JP2004007875A - Permanent magnet type electric motor and compressor employing it - Google Patents

Permanent magnet type electric motor and compressor employing it Download PDF

Info

Publication number
JP2004007875A
JP2004007875A JP2002158508A JP2002158508A JP2004007875A JP 2004007875 A JP2004007875 A JP 2004007875A JP 2002158508 A JP2002158508 A JP 2002158508A JP 2002158508 A JP2002158508 A JP 2002158508A JP 2004007875 A JP2004007875 A JP 2004007875A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
electric machine
rotating electric
magnet type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002158508A
Other languages
Japanese (ja)
Inventor
Shinichi Wakui
湧井 真一
Satoshi Kikuchi
菊地  聡
Haruo Oharagi
小原木 春雄
Ryoichi Takahata
高畑 良一
Keiji Noma
野間 啓二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP2002158508A priority Critical patent/JP2004007875A/en
Priority to CN 03120580 priority patent/CN1249885C/en
Publication of JP2004007875A publication Critical patent/JP2004007875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high output low noise permanent magnet type electric motor. <P>SOLUTION: The permanent magnet type electric motor 11 comprises a stator 7 having a concentrated armature winding 9 surrounding the tees 10 in a plurality of slots 13 formed in the stator core 12, and a rotor 1 having permanent magnets 3 contained in a plurality of permanent magnet insertion holes 14 formed in the rotor core 2. The pole angle θ1 of the rotor core 2 is set in a range of electric angle of 100-120° and a recess 15 is formed in the outer circumferential surface of the rotor core 2 between the poles thus ensuring a high output while reducing noise. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、界磁用の永久磁石を回転子に備えている永久磁石式回転電機に関し、特に、空気調和機,冷蔵庫および冷凍庫等の圧縮機などに搭載される永久磁石式回転電機に関する。
【0002】
【従来の技術】
従来、この種の永久磁石式回転電機においては、様々な形状が採用されている。例えば、特開2001−218404号公報に記載の永久磁石式回転電機においては、固定子鉄心に形成された複数のティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、マグネットトルクを有効に発生させて回転電機の出力を向上させようとしている。
【0003】
【発明が解決しようとする課題】
上記従来技術では、回転電機の出力向上に着目しているが、回転電機として実用化するには騒音問題を切り離しては考えられない。永久磁石式回転電機の騒音を大きくする要因として脈動トルクおよび電磁加振力等が挙げられるが、これらを低減するためにはギャップの磁束密度を小さくすればよい。しかし、単純にギャップを広げてギャップの磁束密度を小さくしただけでは、磁気抵抗が大きくなって永久磁石から発生する磁束が低減してしまうため、マグネットトルクが小さくなって出力が低下してしまう。そこで、マグネットトルクに寄与する磁束を増大させながら、騒音の発生要因となる磁束のみ低減する必要がある。
【0004】
本発明の目的は、出力を向上させながら、騒音問題を解決できる永久磁石式回転電機を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明では、固定子鉄心に形成された複数のスロット内に電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有する永久磁石式回転電機において、回転子鉄心の磁極角度を電気角で100度から120度の範囲とすると共に、回転子鉄心の外周面の極間に凹部を形成した永久磁石式回転電機を提案する。
【0006】
本発明では、また、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有する永久磁石式回転電機において、回転子鉄心の磁極角度を固定子鉄心のスロットピッチと略同一とすると共に、回転子鉄心の外周面の極間に凹部を形成した永久磁石式回転電機を提案する。
【0007】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有する永久磁石式回転電機において、回転子鉄心の磁極角度を固定子鉄心のスロットピッチと略同一とすると共に、回転子鉄心の外周面の極間に凹部を形成した永久磁石式回転電機を提案する。
【0008】
本発明は、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、回転子の極数と固定子のスロット数との比が2:3である永久磁石式回転電機において、回転子鉄心の磁極角度を電気角で100度から120度の範囲とすると共に、回転子鉄心の外周面の極間に凹部を形成した永久磁石式回転電機を提案する。
【0009】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、回転子の極数と固定子のスロット数との比が2:3である永久磁石式回転電機において、固定子鉄心のティース先端形状を、円弧状部分と直線状部分とを組み合わせた形状とすると共に、回転子鉄心の磁極角度が電気角で100度から120度の範囲となるように、回転子鉄心の外周面の極間に凹部を形成した永久磁石式回転電機を提案する。
【0010】
永久磁石式回転電機の出力を向上させながら騒音を低減するためには、マグネットトルク発生に寄与している永久磁石の磁束は増加させて、電機子反作用磁束だけを低減すればよいことを種々実験を通して見い出した。ここで、電機子反作用磁束は永久磁石の磁束に対して、略電気角で90度進ませるのが一般的であるから、横軸(q軸)インダクタンスと呼ばれる回転子鉄心形状と電機子巻線との結合に基づいて発生するインダクタンスを低減すればよいことになる。
【0011】
本発明は、この実験結果に基づいており、回転子鉄心の磁極角度が電気角で
100度から120度の範囲となるように回転子鉄心の外周面の極間(q軸側)に凹部を形成したことで、電機子巻線に鎖交する永久磁石の磁束が増加すると共に、横軸インダクタンスが小さくなるため電機子反作用磁束を低減できる。よって、出力が向上すると共に騒音が小さい永久磁石式回転電機を提供できる。
【0012】
【発明の実施の形態】
以下、本発明の実施例を図1〜図13を用いて詳細に説明する。各図中において、共通する符号は同一物を示す。また、ここでは4極の永久磁石式回転電機について示した。
【0013】
(実施形態1)
図1は、本発明による永久磁石式回転電機の実施形態1の径方向断面形状を示す。図において、永久磁石式回転電機11は固定子7と回転子1から構成される。固定子7はティース10とコアバック8からなる固定子鉄心12と、ティース10間のスロット13内にはティース10を取り囲むように巻装された集中巻の電機子巻線9(三相巻線のU相巻線9a,V相巻線9b,W相巻線9cからなる)がある。ここで、永久磁石式回転電機11は4極6スロットであるから、スロットピッチは電気角で120度である。
【0014】
図2は本発明による実施形態1の回転子の径方向断面形状を拡大したものである。回転子1は回転子鉄心2に形成した一文字状の永久磁石挿入孔14中に永久磁石3が納められ、シャフト(図示せず)と嵌合するためのシャフト孔6からなる。ここで、回転子1の磁極中心方向に延びる軸をd軸、磁極中心方向と電気角で90度隔たった磁極間方向に延びる軸をq軸とする。図2において、回転子鉄心2の外周面の極間(q軸)側形状を凹部状(略V字状の凹部2つを組み合わせた形状)として、回転子鉄心2の磁極角度θ1をスロットピッチと略等しくしている。
【0015】
図10は比較例の回転子の径方向断面形状である。回転子鉄心2内に永久磁石3を埋込む場合、永久磁石3の磁束が短絡し易くなることから、比較例においても回転子鉄心2の外周面の極間(q軸側)を凹部状として磁束の短絡を防止し、磁石磁束によるトルクを増大させている。しかし、極間を凹部状とするのは磁石磁束の短絡防止が目的であるため、凹部15は永久磁石挿入孔14の側面と平行としている。
【0016】
ところで、本発明の対象とする圧縮機駆動用永久磁石式回転電機11では、騒音がしばしば問題となる。永久磁石式回転電機11の騒音を大きくする要因として脈動トルクおよび電磁加振力等が挙げられるが、これらを低減するためにはギャップの磁束密度を小さくすればよい。しかし、単純にギャップを広げてギャップの磁束密度を小さくしただけでは、磁気抵抗が大きくなって永久磁石から発生する磁束が低減してしまうため、マグネットトルクが小さくなって出力が低下してしまう。そこで、マグネットトルクに寄与する永久磁石の磁束は低減せずに、騒音の発生要因となる電機子反作用磁束のみ低減する必要があることを種々実験を通して見い出した。ここで、電機子反作用磁束は永久磁石の磁束に対して、略電気角で90度進ませるのが一般的であるから、横軸(q軸)インダクタンスを小さくすればよいことになる。
【0017】
図11は永久磁石式回転電機の磁極角度θ1に対する特性を示す図である。横軸は磁極角度θ1を電気角で示しており、縦軸は比較例の回転電機(図10、θ1=148度)の誘導起電力および横軸インダクタンスを1.0p.u.として規格化したときの誘導起電力と横軸インダクタンスを示している。ここで、誘導起電力は電機子巻線9に鎖交する磁束φの時間変化(dφ/dt)に比例するため、マグネットトルク発生に寄与する永久磁石の磁束の増減は誘導起電力の大きさで判断できる。
【0018】
図11から、磁極角度θ1が小さくなるほどギャップ(空隙)部が増加するため、横軸インダクタンスは低下するが、θ1=120度以下ではほとんど変わっていないのがわかる。よって、低騒音化のためにはできるだけθ1を小さくすればよく、特にθ1=120度以下が好ましいのがわかる。
【0019】
一方、誘導起電力はθ1が約80度以上のときに比較例より大きくなっているが、θ1が約80度以下では従来機より小さくなっている。誘導起電力は電機子巻線9に鎖交する磁束の時間変化に比例するが、集中巻の場合ティース10を取り囲むように電機子巻線9を施すため、ティース10に流入する磁束が電機子巻線9に鎖交する磁束となる。永久磁石3の極数とスロット13の数との比が2:3の永久磁石式回転電機11では、スロットピッチが電気角で120度であるから、磁極角度θ1をスロットピッチに略一致させれば永久磁石3の磁束を有効に利用することができることになる。よって、θ1=120度のときが最大となっているが、θ1が100度から140度の範囲ではほとんど変わらない。
【0020】
以上から、磁極角度θ1を略100度から120度の範囲に設定すれば、モータの出力が向上すると共に、低騒音化が図れる。
【0021】
(実施形態2)
図3および図4は、本発明による永久磁石式回転電機の実施形態2の回転子1を拡大して、回転子の径方向断面形状を示す断面図である。図3および図4に示す実施形態2において、図2の実施形態1と異なる点は、回転子鉄心2の磁極部にスリット部4を設けたことである。なお、図3においては回転子1の磁極部にスリット部4をd軸に対して対称に2本設けているが、図4ではスリット部4がd軸上に1本である。
【0022】
図12は永久磁石式回転電機の回転子磁極部に設けたスリット部間の角度θ2に対する特性を示す図である。横軸はスリット部4間の角度θ2を電気角で示しており、縦軸は従来機(図10)の誘導起電力および横軸インダクタンスを1.0p.u.として規格化したときの誘導起電力と横軸インダクタンスを示している。よって、θ2が大きいほどスリット部4は極間(q軸)寄りとなり、θ2が小さくなるほどスリット部4は磁極中心(d軸)寄りとなる。ここで、θ2=0度のときは、図4に示すようにスリット部4がd軸上に1本であり、スリット部4の幅W2をW1の2倍(W2=2×W1)とした。また、この結果は磁極角度θ1=120度一定としており、図11から、θ1=120度でスリット部4がない場合の誘導起電力は1.06p.u.、横軸インダクタンスは0.83p.u.である。
【0023】
誘導起電力はスリット部4を設けることで若干小さくなり、角度θ2が小さくなるに従い減少する傾向にあるが、比較例よりは大きくなっている。一方、横軸インダクタンスはスリット部を設けることで小さくなり、角度θ2が小さくなるに従い著しく減少している。したがって、磁極角度θ1を略100度から120度の範囲とした上で、回転子1の磁極部にスリット部4を設けると、比較例より出力が高く、騒音を小さくすることができる。なお、低騒音化の観点から、スリット部4を設ける位置は磁極中心(d軸上)が最適である。
【0024】
(実施形態3)
図5は、本発明による永久磁石式回転電機の実施形態3の回転子1を拡大して、回転子の径方向断面形状を示す断面図である。図5に示す実施形態3において、図2の実施形態1と異なる点は、永久磁石3の形状をV字状としたことである。本実施形態3においても、図2の実施形態1と同様の効果が得られる。
【0025】
(実施形態4)
図6および図7は、本発明による永久磁石式回転電機の実施形態4の回転子1を拡大して、回転子の径方向断面形状を示す断面図である。図6および図7に示す実施形態4において、図5の実施形態3と異なる点は、回転子鉄心2の磁極部にスリット部4を設けたことである。なお、図6においては回転子1の磁極部にスリット部4をd軸に対して対称に2本設けているが、図7ではスリット部4がd軸上に1本である。
【0026】
磁極角度θ1を略100度から120度の範囲とした上でスリット部4を設けると、永久磁石3の磁束を有効利用できると共に、横軸インダクタンスを小さくできるため、モータの出力が向上すると共に、低騒音化が図れる。なお、低騒音化の観点から、スリット部4を設ける位置は磁極中心(d軸上)が最適である。
【0027】
(実施形態5)
図8は、本発明による永久磁石式回転電機の実施形態5の断面形状を示す図である。図8に示す実施形態5において、図1の実施形態1と異なる点は、固定子ティース10の先端を円弧状部分と直線状部分とを組み合わせた形状としたことである。
【0028】
このような構造にすると、ティース10の先端の端部におけるギャップ長が大きくなるため、ティース10の先端の端部の磁束集中が緩和され、脈動トルクが低減される。
【0029】
よって、実施形態1から実施形態4で示した回転子1と組み合わせることで、著しく騒音を低減できる。
【0030】
(実施形態6)
図9は、本発明による永久磁石式回転電機の実施形態6の断面形状を示す図である。図9に示す実施形態6において実施形態1および実施形態5と異なる点は、電機子巻線9がスロット13内に、U相巻線9a,V相巻線9b,W相巻線
9cの順に順次納められた分布巻であることである。
【0031】
このように、電機子巻線9の巻線方法が異なる場合においても、実施形態1から実施形態4で示した回転子1と組み合わせることで、永久磁石3の磁束を有効利用できると共に横軸インダクタンスを小さくできるため、モータの出力が向上すると共に、低騒音化が図れる。
【0032】
(実施形態7)
図13は本発明に関わる圧縮機の断面構造である。圧縮機は、固定スクロール部材17の端板18に直立する渦巻状ラップ19と、旋回スクロール部材20の端板21に直立する渦巻状ラップ22とを噛み合わせて形成し、旋回スクロール部材20をクランクシャフト23によって旋回運動させることで圧縮動作を行う。固定スクロール部材17及び旋回スクロール部材20によって形成される圧縮室24(24a,24b,…)のうち、最も外径側に位置している圧縮室は、旋回運動に伴って両スクロール部材17,20の中心に向かって移動し、容積が次第に縮小する。圧縮室24a,24bが両スクロール部材17,20の中心近傍に達すると、両圧縮室24内の圧縮ガスは圧縮室24と連通した吐出口25から吐出される。吐出された圧縮ガスは、固定スクロール部材17及びフレーム26に設けられたガス通路(図示せず)を通ってフレーム26下部の圧縮容器27内に至り、圧縮容器27の側壁に設けられた吐出パイプ28から圧縮機外に排出される。また、本圧縮機では、圧力容器27内に、永久磁石式回転電機11が内封されており、別置のインバータ(図示せず)によって制御された回転速度で回転し、圧縮動作を行う。ここで、駆動用電動機は、固定子7と回転子1とで構成される永久磁石式回転電機11である。
【0033】
圧縮機は空気調和機,冷蔵庫、あるいは冷凍庫等の駆動源として用いられているが、一年中稼動しているため、地球温暖化問題から省エネルギー化を図る最重要製品である。この駆動源に永久磁石式回転電機を使用すると回転電機の高効率化によって省エネルギー化を図れるが、騒音を小さくしなければ採用できない。しかし、本発明の永久磁石式回転電機を駆動源とした場合、騒音が小さく、環境問題を解消できるので、高効率で省エネルギー化が図れる圧縮機を提供できる。
【0034】
【発明の効果】
上述のように、本発明によれば、永久磁石式回転電機の誘導起電力が大きくなると共に、横軸インダクタンスが小さくなるので、高出力かつ低騒音の永久磁石式回転電機を提供できる。
【0035】
また、本発明によれば騒音が小さい圧縮機が提供できる。
【図面の簡単な説明】
【図1】本発明による永久磁石式回転電機の実施形態1の径方向断面形状を示す断面図。
【図2】図1の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図3】本発明による永久磁石式回転電機の実施形態2の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図4】本発明による永久磁石式回転電機の実施形態2の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図5】本発明による永久磁石式回転電機の実施形態3の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図6】本発明による永久磁石式回転電機の実施形態4の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図7】本発明による永久磁石式回転電機の実施形態4の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図8】本発明による永久磁石式回転電機の実施形態5の径方向断面形状を示す断面図。
【図9】本発明による永久磁石式回転電機の実施形態6の径方向断面形状を示す断面図。
【図10】比較例の永久磁石式回転電機の径方向断面形状を示す断面図。
【図11】実施形態1の永久磁石式回転電機の特性を示す図。
【図12】実施形態2の永久磁石式回転電機の特性を示す図。
【図13】本発明に関わる圧縮機の断面形状。
【符号の説明】
1…回転子、2…回転子鉄心、3…永久磁石、4…スリット部、6…シャフト嵌合孔、7…固定子、8…コアバック、9…電機子巻線、10…ティース、11…永久磁石式回転電機、12…固定子鉄心、13…スロット、14…永久磁石挿入孔、15…回転子鉄心凹部、17…固定スクロール部材、18,21…端板、19,22…ラップ、20…旋回スクロール部材、23…シャフト、24…圧縮室、25…吐出口、26…フレーム、27…圧縮容器、28…吐出パイプ、29…油溜め部、30…油孔、31…滑り軸受け。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet for a field in a rotor, and more particularly to a permanent magnet type rotating electric machine mounted on a compressor such as an air conditioner, a refrigerator and a freezer.
[0002]
[Prior art]
Conventionally, various shapes have been adopted in this type of permanent magnet type rotating electric machine. For example, in a permanent magnet type rotating electric machine described in Japanese Patent Application Laid-Open No. 2001-218404, a stator in which concentrated winding armature winding is provided so as to surround a plurality of teeth formed in a stator core, A rotor in which permanent magnets are accommodated in a plurality of permanent magnet insertion holes formed in a child iron core, and magnet torque is effectively generated to improve the output of the rotating electric machine.
[0003]
[Problems to be solved by the invention]
Although the above prior art focuses on improving the output of the rotating electric machine, it cannot be considered that the noise problem is separated in order to put it into practical use as the rotating electric machine. Factors that increase the noise of the permanent magnet type rotating electric machine include a pulsating torque and an electromagnetic excitation force, and these can be reduced by reducing the magnetic flux density of the gap. However, simply reducing the magnetic flux density of the gap by simply widening the gap increases the magnetic resistance and reduces the magnetic flux generated from the permanent magnet, so that the magnet torque decreases and the output decreases. Therefore, it is necessary to reduce only the magnetic flux that causes noise while increasing the magnetic flux that contributes to the magnet torque.
[0004]
An object of the present invention is to provide a permanent magnet type rotating electric machine that can solve the noise problem while improving the output.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there are provided a stator in which an armature winding is provided in a plurality of slots formed in a stator core, and a plurality of permanent magnet insertion holes formed in a rotor core. In a permanent magnet type rotating electric machine having a rotor in which a permanent magnet is accommodated, a magnetic pole angle of the rotor core is set to an electric angle in a range of 100 degrees to 120 degrees, and a gap between the outer circumferential surface of the rotor core. We propose a permanent magnet type rotating electric machine with a recess.
[0006]
According to the present invention, a stator in which concentrated armature windings are provided to surround teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets formed in the rotor core are inserted. In a permanent magnet type rotating electric machine having a rotor in which a permanent magnet is accommodated in a hole, the magnetic pole angle of the rotor core is made substantially the same as the slot pitch of the stator core, and the distance between the poles on the outer peripheral surface of the rotor core is We propose a permanent magnet type rotating electric machine in which a recess is formed.
[0007]
According to the present invention, further, a stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets formed in the rotor core are inserted. In a permanent magnet type rotating electric machine having a rotor in which a permanent magnet is accommodated in a hole, the magnetic pole angle of the rotor core is made substantially the same as the slot pitch of the stator core, and the distance between the poles on the outer peripheral surface of the rotor core is We propose a permanent magnet type rotating electric machine in which a recess is formed.
[0008]
The present invention further provides a stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets inserted in the rotor core. In a permanent magnet type rotating electric machine having a rotor in which a permanent magnet is accommodated in a hole and the ratio of the number of poles of the rotor to the number of slots of the stator is 2: 3, the magnetic pole angle of the rotor core is The present invention proposes a permanent magnet type rotating electric machine having an electrical angle in a range of 100 degrees to 120 degrees and a recess formed between poles on an outer peripheral surface of a rotor core.
[0009]
According to the present invention, further, a stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets formed in the rotor core are inserted. In a permanent magnet type rotating electric machine having a rotor in which a permanent magnet is accommodated in a hole and a ratio of the number of poles of the rotor to the number of slots of the stator is 2: 3, a tooth tip shape of a stator iron core is provided. Between the poles on the outer peripheral surface of the rotor core so that the magnetic pole angle of the rotor core is in the range of 100 degrees to 120 degrees in electrical angle, together with the shape combining the arc-shaped portion and the linear portion. We propose a permanent magnet type rotating electric machine with a recess.
[0010]
Various experiments have shown that in order to reduce noise while improving the output of a permanent magnet type rotating electric machine, it is only necessary to increase the magnetic flux of the permanent magnet contributing to the generation of magnet torque and reduce only the armature reaction magnetic flux. Found through. Here, since the armature reaction magnetic flux generally advances the magnetic flux of the permanent magnet by approximately 90 degrees in electrical angle, the rotor core shape called the horizontal axis (q axis) inductance and the armature winding That is, it is only necessary to reduce the inductance generated based on the coupling with the above.
[0011]
The present invention is based on this experimental result, and has a concave portion between the poles (q-axis side) on the outer peripheral surface of the rotor core so that the magnetic pole angle of the rotor core is in the range of 100 to 120 degrees in electrical angle. With the formation, the magnetic flux of the permanent magnet linked to the armature winding increases, and the inductance of the horizontal axis decreases, so that the armature reaction magnetic flux can be reduced. Therefore, it is possible to provide a permanent magnet type rotating electric machine with improved output and low noise.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. In each of the drawings, common symbols indicate the same items. Also, a four-pole permanent magnet type rotating electric machine is shown here.
[0013]
(Embodiment 1)
FIG. 1 shows a radial cross section of a permanent magnet type rotating electric machine according to a first embodiment of the present invention. In the figure, a permanent magnet type rotating electric machine 11 includes a stator 7 and a rotor 1. The stator 7 includes a stator core 12 including teeth 10 and a core back 8, and a concentrated winding armature winding 9 (three-phase winding) wound around the teeth 10 in a slot 13 between the teeth 10. U-phase winding 9a, V-phase winding 9b, and W-phase winding 9c). Here, since the permanent magnet type rotating electric machine 11 has four poles and six slots, the slot pitch is 120 degrees in electrical angle.
[0014]
FIG. 2 is an enlarged cross-sectional shape in the radial direction of the rotor according to the first embodiment of the present invention. The rotor 1 has a one-character permanent magnet insertion hole 14 formed in the rotor core 2 in which the permanent magnet 3 is accommodated, and includes a shaft hole 6 for fitting with a shaft (not shown). Here, an axis extending in the direction of the center of the magnetic pole of the rotor 1 is defined as a d-axis, and an axis extending in the direction between the magnetic poles separated from the center of the magnetic pole by an electrical angle of 90 degrees is defined as the q-axis. In FIG. 2, the shape between the poles (q axis) of the outer peripheral surface of the rotor core 2 is set to a concave shape (a shape obtained by combining two substantially V-shaped concave portions), and the magnetic pole angle θ1 of the rotor core 2 is set to the slot pitch. And almost equal.
[0015]
FIG. 10 shows a radial cross-sectional shape of the rotor of the comparative example. When the permanent magnet 3 is embedded in the rotor core 2, the magnetic flux of the permanent magnet 3 is likely to be short-circuited. Therefore, also in the comparative example, the gap between the outer peripheral surfaces of the rotor core 2 (q-axis side) is formed into a concave shape. The short circuit of the magnetic flux is prevented, and the torque by the magnetic flux is increased. However, since the purpose of forming the gap between the poles into a concave shape is to prevent a short circuit of the magnetic flux, the concave portion 15 is parallel to the side surface of the permanent magnet insertion hole 14.
[0016]
By the way, in the compressor driving permanent magnet type rotary electric machine 11 to which the present invention is applied, noise often becomes a problem. Factors that increase the noise of the permanent magnet type rotating electric machine 11 include a pulsating torque and an electromagnetic excitation force, and these can be reduced by reducing the magnetic flux density of the gap. However, simply reducing the magnetic flux density of the gap by simply widening the gap increases the magnetic resistance and reduces the magnetic flux generated from the permanent magnet, so that the magnet torque decreases and the output decreases. Therefore, through various experiments, it has been found that it is necessary to reduce only the armature reaction magnetic flux which is a cause of noise without reducing the magnetic flux of the permanent magnet which contributes to the magnet torque. Here, the armature reaction magnetic flux generally advances the magnetic flux of the permanent magnet by approximately 90 degrees in electrical angle, so that the horizontal axis (q-axis) inductance may be reduced.
[0017]
FIG. 11 is a diagram showing characteristics of the permanent magnet type rotating electric machine with respect to the magnetic pole angle θ1. The horizontal axis indicates the magnetic pole angle θ1 in electrical angle, and the vertical axis indicates the induced electromotive force and the horizontal axis inductance of the rotating electric machine of the comparative example (FIG. 10, θ1 = 148 degrees) by 1.0 p. u. The induced electromotive force and the horizontal axis inductance when normalized as are shown. Here, since the induced electromotive force is proportional to the time change (dφ / dt) of the magnetic flux φ linked to the armature winding 9, the increase / decrease of the magnetic flux of the permanent magnet contributing to the generation of the magnet torque depends on the magnitude of the induced electromotive force. Can be determined.
[0018]
From FIG. 11, it can be seen that the smaller the magnetic pole angle θ1, the larger the gap (gap), the lower the horizontal axis inductance. However, it can be seen that there is almost no change when θ1 = 120 degrees or less. Therefore, in order to reduce noise, it is sufficient to make θ1 as small as possible, and it is understood that θ1 is preferably 120 ° or less.
[0019]
On the other hand, the induced electromotive force is larger than that of the comparative example when θ1 is about 80 degrees or more, but smaller than that of the conventional machine when θ1 is about 80 degrees or less. The induced electromotive force is proportional to the time change of the magnetic flux linked to the armature winding 9, but in the case of concentrated winding, since the armature winding 9 is applied so as to surround the teeth 10, the magnetic flux flowing into the teeth 10 is The magnetic flux interlinks with the winding 9. In the permanent magnet type rotating electric machine 11 in which the ratio between the number of poles of the permanent magnet 3 and the number of the slots 13 is 2: 3, the slot pitch is 120 degrees in electrical angle, so that the magnetic pole angle θ1 can be made substantially equal to the slot pitch. Thus, the magnetic flux of the permanent magnet 3 can be effectively used. Therefore, the maximum is obtained when θ1 = 120 degrees, but hardly changes when θ1 is in the range of 100 degrees to 140 degrees.
[0020]
As described above, if the magnetic pole angle θ1 is set in the range of approximately 100 degrees to 120 degrees, the output of the motor can be improved and noise can be reduced.
[0021]
(Embodiment 2)
FIGS. 3 and 4 are enlarged sectional views of the rotor 1 of Embodiment 2 of the permanent magnet type rotating electric machine according to the present invention, showing a radial cross-sectional shape of the rotor. The second embodiment shown in FIGS. 3 and 4 differs from the first embodiment in FIG. 2 in that a slit portion 4 is provided in a magnetic pole portion of a rotor core 2. Although two slits 4 are provided symmetrically with respect to the d-axis in the magnetic pole portion of the rotor 1 in FIG. 3, one slit 4 is provided on the d-axis in FIG.
[0022]
FIG. 12 is a diagram showing characteristics with respect to an angle θ2 between slit portions provided in a rotor magnetic pole portion of a permanent magnet type rotating electric machine. The horizontal axis indicates the angle θ2 between the slits 4 in electrical angle, and the vertical axis indicates the induced electromotive force and the horizontal axis inductance of the conventional machine (FIG. 10) by 1.0 p. u. The induced electromotive force and the horizontal axis inductance when normalized as are shown. Therefore, the slit portion 4 is closer to the gap (q axis) as θ2 is larger, and the slit portion 4 is closer to the magnetic pole center (d axis) as θ2 is smaller. Here, when θ2 = 0 degrees, as shown in FIG. 4, there is one slit portion 4 on the d-axis, and the width W2 of the slit portion 4 is set to twice W1 (W2 = 2 × W1). . In addition, the result is that the magnetic pole angle θ1 is constant at 120 degrees, and FIG. u. , The horizontal axis inductance is 0.83 p. u. It is.
[0023]
The induced electromotive force slightly decreases by providing the slit portion 4, and tends to decrease as the angle θ2 decreases, but is larger than that of the comparative example. On the other hand, the horizontal axis inductance is reduced by providing the slit portion, and is significantly reduced as the angle θ2 is reduced. Therefore, when the magnetic pole angle θ1 is set in a range of approximately 100 degrees to 120 degrees and the slit portion 4 is provided in the magnetic pole portion of the rotor 1, the output is higher than that of the comparative example and noise can be reduced. From the viewpoint of noise reduction, the position of the slit portion 4 is optimally at the center of the magnetic pole (on the d-axis).
[0024]
(Embodiment 3)
FIG. 5 is an enlarged sectional view of the rotor 1 of the permanent magnet type rotary electric machine according to Embodiment 3 of the present invention, showing a radial cross-sectional shape of the rotor. The third embodiment shown in FIG. 5 differs from the first embodiment in FIG. 2 in that the shape of the permanent magnet 3 is V-shaped. Also in the third embodiment, the same effect as that of the first embodiment in FIG. 2 can be obtained.
[0025]
(Embodiment 4)
6 and 7 are enlarged sectional views of the rotor 1 of Embodiment 4 of the permanent magnet type rotating electric machine according to the present invention, showing a radial sectional shape of the rotor. The fourth embodiment shown in FIGS. 6 and 7 differs from the third embodiment in FIG. 5 in that a slit portion 4 is provided in the magnetic pole portion of the rotor core 2. In FIG. 6, two slits 4 are provided in the magnetic pole portion of the rotor 1 symmetrically with respect to the d axis, but in FIG. 7, one slit 4 is provided on the d axis.
[0026]
When the slit portion 4 is provided after the magnetic pole angle θ1 is set in a range of approximately 100 degrees to 120 degrees, the magnetic flux of the permanent magnet 3 can be effectively used, and the horizontal axis inductance can be reduced, so that the output of the motor is improved, and Low noise can be achieved. From the viewpoint of noise reduction, the position of the slit portion 4 is optimally at the center of the magnetic pole (on the d-axis).
[0027]
(Embodiment 5)
FIG. 8 is a diagram showing a sectional shape of a fifth embodiment of the permanent magnet type rotating electric machine according to the present invention. The fifth embodiment shown in FIG. 8 differs from the first embodiment in FIG. 1 in that the tip of the stator teeth 10 has a shape combining an arc-shaped portion and a linear portion.
[0028]
With such a structure, the gap length at the end of the tooth 10 is increased, so that the magnetic flux concentration at the end of the tooth 10 is reduced, and the pulsating torque is reduced.
[0029]
Therefore, the noise can be significantly reduced by combining with the rotor 1 shown in the first to fourth embodiments.
[0030]
(Embodiment 6)
FIG. 9 is a diagram showing a cross-sectional shape of Embodiment 6 of the permanent magnet type rotating electric machine according to the present invention. Embodiment 6 shown in FIG. 9 is different from Embodiments 1 and 5 in that an armature winding 9 is provided in a slot 13 in the order of a U-phase winding 9a, a V-phase winding 9b, and a W-phase winding 9c. That is, the distribution windings are sequentially stored.
[0031]
As described above, even when the winding method of the armature winding 9 is different, by combining with the rotor 1 shown in the first to fourth embodiments, the magnetic flux of the permanent magnet 3 can be effectively used and the horizontal axis inductance can be improved. Can be reduced, so that the output of the motor can be improved and noise can be reduced.
[0032]
(Embodiment 7)
FIG. 13 shows a cross-sectional structure of the compressor according to the present invention. The compressor is formed by meshing a spiral wrap 19 standing upright on the end plate 18 of the fixed scroll member 17 and a spiral wrap 22 standing upright on the end plate 21 of the orbiting scroll member 20, and turning the orbiting scroll member 20 into the crank. The compression operation is performed by turning the shaft 23. Of the compression chambers 24 (24a, 24b,...) Formed by the fixed scroll member 17 and the orbiting scroll member 20, the compression chamber located on the outermost side is the two scroll members 17, 20 with the orbital motion. Moving toward the center of the car and the volume gradually decreases. When the compression chambers 24a and 24b reach the vicinity of the centers of the scroll members 17 and 20, the compressed gas in the compression chambers 24 is discharged from the discharge port 25 communicating with the compression chamber 24. The discharged compressed gas passes through a fixed scroll member 17 and a gas passage (not shown) provided in the frame 26 to reach a compression container 27 below the frame 26, and a discharge pipe provided on a side wall of the compression container 27. It is discharged out of the compressor from 28. In this compressor, the permanent magnet type rotating electric machine 11 is enclosed in the pressure vessel 27, and rotates at a rotation speed controlled by a separate inverter (not shown) to perform a compression operation. Here, the driving motor is a permanent magnet type rotating electric machine 11 including the stator 7 and the rotor 1.
[0033]
Compressors are used as a driving source for air conditioners, refrigerators, freezers, etc., but are operating all year round, and are therefore the most important products for energy saving due to the problem of global warming. If a permanent magnet type rotating electric machine is used as this drive source, energy saving can be achieved by increasing the efficiency of the rotating electric machine, but it cannot be adopted unless noise is reduced. However, when the permanent magnet type rotating electric machine of the present invention is used as a driving source, noise can be reduced and environmental problems can be solved, so that a compressor that can achieve high efficiency and energy saving can be provided.
[0034]
【The invention's effect】
As described above, according to the present invention, the induced electromotive force of the permanent magnet type rotating electric machine increases and the horizontal axis inductance decreases, so that a high output and low noise permanent magnet type rotating electric machine can be provided.
[0035]
Further, according to the present invention, a compressor with low noise can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a radial cross-sectional shape of a first embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 2 is an enlarged cross-sectional view illustrating a radial cross-sectional shape of the rotor of FIG. 1;
FIG. 3 is an enlarged cross-sectional view illustrating a radial cross-sectional shape of the rotor of a permanent magnet type rotating electric machine according to a second embodiment of the present invention;
FIG. 4 is an enlarged cross-sectional view showing a radial cross-sectional shape of the rotor of a permanent magnet type rotating electric machine according to a second embodiment of the present invention;
FIG. 5 is an enlarged sectional view of a rotor of a permanent magnet type rotating electric machine according to a third embodiment of the present invention, showing a radial sectional shape of the rotor;
FIG. 6 is an enlarged cross-sectional view illustrating a radial cross-sectional shape of the rotor of a permanent magnet type rotating electric machine according to a fourth embodiment of the present invention;
FIG. 7 is an enlarged sectional view of a rotor of a permanent magnet type rotating electric machine according to a fourth embodiment of the present invention, showing a radial cross-sectional shape of the rotor.
FIG. 8 is a cross-sectional view showing a radial cross-sectional shape of a fifth embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 9 is a sectional view showing a radial cross section of a permanent magnet type rotating electric machine according to a sixth embodiment of the present invention.
FIG. 10 is a cross-sectional view illustrating a radial cross-sectional shape of a permanent magnet type rotating electric machine of a comparative example.
FIG. 11 is a view showing characteristics of the permanent magnet type rotating electric machine according to the first embodiment.
FIG. 12 is a diagram showing characteristics of the permanent magnet type rotating electric machine according to the second embodiment.
FIG. 13 is a sectional view of a compressor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... rotor, 2 ... rotor core, 3 ... permanent magnet, 4 ... slit part, 6 ... shaft fitting hole, 7 ... stator, 8 ... core back, 9 ... armature winding, 10 ... teeth, 11 ... permanent magnet type rotating electric machine, 12 ... stator core, 13 ... slot, 14 ... permanent magnet insertion hole, 15 ... rotor core recess, 17 ... fixed scroll member, 18, 21 ... end plate, 19, 22 ... wrap, Reference numeral 20: orbiting scroll member, 23: shaft, 24: compression chamber, 25: discharge port, 26: frame, 27: compression container, 28: discharge pipe, 29: oil reservoir, 30: oil hole, 31: sliding bearing.

Claims (10)

固定子鉄心に形成された複数のスロット内に電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、
前記回転子鉄心の磁極角度を電気角で100度から120度の範囲とし、
前記回転子鉄心の外周面の極間に凹部を形成したことを特徴とする永久磁石式回転電機。
It has a stator in which armature winding is provided in a plurality of slots formed in the stator core, and a rotor in which permanent magnets are accommodated in a plurality of permanent magnet insertion holes formed in the rotor core. And
The magnetic pole angle of the rotor core is in the range of 100 degrees to 120 degrees in electrical angle,
A permanent magnet type rotating electric machine wherein a recess is formed between poles on an outer peripheral surface of the rotor core.
固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、
回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、
前記回転子鉄心の磁極角度を前記固定子鉄心のスロットピッチと略同一とし、前記回転子鉄心の外周面の極間に凹部を形成したことを特徴とする永久磁石式回転電機。
A stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core,
Having a rotor in which permanent magnets are accommodated in a plurality of permanent magnet insertion holes formed in the rotor core,
A permanent magnet type rotating electric machine, wherein a magnetic pole angle of the rotor core is substantially equal to a slot pitch of the stator core, and a recess is formed between poles on an outer peripheral surface of the rotor core.
固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、
前記回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、
前記固定子鉄心のティース先端形状を、円弧状部分と直線状部分とを組み合わせた形状とし、
前記回転子鉄心の磁極角度が前記固定子鉄心のスロットピッチと略同一となるように前記回転子鉄心の外周面の極間に凹部を形成したことを特徴とする永久磁石式回転電機。
A stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core,
A rotor having a permanent magnet housed in a plurality of permanent magnet insertion holes formed in the rotor core,
The teeth tip shape of the stator core is a combination of an arc-shaped portion and a linear portion,
A permanent magnet type rotating electric machine wherein a recess is formed between poles on an outer peripheral surface of the rotor core so that a magnetic pole angle of the rotor core is substantially equal to a slot pitch of the stator core.
固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、
回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、
前記回転子の極数と前記固定子のスロット数との比を2:3とし、
前記回転子鉄心の磁極角度を電気角で100度から120度の範囲とし、
前記回転子鉄心の外周面の極間に凹部を形成したことを特徴とする永久磁石式回転電機。
A stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core,
Having a rotor in which permanent magnets are accommodated in a plurality of permanent magnet insertion holes formed in the rotor core,
The ratio between the number of poles of the rotor and the number of slots of the stator is 2: 3,
The magnetic pole angle of the rotor core is in the range of 100 degrees to 120 degrees in electrical angle,
A permanent magnet type rotating electric machine wherein a recess is formed between poles on an outer peripheral surface of the rotor core.
固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子と、
回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、
前記回転子の極数と前記固定子のスロット数との比が2:3とし、
前記固定子鉄心のティース先端形状を、円弧状部分と直線状部分とを組み合わせた形状とし、前記回転子鉄心の磁極角度が電気角で100度から120度の範囲となるように、前記回転子鉄心の外周面の極間に凹部を形成したことを特徴とする永久磁石式回転電機。
A stator in which concentrated winding armature winding is applied to surround the teeth in a plurality of slots formed in the stator core,
Having a rotor in which permanent magnets are accommodated in a plurality of permanent magnet insertion holes formed in the rotor core,
A ratio of the number of poles of the rotor to the number of slots of the stator is 2: 3,
The teeth of the stator core have a shape formed by combining an arc portion and a linear portion, and the rotor has a magnetic pole angle of 100 to 120 degrees in electrical angle. A permanent magnet type rotating electric machine wherein a recess is formed between poles on an outer peripheral surface of an iron core.
請求項1ないし請求項5に記載の永久磁石式回転電機において、
前記回転子鉄心の外周面の極間に形成した凹部が、略V字形状を複数個組み合わせた凹部状であることを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electric machine according to claim 1, wherein
A permanent magnet type rotating electric machine characterized in that the concave portion formed between the poles on the outer peripheral surface of the rotor core has a concave shape obtained by combining a plurality of substantially V-shapes.
請求項1ないし請求項6に記載の永久磁石式回転電機において、
前記回転子鉄心に埋設される永久磁石の形状が、前記回転子の軸に対して凸のV字または一文字状であることを特徴とする永久磁石式回転電機。
The permanent magnet rotating electric machine according to claim 1,
A permanent magnet type rotating electric machine, wherein a shape of a permanent magnet embedded in the rotor core is a V-shape or a one-character shape protruding with respect to an axis of the rotor.
請求項1ないし請求項7に記載の永久磁石式回転電機において、
前記回転子鉄心の外周面の極間に形成した凹部の形状は、前記回転子の内周側より外周側の周方向長さが長いことを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electric machine according to any one of claims 1 to 7,
The shape of the concave portion formed between the poles on the outer peripheral surface of the rotor core is longer in the circumferential direction on the outer peripheral side than on the inner peripheral side of the rotor.
請求項1ないし請求項8に記載の永久磁石式回転電機において、
前記回転子鉄心の磁極部に径方向に延びるスリットを少なくとも1つ設けたことを特徴とする永久磁石式回転電機。
The permanent magnet type rotating electric machine according to claim 1, wherein
A permanent magnet type rotating electric machine, wherein at least one radially extending slit is provided in a magnetic pole portion of the rotor core.
請求項1ないし請求項9において、前記永久磁石式回転電機を駆動源とした圧縮機。The compressor according to claim 1, wherein the permanent magnet type rotating electric machine is a driving source.
JP2002158508A 2002-05-31 2002-05-31 Permanent magnet type electric motor and compressor employing it Pending JP2004007875A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002158508A JP2004007875A (en) 2002-05-31 2002-05-31 Permanent magnet type electric motor and compressor employing it
CN 03120580 CN1249885C (en) 2002-05-31 2003-03-14 Permanent-magnet rotary dynamo and compressor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002158508A JP2004007875A (en) 2002-05-31 2002-05-31 Permanent magnet type electric motor and compressor employing it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006337722A Division JP2007074898A (en) 2006-12-15 2006-12-15 Permanent magnet type rotary electric machine and compressor using same

Publications (1)

Publication Number Publication Date
JP2004007875A true JP2004007875A (en) 2004-01-08

Family

ID=29773742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158508A Pending JP2004007875A (en) 2002-05-31 2002-05-31 Permanent magnet type electric motor and compressor employing it

Country Status (2)

Country Link
JP (1) JP2004007875A (en)
CN (1) CN1249885C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211823A (en) * 2005-01-28 2006-08-10 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same
JP2006238667A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Electric motor
JP2010004676A (en) * 2008-06-20 2010-01-07 Ihi Corp Permanent magnet synchronous motor
JP2013183575A (en) * 2012-03-02 2013-09-12 Aichi Elec Co Drive unit and driving method
JP2013226023A (en) * 2012-04-19 2013-10-31 Samsung Electro-Mechanics Co Ltd Rotor assembly
JP2014039355A (en) * 2012-08-10 2014-02-27 Aichi Elec Co Driving device and driving method
JP2014039354A (en) * 2012-08-10 2014-02-27 Aichi Elec Co Rotor and electric motor
JP2014135831A (en) * 2013-01-09 2014-07-24 Mitsubishi Electric Corp Neodymium permanent magnet motor, and sealed compressor with neodymium permanent magnet motor
JP2015082875A (en) * 2013-10-22 2015-04-27 株式会社日立産機システム Permanent-magnet rotary electric machine and compressor using the same
US20170250583A1 (en) * 2014-07-31 2017-08-31 Guangdong Welling Motor Manufacturing Co., Ltd. Motor rotor and motor having same
JP2018137924A (en) * 2017-02-22 2018-08-30 本田技研工業株式会社 Rotary electric machine rotor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157138B2 (en) * 2006-11-24 2013-03-06 株式会社日立製作所 Permanent magnet rotating electrical machine and wind power generation system
CN103023255A (en) * 2011-09-26 2013-04-03 辐射通量实验室私人有限公司 Electromagnetic machine
CN103580435A (en) * 2012-07-18 2014-02-12 上海鸣志电器股份有限公司 Magnetic steel built-in type brushless DC motor
CN102857000B (en) * 2012-08-31 2015-04-29 杭州娃哈哈集团有限公司 Embedded sine-profile permanent motor rotor
CN104253499B (en) * 2014-09-19 2017-07-18 江苏大学 The magnetic-field-enhanced wide range speed control permanent magnetic brushless of d-axis used for electric vehicle
EP3595136A1 (en) 2018-07-13 2020-01-15 Siemens Aktiengesellschaft Robust layers of material
CN109951038B (en) * 2019-03-05 2020-07-24 南京航空航天大学 Bilateral excitation type tangential magnetic steel mixed excitation brushless motor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211823A (en) * 2005-01-28 2006-08-10 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same
JP2006238667A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Electric motor
JP4736472B2 (en) * 2005-02-28 2011-07-27 パナソニック株式会社 Electric motor
JP2010004676A (en) * 2008-06-20 2010-01-07 Ihi Corp Permanent magnet synchronous motor
JP2013183575A (en) * 2012-03-02 2013-09-12 Aichi Elec Co Drive unit and driving method
JP2013226023A (en) * 2012-04-19 2013-10-31 Samsung Electro-Mechanics Co Ltd Rotor assembly
JP2014039355A (en) * 2012-08-10 2014-02-27 Aichi Elec Co Driving device and driving method
JP2014039354A (en) * 2012-08-10 2014-02-27 Aichi Elec Co Rotor and electric motor
JP2014135831A (en) * 2013-01-09 2014-07-24 Mitsubishi Electric Corp Neodymium permanent magnet motor, and sealed compressor with neodymium permanent magnet motor
JP2015082875A (en) * 2013-10-22 2015-04-27 株式会社日立産機システム Permanent-magnet rotary electric machine and compressor using the same
US20170250583A1 (en) * 2014-07-31 2017-08-31 Guangdong Welling Motor Manufacturing Co., Ltd. Motor rotor and motor having same
EP3176913A4 (en) * 2014-07-31 2018-04-04 Guangdong Welling Motor Manufacturing Co., Ltd. Motor rotor and motor having same
AU2014402196B2 (en) * 2014-07-31 2018-10-04 Guangdong Welling Motor Manufacturing Co., Ltd. Motor rotor and motor having same
US10411536B2 (en) 2014-07-31 2019-09-10 Guangdong Meizhi Compressor Co., Ltd. Motor rotor and motor having same
JP2018137924A (en) * 2017-02-22 2018-08-30 本田技研工業株式会社 Rotary electric machine rotor
US10680475B2 (en) 2017-02-22 2020-06-09 Honda Motor Co., Ltd. Rotor for rotary electric machine

Also Published As

Publication number Publication date
CN1249885C (en) 2006-04-05
CN1463065A (en) 2003-12-24

Similar Documents

Publication Publication Date Title
JP3938726B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP4198545B2 (en) Permanent magnet type rotating electric machine and electric compressor using the same
JP5259934B2 (en) Permanent magnet type rotating electric machine and compressor using the same
TWI569560B (en) A permanent magnet type rotating machine, and a compressor using the same
JP2007074898A (en) Permanent magnet type rotary electric machine and compressor using same
JP5372468B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2004007875A (en) Permanent magnet type electric motor and compressor employing it
JP5462011B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2002315243A (en) Permanent magnet type rotary electric machine
JP2003116236A (en) Permanent magnet rotating electric machine
TWI655828B (en) Permanent magnet rotary electric machine and compressor using same
JP2012080713A (en) Permanent magnet-type rotary electric machine and compressor using the same
JP2008245439A (en) Electric motor and compressor using same
JP5208662B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
JP6470598B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2004056887A (en) Single-phase or two-phase auto-starting synchronous motor, and compressor using this motor
JP3763462B2 (en) Self-starting synchronous motor and compressor using the same
WO2002073780A1 (en) Permanent magnet type rotary machine and compressor comprising it
JP2002325410A (en) Permanent magnet type dynamo-electric machine and compressor using the same
JP4340632B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP6518720B2 (en) Permanent magnet type rotary electric machine and compressor using the same
JP4160410B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP6416449B1 (en) Permanent magnet type rotating electric machine and compressor using the same
CN111953166B (en) Permanent magnet type rotating electrical machine and compressor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222