JP4198545B2 - Permanent magnet type rotating electric machine and electric compressor using the same - Google Patents

Permanent magnet type rotating electric machine and electric compressor using the same Download PDF

Info

Publication number
JP4198545B2
JP4198545B2 JP2003190036A JP2003190036A JP4198545B2 JP 4198545 B2 JP4198545 B2 JP 4198545B2 JP 2003190036 A JP2003190036 A JP 2003190036A JP 2003190036 A JP2003190036 A JP 2003190036A JP 4198545 B2 JP4198545 B2 JP 4198545B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor core
magnet type
type rotating
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190036A
Other languages
Japanese (ja)
Other versions
JP2005027422A (en
Inventor
良一 高畑
真一 湧井
春雄 小原木
一正 井出
菊地  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003190036A priority Critical patent/JP4198545B2/en
Publication of JP2005027422A publication Critical patent/JP2005027422A/en
Application granted granted Critical
Publication of JP4198545B2 publication Critical patent/JP4198545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界磁用の永久磁石を回転子に備えている永久磁石式回転電機に関し、特に、空気調和機や冷蔵庫および冷凍庫の圧縮機などに搭載される永久磁石式回転電機に関する。
【0002】
【従来の技術】
従来、この種の永久磁石式回転電機においては、電機子反作用磁束を低減させるために、様々な方策が取られている。例えば、回転子鉄心の外周形状をシャフトに対して凸形状の非同心にすると共に、永久磁石上部の回転子鉄心中に複数の長孔部(略長方形状のスリット)を設け、ギャップ部の磁束密度分布を平滑化して高調波磁束(電機子反作用磁束)を低減させている。
【0003】
すなわち、永久磁石式回転電機において、永久磁石の外周側の回転子鉄心に回転子の内周側から外周側に伸びた複数のスリットを形成すること、隣接するスリット間の距離が回転子鉄心の内周側よりも外周側の方が狭くなるように配置すること、スリットを回転子鉄心の磁極中心に対して対称に配置することが提案されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平11−252840号公報
【0005】
【発明が解決しようとする課題】
上記従来技術では、磁極が凸形状となるため等価ギャップが大きくなり、必要な出力を得るために電機子電流が増えて、高調波磁束が増加する。また、電機子反作用磁束を軽減するために複数のスリットを形成しているが、スリットを設けると誘導起電力波形にも影響を与える。つまり、回転子鉄心の磁極部に設けられたスリットには最適な形状や配置が存在する。
【0006】
更に、永久磁石式回転電機の騒音を低減するためには、特に集中巻の場合、電機子巻線に流れる電流を正弦波に近づけて、発生する高調波磁束を低減することが重要である。したがって、180度通電インバータで駆動するのが良いが、電機子巻線に流れる電流は、永久磁石式回転電機に印加される電圧(インバータの出力電圧)と永久磁石式回転電機の誘導起電力の差電圧によって流れることから、インバータの出力電圧を正弦波にしても誘導起電力波形が正弦波でなければ、電機子電流に高調波成分が含まれ、高調波磁束が発生する。よって、高調波磁束を低減するためには、誘導起電力波形を正弦波に近づければ良い。
【0007】
そして上記特許文献1には、スリットを配置することが記載されているが、永久磁石の有効磁束(基本波磁束)を損なわずに、さらに効率良く高調波を低減させるためにスリットの形状をどのようにするかは検討されていない。
【0008】
本発明の目的は、永久磁石の有効磁束(基本波磁束)を損なわずに、誘導起電力波形を正弦波に近づけて高調波磁束を十分に低減し、騒音問題を解決できる永久磁石式回転電機を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の外周側の回転子鉄心に回転子の内周側から外周側に伸びた複数のスリットを形成し、回転子鉄心に設けた複数のスリットの周方向幅を、回転子の内周側から外周側にかけて徐々に狭くなるように構成したことを特徴とする永久磁石式回転電機を提案する。
【0010】
前述のように、本発明では、固定子に流れ込む永久磁石の磁束を有効磁束(基本波磁束)を損なわないようd軸側に集中させるための回転子鉄心の磁極部に複数のスリットを形成し、複数のスリットの周方向幅を、回転子鉄心の内周側から外周側にかけて徐々に狭くしている。よって、電機子巻線に鎖交する磁束が正弦波に近づき、誘導起電力も正弦波に近づくため、高調波磁束が低減して、騒音問題の小さな永久磁石式回転電機を提供できる。
【0011】
【発明の実施形態】
以下、本発明の実施例を、図1〜図8を用いて詳細に説明する。各図中において、共通する符号は同一物を示す。また、ここでは4極の永久磁石式回転電機について示し、回転子の極数とスロット数との比を2:3とした。
【0012】
(実施形態1)
図1に本発明による永久磁石式回転電機の実施形態1の径方向断面形状、図2に本発明による実施形態1の回転子の径方向断面形状を拡大した図を示す。
【0013】
図1、図2において、永久磁石式回転電機1は、固定子2と回転子3から構成される。
【0014】
固定子2は、ティース4とコアバック5からなる固定子鉄心6と、ティース4間のスロット7内にティース4を取り囲むように巻装された集中巻の電機子巻線8(三相巻線のU相巻線8A、V相巻線8B、W相巻線8Cからなる)で構成される。ここでは、永久磁石式回転電機1は、4極6スロットであるから、スロットピッチは電気角で120度である。
【0015】
回転子3は、回転子鉄心12に形成した一文字状の永久磁石挿入孔13中に永久磁石14が納められ、シャフト(図示せず)と嵌合するためのシャフト孔15からなる。ここで、回転子3の磁極中心方向に延びる軸をd軸、磁極中心方向と電気角で90度隔てた磁極間方向に延びる軸をq軸としたとき、回転子鉄心12の外周面に極間のq軸側に直線状にカットした略V字状を2つ組み合わせた形状の凹部11を設けることにより、永久磁石14の磁束を集合させる役目をなす磁極鉄心を形成する。ここで、固定子2の内周面と同心円弧である磁極角度θ7はスロットピッチと略等しくしている。
【0016】
また、凹部11によって回転子鉄心12の磁極部に集合させた永久磁石14の磁束を、更にd軸側に集合させるため、回転子鉄心12の磁極部に内周側から外周側に向かうスリット10を設けている。このスリット10(10a、10bからなる)はd軸に対して対称に配置すると共に、有効磁束(基本波磁束)を損なわないようd軸側に磁束を集合させるために設けているので、スリット10の周方向幅を、回転子鉄心12の内周側より外周側を狭くしている。
【0017】
ここで、回転子鉄心12に設けた複数のスリット10a、10bの周方向幅を、回転子鉄心12の内周側よりの周方向幅をL1、回転子鉄心12の外周側よりの周方向幅をL2、永久磁石14の周方向長さをL3、回転子鉄心12の外周面の極間に設けた凹部11間長さをL4としたとき、
L1/L2=L3/L4……(1)
の関係となるように配置している。
【0018】
また、スリット10aとスリット10b間の距離を内周側(永久磁石14側:θ2)よりも外周側(固定子2側:θ1)を狭くしている。ここで、スリット10aとスリット10b間から固定子2に流入する磁束を非常に大きくできるが、永久磁石14の磁束はティース4から固定子2に流入するため、ティース4部での飽和を緩和して、永久磁石14の磁束を有効利用した方がよい。したがって、ティース先端部25の端部は飽和しやすいため、スリット10aとスリット10b間の外周側(固定子2側)の距離(θ1)をティース4の幅以下(θ3以下)に設定する。
【0019】
さらに、スリット10と磁極鉄心の端部までの部位から固定子2側に流入する磁束を確保する(q軸側からd軸側に近づくに従って段階的に磁束を大きくする)ため、スリット10aとスリット10b間の内周側(永久磁石14側)の距離(θ2)が永久磁石14の幅(θ9)よりも狭くなるようにしている。
【0020】
ところで、本発明の対象とする圧縮機駆動用の永久磁石式回転電機1では、騒音がしばしば問題となる。永久磁石式回転電機1の騒音を大きくする要因として脈動トルクがあるが、脈動トルクは単純にギャップ長を大きくし、ギャップの磁束密度を小さくすれば良い。しかし、ギャップ長を広げてギャップの磁束密度を小さくすると、その分だけ出力が小さくなるので、結果的に同一出力を維持するのには体格を大きくする必要がある。そこで、マグネットトルクに寄与する永久磁石14の磁束は低減せずに脈動トルクを小さくするには、電機子磁束の高調波成分を小さくすれば良い。
【0021】
したがって、180度通電インバータで駆動するのがよいが、電機子巻線8に流れる電流は永久磁石式回転電機1に印加される電圧(インバータの出力電圧)と永久磁石式回転電機1の誘導起電力の差電圧によって流れることから、インバータの出力電圧を正弦波にしても誘導起電力波形が正弦波でなければ、電機子電流に高調波成分が含まれ、高調波磁束が発生する。よって、脈動トルクを低減するためには、誘導起電力波形を正弦波に近づければ良いことになる。
【0022】
図3に本発明による実施形態1の誘導起電力波形(a)とその高調波分析結果(b)を示す。図3に示したように、本発明での誘導起電力波形は正弦波に著しく近づいており(5次成分:約6.1%、7次成分:約1.9%)、波形ひずみ率は約7.2%である。
【0023】
以上より、本発明では、回転子鉄心12の外周形状および回転子鉄心12の磁極部に設けたスリット10の形状や配置によって有効磁束(基本波磁束)を損なわずにd軸側に永久磁石14の磁束を集めることができるため、誘導起電力波形が正弦波に近づき、運転時の脈動トルクが小さくなって低騒音化が図れる。
【0024】
ここで、磁極角度θ7(同心円弧)はスロットピッチ(120度)と略等しくしたが、θ7の最適値はティース4の形状や幅などによって異なり、90度から120度の範囲内で最適値がある。
【0025】
(実施形態2)
図4は、本発明による永久磁石式回転電機の実施形態2の回転子鉄心形状を示す断面図である。
【0026】
図4において、図2と異なるのは、回転子鉄心12の磁極部にスリット10a、スリット10bの他にスリット10cとスリット10dを設けたことである。このスリット10cと10dはd軸に対して対称に配置すると共に、回転子鉄心12の外周側の磁気飽和による有効磁束(基本波磁束)の減少を抑えつつd軸側に磁束を集合させるために設けているので、スリット10の周方向幅を、回転子鉄心12の内周側より外周側を狭くしている。ここで、回転子鉄心12に設けた複数のスリット10cの周方向幅を、回転子鉄心12の内周側よりの周方向幅をL5、回転子鉄心12の外周側よりの周方向幅をL6、永久磁石14の周方向長さをL3、回転子鉄心12の外周面の極間に設けた凹部11間長さをL4としたとき、
L5/L6=L3/L4……(2)
の関係となるように配置している。このように構成すると、永久磁石の磁束は更に高調波成分のみ低減され、基本波磁束が損なわれないのである。
【0027】
また、スリット10cとスリット10d間の距離を内周側(永久磁石14側)の距離(θ6)よりも外周側(固定子2側)の距離(θ5)を狭くしている。スリット10と磁極鉄心の端部までの部位から固定子2側に流入する磁束を更に確保する(q軸側からd軸側に近づくに従って更に段階的に磁束を大きくする)ため、スリット10cとスリット10d間の内周側(永久磁石14側)の距離(θ6)をティース4の幅以下(θ3以下)にしている。
【0028】
図5は、本発明による実施形態2の誘導起電力波形(a)とその高調波分析結果(b)を示す。図5に示したように、誘導起電力波形は正弦波に近づいており(5次成分:約4.3%、7次成分:約1.0%)、波形ひずみ率は約4.9%と、図2の実施形態1よりも更に高調波成分が低減されているのがわかる。
【0029】
したがって、本発明による実施形態2は、回転子鉄心12の外周形状および回転子鉄心12の磁極部に設けたスリット10の形状や配置によって、有効磁束(基本波磁束)を損なわずにd軸側に永久磁石14の磁束を集めることができるため、誘導起電力波形もより正弦波に近づくので、図2に示した実施形態1と同様以上の効果が得られるのは言うまでもない。
【0030】
(実施形態3)
図6は、本発明による永久磁石式回転電機の実施形態3の回転子鉄心形状を示す断面図である。
【0031】
図6において、図2と異なるのは、スリット10aと10bの配置は同様であるが、回転子鉄心12に形成された永久磁石挿入孔13を回転子3の軸に対して凸のV字状にし、回転子鉄心12の外周面の極間(q軸)側に直線状にカットした略V字状の凹部16を形成したことである。ここで、凹部16は図2が示すように略V字状の2つを組み合わせた形状の凹部11とは形状が異なるが、回転子3の軸に対して凸のV字状に配置された永久磁石14の磁石角度θ9をスロットピッチ(120度)と略等しくしているため、凹部11同様に永久磁石14の磁束を集合させる役目をなす磁極鉄心を形成している。
【0032】
したがって、本発明による実施形態3における回転子鉄心12の外周形状および回転子鉄心12の磁極部に設けたスリット10の形状や配置によって、有効磁束(基本波磁束)を損なわずにd軸側に永久磁石14の磁束を集合させているので、図2に示した実施形態1と同様の効果が得られるのは言うまでもない。
【0033】
(実施形態4)
図7は、本発明による永久磁石式回転電機の実施形態4の断面図である。
【0034】
図7において、回転子3の構造は図1と同じであるが、固定子2の構造が異なっている。すなわち、図1と異なるのは、固定子ティース先端部25の中央は回転子鉄心12と同心円弧状とし、ティース先端部25の両端を直線状、つまり回転子3から遠ざける構造としたことである。
【0035】
このように構成した場合、固定子2も誘導起電力波形を正弦波に近づける構造となるため、図1の場合より誘導起電力波形が更に正弦波に近づき、電機子電流の高調波成分が小さくなり、高調波磁束が減少する。よって、脈動トルクも小さくなるため、著しく騒音を低減できる。
【0036】
(実施形態5)
図8は本発明に関わる圧縮機の断面構造である。
【0037】
圧縮機は、固定スクロール部材60の端板61に直立する渦巻状ラップ62と、旋回スクロール部材63の端板64に直立する渦巻状ラップ65とを噛み合わせて形成し、旋回スクロール部材63をクランクシャフト72によって旋回運動させることで圧縮動作を行う。固定スクロール部材60及び旋回スクロール部材63によって形成される圧縮室66(66a、66b、…)のうち、最も外径側に位置している圧縮室は、旋回運動に伴って両スクロール部材60、63の中心に向かって移動し、容積が次第に縮小する。圧縮室66a、66bが両スクロール部材60、63の中心近傍に達すると、両圧縮室66内の圧縮ガスは圧縮室66と連通した吐出口67から吐出される。吐出された圧縮ガスは、固定スクロール部材60及びフレーム68に設けられたガス通路(図示せず)を通ってフレーム68下部の圧縮容器69内に至り、圧縮容器69の側壁に設けられた吐出パイプ70から圧縮機外に排出される。
【0038】
また、本圧縮機では、圧力容器69内に、駆動用電動機1が内封されており、別置のインバータ(図示せず)によって制御された回転速度で回転し、圧縮動作を行う。ここで、駆動用電動機1は、固定子2と回転子3とで構成される永久磁石式回転電機1である。図8において、8は電機子巻線、12は回転子鉄心、73は油溜め部、74は油孔、75は滑り軸受である。
【0039】
このように、永久磁石式回転電機1を、圧縮機等の駆動用電動機1として用いる場合、制御装置(インバータ)によって運転制御される。前述のように、電機子電流の波形は、永久磁石式回転電機1に印加される電圧(制御装置の出力電圧)波形と、永久磁石式回転電機1の誘導起電力波形の差電圧によって決まるため、誘導起電力波形を正弦波に近づけることで電機子電流の高調波成分が小さくなるが、出力電圧の波形が正弦波となる制御装置で永久磁石式回転電機1を運転すれば、更に電機子電流の高調波成分を小さくできる。よって、本発明で示した永久磁石式回転電機1と出力電圧の波形が正弦波となる制御装置を組み合わせれば、著しく騒音を低減できる。
【0040】
【発明の効果】
本発明によれば、永久磁石の有効磁束(基本波磁束)を損なわずに、誘導起電力波形を正弦波にできる。したがって、高調波磁束を十分に低減し、騒音問題を解決できる永久磁石式回転電機を提供することができる。
【図面の簡単な説明】
【図1】本発明による永久磁石式回転電機の実施形態1の断面図を示す図。
【図2】図1の回転子鉄心形状を示す断面図。
【図3】図1の誘導起電力波形とその高調波分析結果を示す図。
【図4】本発明による永久磁石式回転電機の実施形態2の回転子鉄心形状を示す断面図。
【図5】図4の誘導起電力波形とその高調波分析結果を示す図。
【図6】本発明による永久磁石式回転電機の実施形態3の回転子鉄心形状を示す断面図。
【図7】本発明による永久磁石式回転電機の実施形態4の断面図を示す図。
【図8】本発明に係わる圧縮機の断面構造を示す図。
【符号の説明】
1…永久磁石式回転電機(駆動用電動機)、2…固定子、3…回転子、4…ティース、5…コアバック、6…固定子鉄心、7…スロット、8…電機子巻線、10…スリット、11…凹部、12…回転子鉄心、13…永久磁石挿入孔、14…永久磁石、15…シャフト孔、16…凹部、17…長孔部(スリット)、25…ティース先端部、60…固定スクロール部材、61…端板、62…ラップ、63…旋回スクロール部材、64…端板、65…ラップ、66…圧縮室、67…吐出口、68…フレーム、69…圧縮容器、70…吐出パイプ、72…シャフト、73…油溜め部、74…油孔、75…滑り軸受け。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet for a field in a rotor, and more particularly to a permanent magnet type rotating electric machine mounted on an air conditioner, a compressor of a refrigerator and a freezer.
[0002]
[Prior art]
Conventionally, in this type of permanent magnet type rotating electrical machine, various measures have been taken to reduce the armature reaction magnetic flux. For example, the outer periphery of the rotor core is made non-concentric with a convex shape with respect to the shaft, and a plurality of elongated holes (substantially rectangular slits) are provided in the rotor core above the permanent magnet so that the magnetic flux in the gap portion The density distribution is smoothed to reduce the harmonic magnetic flux (armature reaction magnetic flux).
[0003]
That is, in the permanent magnet type rotating electrical machine, a plurality of slits extending from the inner peripheral side of the rotor to the outer peripheral side are formed in the rotor core on the outer peripheral side of the permanent magnet, and the distance between adjacent slits is It has been proposed to arrange the outer peripheral side to be narrower than the inner peripheral side, and to arrange the slit symmetrically with respect to the magnetic pole center of the rotor core (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-252840
[Problems to be solved by the invention]
In the above prior art, since the magnetic pole has a convex shape, the equivalent gap is increased, the armature current is increased to obtain a required output, and the harmonic magnetic flux is increased. In addition, a plurality of slits are formed to reduce the armature reaction magnetic flux, but if the slits are provided, the induced electromotive force waveform is also affected. In other words, the slits provided in the magnetic pole part of the rotor core have an optimum shape and arrangement.
[0006]
Furthermore, in order to reduce the noise of the permanent magnet type rotating electric machine, it is important to reduce the generated harmonic magnetic flux by bringing the current flowing through the armature winding close to a sine wave especially in the case of concentrated winding. Therefore, it is better to drive with a 180-degree energizing inverter, but the current flowing through the armature winding is the voltage applied to the permanent magnet type rotating electrical machine (output voltage of the inverter) and the induced electromotive force of the permanent magnet type rotating electrical machine. Since it flows by the differential voltage, even if the output voltage of the inverter is a sine wave, if the induced electromotive force waveform is not a sine wave, the armature current includes a harmonic component, and a harmonic magnetic flux is generated. Therefore, in order to reduce the harmonic magnetic flux, the induced electromotive force waveform may be approximated to a sine wave.
[0007]
In Patent Document 1, it is described that a slit is disposed. However, in order to reduce harmonics more efficiently without deteriorating the effective magnetic flux (fundamental wave magnetic flux) of the permanent magnet, which slit shape is selected. It is not considered whether to do so.
[0008]
An object of the present invention is a permanent magnet type rotating electrical machine that can solve the noise problem by reducing the harmonic magnetic flux sufficiently by bringing the induced electromotive force waveform close to a sine wave without impairing the effective magnetic flux (fundamental wave magnetic flux) of the permanent magnet. Is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is formed on a rotor core and a stator in which concentrated armature windings are provided so as to surround teeth in a plurality of slots formed on the stator core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a plurality of permanent magnet insertion holes is rotatably supported via a gap on the inner periphery of the stator, the rotor on the outer peripheral side of the permanent magnet A plurality of slits extending from the inner peripheral side of the rotor to the outer peripheral side are formed in the iron core, and the circumferential width of the plurality of slits provided in the rotor core gradually decreases from the inner peripheral side to the outer peripheral side of the rotor. The present invention proposes a permanent magnet type rotating electrical machine that is configured as described above.
[0010]
As described above, in the present invention, a plurality of slits are formed in the magnetic pole portion of the rotor core for concentrating the magnetic flux of the permanent magnet flowing into the stator on the d-axis side so as not to impair the effective magnetic flux (fundamental wave magnetic flux). The circumferential widths of the plurality of slits are gradually narrowed from the inner peripheral side to the outer peripheral side of the rotor core. Therefore, the magnetic flux interlinking with the armature winding approaches a sine wave, and the induced electromotive force also approaches the sine wave. Therefore, the harmonic magnetic flux is reduced, and a permanent magnet type rotating electrical machine with less noise problems can be provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. In each figure, the common code | symbol shows the same thing. Further, here, a 4-pole permanent magnet type rotating electric machine is shown, and the ratio of the number of poles of the rotor to the number of slots is set to 2: 3.
[0012]
(Embodiment 1)
FIG. 1 shows a radial cross-sectional shape of the first embodiment of the permanent magnet type rotating electrical machine according to the present invention, and FIG. 2 shows an enlarged view of the radial cross-sectional shape of the rotor of the first embodiment according to the present invention.
[0013]
In FIG. 1 and FIG. 2, the permanent magnet type rotating electrical machine 1 includes a stator 2 and a rotor 3.
[0014]
The stator 2 includes a stator core 6 including a tooth 4 and a core back 5, and concentrated winding armature windings 8 (three-phase windings) wound around the teeth 4 in slots 7 between the teeth 4. U-phase winding 8A, V-phase winding 8B, and W-phase winding 8C). Here, since the permanent magnet type rotating electrical machine 1 has 4 poles and 6 slots, the slot pitch is 120 degrees in electrical angle.
[0015]
The rotor 3 includes a shaft hole 15 in which a permanent magnet 14 is housed in a single-letter permanent magnet insertion hole 13 formed in the rotor core 12 and is fitted to a shaft (not shown). Here, assuming that the axis extending in the magnetic pole center direction of the rotor 3 is the d axis and the axis extending in the direction between the magnetic poles 90 degrees apart from the magnetic pole center direction by the electrical angle is the q axis, the pole is formed on the outer circumferential surface of the rotor core 12. By providing the concave portion 11 having a shape obtained by combining two substantially V-shapes cut in a straight line on the q-axis side therebetween, a magnetic pole core that serves to collect the magnetic flux of the permanent magnet 14 is formed. Here, the magnetic pole angle θ7, which is a concentric arc with the inner peripheral surface of the stator 2, is substantially equal to the slot pitch.
[0016]
Further, since the magnetic flux of the permanent magnet 14 that is gathered at the magnetic pole part of the rotor core 12 by the concave portion 11 is gathered further to the d-axis side, the slit 10 that moves from the inner peripheral side to the outer peripheral side at the magnetic pole part of the rotor core 12. Is provided. The slits 10 (consisting of 10a and 10b) are arranged symmetrically with respect to the d-axis and are provided to collect magnetic flux on the d-axis side so as not to impair the effective magnetic flux (fundamental wave magnetic flux). The outer circumferential side is made narrower than the inner circumferential side of the rotor core 12.
[0017]
Here, the circumferential width of the plurality of slits 10 a and 10 b provided in the rotor core 12 is L1, the circumferential width from the inner circumferential side of the rotor core 12 is L1, and the circumferential width from the outer circumferential side of the rotor core 12 L2, the circumferential length of the permanent magnet 14 is L3, and the length between the recesses 11 provided between the outer peripheral surfaces of the rotor core 12 is L4.
L1 / L2 = L3 / L4 (1)
They are arranged so that
[0018]
Further, the distance between the slit 10a and the slit 10b is narrower on the outer peripheral side (stator 2 side: θ1) than on the inner peripheral side (permanent magnet 14 side: θ2). Here, although the magnetic flux flowing into the stator 2 from between the slit 10a and the slit 10b can be made very large, the magnetic flux of the permanent magnet 14 flows into the stator 2 from the teeth 4, so the saturation at the teeth 4 portion is alleviated. Thus, it is better to effectively use the magnetic flux of the permanent magnet 14. Therefore, since the end of the tooth tip 25 is likely to be saturated, the distance (θ1) on the outer peripheral side (stator 2 side) between the slit 10a and the slit 10b is set to be equal to or less than the width of the tooth 4 (θ3 or less).
[0019]
Furthermore, in order to secure the magnetic flux flowing into the stator 2 side from the portion between the slit 10 and the end of the magnetic core (increasing the magnetic flux stepwise from the q-axis side toward the d-axis side), the slit 10a and the slit The distance (θ2) on the inner peripheral side (permanent magnet 14 side) between 10b is made smaller than the width (θ9) of the permanent magnet 14.
[0020]
By the way, in the permanent magnet type rotating electrical machine 1 for driving the compressor which is the subject of the present invention, noise often becomes a problem. Although the pulsation torque is a factor that increases the noise of the permanent magnet type rotating electrical machine 1, the pulsation torque can be simply increased by increasing the gap length and decreasing the magnetic flux density of the gap. However, if the gap length is widened and the magnetic flux density of the gap is reduced, the output is reduced by that amount, so that it is necessary to increase the physique to maintain the same output as a result. Therefore, in order to reduce the pulsation torque without reducing the magnetic flux of the permanent magnet 14 that contributes to the magnet torque, the harmonic component of the armature magnetic flux may be reduced.
[0021]
Therefore, it is preferable to drive with a 180-degree energizing inverter, but the current flowing through the armature winding 8 is the voltage applied to the permanent magnet type rotating electrical machine 1 (the output voltage of the inverter) and the induction of the permanent magnet type rotating electrical machine 1. Since the current flows due to the difference voltage of the power, even if the output voltage of the inverter is a sine wave, if the induced electromotive force waveform is not a sine wave, the armature current includes a harmonic component and a harmonic magnetic flux is generated. Therefore, in order to reduce the pulsation torque, the induced electromotive force waveform may be approximated to a sine wave.
[0022]
FIG. 3 shows the induced electromotive force waveform (a) and the harmonic analysis result (b) of Embodiment 1 according to the present invention. As shown in FIG. 3, the induced electromotive force waveform in the present invention is very close to a sine wave (5th order component: about 6.1%, 7th order component: about 1.9%), and the waveform distortion rate is About 7.2%.
[0023]
As described above, in the present invention, the permanent magnet 14 on the d-axis side is not damaged by the effective shape (fundamental wave flux) without damaging the effective magnetic flux (fundamental wave flux) by the outer peripheral shape of the rotor core 12 and the shape and arrangement of the slit 10 provided in the magnetic pole part of the rotor core 12. Therefore, the induced electromotive force waveform approaches a sine wave, the pulsating torque during operation is reduced, and noise can be reduced.
[0024]
Here, the magnetic pole angle θ7 (concentric arc) is substantially equal to the slot pitch (120 degrees), but the optimum value of θ7 varies depending on the shape and width of the teeth 4 and the optimum value is within the range of 90 to 120 degrees. is there.
[0025]
(Embodiment 2)
FIG. 4 is a cross-sectional view showing the rotor core shape of the second embodiment of the permanent magnet type rotating electrical machine according to the present invention.
[0026]
4 is different from FIG. 2 in that a slit 10c and a slit 10d are provided in addition to the slit 10a and the slit 10b in the magnetic pole portion of the rotor core 12. In FIG. The slits 10c and 10d are arranged symmetrically with respect to the d-axis, and in order to collect magnetic flux on the d-axis side while suppressing a decrease in effective magnetic flux (fundamental wave magnetic flux) due to magnetic saturation on the outer peripheral side of the rotor core 12. Since it is provided, the circumferential width of the slit 10 is narrower on the outer peripheral side than the inner peripheral side of the rotor core 12. Here, the circumferential width of the plurality of slits 10c provided in the rotor core 12 is L5, the circumferential width from the inner peripheral side of the rotor core 12 is L5, and the circumferential width from the outer peripheral side of the rotor core 12 is L6. When the length in the circumferential direction of the permanent magnet 14 is L3 and the length between the recesses 11 provided between the poles of the outer peripheral surface of the rotor core 12 is L4,
L5 / L6 = L3 / L4 (2)
They are arranged so that If comprised in this way, the magnetic flux of a permanent magnet will be reduced only a harmonic component further, and a fundamental wave magnetic flux will not be impaired.
[0027]
Further, the distance (θ5) on the outer peripheral side (stator 2 side) is made narrower than the distance (θ6) on the inner peripheral side (permanent magnet 14 side). In order to further secure the magnetic flux flowing into the stator 2 side from the portion between the slit 10 and the end of the magnetic core (increasing the magnetic flux stepwise as it approaches the d-axis side from the q-axis side), the slit 10c and the slit The distance (θ6) on the inner circumference side (permanent magnet 14 side) between 10d is set to be equal to or less than the width of the tooth 4 (θ3 or less).
[0028]
FIG. 5 shows an induced electromotive force waveform (a) and a harmonic analysis result (b) thereof according to the second embodiment of the present invention. As shown in FIG. 5, the induced electromotive force waveform is close to a sine wave (5th order component: about 4.3%, 7th order component: about 1.0%), and the waveform distortion rate is about 4.9%. It can be seen that the harmonic components are further reduced as compared with the first embodiment shown in FIG.
[0029]
Therefore, the second embodiment according to the present invention is based on the outer peripheral shape of the rotor core 12 and the shape and arrangement of the slit 10 provided in the magnetic pole part of the rotor core 12 so that the effective magnetic flux (fundamental wave flux) is not impaired. In addition, since the magnetic flux of the permanent magnet 14 can be collected, the induced electromotive force waveform also approaches a sine wave, so that it is needless to say that the same effects as those of the first embodiment shown in FIG. 2 can be obtained.
[0030]
(Embodiment 3)
FIG. 6 is a cross-sectional view showing the rotor core shape of the third embodiment of the permanent magnet type rotating electrical machine according to the present invention.
[0031]
6 differs from FIG. 2 in that the arrangement of the slits 10a and 10b is the same, but the permanent magnet insertion hole 13 formed in the rotor core 12 has a V-shape that is convex with respect to the axis of the rotor 3. In other words, a substantially V-shaped recess 16 that is linearly cut is formed on the side (q-axis) between the outer peripheral surfaces of the rotor core 12. Here, as shown in FIG. 2, the concave portion 16 is different in shape from the concave portion 11 formed by combining two substantially V-shapes, but is arranged in a convex V shape with respect to the axis of the rotor 3. Since the magnet angle θ9 of the permanent magnet 14 is substantially equal to the slot pitch (120 degrees), a magnetic pole core that serves to collect the magnetic flux of the permanent magnet 14 is formed in the same manner as the concave portion 11.
[0032]
Therefore, the effective magnetic flux (fundamental wave flux) is not impaired by the outer peripheral shape of the rotor core 12 and the shape and arrangement of the slit 10 provided in the magnetic pole part of the rotor core 12 in the third embodiment according to the present invention. Since the magnetic fluxes of the permanent magnets 14 are gathered, it goes without saying that the same effects as those of the first embodiment shown in FIG. 2 can be obtained.
[0033]
(Embodiment 4)
FIG. 7 is a cross-sectional view of Embodiment 4 of the permanent magnet type rotating electrical machine according to the present invention.
[0034]
In FIG. 7, the structure of the rotor 3 is the same as that of FIG. 1, but the structure of the stator 2 is different. 1 differs from FIG. 1 in that the center of the stator tooth tip 25 is concentric with the rotor core 12 and both ends of the tooth tip 25 are linear, that is, away from the rotor 3.
[0035]
In such a configuration, the stator 2 also has a structure in which the induced electromotive force waveform approximates a sine wave. Therefore, the induced electromotive force waveform further approaches the sine wave, and the harmonic component of the armature current is smaller than in the case of FIG. As a result, the harmonic magnetic flux decreases. Therefore, since the pulsation torque is also reduced, noise can be significantly reduced.
[0036]
(Embodiment 5)
FIG. 8 shows a cross-sectional structure of a compressor according to the present invention.
[0037]
The compressor is formed by meshing a spiral wrap 62 standing upright on the end plate 61 of the fixed scroll member 60 and a spiral wrap 65 standing upright on the end plate 64 of the orbiting scroll member 63. A compression operation is performed by rotating the shaft 72. Of the compression chambers 66 (66a, 66b,...) Formed by the fixed scroll member 60 and the orbiting scroll member 63, the compression chamber located on the outermost side is the scroll members 60 and 63 with the orbiting motion. The volume gradually decreases. When the compression chambers 66 a and 66 b reach the vicinity of the centers of the scroll members 60 and 63, the compressed gas in both the compression chambers 66 is discharged from a discharge port 67 communicating with the compression chamber 66. The discharged compressed gas passes through gas passages (not shown) provided in the fixed scroll member 60 and the frame 68 and reaches the compression container 69 below the frame 68, and a discharge pipe provided on the side wall of the compression container 69. 70 is discharged out of the compressor.
[0038]
Further, in the present compressor, the driving motor 1 is enclosed in the pressure vessel 69 and rotates at a rotational speed controlled by a separate inverter (not shown) to perform a compression operation. Here, the drive motor 1 is a permanent magnet type rotating electrical machine 1 including a stator 2 and a rotor 3. In FIG. 8, 8 is an armature winding, 12 is a rotor core, 73 is an oil reservoir, 74 is an oil hole, and 75 is a sliding bearing.
[0039]
As described above, when the permanent magnet type rotating electrical machine 1 is used as the drive motor 1 such as a compressor, the operation is controlled by the control device (inverter). As described above, the waveform of the armature current is determined by the voltage difference between the voltage (output voltage of the control device) applied to the permanent magnet type rotating electrical machine 1 and the induced electromotive force waveform of the permanent magnet type rotating electrical machine 1. The harmonic component of the armature current is reduced by bringing the induced electromotive force waveform close to a sine wave. However, if the permanent magnet type rotating electrical machine 1 is operated by a control device in which the waveform of the output voltage is a sine wave, the armature is further increased. The harmonic component of the current can be reduced. Therefore, if the permanent magnet type rotating electrical machine 1 shown in the present invention and the control device in which the waveform of the output voltage is a sine wave are combined, noise can be significantly reduced.
[0040]
【The invention's effect】
According to the present invention, the induced electromotive force waveform can be made a sine wave without impairing the effective magnetic flux (fundamental wave magnetic flux) of the permanent magnet. Therefore, it is possible to provide a permanent magnet type rotating electrical machine that can sufficiently reduce the harmonic magnetic flux and solve the noise problem.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of a permanent magnet type rotating electrical machine according to the present invention.
2 is a cross-sectional view showing the rotor core shape of FIG. 1. FIG.
FIG. 3 is a diagram showing the induced electromotive force waveform of FIG. 1 and its harmonic analysis results;
FIG. 4 is a cross-sectional view showing a rotor core shape of a second embodiment of a permanent magnet type rotating electrical machine according to the present invention.
5 is a diagram showing the induced electromotive force waveform of FIG. 4 and its harmonic analysis results;
FIG. 6 is a cross-sectional view showing a rotor core shape of a third embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 7 is a cross-sectional view of a fourth embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 8 is a diagram showing a cross-sectional structure of a compressor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type rotary electric machine (drive motor), 2 ... Stator, 3 ... Rotor, 4 ... Teeth, 5 ... Core back, 6 ... Stator iron core, 7 ... Slot, 8 ... Armature winding, 10 DESCRIPTION OF SYMBOLS ... Slit, 11 ... Recessed part, 12 ... Rotor core, 13 ... Permanent magnet insertion hole, 14 ... Permanent magnet, 15 ... Shaft hole, 16 ... Recessed part, 17 ... Long hole part (slit), 25 ... Tip part of teeth, 60 ... fixed scroll member, 61 ... end plate, 62 ... wrap, 63 ... orbiting scroll member, 64 ... end plate, 65 ... wrap, 66 ... compression chamber, 67 ... discharge port, 68 ... frame, 69 ... compression container, 70 ... Discharge pipe, 72 ... shaft, 73 ... oil sump, 74 ... oil hole, 75 ... slide bearing.

Claims (8)

固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、該固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、
前記永久磁石の外周側の前記回転子鉄心に前記回転子の内周側から外周側に伸びた複数のスリットを形成し、該回転子鉄心に設けた複数のスリットの周方向幅を、該回転子鉄心の内周側より外周側を狭くするとともに、隣接するスリット間の距離が該回転子鉄心の内周側よりも外周側の方が狭くなるように配置し、前記回転子鉄心に設けた複数のスリットの周方向幅を、該回転子鉄心の内周側よりの1番広くなる周方向幅をL1、該回転子鉄心の外周側よりの1番狭くなる周方向幅をL2、前記永久磁石の周方向長さをL3、該回転子鉄心の外周面の極間に設けた凹部間の距離をL4としたとき、
L1/L2=L3/L4
なる関係に構成したことを特徴とする永久磁石式回転電機。
A permanent magnet is inserted into a stator in which concentrated armature windings are provided so as to surround teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnet insertion holes formed in the rotor core. In the permanent magnet type rotating electrical machine in which the housed rotor is rotatably supported through the gap on the inner periphery of the stator,
A plurality of slits extending from the inner peripheral side of the rotor to the outer peripheral side are formed in the rotor core on the outer peripheral side of the permanent magnet, and the circumferential width of the plurality of slits provided in the rotor core is set to the rotation The outer peripheral side is made narrower than the inner peripheral side of the core, and the distance between adjacent slits is arranged so that the outer peripheral side is narrower than the inner peripheral side of the rotor core, and is provided in the rotor core. The circumferential width of the plurality of slits is L1, the circumferential width that is the widest from the inner peripheral side of the rotor core, and the circumferential width that is the narrowest from the outer peripheral side of the rotor core, L2. When the circumferential length of the magnet is L3 and the distance between the concave portions provided between the poles of the outer peripheral surface of the rotor core is L4,
L1 / L2 = L3 / L4
A permanent magnet type rotating electrical machine characterized in that it is configured as follows.
請求項1に記載の永久磁石式回転電機において、
前記回転子鉄心に設けた複数のスリットが該回転子鉄心の磁極中心に対して対称に配置されていることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
A permanent magnet type rotating electrical machine, wherein a plurality of slits provided in the rotor core are arranged symmetrically with respect to a magnetic pole center of the rotor core .
請求項1または請求項2に記載の永久磁石式回転電機において、
前記回転子鉄心の磁極角度が電気角で90度から120度の範囲になるように該回転子鉄心の外周面の極間に凹部を形成したことを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1 or 2,
A permanent magnet type rotating electrical machine , wherein concave portions are formed between the poles of the outer peripheral surface of the rotor core such that the magnetic pole angle of the rotor core is in an electrical angle range of 90 degrees to 120 degrees .
請求項1ないし請求項3のいずれか1項に記載の永久磁石式回転電機において、
前記永久磁石の磁束軸をd軸、前記d軸と電気角で直交する軸をq軸としたとき、前記q軸最寄に設けたスリット間の距離が、前記回転子鉄心の外周側で、前記固定子鉄心のティース幅以下となるように形成したことを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to any one of claims 1 to 3,
When the permanent magnet's magnetic flux axis is d-axis and the axis orthogonal to the d-axis is q-axis, the distance between the slits provided closest to the q-axis is on the outer peripheral side of the rotor core, A permanent magnet type rotating electrical machine formed so as to be equal to or less than a teeth width of the stator core .
請求項1ないし請求項4のいずれか1項に記載の永久磁石式回転電機において、
前記永久磁石の磁束軸をd軸、前記d軸と電気角で直交する軸をq軸としたとき、前記q軸最寄に設けたスリット間の距離が、前記回転子鉄心の内周側で、前記永久磁石の幅よりも狭くなるように配置したことを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 4,
When the magnetic axis of the permanent magnet is the d-axis and the axis orthogonal to the d-axis is the q-axis, the distance between the slits provided closest to the q-axis is the inner peripheral side of the rotor core. The permanent magnet type rotating electrical machine is arranged so as to be narrower than the width of the permanent magnet.
請求項1ないし請求項5のいずれか1項に記載の永久磁石式回転電機において、
前記回転子鉄心に埋設される永久磁石の形状が、前記回転子の軸に対して一文字状であるか、もしくは該回転子の軸に対して凸のV字形状であることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 5,
The permanent magnet embedded in the rotor core has a single letter shape with respect to the axis of the rotor or a V shape that is convex with respect to the axis of the rotor. Magnet rotating electric machine.
請求項1ないし請求項6のいずれか1項に記載の永久磁石式回転電機において、
前記固定子鉄心のティース内周面にギャップ長の異なる2種類以上のギャップ面を形成し、該ティース先端の中央部より端部のギャップ長が大きくなるようにしたことを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electrical machine according to any one of claims 1 to 6,
A permanent magnet type wherein two or more types of gap surfaces having different gap lengths are formed on the inner peripheral surface of the teeth of the stator core so that the gap length of the end portion is larger than the central portion of the tip end of the teeth. Rotating electric machine.
請求項1ないし請求項7のいずれか1項に記載の永久磁石式回転電機を駆動源とした圧縮機The compressor which used the permanent magnet type rotary electric machine of any one of Claim 1 thru | or 7 as a drive source .
JP2003190036A 2003-07-02 2003-07-02 Permanent magnet type rotating electric machine and electric compressor using the same Expired - Fee Related JP4198545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190036A JP4198545B2 (en) 2003-07-02 2003-07-02 Permanent magnet type rotating electric machine and electric compressor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190036A JP4198545B2 (en) 2003-07-02 2003-07-02 Permanent magnet type rotating electric machine and electric compressor using the same

Publications (2)

Publication Number Publication Date
JP2005027422A JP2005027422A (en) 2005-01-27
JP4198545B2 true JP4198545B2 (en) 2008-12-17

Family

ID=34188038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190036A Expired - Fee Related JP4198545B2 (en) 2003-07-02 2003-07-02 Permanent magnet type rotating electric machine and electric compressor using the same

Country Status (1)

Country Link
JP (1) JP4198545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615652B2 (en) 2016-05-31 2020-04-07 Mitsubishi Electric Corporation Rotor, electric motor, compressor, air blower, and air conditioner

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340632B2 (en) * 2005-01-28 2009-10-07 株式会社日立産機システム Permanent magnet type rotating electric machine and compressor using the same
JP4736472B2 (en) * 2005-02-28 2011-07-27 パナソニック株式会社 Electric motor
JP4626405B2 (en) * 2005-06-01 2011-02-09 株式会社デンソー Brushless motor
JP4131276B2 (en) 2005-12-19 2008-08-13 ダイキン工業株式会社 Electric motor and its rotor and magnetic core for rotor
US7705502B2 (en) * 2006-04-14 2010-04-27 Emerson Electric Co. Interior magnet machine with non-perpendicular slots
US8350435B2 (en) * 2006-04-14 2013-01-08 Emerson Electric Co. Interior magnet machine with reduced cogging
JP5067365B2 (en) * 2006-04-17 2012-11-07 パナソニック株式会社 motor
JP5259934B2 (en) 2006-07-20 2013-08-07 株式会社日立産機システム Permanent magnet type rotating electric machine and compressor using the same
JP4755117B2 (en) * 2007-01-29 2011-08-24 三菱電機株式会社 Rotor, blower and compressor of embedded permanent magnet motor
JP4838348B2 (en) 2007-02-26 2011-12-14 三菱電機株式会社 Permanent magnet motor, hermetic compressor and fan motor
JP5288724B2 (en) * 2007-04-26 2013-09-11 東芝産業機器製造株式会社 Rotating electric machine rotor and rotating electric machine
JP2009077525A (en) * 2007-09-20 2009-04-09 Toshiba Industrial Products Manufacturing Corp Rotor for dynamo-electric machine and dynamo-electric machine
CN101939896B (en) * 2008-02-07 2013-06-05 株式会社美姿把 Brushless motor
JP2010004676A (en) * 2008-06-20 2010-01-07 Ihi Corp Permanent magnet synchronous motor
JP5361261B2 (en) * 2008-06-20 2013-12-04 株式会社東芝 Permanent magnet rotating electric machine
US8964424B2 (en) 2008-09-22 2015-02-24 Daikin Industries, Ltd. Power converter, control method thereof, and direct matrix converter
JP5019073B2 (en) * 2008-09-30 2012-09-05 株式会社富士通ゼネラル Electric motor
JP5208088B2 (en) * 2009-10-30 2013-06-12 三菱電機株式会社 Permanent magnet embedded motor and blower
JP2011109734A (en) * 2009-11-12 2011-06-02 Ihi Corp Rotating machine
JP2012034473A (en) * 2010-07-29 2012-02-16 Toyo Electric Mfg Co Ltd Rotor of permanent magnet synchronous motor
JP2012060799A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Electric motor for compressor, compressor, and refrigeration cycle apparatus
CN102916544B (en) * 2011-08-01 2015-06-10 珠海格力节能环保制冷技术研究中心有限公司 Motor rotor structure, permanent-magnet synchronous motor and variable-frequency compressor
US9350227B2 (en) 2011-09-26 2016-05-24 Daikin Industries, Ltd. Power converter control method
DE102011086280A1 (en) * 2011-11-14 2013-05-16 Schaeffler Technologies AG & Co. KG Permanently-excited three-phase-synchronous machine for use as traction drive in motor car, has stator comprising tooth coil winding, and rotor comprising permanent magnets and partial rotors that are rotated opposite to each other
JP6226867B2 (en) * 2012-08-16 2017-11-08 株式会社ミツバ Brushless motor and brushless motor rotor
JP5985358B2 (en) * 2012-11-02 2016-09-06 株式会社クボタ Permanent magnet synchronous motor
JP5947230B2 (en) * 2013-01-23 2016-07-06 アスモ株式会社 motor
CN105009420B (en) 2013-03-14 2018-05-11 艾默生电气公司 Rotor and stator for electrically powered machine
US9893575B2 (en) * 2013-03-25 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Permanent-magnet-embedded electric motor and method for manufacturing same
CN105594099B (en) * 2013-09-25 2018-06-08 三菱电机株式会社 Permanent magnet submerged motor, compressor and refrigerating air conditioning device
JP6118227B2 (en) * 2013-10-22 2017-04-19 株式会社日立産機システム Permanent magnet rotating electric machine and compressor using the same
JP6420488B2 (en) * 2015-09-08 2018-11-07 日立ジョンソンコントロールズ空調株式会社 Permanent magnet type rotary electric motor and compressor using the same
JP2017055583A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Permanent magnet type rotary electrical machine and compressor using the same
DE112016006315T5 (en) * 2016-01-27 2018-10-18 Mitsubishi Electric Corporation Rotor, magnetization method, motor and scroll compressor
CN105553143B (en) * 2016-02-25 2019-06-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor core and permanent magnet synchronous motor with it
KR20180009189A (en) * 2016-07-18 2018-01-26 하이젠모터 주식회사 Rotor of permanent magnet motor
DE102016223044A1 (en) * 2016-11-22 2018-05-24 Robert Bosch Gmbh Sheet metal element for a rotor of an electric motor
CN107222045B (en) * 2017-08-09 2023-06-20 珠海格力节能环保制冷技术研究中心有限公司 Tangential motor, tangential motor rotor and rotor core thereof
CN111149281B (en) * 2017-09-28 2022-06-21 三菱电机株式会社 Permanent magnet type rotating electrical machine
JP2020036504A (en) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 Electric motor and compressor
WO2023074307A1 (en) * 2021-10-29 2023-05-04 ダイキン工業株式会社 Rotor, motor, compressor, and air-conditioning device
CN114709950A (en) * 2022-03-31 2022-07-05 珠海格力电器股份有限公司 Motor rotor, motor, compressor and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10615652B2 (en) 2016-05-31 2020-04-07 Mitsubishi Electric Corporation Rotor, electric motor, compressor, air blower, and air conditioner

Also Published As

Publication number Publication date
JP2005027422A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4198545B2 (en) Permanent magnet type rotating electric machine and electric compressor using the same
JP3899885B2 (en) Permanent magnet rotating electric machine
JP5259934B2 (en) Permanent magnet type rotating electric machine and compressor using the same
TWI569560B (en) A permanent magnet type rotating machine, and a compressor using the same
JP5372468B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP6118227B2 (en) Permanent magnet rotating electric machine and compressor using the same
JP5462011B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP3938726B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2002315243A (en) Permanent magnet type rotary electric machine
KR20100090154A (en) Interior permanent magnet type brushless direct current motor and compressor having the same
US6946760B2 (en) Brushless permanent magnet motor with high power density, low cogging and low vibration
JP2007074898A (en) Permanent magnet type rotary electric machine and compressor using same
JP2004007875A (en) Permanent magnet type electric motor and compressor employing it
JP2012080713A (en) Permanent magnet-type rotary electric machine and compressor using the same
CN109923757B (en) Permanent magnet type rotating electrical machine and compressor using the same
JP2011015499A (en) Rotor of electric motor
JP5208662B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
JP3635912B2 (en) Permanent magnet rotating electric machine
JP2010051075A (en) Axial gap rotating electric machine and compressor using the same
JP6470598B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP3763462B2 (en) Self-starting synchronous motor and compressor using the same
JP2002325410A (en) Permanent magnet type dynamo-electric machine and compressor using the same
JP4340632B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2000175390A (en) Brushless motor and hermetrically sealed compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees