JP6470598B2 - Permanent magnet type rotating electric machine and compressor using the same - Google Patents

Permanent magnet type rotating electric machine and compressor using the same Download PDF

Info

Publication number
JP6470598B2
JP6470598B2 JP2015049072A JP2015049072A JP6470598B2 JP 6470598 B2 JP6470598 B2 JP 6470598B2 JP 2015049072 A JP2015049072 A JP 2015049072A JP 2015049072 A JP2015049072 A JP 2015049072A JP 6470598 B2 JP6470598 B2 JP 6470598B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
central portion
type rotating
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015049072A
Other languages
Japanese (ja)
Other versions
JP2016171646A (en
JP2016171646A5 (en
Inventor
高畑 良一
良一 高畑
長谷川 修士
修士 長谷川
中村 聡
中村  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2015049072A priority Critical patent/JP6470598B2/en
Publication of JP2016171646A publication Critical patent/JP2016171646A/en
Publication of JP2016171646A5 publication Critical patent/JP2016171646A5/ja
Application granted granted Critical
Publication of JP6470598B2 publication Critical patent/JP6470598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、界磁用の永久磁石を回転子に備えている永久磁石式回転電機に係り、特に、エアコン、冷蔵庫、冷凍庫、あるいは食品ショーケースなどにおける圧縮機に使用するのに好適な永久磁石式回転電機に関する。   The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet for a field in a rotor, and particularly suitable for use in a compressor in an air conditioner, a refrigerator, a freezer or a food showcase. The present invention relates to a rotary electric machine.

従来、永久磁石式回転電機においては、電機子巻線となる固定子巻線に集中巻が採用されると共に、界磁に永久磁石が採用され、小形・高効率化が図られている。永久磁石式回転電機の小形・高効率化の手段として、回転軸方向に沿った永久磁石の表面積を拡大し、永久磁石の磁束量を増やすことが挙げられる。永久磁石の磁束量を増やすためには、永久磁石の形状・配置を工夫する必要がある。   2. Description of the Related Art Conventionally, in a permanent magnet type rotating electric machine, concentrated winding is adopted for a stator winding serving as an armature winding, and a permanent magnet is adopted for a field, thereby achieving miniaturization and high efficiency. As a means for reducing the size and increasing the efficiency of a permanent magnet type rotating electrical machine, it is possible to increase the surface area of the permanent magnet along the rotation axis direction and increase the amount of magnetic flux of the permanent magnet. In order to increase the amount of magnetic flux of the permanent magnet, it is necessary to devise the shape and arrangement of the permanent magnet.

永久磁石式回転電機に用いられる永久磁石の形状・配置に関する従来技術として、例えば、特許文献1に記載の技術が知られている。本従来技術では、回転子に埋設した永久磁石の形状を径方向内側に凸となる略バスタブ状とする。本永久磁石の具体的な形状は、回転子の横断面において、磁化方向に対し垂直に伸びる中央部と、この中央部の周方向両端部に2つの屈曲点を有し、これら屈曲点より磁極の端部側へ向けて伸びる2つの側部を有する形状である。   For example, a technique described in Patent Document 1 is known as a conventional technique related to the shape and arrangement of a permanent magnet used in a permanent magnet type rotating electrical machine. In this prior art, the shape of the permanent magnet embedded in the rotor is a substantially bathtub-like shape that protrudes radially inward. The specific shape of the permanent magnet has a central part extending perpendicularly to the magnetization direction in the cross section of the rotor, and two bending points at both ends in the circumferential direction of the central part. It is a shape which has two side parts extended toward the edge part side.

特開2013−255371号公報JP 2013-255371 A

上記従来技術では、永久磁石を構成する中央部とその両端部に接続される側部との間に形成される2つの屈曲点において、磁化方向が急激に変化する。このため、永久磁石の表面積を拡大しても、磁束量が十分増加せず、所望の磁束量を得ることが難しい。   In the above prior art, the magnetization direction changes abruptly at two bending points formed between the central portion constituting the permanent magnet and the side portions connected to both ends thereof. For this reason, even if the surface area of the permanent magnet is increased, the amount of magnetic flux does not increase sufficiently, and it is difficult to obtain a desired amount of magnetic flux.

そこで本発明は、永久磁石の表面積を拡大して磁束量を増加させることができる永久磁石式回転電機並びにそれを用いる圧縮機を提供する。   Therefore, the present invention provides a permanent magnet type rotating electrical machine capable of increasing the amount of magnetic flux by increasing the surface area of the permanent magnet and a compressor using the permanent magnet type rotating electrical machine.

上記課題を解決するため、本発明による永久磁石式回転電機は、固定子鉄心と、固定子鉄心に設けられる電機子巻線とを有する固定子と、回転子鉄心と、回転子鉄心に埋設される永久磁石とを有し、空隙を介して固定子と対向する回転子と、を備え、回転子は、永久磁石を回転子の極数分備えるものであって、永久磁石は、一つの永久磁石挿入孔に収容され、永久磁石は、回転子の径方向内側へ向かって凸となる円弧状の中央部と、中央部の両端部から回転子の外周面へ向って延びる直線状の2個の側部と、を有し、中央部および2個の側部は互いに分割され、2個の側部は、回転子の外周面へ向って開いており、中央部は、半径が異なる二つの円弧と、中央部の幅に相当する長さの二つの直線によって囲まれる外形を有し、二つの円弧の半径の差は中央部の幅に相当し、側部は、短辺の長さが中央部の幅と同じである矩形状の外形を有し、中央部の端部の直線と側部の短辺が接し、側部の長辺は、中央部の円弧の接線となっており、中央部おける回転子の内周面に最も近い端面と回転子の内周面との径方向距離をL1とし、端面における中央部の径方向の幅をL2とし、中央部において端面とは径方向反対側に位置する面と回転子の外周面との径方向距離をL3とすると、L1≦L2<L3である
In order to solve the above problems, a permanent magnet type rotating electrical machine according to the present invention is embedded in a stator having a stator core and armature windings provided on the stator core, the rotor core, and the rotor core. that has a permanent magnet, and a rotor which stator opposed via a gap, the rotor, there is provided a permanent magnet minutes poles of the rotor, the permanent magnets, one The permanent magnet is accommodated in the permanent magnet insertion hole, and the permanent magnet is an arcuate central portion that protrudes inward in the radial direction of the rotor, and a linear 2 that extends from both ends of the central portion toward the outer peripheral surface of the rotor. possess a number of sides, a central portion and two side portions are separated from each other, the two sides is open toward the outer peripheral surface of the rotor, the central portion, the double radius is different It has an outer shape surrounded by two arcs and two straight lines with a length corresponding to the width of the center. Is equivalent to the width of the central part, the side part has a rectangular outer shape whose short side length is the same as the width of the central part, the straight line at the end of the central part and the short side part of the side part And the long side of the side portion is a tangent to the arc of the central portion, and the radial distance between the end surface closest to the inner peripheral surface of the rotor and the inner peripheral surface of the rotor in the central portion is L1, L1 ≦ L2 <L3 where L2 is the radial width of the central portion of the end surface and L3 is the radial distance between the outer surface of the rotor and the surface located on the opposite side of the end surface in the central portion. .

また、本発明による圧縮機は、作動流体である気体を圧縮容器内に供給する吸込みパイプと、作動流体の容積を縮小する圧縮機構と、圧縮機構を駆動する永久磁石式回転電機と、圧縮機構により圧縮された作動流体を圧縮容器外に排出する吐出パイプと、を備えものであって、永久磁石式回転電機を上記本発明による永久磁石式回転電機とする。   The compressor according to the present invention includes a suction pipe that supplies a gas as a working fluid into a compression container, a compression mechanism that reduces the volume of the working fluid, a permanent magnet type rotating electrical machine that drives the compression mechanism, and a compression mechanism. A discharge pipe that discharges the working fluid compressed by the above to the outside of the compression container, and the permanent magnet type rotating electrical machine is a permanent magnet type rotating electrical machine according to the present invention.

本発明によれば、永久磁石の表面積の拡大に見合って、有効に磁束量を増加させることができる。これにより、小形・高効率な永久磁石式回転電機および圧縮機を実現できる。   According to the present invention, the amount of magnetic flux can be effectively increased in accordance with the increase in the surface area of the permanent magnet. Thereby, a small and highly efficient permanent magnet type rotating electrical machine and compressor can be realized.

上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

本発明の実施例1である永久磁石式回転電機の横断面図を示す。1 shows a cross-sectional view of a permanent magnet type rotating electric machine that is Embodiment 1 of the present invention. FIG. 図1に示す永久磁石式回転電機の回転子鉄心形状を示す横断面図である。It is a cross-sectional view which shows the rotor core shape of the permanent magnet type rotary electric machine shown in FIG. 、図1に示す永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。FIG. 2 is a transverse sectional view showing a rotor core shape for one pole of the permanent magnet type rotating electric machine shown in FIG. 1. 比較例の永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。It is a cross-sectional view which shows the rotor core shape for 1 pole of the permanent-magnet-type rotary electric machine of a comparative example. 図1に示す永久磁石式回転電機並びに比較例のトルク特性を示す図である。It is a figure which shows the torque characteristic of the permanent-magnet-type rotary electric machine shown in FIG. 1, and a comparative example. 本発明の実施例2である永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。It is a cross-sectional view which shows the rotor core shape for 1 pole of the permanent magnet type rotary electric machine which is Example 2 of this invention. 本発明の実施例3である永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。It is a cross-sectional view which shows the rotor core shape for 1 pole of the permanent magnet type rotary electric machine which is Example 3 of this invention. 本発明の実施例4である圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor which is Example 4 of this invention.

本実施形態において、永久磁石式回転電機は、6極の回転子と、9スロットの固定子から構成される。すなわち、回転子の極数と固定子のスロット数の比が2:3である。回転子の極数、固定子のスロット数、並びにこれらの比は、本実施形態における値に限らず、他の値でも、本実施形態と同様の効果を得ることができる。例えば、回転子の極数は、4極あるいは8極等としても良い。なお、本実施形態は、永久磁石が回転子鉄心に埋設される、いわゆる埋込磁石型の回転電機である。   In the present embodiment, the permanent magnet type rotating electrical machine includes a 6-pole rotor and a 9-slot stator. That is, the ratio of the number of rotor poles to the number of stator slots is 2: 3. The number of rotor poles, the number of stator slots, and the ratio thereof are not limited to the values in the present embodiment, and other values can provide the same effects as in the present embodiment. For example, the number of poles of the rotor may be 4 poles or 8 poles. The present embodiment is a so-called embedded magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor core.

以下の説明において、「軸方向」とは回転子の回転軸方向を示し、「径方向」とは回転子の径方向を示し、「周方向」とは回転子の周方向を示す。   In the following description, “axial direction” indicates the rotational axis direction of the rotor, “radial direction” indicates the radial direction of the rotor, and “circumferential direction” indicates the circumferential direction of the rotor.

以下、本発明の実施例について、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1である永久磁石式回転電機の横断面図を示す。なお、本実施例1は、永久磁石式同期電動機として動作する。   FIG. 1 shows a cross-sectional view of a permanent magnet type rotating electric machine that is Embodiment 1 of the present invention. The first embodiment operates as a permanent magnet type synchronous motor.

図1に示すように、永久磁石式回転電機1は、固定子2と回転子3から構成される。固定子2は、ティース4とコアバック5からなる固定子鉄心6、周方向に隣接するティース4間のスロット7内であってティース4を取り囲むように巻装される集中巻の電機子巻線8より構成される。すなわち、電機子巻線8は、径方向に放射状に配されるティース4の軸心周りに巻装され、周方向に、三相巻線のU相巻線8a、V相巻線8b、W相巻線8cが相互に空隙を介して配される。ここで、永久磁石式回転電機1は、回転子3の極数が6極、固定子2のスロット数が9スロットであるから、スロットピッチは電気角で120度である。また、回転子3の中心に、円柱状のシャフト(図示せず)を収容するシャフト孔15が形成されている。   As shown in FIG. 1, the permanent magnet type rotating electrical machine 1 includes a stator 2 and a rotor 3. The stator 2 includes a stator core 6 including a tooth 4 and a core back 5, and a concentrated armature winding wound around the tooth 4 in a slot 7 between the teeth 4 adjacent in the circumferential direction. 8 comprises. That is, the armature winding 8 is wound around the axial center of the tooth 4 radially arranged in the radial direction, and the U-phase winding 8a, the V-phase winding 8b, and W of the three-phase winding are circumferentially arranged. The phase windings 8c are arranged with a gap between them. Here, in the permanent magnet type rotating electrical machine 1, since the number of poles of the rotor 3 is 6 and the number of slots of the stator 2 is 9 slots, the slot pitch is 120 degrees in electrical angle. A shaft hole 15 for accommodating a cylindrical shaft (not shown) is formed at the center of the rotor 3.

本実施例の永久磁石式回転電機1においては、三相巻線8a〜cからなる電機子巻線8に三相交流電流を流すと、回転磁界が発生する。この回転磁界によって永久磁石14および回転子鉄心12に働く電磁力により、回転子3が回転する。   In the permanent magnet type rotating electrical machine 1 of the present embodiment, when a three-phase alternating current is passed through the armature winding 8 composed of the three-phase windings 8a to 8c, a rotating magnetic field is generated. The rotor 3 is rotated by the electromagnetic force acting on the permanent magnet 14 and the rotor core 12 by the rotating magnetic field.

なお、永久磁石式回転電機1が動作する時に固定子鉄心6および回転子鉄心12に発生する渦電流損などの鉄損を低減するために、固定子鉄心6および回転子鉄心12は、珪素鋼板などの磁性鋼板からなる薄板を複数積層した積層体によって構成することが好ましい。   In order to reduce iron loss such as eddy current loss generated in the stator core 6 and the rotor core 12 when the permanent magnet type rotating electrical machine 1 is operated, the stator core 6 and the rotor core 12 are made of silicon steel plates. It is preferable to comprise a laminated body in which a plurality of thin plates made of magnetic steel plates are laminated.

図2は、図1に示す永久磁石式回転電機1の回転子鉄心形状を示す横断面図である。図2に示すように、回転子3は、シャフト孔15を形成した回転子鉄心12に横断面略U字形状の永久磁石挿入孔13を備え、永久磁石挿入孔13内にフェライトの永久磁石14を収容し固定している。回転子3は、永久磁石14を回転子3の字極数分すなわち6個備えている。永久磁石14の磁束軸がd軸となり、d軸と電気角で90°隔てられた磁極に位置する軸がq軸となる。回転子鉄心12の外周面と、ティース4の内周面との間には、径方向にギャップ長g1の空隙が形成されている。すなわち、固定子2と回転子3は空隙(g1)を介して対向する。   FIG. 2 is a cross-sectional view showing the rotor core shape of the permanent magnet type rotating electrical machine 1 shown in FIG. As shown in FIG. 2, the rotor 3 includes a permanent magnet insertion hole 13 having a substantially U-shaped cross section in a rotor core 12 having a shaft hole 15, and a ferrite permanent magnet 14 in the permanent magnet insertion hole 13. Is housed and fixed. The rotor 3 includes six permanent magnets 14 corresponding to the number of poles of the rotor 3, that is, six. The magnetic flux axis of the permanent magnet 14 is the d-axis, and the axis located at the magnetic pole separated from the d-axis by an electrical angle of 90 ° is the q-axis. A gap having a gap length g <b> 1 is formed in the radial direction between the outer peripheral surface of the rotor core 12 and the inner peripheral surface of the tooth 4. That is, the stator 2 and the rotor 3 are opposed to each other through the gap (g1).

図3は、図1に示す永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。図3において、永久磁石14は、1極につき回転子3の径方向外側から径方向内側へ向かって伸びる2つの略直線状の側部41と、回転子3の径方向内側に向って凸となる円弧状の中央部40とに3分割されている。すなわち、永久磁石14においては、回転子3の径方向外側から径方向内側へ向かって伸びる2つの側部41が、所定の曲率で規定され、かつその略中心部が回転子内周面3aに向かう円弧状の中央部40の両端部に接続される。従って、二つの側部41は、中央部40の両端部から回転子3の外周面に向って延びている。   FIG. 3 is a cross-sectional view showing a rotor core shape for one pole of the permanent magnet type rotating electric machine shown in FIG. In FIG. 3, the permanent magnet 14 has two substantially linear side portions 41 extending from the radially outer side of the rotor 3 toward the radially inner side per pole, and is convex toward the radially inner side of the rotor 3. The arc-shaped central portion 40 is divided into three. That is, in the permanent magnet 14, the two side portions 41 extending from the radially outer side of the rotor 3 toward the radially inner side are defined by a predetermined curvature, and the substantially central portion thereof is formed on the rotor inner peripheral surface 3a. It connects to the both ends of the arcuate center part 40 which goes. Accordingly, the two side portions 41 extend from both end portions of the central portion 40 toward the outer peripheral surface of the rotor 3.

図3中に白抜き矢印にて示す磁化方向16は、永久磁石14を構成する中央部40の径方向内側の面と、2つの側部41の周方向内内側の面とで連続して滑らかに変化する。特に、中央部40の両端部を含む領域において、急激な磁化方向16の変化は生じ難い。これにより、確実に着磁して、永久磁石による磁束量を確保することができる。   The magnetization direction 16 indicated by the white arrow in FIG. 3 is continuously smooth between the radially inner surface of the central portion 40 constituting the permanent magnet 14 and the inner circumferential surface of the two side portions 41. To change. In particular, in the region including both ends of the central portion 40, a sudden change in the magnetization direction 16 is unlikely to occur. Thereby, it can magnetize reliably and the amount of magnetic flux by a permanent magnet can be ensured.

上記のような形状により、永久磁石14の表面積を拡大して有効に磁束量を増大できると共に、永久磁石14の径方向外側における回転子鉄心断面積が大きくなり、リラクタンストルクを積極的に活用することが可能となる。   With the above-described shape, the surface area of the permanent magnet 14 can be increased to effectively increase the amount of magnetic flux, and the rotor core cross-sectional area on the radially outer side of the permanent magnet 14 can be increased, so that the reluctance torque can be actively utilized. It becomes possible.

図3に示すように、中央部40において回転子内周面3aに最も近い端面40aと、回転子内周面3a(シャフト孔15の内壁表面)との距離をL1、中央部40の端面40aにおける中央部40の径方向の幅(磁石厚み)をL2、また、中央部40の端面40aとは径方向反対側に位置する面(径方向内側の面)と回転子外周面3bとの径方向の距離をL3とする。これらの距離が、L1≦L2<L3の関係となるように永久磁石14が構成される。回転子鉄心12における永久磁石14のこのような配置関係は、上記のような、磁石表面積を拡大して有効な磁束量を増大できる形状の永久磁石14の配置として好ましい。   As shown in FIG. 3, the distance between the end surface 40a closest to the rotor inner peripheral surface 3a in the central portion 40 and the rotor inner peripheral surface 3a (the inner wall surface of the shaft hole 15) is L1, and the end surface 40a of the central portion 40 is. The radial width (magnet thickness) of the central portion 40 at L2 is L2, and the diameter of the surface (radially inner surface) located on the opposite side to the end surface 40a of the central portion 40 and the outer peripheral surface 3b of the rotor The distance in the direction is L3. The permanent magnet 14 is configured such that these distances have a relationship of L1 ≦ L2 <L3. Such an arrangement relationship of the permanent magnets 14 in the rotor core 12 is preferable as the arrangement of the permanent magnets 14 having a shape capable of increasing the effective magnetic flux by expanding the magnet surface area as described above.

また、永久磁石14がL1≦L2<L3の関係となるよう構成されていることにより、電機子反作用による機内磁束の高調波成分が低減され、力率改善による高トルク化が図られ、小形・高効率な永久磁石式回転電機を実現できる。また、巻線着磁による磁束量の低下を抑制でき、小形・高効率な永久磁石式回転電機が実現される。   Further, since the permanent magnet 14 is configured to have a relationship of L1 ≦ L2 <L3, the harmonic component of the in-machine magnetic flux due to the armature reaction is reduced, and the torque is increased by improving the power factor. A highly efficient permanent magnet type rotating electrical machine can be realized. In addition, a reduction in the amount of magnetic flux due to winding magnetization can be suppressed, and a small and highly efficient permanent magnet type rotating electrical machine is realized.

本実施例1における永久磁石の断面形状について、より具体的に説明すると次のとおりである。   The cross-sectional shape of the permanent magnet in the first embodiment will be described more specifically as follows.

中央部40およびその両側の二つの側部41はd軸に対して左右対称に配置される。従って、1極分の永久磁石14はd軸に対して左右対称に配置される。中央部40は、d軸上に中心O’を置き、中心角(α)を同じくし、かつ中心O’よりも径方向内側に位置する、半径が異なる二つの円弧と、中央部40の幅に相当する長さL2の二つの直線によって囲まれる外形を有する。なお、二つの円弧の半径の差は中央部40の幅L2に相当する。また、側部41は、短辺の長さが中央部40の幅L2と同じである矩形状の外形を有する。中央部40の端部の直線と側部の短辺が接する。ここで、側部41の長辺は、中央部40の円弧の接線となっている。このような断面形状において、中心角αは、幾何的角度で180°よりも小さな値に設定される。従って、側部41は、径方向外側に向って開いている。すなわち、永久磁石14の軸方向に沿った表面積を増加すると共に、中央部40の端部と側部41の端部とが接する付近における永久磁石表面の曲がり具合が緩やかにできる。これにより、確実に着磁して、永久磁石14による磁束を確保することができる。   The central portion 40 and the two side portions 41 on both sides thereof are arranged symmetrically with respect to the d axis. Therefore, the permanent magnet 14 for one pole is arranged symmetrically with respect to the d axis. The central portion 40 has a center O ′ on the d-axis, has the same central angle (α) and is located radially inward of the center O ′, and the width of the central portion 40. The outer shape is surrounded by two straight lines having a length L2 corresponding to. The difference in radius between the two arcs corresponds to the width L2 of the central portion 40. The side portion 41 has a rectangular outer shape whose short side is the same as the width L <b> 2 of the central portion 40. The straight line at the end of the central portion 40 is in contact with the short side of the side portion. Here, the long side of the side portion 41 is a tangent to the arc of the central portion 40. In such a cross-sectional shape, the central angle α is set to a value smaller than 180 ° in terms of geometric angle. Therefore, the side part 41 is open toward the radial direction outer side. That is, the surface area along the axial direction of the permanent magnet 14 is increased, and the bending of the surface of the permanent magnet in the vicinity where the end portion of the central portion 40 and the end portion of the side portion 41 are in contact with each other can be moderated. Thereby, it can magnetize reliably and the magnetic flux by the permanent magnet 14 can be ensured.

本実施例1では、さらに、図3について上述したように、永久磁石14が、回転子鉄心内で、図3においてL1≦L2<L3となるように構成および配置することにより、永久磁石14による磁束を増加してマグネットトルクを確保することができるとともに、回転子鉄心断面積を増加してリラクタンストルクを確保できる。   Further, in the first embodiment, as described above with reference to FIG. 3, the permanent magnet 14 is configured and arranged in the rotor core so that L1 ≦ L2 <L3 in FIG. The magnetic flux can be increased to ensure magnet torque, and the rotor core cross-sectional area can be increased to ensure reluctance torque.

なお、永久磁石14の中央部40の曲率については、回転子3の大きさ(直径)および極数に応じて、適宜設定することができる。この場合においても、L1≦L2<L3の関係となるよう設定することにより、回転子3内における永久磁石14の表面積(横断面における面積)を増大でき、小形且つ高効率の永久磁石式回転電機が実現できる。また、回転子の極数を、一般的な、4極、6極あるいは8極とする場合、曲率半径が大きくなるに伴って、円弧状の中央部40の両端部から、略径方向に沿って、回転子3の外周側に向って延伸する2つの側部41の開き角は大きくなる。従って、採用する極数も考慮して、中央部40の曲率半径を設定することが好ましい。   The curvature of the central portion 40 of the permanent magnet 14 can be appropriately set according to the size (diameter) and the number of poles of the rotor 3. Even in this case, the surface area (area in the cross section) of the permanent magnet 14 in the rotor 3 can be increased by setting so that the relationship of L1 ≦ L2 <L3 is satisfied. Can be realized. In addition, when the number of poles of the rotor is a general 4-pole, 6-pole, or 8-pole, as the radius of curvature increases, from both ends of the arc-shaped central portion 40 along the substantially radial direction. Thus, the opening angle of the two side portions 41 extending toward the outer peripheral side of the rotor 3 is increased. Therefore, it is preferable to set the curvature radius of the central portion 40 in consideration of the number of poles to be adopted.

ここで、比較例について図4を用いて説明する。   Here, a comparative example will be described with reference to FIG.

図4は、比較例の永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。本比較例は、磁石の形状の他の構成は実施例1と同様である。   FIG. 4 is a cross-sectional view showing a rotor core shape for one pole of a permanent magnet type rotating electrical machine of a comparative example. In this comparative example, the other configuration of the magnet shape is the same as that of the first embodiment.

図4に示すように、比較例の回転子3’は、周方向に2箇所の屈曲点42を有し、この2箇所の屈曲点42を端部とする直線状の中央部40’と、各屈曲点42より径方向外側へと延伸する略直線状の側部41’から永久磁石14’が構成される。図4中、白抜き矢印にて示す磁化方向16’は、各屈曲点42近傍にて、急激に変化する。   As shown in FIG. 4, the rotor 3 ′ of the comparative example has two bending points 42 in the circumferential direction, and a linear central portion 40 ′ having the two bending points 42 as ends, Permanent magnet 14 'is comprised from the substantially linear side part 41' extended | stretched to radial direction outer side from each bending point 42. FIG. In FIG. 4, the magnetization direction 16 ′ indicated by the white arrow changes rapidly in the vicinity of each bending point 42.

また、図4に示すように、中央部40’において径方向内側の面と回転子内周面3a’(シャフト孔15の内壁表面))との距離をL1、中央部40’の径方向の幅(磁石厚み)をL2、中央部40’の径方向外側の面と回転子外周面3b’との径方向の距離をL3とすると、これらの距離は、実施例1(L1≦L2<L3)とは異なり、L2<L1<L3の関係にある。このような比較例の構成では、2箇所の屈曲点42の近傍では巻線着磁によって得られる磁束量が低下する。さらに、永久磁石14’の中央部40’をより径方向内側(回転子内周面3a’側)に配置して、L1,L2,L3の関係を実施例1の関係に近づけたとしても、同様に巻線着磁による磁束が低下する。すなわち、屈曲点42の近傍では、磁化方向16’が異なる磁化が混在するため、所望の磁束量が確保されず、永久磁石14’の表面積拡大による磁束量の増加が難しい。   Further, as shown in FIG. 4, the distance between the radially inner surface of the central portion 40 ′ and the rotor inner peripheral surface 3a ′ (the inner wall surface of the shaft hole 15) is L1, and the radial direction of the central portion 40 ′. When the width (magnet thickness) is L2, and the radial distance between the radially outer surface of the central portion 40 ′ and the rotor outer peripheral surface 3b ′ is L3, these distances are the same as those in Example 1 (L1 ≦ L2 <L3). ), L2 <L1 <L3. In the configuration of such a comparative example, the amount of magnetic flux obtained by winding magnetization decreases in the vicinity of the two bending points 42. Furthermore, even if the central portion 40 ′ of the permanent magnet 14 ′ is arranged on the radially inner side (rotor inner peripheral surface 3a ′ side) and the relationship between L1, L2, and L3 is made closer to the relationship of the first embodiment, Similarly, the magnetic flux due to winding magnetization decreases. That is, in the vicinity of the bending point 42, magnetizations having different magnetization directions 16 ′ are mixed, so that a desired amount of magnetic flux cannot be secured, and it is difficult to increase the amount of magnetic flux by expanding the surface area of the permanent magnet 14 ′.

なお、図4の比較例において、永久磁石14’を、略直線状の側部41’と、略直線状の中央部40’とに3分割しても、同様に、屈曲点42近傍では、磁化方向16’が異なる磁化が混在するため、永久磁石14’の表面積の拡大による磁束量の増加が難しい。   In the comparative example of FIG. 4, even if the permanent magnet 14 ′ is divided into three substantially linear side portions 41 ′ and substantially linear central portions 40 ′, similarly, in the vicinity of the bending point 42, Since magnetizations having different magnetization directions 16 ′ are mixed, it is difficult to increase the amount of magnetic flux by increasing the surface area of the permanent magnet 14 ′.

次に、本実施例の永久磁石式回転電機1と、図4に示す比較例の永久磁石式回転電機1’のトルク特性について説明する。   Next, torque characteristics of the permanent magnet type rotating electrical machine 1 of this embodiment and the permanent magnet type rotating electrical machine 1 'of the comparative example shown in FIG. 4 will be described.

図5は、図1に示す永久磁石式回転電機1のトルク特性を、比較例のトルク特性と共に示す図である。図5では、定格電流を1P.U.(Per Unit)とし、また、その定格電流を流す際の永久磁石式回転電機1(実施例)のトルク(高速域)を1P.U.とし、規格化している。なお、図5に示すトルクと電機子電流の関係は、本発明者による検討結果に基づく。   FIG. 5 is a diagram showing the torque characteristics of the permanent magnet type rotating electrical machine 1 shown in FIG. 1 together with the torque characteristics of the comparative example. In FIG. 5, the rated current is 1 P.U. (Per Unit), and the torque (high speed range) of the permanent magnet type rotating electrical machine 1 (example) when the rated current is passed is 1 P.U. It has become. Note that the relationship between the torque and the armature current shown in FIG. 5 is based on the result of examination by the present inventors.

図5に示されるように、本実施例の永久磁石式回転電機1のトルクは、図4に示す比較例の永久磁石式回転電機1’と比べて、大きくなる。トルクの増大の度合いは、特に、高速域で大きい。よって、本実施例の永久磁石式回転電機1によれば、電機子反作用の影響による力率低下ならびに巻線着磁による磁束量の低下を改善することができ、トルク特性が向上され、小形・高効率な永久磁石式回転電機を実現できる。   As shown in FIG. 5, the torque of the permanent magnet type rotating electrical machine 1 of this embodiment is larger than that of the permanent magnet type rotating electrical machine 1 'of the comparative example shown in FIG. The degree of increase in torque is particularly great at high speeds. Therefore, according to the permanent magnet type rotating electrical machine 1 of the present embodiment, it is possible to improve the power factor decrease due to the effect of the armature reaction and the decrease in the magnetic flux amount due to the winding magnetization, and the torque characteristics are improved. A highly efficient permanent magnet type rotating electrical machine can be realized.

なお、本実施例の永久磁石14は、回転子鉄心内で、図3に示すようにL1≦L2<L3となるように構成および配置されるが、所望の電動機仕様に応じて、L1≦L2の関係が満たされるように、永久磁石14を構成および配置しても良い。これにより、図3に示したように、永久磁石の磁化方向の変化を滑らかにすることができる。   The permanent magnet 14 of the present embodiment is configured and arranged in the rotor core so that L1 ≦ L2 <L3 as shown in FIG. 3, but L1 ≦ L2 depending on the desired motor specifications. The permanent magnet 14 may be configured and arranged so that the above relationship is satisfied. Thereby, as shown in FIG. 3, the change of the magnetization direction of a permanent magnet can be made smooth.

以下、本実施例の永久磁石回転電機の製造方法に係る、永久磁石14を回転子鉄心12に設けられる永久磁石挿入孔13へ挿入するための2つの異なる組み込み方法を説明する。   Hereinafter, two different assembling methods for inserting the permanent magnet 14 into the permanent magnet insertion hole 13 provided in the rotor core 12 according to the method of manufacturing the permanent magnet rotating electrical machine of the present embodiment will be described.

第一の組み込み方法においては、先ず、横断面円弧状の中央部40の両端部に、接着剤等により2つの側部41を固定する。次に、中央部40とその両端部に2つの側部41が固定され一体化された永久磁石14を、永久磁石挿入孔13へ軸方向外側より挿入し固定する。これにより、図3に示す回転子3が得られる。   In the first assembling method, first, the two side portions 41 are fixed to both end portions of the central portion 40 having a circular cross section by an adhesive or the like. Next, the permanent magnet 14 in which the two side portions 41 are fixed and integrated at the center portion 40 and both end portions thereof is inserted into the permanent magnet insertion hole 13 from the outside in the axial direction and fixed. Thereby, the rotor 3 shown in FIG. 3 is obtained.

第二の組み込み方法においては、横断面円弧状の中央部40を、永久磁石挿入孔13へ軸方向外側より挿入する。その後、永久磁石挿入孔13内に挿入された中央部40の両端部に接着剤等を流し込む。続いて、2つの側部41を、それぞれ永久磁石挿入孔13へ軸方向外側より挿入する。この時、永久磁石挿入孔13へ圧入される2つの側部41により、余剰の接着剤は永久磁石挿入孔13の外部へと流出する。その後、余剰の接着剤を除去することで、図3に示す回転子3が得られる。なお、永久磁石挿入孔13内に挿入された中央部40の両端部への接着剤等の流し込みは、これら3分割された中央部40および2つの側部41を固定する上で好ましい。また、永久磁石挿入孔13内へ中央部40を挿入後、2つの側部41を中央部40の両端部に挿入することのみで、これら3分割された中央部40および2つの側部41が、永久磁石挿入孔13内で緊合されるようにしても良い。この場合、接着剤等の流し込みは省略できる。   In the second assembling method, the central portion 40 having a circular cross section is inserted into the permanent magnet insertion hole 13 from the outside in the axial direction. Thereafter, an adhesive or the like is poured into both end portions of the central portion 40 inserted into the permanent magnet insertion hole 13. Subsequently, the two side portions 41 are respectively inserted into the permanent magnet insertion holes 13 from the outside in the axial direction. At this time, excess adhesive flows out of the permanent magnet insertion hole 13 by the two side portions 41 press-fitted into the permanent magnet insertion hole 13. Then, the rotor 3 shown in FIG. 3 is obtained by removing excess adhesive. In addition, in order to fix these three divided | segmented center parts 40 and the two side parts 41, the injection | pouring of the adhesive agent etc. to the both ends of the center part 40 inserted in the permanent magnet insertion hole 13 is preferable. Further, after inserting the central portion 40 into the permanent magnet insertion hole 13, only the two side portions 41 are inserted into both ends of the central portion 40. The permanent magnet insertion hole 13 may be fastened. In this case, pouring of an adhesive or the like can be omitted.

上述したように、本実施例によれば、永久磁石の表面積拡大により確実に磁束量を確保できるので、トルク特性が向上し、小形・高効率な永久磁石式回転電機を実現できる。   As described above, according to the present embodiment, the amount of magnetic flux can be reliably ensured by increasing the surface area of the permanent magnet, so that torque characteristics are improved and a small and highly efficient permanent magnet type rotating electrical machine can be realized.

また、本実施例によれば、高速域において、高負荷、ならびに電機子巻線を増加して高インダクタンスとなる場合であっても、電機子反作用による機内磁束の高調波成分を低減し、力率改善による高トルク化が図られる。また、巻線着磁によって得られる磁束量の低下を抑制できる。   Further, according to the present embodiment, even in the case where the high load and the armature winding are increased and the inductance is increased in the high speed range, the harmonic component of the in-machine magnetic flux due to the armature reaction is reduced, and the force is reduced. High torque can be achieved by improving the rate. Moreover, the fall of the magnetic flux amount obtained by coil | winding magnetization can be suppressed.

なお、本実施例における1極分の永久磁石を上述したように分割することにより、永久磁石の表面積を拡大しながらも、永久磁石に働く遠心力が分散されたり、図3のような永久磁石の断面形状に起因して複雑な応力が働くことが抑制されたりする。これらにより、回転子の強度が向上する。また、永久磁石を分割することにより、永久磁石の表面積を拡大しながらも、永久磁石内に発生する渦電流を低減できる。   In addition, by dividing the permanent magnet for one pole in the present embodiment as described above, the centrifugal force acting on the permanent magnet is dispersed while increasing the surface area of the permanent magnet, or the permanent magnet as shown in FIG. The complicated stress due to the cross-sectional shape is suppressed. As a result, the strength of the rotor is improved. Further, by dividing the permanent magnet, the eddy current generated in the permanent magnet can be reduced while increasing the surface area of the permanent magnet.

なお、永久磁石の分割数は、3分割に限らず、永久磁石の中央部あるいは側部をさらに分割して、4分割や5分割など3以上の分割数としても良い。但し、分割数を多くすると、上述したような組み込み方法による回転子の組み立て時間が増大する。従って、製造に要する時間やコストを考慮すると、本実施例において永久磁石を分割することによる回転電機の電気的あるいは機械的な特性あるいは性能に対する効果を得るためには、3分割が適する。   Note that the number of divisions of the permanent magnet is not limited to three divisions, and the central portion or the side portion of the permanent magnet may be further divided to have a division number of 3 or more such as four divisions or five divisions. However, if the number of divisions is increased, the assembly time of the rotor by the above-described mounting method increases. Therefore, considering the time and cost required for manufacturing, in order to obtain the effect on the electrical or mechanical characteristics or performance of the rotating electrical machine by dividing the permanent magnet in this embodiment, the three division is suitable.

本実施例では、1極分の永久磁石が中央部と二つの側部に3分割されているが、これら中央部および二つの側部を連続した磁石材料で形成して一体化してもよい。この場合においても、実施例1と同様に、中央部の両端部を含む領域において、急激な磁化方向の変化が緩和される。   In the present embodiment, the permanent magnet for one pole is divided into three parts at the central part and two side parts, but these central part and two side parts may be formed of a continuous magnet material and integrated. Even in this case, as in the first embodiment, a sudden change in the magnetization direction is alleviated in the region including both ends of the central portion.

本実施例においては、永久磁石としてフェライト磁石が用いられるが、他の磁石材料からなる永久磁石、たとえば希土類永久磁石を用いても良い。本実施例における磁石材料であるフェライトは、希土類材料などの他の磁石材料に比べ、安価ではあるが、残留磁束密度が小さいが、本実施例によれば、永久磁石の表面積拡大により確実に磁束量を確保できるので、フェライト磁石を用いることにより小形・高効率な永久磁石式回転電機を実現できる。   In this embodiment, a ferrite magnet is used as the permanent magnet, but a permanent magnet made of another magnet material, for example, a rare earth permanent magnet may be used. Ferrite, which is a magnet material in this embodiment, is less expensive than other magnet materials such as rare earth materials, but has a small residual magnetic flux density. However, according to this embodiment, the magnetic flux is reliably increased by increasing the surface area of the permanent magnet. Since the amount can be secured, a small and highly efficient permanent magnet type rotating electrical machine can be realized by using a ferrite magnet.

図6は、本発明の実施例2である永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。図3と同一の構成要素に同一符号を付している。以下、主に、前述した実施例1と異なる点について説明する。   FIG. 6 is a transverse sectional view showing a rotor core shape for one pole of a permanent magnet type rotating electric machine that is Embodiment 2 of the present invention. The same components as those in FIG. 3 are denoted by the same reference numerals. Hereinafter, differences from the first embodiment will be mainly described.

本実施例2では、実施例1と異なり、回転子鉄心12の外周部において、永久磁石を構成する2つの略直線状の側部41における径方向外側の端部に隣接する位置に、回転子鉄心12の表面から回転子鉄心の外周部内へ向かう切り欠き部(凹部)が設けられる。   In the second embodiment, unlike the first embodiment, the rotor core 12 is positioned at a position adjacent to the radially outer ends of the two substantially linear side portions 41 constituting the permanent magnet in the outer peripheral portion of the rotor core 12. A notch (concave portion) is provided from the surface of the iron core 12 toward the outer periphery of the rotor iron core.

図6に示すように、回転子鉄心12の外周部において、永久磁石14を構成する2つの略直線状の側部41の端部41a、すなわち回転子鉄心12の径方向外周側に位置する端部41aと対向する部分には、回転子外周面3bから回転子鉄心12の外周部内へ向かって凹むと共に、端部41aの幅方向と略平行な底面を有する切り欠き部(凹部)11が設けられる。さらに、この切り欠き部(凹部)11は、回転子3の軸方向に延伸するように設けられる。   As shown in FIG. 6, in the outer peripheral portion of the rotor core 12, the ends 41 a of the two substantially linear side portions 41 constituting the permanent magnet 14, that is, the ends located on the radially outer peripheral side of the rotor core 12. A notch (recess) 11 having a bottom surface that is recessed from the rotor outer peripheral surface 3b into the outer peripheral portion of the rotor core 12 and has a bottom surface substantially parallel to the width direction of the end portion 41a is provided at a portion facing the portion 41a. It is done. Further, the notch (recess) 11 is provided so as to extend in the axial direction of the rotor 3.

これにより、回転子鉄心12の外周形状(回転子外周面3b)は、固定子2を構成するティース4の内周面との空隙がギャップ長g1となる円弧状部と、空隙が最大でギャップ長g2(g2>g1)となる略直線状の底面を有する切り欠き部(凹部)11とを複数ずつ有する構成となる。なお、ギャップ長g2は、図6中の端部41aと、端部41aに隣接するとともに図示しない隣接極を構成する永久磁石の端部との間において最深となる切り欠き部11の、最深深さに相当する。すなわち、回転子鉄心12の外周面において、切り欠き部11とティース4の内周面との空隙が最大のギャップ長g2となる位置は、各側部41の端部41aにおける周方向外側の端部すなわち各側部41の角部から周方向外側に位置する。従って、各切り欠き部11の周方向の長さは、各側部41の端部41aの周方向長さすなわち幅L2以上となる。   As a result, the outer peripheral shape of the rotor core 12 (rotor outer peripheral surface 3b) is such that the gap between the inner peripheral surface of the teeth 4 constituting the stator 2 is the gap length g1 and the gap is the maximum gap. It becomes the structure which has the notch part (recessed part) 11 which has the substantially linear bottom face which becomes long g2 (g2> g1). Note that the gap length g2 is the deepest depth of the notch 11 that is the deepest between the end 41a in FIG. 6 and the end of the permanent magnet that is adjacent to the end 41a and forms the adjacent pole (not shown). It corresponds to. That is, on the outer peripheral surface of the rotor core 12, the position where the gap between the notch portion 11 and the inner peripheral surface of the tooth 4 becomes the maximum gap length g2 Part, that is, located on the outer side in the circumferential direction from the corner of each side 41. Accordingly, the circumferential length of each notch portion 11 is equal to or greater than the circumferential length of the end portion 41a of each side portion 41, that is, the width L2.

また、図6に示すように、ティース4の内周面との間にギャップ長g1の空隙を形成する回転子外周面3bの円弧状部は、角度θpが電気角で90°〜120°となるように構成されている。   Moreover, as shown in FIG. 6, the arc-shaped portion of the rotor outer peripheral surface 3b that forms a gap having a gap length g1 between the inner peripheral surface of the teeth 4 has an angle θp of 90 ° to 120 ° in electrical angle. It is comprised so that it may become.

本実施例によれば、切り欠き部11により、永久磁石14を構成する2つの側部の径方向外側の端部41aに対応する位置における回転子外周面3bと、ティース4の内周面とで形成される空隙のギャップ長が増大される。このため、q軸方向において磁気抵抗が増大するので、永久磁石の磁束をd軸方向に集中させることができる。これにより、電機子反作用の影響を抑制することが可能となり、機内磁束の高調波成分を低減できる。   According to the present embodiment, the rotor outer peripheral surface 3b and the inner peripheral surface of the tooth 4 at the positions corresponding to the radially outer ends 41a of the two side portions constituting the permanent magnet 14 are formed by the notch portion 11. The gap length of the gap formed by is increased. For this reason, since the magnetic resistance increases in the q-axis direction, the magnetic flux of the permanent magnet can be concentrated in the d-axis direction. As a result, the influence of the armature reaction can be suppressed, and the harmonic component of the in-machine magnetic flux can be reduced.

さらに、切り欠き部11の底面が側部41の端部41aの幅方向に平行であるため、端部41aと切り欠き部11の底面との間における回転子鉄心12の部分の厚さが確保され、この部分の強度が確保される。このため、切り欠き部11を設けても、遠心力が働く永久磁石14の側部41を確実に支持することができる。   Furthermore, since the bottom surface of the notch portion 11 is parallel to the width direction of the end portion 41 a of the side portion 41, the thickness of the portion of the rotor core 12 between the end portion 41 a and the bottom surface of the notch portion 11 is ensured. Thus, the strength of this portion is ensured. For this reason, even if it provides the notch part 11, the side part 41 of the permanent magnet 14 which a centrifugal force works can be supported reliably.

また、本実施例においても、電機子反作用の影響による力率低下ならびに巻線着磁による磁束量の低下を改善でき、トルクの低下を抑制することができると共に、小形・高効率な永久磁石式回転電機を実現できる。すなわち、実施例1と同様の効果を得ることができる。   Also in this embodiment, the power factor decrease due to the effect of the armature reaction and the decrease in the magnetic flux amount due to the winding magnetization can be improved, the torque decrease can be suppressed, and a small and highly efficient permanent magnet type A rotating electrical machine can be realized. That is, the same effect as in the first embodiment can be obtained.

図7は、本発明の実施例3である永久磁石式回転電機の1極分の回転子鉄心形状を示す横断面図である。図3と同一の構成要素に同一符号を付している。以下、主に、前述した実施例1と異なる点について説明する。   FIG. 7 is a cross-sectional view showing a rotor core shape for one pole of a permanent magnet type rotating electric machine that is Embodiment 3 of the present invention. The same components as those in FIG. 3 are denoted by the same reference numerals. Hereinafter, differences from the first embodiment will be mainly described.

本実施例においては、実施例1と異なり、永久磁石14における中央部40と側部41の間に回転子鉄心12の一部120が介在する。なお、永久磁石14の中央部および側部の形状並びに配置を含む他の構成は、実施例1(図3参照)と同様である。   In the present embodiment, unlike the first embodiment, a part 120 of the rotor core 12 is interposed between the central portion 40 and the side portion 41 of the permanent magnet 14. In addition, the other structure including the shape and arrangement | positioning of the center part and side part of the permanent magnet 14 is the same as that of Example 1 (refer FIG. 3).

図7に示すように、本実施例においては、1極分の永久磁石14を挿入する永久磁石挿入孔が、永久磁石挿入孔13a,13b,13cに3分割される。永久磁石孔13aには永久磁石14の中央部40が挿入され、永久磁石挿入孔13b,13cには永久磁石14の2個の側部41が挿入される。このため、永久磁石挿入孔13a,13b,13cに永久磁石14の中央部40および側部41が挿入されると、永久磁石14における中央部40と側部41の間に、永久磁石挿入孔13a,13b間および,永久磁石挿入孔13a,13c間を区切る回転子鉄心の一部120が介在する。   As shown in FIG. 7, in this embodiment, the permanent magnet insertion hole into which the permanent magnet 14 for one pole is inserted is divided into three permanent magnet insertion holes 13a, 13b, and 13c. The central portion 40 of the permanent magnet 14 is inserted into the permanent magnet hole 13a, and the two side portions 41 of the permanent magnet 14 are inserted into the permanent magnet insertion holes 13b and 13c. For this reason, if the center part 40 and the side part 41 of the permanent magnet 14 are inserted in the permanent magnet insertion holes 13a, 13b, and 13c, the permanent magnet insertion hole 13a is interposed between the center part 40 and the side part 41 of the permanent magnet 14. , 13b and a part 120 of the rotor core that divides the permanent magnet insertion holes 13a, 13c is interposed.

本実施例によれば、遠心力が働く永久磁石14の中央部40が、中央部40と側部41の間に介在する回転子鉄心12の一部120によって支持される。また、3分割される永久磁石の各部が、それぞれ個別の挿入孔に挿入されるので、永久磁石に働く遠心力が分散される。これらにより、永久磁石の表面積拡大しながらも、回転子3の強度が向上する。   According to the present embodiment, the central portion 40 of the permanent magnet 14 on which centrifugal force works is supported by the portion 120 of the rotor core 12 interposed between the central portion 40 and the side portion 41. Moreover, since each part of the permanent magnet divided | segmented into 3 is each inserted in an individual insertion hole, the centrifugal force which acts on a permanent magnet is disperse | distributed. As a result, the strength of the rotor 3 is improved while the surface area of the permanent magnet is increased.

図8は、本発明の実施例4である圧縮機の縦断面図である。本実施例の圧縮機には、上述の実施例1〜3のいずれかの永久磁石式回転電機が適用される。   FIG. 8 is a longitudinal sectional view of a compressor that is Embodiment 4 of the present invention. The permanent magnet type rotating electrical machine according to any of the first to third embodiments described above is applied to the compressor of the present embodiment.

図7に示すように、圧縮機50においては、円筒状の圧縮容器69内に、固定スクロール部材60の端板61に直立する渦巻状ラップ62と、旋回スクロール部材63の端板64に直立する渦巻状ラップ65とを備え、これら固定スクロール部材60の渦巻状ラップ62と旋回スクロール部材63の渦巻状ラップ65とが噛み合わされる。また、圧縮機50は、圧縮容器69内に、クランク軸72を介して旋回スクロール部材63に旋回力を伝達する永久磁石式回転電機1を備える。永久磁石式同期電動機として動作する永久磁石式回転電機1により、旋回スクロール部材63がクランク軸72を介して旋回運動することによって圧縮動作を行う。   As shown in FIG. 7, in the compressor 50, the spiral wrap 62 standing upright on the end plate 61 of the fixed scroll member 60 and the end plate 64 of the orbiting scroll member 63 stand upright in the cylindrical compression container 69. A spiral wrap 65 is provided, and the spiral wrap 62 of the fixed scroll member 60 and the spiral wrap 65 of the orbiting scroll member 63 are engaged with each other. The compressor 50 includes a permanent magnet type rotating electrical machine 1 that transmits a turning force to the orbiting scroll member 63 via the crankshaft 72 in the compression container 69. The orbiting scroll member 63 orbits through the crankshaft 72 by the permanent magnet type rotating electrical machine 1 that operates as a permanent magnet type synchronous motor, thereby performing a compression operation.

具体的には、固定スクロール部材60および旋回スクロール部材63によって形成される圧縮室66a,66b,66c,66d,66eのうち、最も外径側に位置する圧縮室66a,66bが、旋回運動に伴って固定スクロール部材60および旋回スクロール部材63の中心に向かって移動することにより、容積が次第に縮小し、圧縮動作が行われる。圧縮室66a,66bが固定スクロール部材60および旋回スクロール部材63の中心近傍に達すると、吸込みパイプ71より供給される圧縮室66a,66b内の作動流体である圧縮ガス(気体)は、圧縮室66eと連通する吐出口67から圧縮容器69内に吐出される。吐出される圧縮ガスは、固定スクロール部材60およびフレーム68に設けられるガス通路(図示せず)を通ってフレーム68下部の圧縮容器69内に至り、圧縮容器69の側壁に設けられる吐出パイプ70から圧縮機50外に排出される。   Specifically, of the compression chambers 66a, 66b, 66c, 66d, and 66e formed by the fixed scroll member 60 and the orbiting scroll member 63, the compression chambers 66a and 66b that are positioned on the outermost diameter side are associated with the orbiting motion. By moving toward the center of the fixed scroll member 60 and the orbiting scroll member 63, the volume is gradually reduced and the compression operation is performed. When the compression chambers 66a and 66b reach the vicinity of the center of the fixed scroll member 60 and the orbiting scroll member 63, the compressed gas (gas) as the working fluid in the compression chambers 66a and 66b supplied from the suction pipe 71 is compressed into the compression chamber 66e. Is discharged into the compression container 69 from a discharge port 67 communicating with the air. The compressed gas to be discharged passes through gas passages (not shown) provided in the fixed scroll member 60 and the frame 68 to reach the compression container 69 below the frame 68 and from a discharge pipe 70 provided on the side wall of the compression container 69. It is discharged out of the compressor 50.

また、圧縮機50を駆動する永久磁石式回転電機1は、別置のインバータ装置(図示せず)によって制御され、圧縮動作に適した回転速度で回転する。ここで、永久磁石式回転電機1は、固定子2と回転子3から構成され、回転子3に設けられるクランク軸72は、実施例1〜3(図3,6,7)におけるシャフト孔15に取付けられる。永久磁石式回転電機1によってクランク軸72が回転すると、旋回スクロール部材63は、自転せずに、クランク軸72の上部における所定の偏心量を半径とする旋回公転運動を行う。クランク軸72の内部には、油孔74が設けられ、クランク軸72の回転に伴って圧縮容器69の下部にある油溜め部73の潤滑油が油孔74を介して滑り軸受75へ供給される。このような圧縮機50に、上述の実施例1〜3のうちのいずれかの永久磁石式回転電機1を適用することより、圧縮機の効率向上が図られ、省エネ化が可能となる。   The permanent magnet type rotating electrical machine 1 that drives the compressor 50 is controlled by a separate inverter device (not shown) and rotates at a rotation speed suitable for the compression operation. Here, the permanent magnet type rotating electrical machine 1 includes a stator 2 and a rotor 3, and a crankshaft 72 provided in the rotor 3 is a shaft hole 15 in the first to third embodiments (FIGS. 3, 6, and 7). Mounted on. When the crankshaft 72 is rotated by the permanent magnet type rotating electrical machine 1, the orbiting scroll member 63 does not rotate but performs a revolving orbiting motion with a predetermined eccentric amount at the upper portion of the crankshaft 72 as a radius. An oil hole 74 is provided inside the crankshaft 72, and as the crankshaft 72 rotates, the lubricating oil in the oil reservoir 73 at the lower part of the compression container 69 is supplied to the slide bearing 75 through the oil hole 74. The By applying the permanent magnet type rotating electrical machine 1 of any of the first to third embodiments to such a compressor 50, the efficiency of the compressor can be improved and energy saving can be achieved.

圧縮機50の製造時において、永久磁石回転電機1の組み立て工程では、着磁されていない永久磁石が回転子鉄心12に挿入されて埋設される。永久磁石式回転電機1が組み立てられた後、電機子巻線すなわち固定子巻線に大きな電流を流すことにより、回転子鉄心に埋設される永久磁石が着磁される。なお、このような巻線着磁方法に限らず、他の着磁方法を用いても良い。   At the time of manufacturing the compressor 50, in the assembly process of the permanent magnet rotating electrical machine 1, permanent magnets that are not magnetized are inserted and embedded in the rotor core 12. After the permanent magnet type rotating electrical machine 1 is assembled, a permanent magnet embedded in the rotor core is magnetized by passing a large current through the armature winding, that is, the stator winding. In addition, you may use not only such a winding magnetizing method but another magnetizing method.

ところで、現在の家庭用および業務用のエアコンでは、圧縮容器69内にR410A冷媒が封入されているものが多く、永久磁石式回転電機1の周囲温度は80℃以上となることが多い。今後、地球温暖化係数がより小さいR32冷媒の採用が進むと周囲温度はさらに上昇する。特に永久磁石14は、高温になることで磁石の残留磁束密度が低下し、同一出力を確保するために電機子電流が増加することから、前述の実施例1〜3の永久磁石式回転電機1を適用することで、効率低下を抑制することができる。   By the way, many current home and commercial air conditioners have the R410A refrigerant sealed in the compression container 69, and the ambient temperature of the permanent magnet type rotating electrical machine 1 is often 80 ° C. or more. In the future, as the adoption of R32 refrigerant having a smaller global warming potential proceeds, the ambient temperature further increases. In particular, the permanent magnet 14 decreases in the residual magnetic flux density of the magnet due to a high temperature, and the armature current increases in order to ensure the same output. By applying, efficiency reduction can be suppressed.

なお、本実施例4の圧縮機に上述の実施例1〜3の永久磁石式回転電機1を適用するにあたり、冷媒の種類は制限されるものではない。また、実施例1〜3の永久磁石式回転電機1は、スクロール圧縮機に限らず、ロータリ圧縮機などの他の圧縮機構を有する圧縮機にも適用できる。   In addition, in applying the permanent magnet type rotary electric machine 1 of Examples 1 to 3 described above to the compressor of Example 4, the type of refrigerant is not limited. Moreover, the permanent magnet type rotary electric machine 1 of Examples 1-3 is applicable not only to a scroll compressor but to the compressor which has other compression mechanisms, such as a rotary compressor.

本実施例によれば、小形・高効率な永久磁石式回転電機を適用することにより、省エネ化が可能な圧縮機を実現できる。また、実施例1〜3の永久磁石式回転電機を適用することにより、高速運転が可能になるなど、圧縮機の運転範囲を広げることが可能となる。   According to the present embodiment, a compressor capable of saving energy can be realized by applying a small and highly efficient permanent magnet type rotating electrical machine. In addition, by applying the permanent magnet type rotating electrical machine of the first to third embodiments, it is possible to widen the operating range of the compressor, such as enabling high speed operation.

さらに、He(ヘリウム)やR32等の冷媒は、R22,R407C,R410A等の冷媒と比べて、圧縮機における隙間からの漏れが大きい。このため、低速運転時には、循環量に対する漏れの比率が大きくなるため、効率が低下する。低循環量(低速運転)時の効率向上のためには、圧縮機構部を小形化し、同じ循環量を得るために回転数を上げることで、漏れ損失を低減させることが有効である。さらに、最大循環量を確保するために、最大回転数も上げることが好ましい。これに対し、上述の実施例1〜3の永久磁石式回転電機1を圧縮機に適用することで、最大トルクおよび最大回転数を大きくすることが可能となり、かつ高速域での損失低減が可能となるため、HeやR32等の冷媒を用いる際に効率を向上することができる。   Further, refrigerants such as He (helium) and R32 have a larger leakage from the gap in the compressor than refrigerants such as R22, R407C, and R410A. For this reason, at the time of low speed driving | operation, since the ratio of the leakage with respect to the circulation amount becomes large, efficiency falls. In order to improve the efficiency at the time of low circulation (low speed operation), it is effective to reduce the leakage loss by downsizing the compression mechanism and increasing the rotational speed to obtain the same circulation. Furthermore, it is preferable to increase the maximum rotational speed in order to secure the maximum circulation amount. On the other hand, by applying the permanent magnet type rotating electrical machine 1 of the first to third embodiments described above to the compressor, it is possible to increase the maximum torque and the maximum number of revolutions, and to reduce the loss in the high speed range. Therefore, the efficiency can be improved when a refrigerant such as He or R32 is used.

上述のように、実施例1〜3の永久磁石式回転電機を圧縮機に適用することにより、高効率な圧縮機を実現でき、省エネ化が可能となる。   As described above, by applying the permanent magnet type rotating electrical machines of Examples 1 to 3 to the compressor, a highly efficient compressor can be realized and energy saving can be achieved.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

例えば、本発明による永久磁石回転電機は、圧縮機に限らず、他の機器にも適用できる。   For example, the permanent magnet rotating electrical machine according to the present invention can be applied not only to a compressor but also to other devices.

1…永久磁石式回転電機
2…固定子
3,3’…回転子
3a, 3a’…回転子内周面
3b, 3b’…回転子外周面
4…ティース
5…コアバック
6…固定子鉄心
7…スロット
8,8a,8b,8c…電機子巻線
11…切り欠き部(凹部)
12,12’…回転子鉄心
13,13’,13a,13b,13c…永久磁石挿入孔
14,14’…永久磁石
15…シャフト孔
16, 16’…磁化方向
40…中央部
41…側部
41a…端部
42…屈曲点
50…電動圧縮機
60…固定スクロール部材
61,64…端板
62,65…渦巻状ラップ、
63…旋回スクロール部材
66a,66b,66c,66d,66e…圧縮室
67…吐出口
68…フレーム
69…圧縮容器
70…突出パイプ、
71…吸込みパイプ
72…クランク軸
73…油留め部
74…油孔
75…すべり軸受け
120…回転子鉄心の一部
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type rotary electric machine 2 ... Stator 3, 3 '... Rotor 3a, 3a' ... Rotor inner peripheral surface 3b, 3b '... Rotor outer peripheral surface 4 ... Teeth 5 ... Core back 6 ... Stator core 7 ... Slot 8, 8a, 8b, 8c ... Armature winding 11 ... Notch (recess)
12, 12 '... Rotor cores 13, 13', 13a, 13b, 13c ... Permanent magnet insertion holes 14, 14 '... Permanent magnet 15 ... Shaft hole 16, 16' ... Magnetization direction 40 ... Central part 41 ... Side part 41a ... end 42 ... bending point 50 ... electric compressor 60 ... fixed scroll members 61 and 64 ... end plates 62 and 65 ... spiral wraps,
63 ... Orbiting scroll members 66a, 66b, 66c, 66d, 66e ... Compression chamber 67 ... Discharge port 68 ... Frame 69 ... Compression container 70 ... Projection pipe,
71 ... Suction pipe 72 ... Crank shaft 73 ... Oil retaining part 74 ... Oil hole 75 ... Sliding bearing 120 ... Part of the rotor core

Claims (5)

固定子鉄心と、前記固定子鉄心に設けられる電機子巻線とを有する固定子と、
回転子鉄心と、前記回転子鉄心に埋設される永久磁石とを有し、空隙を介して前記固定子と対向する回転子と、
を備え
前記回転子は、前記永久磁石を前記回転子の極数分備える永久磁石式回転電機において、
前記永久磁石は、一つの永久磁石挿入孔に収容され、
前記永久磁石は、
前記回転子の径方向内側へ向かって凸となる円弧状の中央部と、
前記中央部の両端部から前記回転子の外周面へ向って延びる直線状の2個の側部と、
を有し、
前記中央部および前記2個の側部は互いに分割され、
前記2個の側部は、前記回転子の外周面へ向って開いており、
前記中央部は、半径が異なる二つの円弧と、前記中央部の幅に相当する長さの二つの直線によって囲まれる外形を有し、前記二つの円弧の半径の差は前記中央部の幅に相当し、
前記側部は、短辺の長さが前記中央部の幅と同じである矩形状の外形を有し、
前記中央部の端部の直線と前記側部の短辺が接し、
前記側部の長辺は、前記中央部の円弧の接線となっており、
前記中央部おける前記回転子の内周面に最も近い端面と前記回転子の内周面との径方向距離をL1とし、前記端面における前記中央部の径方向の幅をL2とし、前記中央部において前記端面とは径方向反対側に位置する面と前記回転子の外周面との径方向距離をL3とすると、L1≦L2<L3であることを特徴とする永久磁石式回転電機。
A stator having a stator core and armature windings provided on the stator core;
A rotor core, wherein and a permanent magnet that will be embedded in the rotor core, a rotor facing the stator with a gap,
Equipped with a,
In the permanent magnet type rotating electric machine, the rotor includes the permanent magnets corresponding to the number of poles of the rotor .
The permanent magnet is accommodated in one permanent magnet insertion hole,
The permanent magnet is
An arcuate central portion that protrudes radially inward of the rotor;
Two linear side portions extending from both ends of the central portion toward the outer peripheral surface of the rotor;
I have a,
The central portion and the two side portions are divided from each other;
The two side portions are open toward the outer peripheral surface of the rotor,
The central portion has an outer shape surrounded by two arcs having different radii and two straight lines having a length corresponding to the width of the central portion, and a difference between the radii of the two arcs is determined by the width of the central portion. Equivalent,
The side portion has a rectangular outer shape in which the length of the short side is the same as the width of the central portion,
The straight line at the end of the central part is in contact with the short side of the side part,
The long side of the side portion is tangent to the arc of the central portion,
The radial distance between the end surface closest to the inner peripheral surface of the rotor in the central portion and the inner peripheral surface of the rotor is L1, the radial width of the central portion on the end surface is L2, and the central portion A permanent magnet type rotating electrical machine characterized in that L1 ≦ L2 <L3, where L3 is a radial distance between a surface located on a side opposite to the end surface in the radial direction and an outer peripheral surface of the rotor .
請求項1に記載の永久磁石式回転電機において、
前記回転子鉄心は、前記2個の側部における径方向端部と対向する前記回転子の外周部に設けられる複数の凹部を有することを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
The rotor core has a plurality of concave portions provided on an outer peripheral portion of the rotor facing a radial end portion of the two side portions .
請求項2に記載の永久磁石式回転電機において、
前記凹部の底面は、前記2個の側部における径方向端部の幅方向に平行であることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 2,
The permanent magnet rotating electrical machine according to claim 1, wherein a bottom surface of the concave portion is parallel to a width direction of radial end portions of the two side portions .
請求項1に記載の永久磁石式回転電機において、
前記永久磁石は、フェライト磁石からなることを特徴とする永久磁石式回転電機。
In the permanent magnet type rotating electrical machine according to claim 1,
The permanent magnet type rotating electrical machine , wherein the permanent magnet is made of a ferrite magnet .
作動流体である気体を圧縮容器内に供給する吸込みパイプと、A suction pipe for supplying a working fluid gas into the compression vessel;
前記作動流体の容積を縮小する圧縮機構と、A compression mechanism for reducing the volume of the working fluid;
前記圧縮機構を駆動する永久磁石式回転電機と、A permanent magnet type rotating electrical machine that drives the compression mechanism;
前記圧縮機構により圧縮された前記作動流体を圧縮容器外に排出する吐出パイプと、A discharge pipe for discharging the working fluid compressed by the compression mechanism out of a compression container;
を備える圧縮機において、A compressor comprising:
前記永久磁石式回転電機は、The permanent magnet type rotating electrical machine is:
固定子鉄心と、前記固定子鉄心に設けられる電機子巻線とを有する固定子と、A stator having a stator core and armature windings provided on the stator core;
回転子鉄心と、前記回転子鉄心に埋設される永久磁石とを有し、空隙を介して前記固定子と対向する回転子と、A rotor core, and a permanent magnet embedded in the rotor core, the rotor facing the stator via a gap;
を備え、With
前記回転子は、前記永久磁石を前記回転子の極数分備え、The rotor includes the permanent magnets for the number of poles of the rotor,
前記永久磁石は、一つの永久磁石挿入孔に収容され、The permanent magnet is accommodated in one permanent magnet insertion hole,
前記永久磁石は、The permanent magnet is
前記回転子の径方向内側へ向かって凸となる円弧状の中央部と、An arcuate central portion that protrudes radially inward of the rotor;
前記中央部の両端部から前記回転子の外周面へ向って延びる直線状の2個の側部と、Two linear side portions extending from both ends of the central portion toward the outer peripheral surface of the rotor;
を有し、Have
前記中央部および前記2個の側部は互いに分割され、The central portion and the two side portions are divided from each other;
前記2個の側部は、前記回転子の外周面へ向って開いており、The two side portions are open toward the outer peripheral surface of the rotor,
前記中央部は、半径が異なる二つの円弧と、前記中央部の幅に相当する長さの二つの直線によって囲まれる外形を有し、前記二つの円弧の半径の差は前記中央部の幅に相当し、The central portion has an outer shape surrounded by two arcs having different radii and two straight lines having a length corresponding to the width of the central portion, and a difference between the radii of the two arcs is determined by the width of the central portion. Equivalent,
前記側部は、短辺の長さが前記中央部の幅と同じである矩形状の外形を有し、The side portion has a rectangular outer shape in which the length of the short side is the same as the width of the central portion,
前記中央部の端部の直線と前記側部の短辺が接し、The straight line at the end of the central part is in contact with the short side of the side part,
前記側部の長辺は、前記中央部の円弧の接線となっており、The long side of the side portion is tangent to the arc of the central portion,
前記中央部おける前記回転子の内周面に最も近い端面と前記回転子の内周面との径方向距離をL1とし、前記端面における前記中央部の径方向の幅をL2とし、前記中央部において前記端面とは径方向反対側に位置する面と前記回転子の外周面との径方向距離をL3とすると、L1≦L2<L3であることを特徴とする圧縮機。The radial distance between the end surface closest to the inner peripheral surface of the rotor in the central portion and the inner peripheral surface of the rotor is L1, the radial width of the central portion on the end surface is L2, and the central portion , Wherein L1 ≦ L2 <L3, where L3 is a radial distance between a surface located on the opposite side of the end surface in the radial direction and the outer peripheral surface of the rotor.
JP2015049072A 2015-03-12 2015-03-12 Permanent magnet type rotating electric machine and compressor using the same Active JP6470598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049072A JP6470598B2 (en) 2015-03-12 2015-03-12 Permanent magnet type rotating electric machine and compressor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015049072A JP6470598B2 (en) 2015-03-12 2015-03-12 Permanent magnet type rotating electric machine and compressor using the same

Publications (3)

Publication Number Publication Date
JP2016171646A JP2016171646A (en) 2016-09-23
JP2016171646A5 JP2016171646A5 (en) 2017-08-03
JP6470598B2 true JP6470598B2 (en) 2019-02-13

Family

ID=56982701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049072A Active JP6470598B2 (en) 2015-03-12 2015-03-12 Permanent magnet type rotating electric machine and compressor using the same

Country Status (1)

Country Link
JP (1) JP6470598B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509696B1 (en) * 2017-12-20 2023-03-15 삼성전자주식회사 IPM BLDC Motor
JP2021122163A (en) * 2020-01-31 2021-08-26 日立金属株式会社 Rotary electric machine
JP7381914B2 (en) * 2021-11-12 2023-11-16 ダイキン工業株式会社 Rotor, motor, compressor and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891089B2 (en) * 2012-03-29 2016-03-22 株式会社日立産機システム Permanent magnet synchronous machine
JP2014155415A (en) * 2013-02-13 2014-08-25 Jtekt Corp Embedded magnet rotor and method of manufacturing embedded magnet rotor
JP6002617B2 (en) * 2013-04-05 2016-10-05 株式会社日立産機システム Permanent magnet synchronous machine
JP2014241705A (en) * 2013-06-12 2014-12-25 株式会社ジェイテクト Magnet embedded rotor

Also Published As

Publication number Publication date
JP2016171646A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
TWI569560B (en) A permanent magnet type rotating machine, and a compressor using the same
JP5401204B2 (en) Self-starting permanent magnet synchronous motor, and compressor and refrigeration cycle using the same
JP5897110B2 (en) Motor and electric compressor using the same
TWI500239B (en) Permanent magnetic synchronous motors and compressors using them
CN109923757B (en) Permanent magnet type rotating electrical machine and compressor using the same
JP2007181305A (en) Permanent magnet type synchronous motor and compressor using the same
JP2007074898A (en) Permanent magnet type rotary electric machine and compressor using same
JP2008245439A (en) Electric motor and compressor using same
JP2005210826A (en) Electric motor
JP2012080713A (en) Permanent magnet-type rotary electric machine and compressor using the same
WO2018128006A1 (en) Permanent magnet-type rotary electric machine and compressor using same
JP6470598B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP5208662B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
JP2016100927A (en) Permanent magnet type rotary electric machine and compressor using the same
JP6518720B2 (en) Permanent magnet type rotary electric machine and compressor using the same
JP6223568B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP7126551B2 (en) Permanent magnet type rotary electric machine and compressor using the same
JP2011015500A (en) Rotor of electric motor
CN111953166B (en) Permanent magnet type rotating electrical machine and compressor using the same
JP2017055583A (en) Permanent magnet type rotary electrical machine and compressor using the same
JP6416449B1 (en) Permanent magnet type rotating electric machine and compressor using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190118

R150 Certificate of patent or registration of utility model

Ref document number: 6470598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150