタ電極では電流がスパイラル中心側の内周起立面に集中すること、及びインダクタ電極のピッチ間隔を拡げれば容量成分の発生を抑制できることに着目したものである。
【0008】
すなわち、本発明は、基板上に、スパイラル状の薄膜突条を起立させて形成したインダクタ電極を有する薄膜インダクタ素子において、インダクタ電極の断面形状を、スパイラル中心側の内周起立面が基板と略直交し、外周起立面が電極上方ほどスパイラル中心に接近するテーパー面としたことを特徴としている。
【0009】
この構成によれば、内周起立面及び外周起立面の両方を基板に対して略直交させた従来の場合よりも、インダクタ電極の断面積が小さくなって該インダクタ電極を構成する電極材料の量が減り、また、インダクタ電極のピッチ間隔が拡がる。よって、インダクタ電極の膜厚が増大しても、隣り合うインダクタ電極の相互影響を低減することができ、容量成分の発生を抑制することができる。
【0010】
また上記構成によれば、基板表面でのピッチ間隔よりも電極上面でのピッチ間隔が拡がっているので、基板表面でのピッチ間隔を長く設定する必要がなく、薄膜インダクタ素子の素子面積を小さくすることができる。
【0011】
さらに上記構成によれば、インダクタ電極において、高周波電流が集中して流れる内周起立面を基板に対して略直交とし、高周波電流が殆ど流れない外周起立面をテーパー面としてあるので、電流損失が生じることはなく、薄膜インダクタ素子の電流特性を良好に維持することができる。
【0012】
インダクタ電極の外周起立面において、そのテーパー角は55°以上85°以下であることが好ましい。55°未満であるとテーパー形状の制御が難しく、85°を超えると外周起立面をテーパー面としたことによる効果が十分に得られない。
【0013】
インダクタ電極の平面形状は、互いに直交する直線を組み合わせてなるスパイラル形状とすることができる。
【0014】
インダクタ電極は、基板上に形成されたTi/Cu又はCr/Cuによる金属膜と、この金属膜上に形成されたCuメッキ膜とにより形成されていることが実際的である。あるいは、基板上に形成されたTi/Au又はCr/Auによる金属膜と、この金属膜上に形成されたAuメッキ膜とにより形成されている。
【0015】
本発明は、製造方法の態様によれば、スパイラル状のインダクタ電極形状に対応するスパイラル形状の遮光部を有し、該遮光部は、スパイラル中心から遠い側に、光透過量がスパイラル中心側ほど少なくなっていく光量調整部を有するフォトマスクを準備する工程;基板上に、インダクタ電極の下層となる金属膜を形成する工程;この金属膜上に、ネガレジスト膜を均一に塗布する工程;準備したフォトマスクを通してネガレジスト膜を露光する工程; 現像処理により、フォトマスクのスパイラル形状に対応するスパイラル状であって、スパイラル中心側の面が基板に直交し、スパイラル中心から遠い面がレジスト上方ほどスパイラル中心に接近する逆テーパー面となっている空洞部を有するネガレジストを得る工程;及びこのネガレジストで覆われていない金属膜上に、前記インダクタ電極の上層となるメッキ膜を電解メッキ法により形成する工程;を有することを特徴としている。
【0016】
金属膜とネガレジストが有する空洞部の逆テーパー面のなす角は、55°以上85°以下であることが好ましい。55°未満であると、フォトマスクによる光透過量の制御が難しく、85°を超えると、インダクタ電極の外周起立面をテーパー面とすることによる効果が十分に得られないからである。形成されるインダクタ電極の外周起立面のテーパー角は、上記金属膜と逆テーパー面のなす角に等しい。
【0017】
フォトマスクの光量調整部は、種々の態様が可能である。例えば、光を通過させる格子開口部を多数備え、この格子開口部の面積がスパイラル中心側ほど小さい格子状パターンとすることができる。または、光を通過させるスリットを多数備え、このスリット幅がスパイラル中心側ほど小さいストライプパターンとすることができる。あるいは、スパイラル中心側に向かって連続的に光透過量が減少していくグラデーションパターンとしてもよい。
【0018】
上記製造方法において、インダクタ電極を構成する金属膜をTi/Cu又はCr/Cuにより形成し、メッキ膜をCuにより形成することが実際的である。または、インダクタ電極を構成する金属膜をTi/Au又はCr/Auにより形成し、メッキ膜をAuにより形成してもよい。
【0019】
メッキ膜を形成した後には、ネガレジストを除去し、さらに、露出している金属膜を除去する工程が備えられる。
【0020】
【発明の実施の形態】
図1(a)、(b)は、本発明を適用した薄膜インダクタ素子を示す部分断面図及び平面図である。本薄膜インダクタ素子1は、高周波電流を用いる薄膜高周波回路に搭載される。
【0021】
薄膜インダクタ素子1は、基板10上に、スパイラル状の薄膜突条を起立させて形成したインダクタ電極20を有している。インダクタ電極20は、例えばTi/Cu又はCr/Cuからなる金属膜21と、Cuメッキ膜22とにより形成されている。
【0022】
インダクタ電極20の断面形状は、図1(a)に示すように、スパイラル中心S側の内周起立面20bが基板10に対して略直交していて、外周起立面20aが電極上方ほどスパイラル中心Sに接近するテーパー面となっている。この外周起立面20aのテーパー角αは約55〜85°程度である。図1ではテーパー面(外周起立面20a)にハッチングを付して示した。
【0023】
インダクタ電極20のピッチ間隔(隣り合うインダクタ電極20の外周起立面20aと内周起立面20bの距離間隔)Dは、電極上方(膜厚が大きくなる方向)に向かって拡がっていて、基板表面でのピッチ間隔D1が最も短く、電極上面でのピッチ間隔D2が最も長くなっている。一方、インダクタ電極20の幅寸法Wは、電極上方ほど狭くなっており、基板表面での幅寸法W1が最も長く、電極上面での幅寸法W2が最も短くなっている。本実施形態において、インダクタ電極20は、約5〜10μm程度の膜厚で形成されている。インダクタ電極20の幅寸法Wは、ピッチ間隔Dが約5〜10μm程度であるとき約15〜20μm程度、ピッチ間隔Dが約10〜15μm程度であるとき約10〜15μm程度、ピッチ間隔Dが50〜60μm程度であるとき90〜100μm程度に確保されている。
【0024】
上述したようにインダクタ電極20の外周起立面20aが電極上方ほどスパイラル中心Sに接近するテーパー面になっていると、図12に示すように外周起立面を基板10に対して直交させた場合(従来構造)よりも断面積が小さくなり、インダクタ電極20の膜厚が大きくなるほどピッチ間隔Dが拡がる。このようにインダクタ電極20の断面積(インダクタ電極20を構成する電極材料)を減らしてピッチ間隔Dを拡げれば、インダクタ電極20の膜厚が増大しても、隣り合うインダクタ電極の相互影響を低減することができ、容量成分の発生を抑制することができる。
【0025】
インダクタ電極20に与えられる高周波電流は、インダクタ電極20の内周起立面20bを集中的に流れ、結果的にインダクタ電極20の外周起立面20aには殆ど流れない。よって、インダクタ電極20の外周起立面20aをテーパー形状としても電流損失が生じることはない。
【0026】
次に、図2〜図8を参照し、図1に示す薄膜インダクタ素子1の製造方法の一実施形態について説明する。
【0027】
先ず最初に、露光工程で用いるフォトマスクを準備する。図7及び図8に示すようにフォトマスク40は、光をすべて通過させる透光部41と、スパイラル状のインダクタ電極形状に対応するスパイラル形状の遮光部42を有しており、遮光部42には、スパイラル中心Sから遠い側に、光透過量がスパイラル中心S側ほど少なくなっていく光量調整部43が備えられている。この光量調整部43が備えられる範囲は約5〜10μm程度である。図7及び図8では、光を全く通さない部分を黒く塗りつぶして示してある。
【0028】
本実施形態で用いるフォトマスク40の光量調整部43は、図8に示すように、光をすべて通過させる格子開口部44を多数備え、この格子開口部44の面積がスパイラル中心S側ほど小さくなる格子状パターンによって形成されている。この格子状パターンにおいて、格子開口部44のピッチ間隔は約0.5〜2μmである。なお、光量調整部43(格子状パターン)が5μm以上の範囲に備えられている場合は、遮光部42のスパイラル中心Sから遠い側の端部から約2.5μm以上離れた位置における格子開口部44のピッチ間隔を約0.25〜1μmとする。
【0029】
フォトマスク40を準備したら、図2に示すように、基板10上にTi/Cu又はCr/Cuによる金属膜21を約50〜500nm程度の膜厚でスパッタ成膜する。基板10には、例えばアルミナ基板、ガラス基板、又はシリコン基板などを用いる。
【0030】
次に、スピンコート法により、ネガレジスト膜30を金属膜21上に均一に塗布する。ネガレジスト膜30の膜厚は約5〜15μm程度とする。
【0031】
続いて、図3に示すように、予め準備しておいたフォトマスク40(図7及び図8)を通して露光する。図3において、矢印は光の進む方向を示し、矢印の長さは光透過量に比例している。
【0032】
露光後は、現像工程を行なう。この現像工程によれば、上記露光工程で光が照射されていない範囲のネガレジスト膜30が溶解する。この結果、金属膜21上には、図4に示すように、メッキ膜を形成するためのネガレジスト31が残る。ネガレジスト31は、フォトマスク40のスパイラル形状に対応するスパイラル状の空洞部32を有している。空洞部32は、スパイラル中心S側の面32bが基板10に直交し、スパイラル中心Sから遠い面が図示上方ほどスパイラル中心Sに接近する逆テーパー面32aとなっている。この空洞部32の幅寸法はインダクタ電極の幅寸法Wに等しく、空洞部32のピッチ間隔はインダクタ電極のピッチ間隔Dに等しい。また、逆テーパー面32aと金属膜21のなす角βは、形成するインダクタ電極の外周起立面のテーパー角αに等しい。
【0033】
空洞部32の逆テーパー面32aと金属膜21のなす角β、すなわち形成するインダクタ電極の外周面のテーパー角αは、55°以上85°以下であることが好ましい。テーパー角αが55°未満であると、フォトマスク40による光透過量の制御が難しく、またテーパー角αが85°を超えると、インダクタ電極の外周起立面をテーパー面としたことによる効果が十分に得られないからである。
【0034】
上記逆テーパー面32aを有するネガレジスト31を形成したら、図5に示すように、このネガレジスト31で覆われていない金属膜21上に、Cuメッキ膜22を電解メッキ法により形成する。Cuメッキ膜22の膜厚は、4〜10μm程度とする。
【0035】
続いて、図6に示すようにネガレジスト31を除去する。そして、Cuメッキ膜22の間から露出している金属膜21をドライエッチング等により除去する。これにより、金属膜21及びCuメッキ膜22からなるインダクタ電極20が形成される。
【0036】
以上の工程により、図1に示す薄膜インダクタ素子1が得られる。
【0037】
以上のように本実施形態では、インダクタ電極20の断面形状を、スパイラル中心S側の内周起立面20bが基板10と略直交し、外周起立面20aが電極上方ほどスパイラル中心Sに接近するテーパー面としたので、図12に示すように断面正方形状で形成した従来構造のインダクタ電極20’(外周起立面20a’及び内周起立面20b’が基板10と略直交する場合)よりも、インダクタ電極20の断面積が小さくなり、インダクタ電極20を構成する電極材料を減らすことができる。また、インダクタ電極20のピッチ間隔Dが、該インダクタ電極20の膜厚が大きくなるほど拡がる。これにより、インダクタ電極20の膜厚が増大しても、隣り合うインダクタ電極の相互影響を低減することができ、容量成分の発生を抑制することができる。
【0038】
また本実施形態によれば、基板10の表面でのピッチ間隔D1を長くせずに、インダクタ電極上面でのピッチ間隔D2を拡げることができるので、薄膜インダクタ素子1の素子面積を小さくすることが可能になる。
【0039】
さらに本実施形態によれば、インダクタ電極20の外周起立面20aのみをテーパー面としたので、電流損失が生じることがない。なお、インダクタ電極20の内周起立面20bのみあるいはインダクタ電極20の外周起立面20aと内周起立面20bの両方をテーパー形状とすると、電流損失が大きく、薄膜インダクタ素子1の電流特性を悪化させてしまうこととなる。
【0040】
また本実施形態では、インダクタ電極20の形状を規定するためのレジスト31をネガレジスト材料により形成しているので、露光されるネガレジスト材料の厚さを調整することにより、基板10に対して直交する面及びテーパー面を容易に形成することができる。さらに本実施形態では、遮光部42の外周側領域に、内周側よりも外周側で光透過量が多い光量調整部43を備えたフォトマスク40を通してネガレジスト30を露光するので、ネガレジスト30を照射する光の量を容易に制御でき、所望のテーパー形状を得ることができる。
【0041】
図11は、図1に示す本実施例と図12に示す比較例(従来例)において、インダクタ電極の膜厚を5μm、10μmとした場合の2.4GHz帯におけるQ値を算出した結果を示している。なお、本実施例と比較例において、薄膜インダクタ素子の組成は同一とする。
【0042】
【比較例】
図12に示す従来構造の薄膜インダクタ素子1’は、インダクタ電極20’の断面形状を、内周起立面20b’及び外周起立面20a’を共に基板10に略直交させてなる略正方形状としたものである。インダクタ電極20’のピッチ間隔d及び幅寸法wは、インダクタ電極20’の膜厚方向で変わらず一定である。具体的にピッチ間隔dは5μm、幅寸法wは15μmである。図11を見ると、薄膜インダクタ素子1’のQ値は、インダクタ電極20’の膜厚が厚くなると低下していることがわかる。インダクタ電極20’の膜厚が10μmであるときのQ値は、インダクタ電極20’の膜厚が5μmであるときよりも約8%減少している。
【0043】
【実施例】
図1に示す薄膜インダクタ素子1では、例えばインダクタ電極20のピッチ間隔dが5〜10μm、幅寸法Wが15〜10μmであり、インダクタ電極20は図12に示す比較例よりも断面積が小さくなっている。図11を見ると、薄膜インダクタ素子1のQ値は、インダクタ電極20の膜厚が5μmのときも10μmのときも変化していないことがわかる。また図12に示す比較例と比べてみると、インダクタ電極20の膜厚が5μmであるときのQ値は比較例よりも3%増大しており、同膜厚が10μmであるときのQ値は比較例よりも11%増大している。
【0044】
以上の結果から明らかなように、本実施例は、比較例よりもQ値が低減しないこと、すなわち膜厚が大きくなっても高いQ値が得られることがわかる。
【0045】
本実施形態では、露光工程で用いるフォトマスク40の光量調整部43が格子状パターン(図8)で形成されているが、光量調整部43の態様は種々の変形が可能である。例えば、図9に示すように、光をすべて通過させるスリット45を多数備え、このスリット45の幅寸法aがスパイラル中心S側ほど小さいストライプパターンによって形成されていてもよい。あるいは、図10に示すように、スパイラル中心S側に向かって連続的に光透過量が減少していくグラデーションパターン46によって形成されていてもよい。
【0046】
また本実施形態では、インダクタ電極20の上層となるメッキ膜22をCuにより形成しているが、メッキ膜22はAuにより形成することも可能である。ただし、メッキ膜22をAuで形成した場合には、インダクタ電極20の下層となる金属膜21を、Ti/Au又はCr/Auにより形成する。
【0047】
【発明の効果】
本発明によれば、インダクタ電極の断面形状を、スパイラル中心側の内周起立面が基板と略直交し、外周起立面が電極上方ほどスパイラル中心に接近するテーパー面としたので、内周起立面及び外周起立面を基板に略直交させた従来の場合よりも隣り合うインダクタ電極の相互影響が低減される。これにより、インダクタ電極の膜厚が増大しても容量成分の発生を抑制することができ、高いQ値が得られる。
【図面の簡単な説明】
【図1】(a)本発明の一実施形態である薄膜インダクタ素子の断面構造を示す斜視図である。
(b)(a)に示す薄膜インダクタ素子の平面図である。
【図2】図1に示す薄膜インダクタ素子の製造方法の一工程を示す断面図である。
【図3】図2に示す工程の次工程を示す断面図である。
【図4】図3に示す工程の次工程を示す断面図である。
【図5】図4に示す工程の次工程を示す断面図である。
【図6】図5に示す工程の次工程を示す断面図である。
【図7】図3に示す露光工程で用いるフォトマスクの平面図である。
【図8】図7に示すフォトマスクの光量調整部の一実施例を示す拡大断面図である。
【図9】図7に示すフォトマスクの光量調整部の一実施例を示す拡大断面図である。
【図10】図7に示すフォトマスクの光量調整部の一実施例を示す拡大断面図である。
【図11】インダクタ電極を構成するメッキ膜の膜厚と2.4GHz帯におけるQ値の関係を示すグラフである。
【図12】(a)従来構造の薄膜インダクタ素子を示す斜視図である。
(b)(a)に示す薄膜インダクタ素子の平面図である。
【符号の説明】
1 薄膜インダクタ素子
10 基板
20 インダクタ電極
20a 外周起立面
20b 内周起立面
21 金属膜
22 メッキ膜(Cuメッキ膜)
30 ネガレジスト
31 ネガレジスト
31a 空洞部
31b 逆テーパー面
40 フォトマスク
41 透光部
42 遮光部
43 光量調整部
44 格子開口部
45 スリット
46 グラデーションパターン

Claims (13)

  1. 基板上に、スパイラル状の薄膜突条を起立させて形成したインダクタ電極を有する薄膜インダクタ素子において、
    前記インダクタ電極の断面形状を、スパイラル中心側の内周起立面が前記基板と略直交し、外周起立面が電極上方ほどスパイラル中心に接近するテーパー面としたことを特徴とする薄膜インダクタ素子。
  2. 請求項1記載の薄膜インダクタ素子において、前記外周起立面のテーパー角は、55°以上85°以下である薄膜インダクタ素子。
  3. 請求項1又は2記載の薄膜インダクタ素子において、前記インダクタ電極の平面形状は、互いに直交する直線を組み合わせてなるスパイラル形状である薄膜インダクタ素子。
  4. 請求項1ないし3のいずれか一項に記載の薄膜インダクタ素子において、前記インダクタ電極は、基板上に形成されたTi/Cu又はCr/Cuによる金属膜と、この金属膜上に形成されたCuメッキ膜とにより形成されている薄膜インダクタ素子。
  5. 請求項1ないし3のいずれか一項に記載の薄膜インダクタ素子において、前記インダクタ電極は、基板上に形成されたTi/Au又はCr/Auによる金属膜と、この金属膜上に形成されたAuメッキ膜とにより形成されている薄膜インダクタ素子。
  6. スパイラル状のインダクタ電極形状に対応するスパイラル形状の遮光部を有し、該遮光部は、スパイラル中心から遠い側に、光透過量がスパイラル中心側ほど少なくなっていく光量調整部を有するフォトマスクを準備する工程;
    基板上に、インダクタ電極の下層となる金属膜を形成する工程;
    この金属膜上に、ネガレジスト膜を均一に塗布する工程;
    前記準備したフォトマスクを通して前記ネガレジスト膜を露光する工程;
    現像処理により、前記フォトマスクのスパイラル形状に対応するスパイラル状であって、スパイラル中心側の面が基板に直交し、スパイラル中心から遠い面がレジスト上方ほどスパイラル中心に接近する逆テーパー面となっている空洞部を有するネガレジストを得る工程;及び
    このネガレジストで覆われていない金属膜上に、前記インダクタ電極の上層となるメッキ膜を電解メッキ法により形成する工程;
    を有することを特徴とする薄膜インダクタ素子の製造方法。
  7. 請求項6記載の薄膜インダクタ素子の製造方法において、前記金属膜と前記空洞部の逆テーパー面のなす角は、55°以上85°以下である薄膜インダクタ素子の製造方法。
  8. 請求項6又は7記載の薄膜インダクタ素子の製造方法において、前記フォトマスクの光量調整部は、光を通過させる格子開口部を多数備え、この格子開口部の面積がスパイラル中心側ほど小さい格子状パターンである薄膜インダクタ素子の製造方法。
  9. 請求項6又は7記載の薄膜インダクタ素子の製造方法において、前記フォトマスクの光量調整部は、光を通過させるスリットを多数備え、このスリット幅がスパイラル中心側ほど小さいストライプパターンである薄膜インダクタ素子の製造方法。
  10. 請求項6又は7記載の薄膜インダクタ素子の製造方法において、前記フォトマスクの光量調整部は、スパイラル中心側に向かって連続的に光透過量が減少していくグラデーションパターンである薄膜インダクタ素子の製造方法。
  11. 請求項6ないし10のいずれか一項に記載の薄膜インダクタ素子の製造方法において、前記インダクタ電極を構成する金属膜はTi/Cu又はCr/Cuにより形成し、前記メッキ膜はCuにより形成する薄膜インダクタ素子の製造方法。
  12. 請求項6ないし10のいずれか一項に記載の薄膜インダクタ素子の製造方法において、前記インダクタ電極を構成する金属膜はTi/Au又はCr/Auにより形成し、前記メッキ膜はAuにより形成する薄膜インダクタ素子の製造方法。
  13. 請求項6ないし12のいずれか一項に記載の薄膜インダクタ素子の製造方法において、前記メッキ膜を形成した後に、前記レジスト層を除去し、さらに、露出している金属膜を除去する工程;を備える薄膜インダクタ素子の製造方法。
JP2003138195A 2003-05-16 2003-05-16 薄膜インダクタ素子及びその製造方法 Expired - Fee Related JP4199047B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138195A JP4199047B2 (ja) 2003-05-16 2003-05-16 薄膜インダクタ素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138195A JP4199047B2 (ja) 2003-05-16 2003-05-16 薄膜インダクタ素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004342864A JP2004342864A (ja) 2004-12-02
JP4199047B2 true JP4199047B2 (ja) 2008-12-17

Family

ID=33527641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138195A Expired - Fee Related JP4199047B2 (ja) 2003-05-16 2003-05-16 薄膜インダクタ素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP4199047B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282143B1 (ko) * 2008-10-30 2013-07-04 가부시키가이샤 무라타 세이사쿠쇼 전자 부품
JP6716866B2 (ja) * 2015-06-30 2020-07-01 Tdk株式会社 コイル部品
KR102111138B1 (ko) * 2019-10-15 2020-05-15 (주)유티아이 플렉시블 커버 윈도우의 제조방법

Also Published As

Publication number Publication date
JP2004342864A (ja) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3755453B2 (ja) インダクタ部品およびそのインダクタンス値調整方法
JP3094993B2 (ja) 電子部品の製造方法
JP4199047B2 (ja) 薄膜インダクタ素子及びその製造方法
US7612428B2 (en) Inductor fabricated with dry film resist and cavity and method of fabricating the inductor
JP2000223317A (ja) 可変インダクタンス素子
KR100366926B1 (ko) 가변 인덕터
US20010009281A1 (en) Phase shift mask and fabrication method thereof
KR100366927B1 (ko) 3단자형 가변 인덕턴스 소자
JP2010109802A (ja) 水晶振動子の製造方法
JP2004017461A (ja) スクリーン印刷版
JP2000036413A (ja) 電子部品及びその製造方法
KR100769459B1 (ko) 미세 전극을 갖는 세라믹 소자의 제조방법
JP2017191931A (ja) インダクターの製造方法及びインダクター
JP2003330161A (ja) 電子部品の製造方法およびその製造方法を用いた電子部品
JPS58209124A (ja) レジストパタ−ン形成方法
JPH11121264A (ja) チップ型lcフィルタの製造方法
KR100703998B1 (ko) 넓은 머리를 갖는 게이트의 제조방법
JP4178896B2 (ja) Lr複合部品
JPH11307727A (ja) 高周波用集積回路の導体部品およびその製造方法
EP1076345A2 (en) Variable inductance element
JP2003059725A (ja) Lr複合部品
JP2005191703A (ja) 弾性表面波素子の製造方法
JP2001075264A (ja) ホトマスク、並びに、このホトマスクを用いたパターン形成方法および電界効果トランジスタの製造方法
JP2001022090A (ja) 薄膜作製方法
JPH11251144A (ja) チップインダクタおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees