JP3938726B2 - Permanent magnet type rotating electric machine and compressor using the same - Google Patents

Permanent magnet type rotating electric machine and compressor using the same Download PDF

Info

Publication number
JP3938726B2
JP3938726B2 JP2002203401A JP2002203401A JP3938726B2 JP 3938726 B2 JP3938726 B2 JP 3938726B2 JP 2002203401 A JP2002203401 A JP 2002203401A JP 2002203401 A JP2002203401 A JP 2002203401A JP 3938726 B2 JP3938726 B2 JP 3938726B2
Authority
JP
Japan
Prior art keywords
permanent magnet
axis
core
rotor
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002203401A
Other languages
Japanese (ja)
Other versions
JP2004048912A (en
Inventor
真一 湧井
春雄 小原木
聡 菊地
正治 妹尾
啓二 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2002203401A priority Critical patent/JP3938726B2/en
Priority to CN200610115650A priority patent/CN100594651C/en
Priority to CN 03147457 priority patent/CN1278472C/en
Priority to CNB2005100228979A priority patent/CN100546149C/en
Publication of JP2004048912A publication Critical patent/JP2004048912A/en
Application granted granted Critical
Publication of JP3938726B2 publication Critical patent/JP3938726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界磁用の永久磁石を回転子に備えている永久磁石式回転電機に関し、特に、空気調和機,冷蔵庫および冷凍庫等の圧縮機などに搭載される永久磁石式回転電機に関する。
【0002】
【従来の技術】
従来、この種の永久磁石式回転電機においては、様々な形状が採用されている。例えば、特開2001−175389号公報に記載の永久磁石式回転電機においては、回転子鉄心の磁極の片側をカットした外周面形状とし、それを軸方向に反転させて積層することにより、疑似スキューとなり、騒音の発生に関係するコギングトルクを低減している。特開2002−84693号公報に記載の永久磁石式回転電機においては、永久磁石の回転子軸心からの有効磁極開度θ2とそのギャップ長g2とし、2種類のギャップ長と磁極開度の関係を最適化することにより、騒音の発生に関係するコギングトルクを低減している。
【0003】
【発明が解決しようとする課題】
上記従来技術では、コギングトルク低減に着目しているが、回転電機として騒音問題に影響するのはコギングトルクを含めた回転電機構造に付随する脈動トルクの大小である。
【0004】
特に固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された場合、電機子巻線自体が分布巻の180度巻線と違って120度巻線であることから、5次,7次,11次,13次,17次,19次‥‥‥‥‥の高調波起磁力を多く含有し、回転子にとっては6次,12次,18次‥‥‥‥‥の脈動トルクとなり、コギングトルクも6次成分を基本とすることから、運転中の脈動トルクが大きくなり、しばしば騒音問題を引き起こす原因になっていた。これらを低減するためには回転子あるいは固定子鉄心にスキューを施せばよいが、コギングトルクのみを小さくしても実際の脈動トルク自体を大幅に低減できない問題があった。
【0005】
本発明の目的は、コギングトルクとともに脈動トルクを小さくして、騒音問題を解決できる永久磁石式回転電機を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明では、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対し階段状にずらすように配置した永久磁石式回転電機を提案する。
【0007】
本発明では、また、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、磁極鉄心外周面に複数のギャップ面を設け、ギャップ長の小さな磁極鉄心の開度を電気角で略90度から略120度の範囲内とし、磁極鉄心を軸方向に対し階段状にずらすように配置した永久磁石式回転電機を提案する。
【0008】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔が軸方向同一位置であるとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対しV字状にずらすように配置した永久磁石式回転電機を提案する。
【0009】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔が軸方向同一位置であるとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、ギャップ長の小さな磁極鉄心の開度を電気角で略90度から略120度の範囲内とし、磁極鉄心の位置を軸方向に対しV字状にずらすように配置した永久磁石式回転電機を提案する。
【0010】
本発明は、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対し段階状にずらすとともに、磁極鉄心の軸方向上下部が同一形状である永久磁石式回転電機を提案する。
【0011】
本発明は、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、ギャップ長の小さな磁極鉄心の開度を電気角で略90度から略120度の範囲内とし、磁極鉄心の位置を軸方向に対し段階状にずらすとともに、磁極鉄心の軸方向上下部が同一形状である永久磁石式回転電機を提案する。
【0012】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対し階段状にずらすとともに、磁極鉄心の軸方向上下部が異なる形状である永久磁石式回転電機を提案する。
【0013】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対し段階状にずらすとともに、ギャップ長の小さな磁極鉄心の開度を電気角で略90度から略120度の範囲内とし、磁極鉄心の軸方向上下部が異なる形状である永久磁石式回転電機を提案する。
【0014】
本発明では、更に、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、d軸中心に対して磁極鉄心の円弧状部分を左右非対称に設けて磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対し階段状にずらした磁極鉄心Iと、該磁極鉄心外周面に単一のギャップ面を設けた磁極鉄心IIとを設け、磁極鉄心Iの略中間に磁極鉄心IIを配置した永久磁石式回転電機を提案する。
【0015】
回転子鉄心中にマグネットを埋め込んだ埋込磁石構造と固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子構造を組み合わせた永久磁石式回転電機の騒音を低減するためには、固定子と回転子構造に起因するコギングトルクを低減すれば良いことが知られ、その対策としては種々の方法が提案されている。本発明では回転子のトルクにはマグネットトルクがあり、これは同様に固定子と回転子構造に起因するが、集中巻の電機子巻線は従来の分布巻の180度巻線と違って120度巻線であることから、正弦波電流を供給しても巻線の起磁力に5次,7次,11次,13次,17次,19次‥‥‥‥‥の高調波起磁力成分を多く含有し、回転子にとっては6次,12次,18次‥‥‥‥‥の脈動トルクとなり、コギングトルクも6次成分を基本とすることから、運転中の脈動トルクが大きくなり、しばしば騒音問題を引き起こす原因になっていた。そこで、本発明ではコギングトルクを低減するのではなく、コギングトルクを発生させ、電機子巻線による脈動トルクとの位相差を180度になるようにしてコギングトルクと電機子巻線による脈動トルクを有効に相殺させ、運転中の騒音の発生原因となる回転子の脈動トルクを低減するものである。その構成は、固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、回転子鉄心に設けた永久磁石挿入孔を軸方向同一位置に配置するとともに、永久磁石の磁束を集合させるためにd軸側のギャップ長よりq軸側のギャップ長を大きくした磁極鉄心を形成し、磁極鉄心外周面に複数のギャップ面を設け、磁極鉄心の位置を軸方向に対し階段状にずらすように配置することにより、コギングトルクと電機子巻線による脈動トルクとの位相差が180度となり、コギングトルクと電機子巻線による脈動トルクを有効に相殺させ、運転中の騒音の発生原因となる回転子の脈動トルクを低減するものである。また、この原理に従えばコギングトルクの大きさを回転電機毎に調整する必要があるが、これについては固定子鉄心のティース内周面の磁極片にべべリングを施すことにより調整できる。よって、回転電機の必要出力を確保しつつ騒音が小さい永久磁石式回転電機を提供できる。
【0016】
【発明の実施の形態】
以下、本発明の実施例を図1〜図15を用いて詳細に説明する。各図中において、共通する符号は同一物を示す。また、ここでは4極の永久磁石式回転電機について示し、回転子の極数と固定子のスロット数との比を2:3とした。
【0017】
(実施形態1)
図1は本発明による永久磁石式回転電機の実施形態1の径方向断面形状、図2は本発明による実施形態1の固定子の径方向断面形状を拡大したもの、図3は本発明による実施形態1の回転子の径方向断面形状を拡大したものを示す。図1(a),図2において、永久磁石式回転電機1は固定子2と回転子3から構成される。固定子2はティース4とコアバック5からなる固定子鉄心6と、ティース4間のスロット7内にはティース4を取り囲むように巻装された集中巻の電機子巻線8(三相巻線のU相巻線8a,V相巻線8b,W相巻線8cからなる)から構成される。ここで、永久磁石式回転電機1は4極6スロットであるから、スロットピッチは電気角で120度である。ティース4の回転子3と対抗する内周面には円弧状部分9と徐々に回転子3の外周面から離れるように形成したベベリング10を設けている。
【0018】
図1(a),図3(a)において、回転子3は回転子鉄心11に形成した一文字状の永久磁石挿入孔12中に永久磁石13が納められ、シャフト(図示せず)と嵌合するためのシャフト孔14からなる。ここで、回転子3の磁極中心方向に延びる軸をd軸、磁極中心方向と電気角で90度隔たった磁極間方向に延びる軸をq軸とする。回転子鉄心11の外周面の極間(q軸)側に直線状にカットした略V字状の2つを組み合わせた形状の凹部15を設けることにより、永久磁石13の磁束を磁極側へ集合させる役目をなす磁極鉄心16を形成する。この磁極鉄心16は、スロットピッチと略等しくした磁極開度θ1とし、さらに略円弧状にカットした円弧凹部17を介して磁極開度θ1より狭くした磁極開度θ2の磁極部18を形成している。この結果、回転子3の磁極面の最外周が磁極開度θ2の磁極部18となり、その次が磁極開度θ1となり、その次が凹部15となり、磁極開度θ2と磁極開度θ1の間には片側を同一にしているので○印で示したA部の段差が磁極部18の右側(回転子3の中心Oから見て)に形成される。また、d軸から見て段差A部までの角度θ3に対し磁極鉄心16の端部までの角度θ4とした時、θ4>θ3となり磁極部18が非対称となり、磁極部18と固定子2のティース4間のギャップ長g1が短く、円弧凹部17と固定子2のティース4間のギャップ長g2とした時、g2>g1の関係となる複数のギャップを設けている。
【0019】
図1(b),図3(b)は別の軸方向位置での断面を示す径方向断面形状である。図1(b),図3(b)において、図1(a),図3(a)と異なるのは、回転子鉄心11のd軸側外周面にスロットピッチと略等しくした磁極角度θ1の磁極鉄心16を形成し、さらにその両側に円弧状にカットした円弧凹部17を介して磁極開度θ1より狭くした磁極開度θ2の磁極部18を形成している。ここで、磁極開度θ2を磁極中心に配置しているので、磁極開度θ1と磁極開度θ2の間には○印で示したA部とB部の段差が磁極部18の両側に形成される。d軸から見て段差A,B部までの角度θ5とすると、θ4>θ5>θ3の関係となる。
【0020】
図1(c),図3(c)は別の軸方向位置での断面を示す径方向断面形状である。図1(c),図3(c)において、図1(a),図3(a)と異なるのは、回転子鉄心11のd軸側外周面にスロットピッチと略等しくした磁極角度θ1の磁極鉄心16を形成し、さらに略円弧状にカットした円弧凹部17を介して磁極開度θ1より狭くした磁極開度θ2の磁極部18を形成している。この結果、磁極開度θ2と磁極開度θ1の間には片側を同一にしているので○印で示したB部の段差が磁極部18の左側(回転子3の中心Oから見て)に形成される。
【0021】
なお、実施形態1中の○印で示したA,Bの段差は鋭角で図示しているが、製作面からなだらかにしても差し支えない。
【0022】
実施形態1の固定子2は軸方向断面がどの位置でも同一断面となるが、回転子3は軸方向断面が場所によって異なる。図4には本発明による実施形態1の回転子の斜視図を示す。図4において、一文字状永久磁石13が軸方向に同一位置に連続した永久磁石挿入孔12中に納められ、軸方向によって磁極部18のみの周方向位置が異なる。言い換えれば、回転子の磁極鉄心の位置が軸方向に対して階段状にずらして配置されている。
【0023】
ところで、本発明の対象とする圧縮機駆動用永久磁石式回転電機1では、騒音がしばしば問題となる。永久磁石式回転電機1の騒音を大きくする要因として脈動トルクがあるが、脈動トルクは単純にギャップ長を大きくし、ギャップの磁束密度を小さくすればよい。しかし、ギャップ長を広げてギャップの磁束密度を小さくすると、その分だけ出力が小さくなるので、結果的には同一出力を維持するには体格を大きくする必要がある。そこで、マグネットトルクに寄与する永久磁石の磁束は低減せずに、騒音の発生要因となる脈動トルクを低減する対策を種々実験を通して見い出した。
【0024】
図5は本発明による実施形態1の脈動トルクを示す。図5(a)は回転子角度を横軸にとり、縦軸に集中巻の電機子巻線8に正弦波電流を供給した時に発生する巻線による脈動トルクと、固定子と回転子の構造に起因して発生するコギングトルクを示し、図5(b)には回転子角度を横軸にとり、縦軸に永久磁石式回転電機として運転したときのトルクをp.u.として示している。図5(a)より、巻線による脈動トルクは集中巻を採用しているため回転子角度によって発生トルクの増減があり、その±ピーク値は最大で21p.u.となる。これに対し、固定子と回転子の構造に起因して発生するコギングトルクも回転子角度によって変化し、その±ピーク値は最大で16p.u.となるが、巻線による脈動トルクとは位相が180度相違していることが分かる。この結果、図5(b)に示すように、永久磁石式回転電機1として運転したときのトルクの±ピーク値が10p.u.まで約半減できた。
【0025】
以上から、集中巻を採用した固定子2のティース4の内周面にベベリング10を施し、回転子3の磁極部18を軸方向にあって円周方向にずらすことにより運転時の脈動トルクを半減できることから、低騒音化が図れる。
【0026】
なお、運転時の脈動トルクをゼロ近傍に低減するにはコギングトルクを大きくすれば良いが、運転条件として回転数,負荷トルクが種々ある場合は全体を見てコギングトルクの大きさを決めれば良い。コギングトルクの大きさはベベリング10の大きさで調整できる。
【0027】
また、巻線による脈動トルクとコギングトルクの位相を180度相違させるためには、θ1,θ2の角度が重要であり、θ1は電気角で略120度、θ2は電気角で略90度が良いことを確認しているが、状況によっては90〜120度の範囲内で最適値がある。
【0028】
(実施形態2)
図6は、本発明による永久磁石式回転電機の実施形態2の回転子の径方向断面形状を示す断面図、図7は本発明による実施形態2の回転子の斜視図を示す。図6および図7に示す実施形態2において、図2の実施形態1と異なる点は、回転子鉄心11中に1極あたり2個の永久磁石挿入孔20を形成し、その永久磁石挿入孔20中に平板の永久磁石21を挿入し、回転子軸に対して凸のV字配置に構成したものである。ここで、図6(a)は回転子鉄心11の外周面の極間(q軸)側にV字形状の凹部22を設けて磁極鉄心19を形成し、回転子鉄心11のd軸側外周面にスロットピッチと略等しくした磁極角度θ1を形成し、さらに円弧状にカットした円弧凹部23を介して磁極開度θ1より狭くした磁極開度θ2の磁極部24を形成している。この結果、磁極開度θ2と磁極開度θ1の間には片側を同一にしているので○印で示したA部の段差が磁極部24の右側(回転子3の中心Oから見て)に形成される。
【0029】
図6(b)は別の軸方向位置での断面を示す径方向断面形状である。図6(b)において図6(a)と異なるのは、回転子鉄心11のd軸側外周面にスロットピッチと略等しくした磁極角度θ1を設けて磁極鉄心19を形成し、さらにその両側に円弧状にカットした円弧凹部23を介して磁極開度θ1より狭くした磁極開度θ2の磁極部24を形成している。ここで、磁極開度θ2を磁極中心に配置しているので、磁極開度θ1と磁極開度θ1の間には○印で示したA部とB部の段差が磁極部24の両側に形成される。
【0030】
図6(c)は別の軸方向位置での断面を示す径方向断面形状である。図6(c)において図6(a)と異なるのは、回転子鉄心11のd軸側外周面にスロットピッチと略等しくした磁極角度θ1を設けて磁極鉄心19を形成し、さらに円弧状にカットした円弧凹部23を介して磁極開度θ1より狭くした磁極角度θ2の磁極部24を形成し、磁極開度θ2と磁極開度θ1の間には片側を同一にしているので○印で示したB部の段差が磁極部24の左側に形成される。なお、○印で示した段差は鋭角で図示しているが、製作面からなだらかにしても差し支えない。
【0031】
図6(a),図6(b),図6(c)の回転子を軸方向に積層したのが図7であり、図7より、V字形状の永久磁石21が軸方向に同一位置に連続した永久磁石挿入孔20中に納められ、軸方向によって磁極部24のみの周方向位置が異なることが分かる。
【0032】
本実施例において、図4と異なるのは永久磁石21の形状であり、実施形態1と同一効果が得られる。
【0033】
(実施形態3)
図8は、本発明による永久磁石式回転電機の実施形態3の回転子3を拡大して、回転子の斜視図を示す図である。図8に示す実施形態3において、図1の実施形態1と異なる点は、図1(a)に示した回転子鉄心11と図1(c)に示した回転子鉄心11のみを回転子3の軸方向に積層したものであり、図1(a)に示した回転子鉄心11と図1(c)に示した回転子鉄心11の合わせ面での磁気的な変化が急峻にはなるが、総じて本実施形態3においても、図1の実施形態1と同様の効果が得られる。
【0034】
(実施形態4)
図9は、本発明による永久磁石式回転電機の実施形態4の回転子3を拡大して、回転子の斜視図を示す図である。図9に示す実施形態4において、図1の実施形態1と異なる点は、図1(a)に示した回転子鉄心11を軸方向両側に配置し、図1(c)に示した回転子鉄心11を中央部に配置させて軸方向に積層したものである。これにより、磁極部18はV字状に配置される結果、回転子3に軸方向推力が発生せず、図1の実施形態1と同様の効果が得られる。ここで、回転子鉄心の磁極の軸方向の上下部が同一形状となっているので、上下部で同じ部材が利用でき、製造コストが抑えられる。
【0035】
(実施形態5)
図10は、本発明による永久磁石式回転電機の実施形態5の回転子3を拡大して、回転子の斜視図を示す図である。図10に示す実施形態5において、図7の実施形態2と異なる点は、図6(a)に示した回転子鉄心11と図6(c)に示した回転子鉄心11のみを回転子3の軸方向に積層したものであり、図6(a)に示した回転子鉄心11と図6(c)に示した回転子鉄心11の合わせ面での磁気的な変化が急峻にはなるが、総じて本実施形態5においても、図1の実施形態1と同様の効果が得られる。
【0036】
(実施形態6)
図11は、本発明による永久磁石式回転電機の実施形態6の回転子3を拡大して、回転子の斜視図を示す図である。図11に示す実施形態6において、図7の実施形態2と異なる点は、図6(a)に示した回転子鉄心11を軸方向両側に配置し、図6(c)に示した回転子鉄心11を中央部に配置させて軸方向に積層したものである。これにより、磁極部24はV字状に配置される結果、回転子3に軸方向推力が発生せず、図1の実施形態1と同様の効果が得られる。
【0037】
(実施形態7)
図12は、本発明による永久磁石式回転電機の実施形態7の回転子3を拡大して、回転子の斜視図を示す図である。図12に示す実施形態7において、図1の実施形態1と異なる点は、図1(a)に示した回転子鉄心11を軸方向両側に配置し、円弧凹部17を形成していない回転子鉄心11の磁極鉄心25を中央部に配置させて軸方向に積層したものである。言い換えれば、図1(a)に示した回転子鉄心11と図1(c)に示した回転子鉄心11とを積層し(磁極鉄心Iと略す)、その中間に円弧凹部17を形成していない回転子鉄心11の磁極鉄心25(磁極鉄心IIと略す)を配置したものである。これにより、磁極鉄心I間に磁極鉄心IIが存在するため、磁気的な変化が和らげられ、総じて本実施形態7においても、図1の実施形態1と同様の効果が得られる。
【0038】
(実施形態8)
図13は、本発明による永久磁石式回転電機の実施形態8の回転子3を拡大して、回転子の斜視図を示す図である。図13に示す実施形態8において、図7の実施形態2と異なる点は、図6(a)に示した回転子鉄心11を軸方向両側に配置し、円弧凹部17を形成していない回転子鉄心11の磁極鉄心26を中央部に配置させて軸方向に積層したものである。言い換えれば、図6(a)に示した回転子鉄心11と図6(c)に示した回転子鉄心11とを積層し(磁極鉄心Iと略す)、その中間に円弧凹部17を形成していない回転子鉄心11の磁極鉄心26(磁極鉄心IIと略す)を配置したものである。これにより、磁極鉄心I間に磁極鉄心IIが存在するため、磁気的な変化が和らげられ、総じて本実施形態8においても、図1の実施形態1と同様の効果が得られる。
【0039】
(実施形態9)
図14は本発明に関わる圧縮機の断面構造である。圧縮機は、固定スクロール部材27の端板28に直立する渦巻状ラップ29と、旋回スクロール部材30の端板31に直立する渦巻状ラップ32とを噛み合わせて形成し、旋回スクロール部材30をクランクシャフト33によって旋回運動させることで圧縮動作を行う。固定スクロール部材27及び旋回スクロール部材30によって形成される圧縮室34(34a,34b,…)のうち、最も外径側に位置している圧縮室は、旋回運動に伴って両スクロール部材27,30の中心に向かって移動し、容積が次第に縮小する。圧縮室34a,34bが両スクロール部材27,30の中心近傍に達すると、両圧縮室34内の圧縮ガスは圧縮室34と連通した吐出口35から吐出される。吐出された圧縮ガスは、固定スクロール部材27及びフレーム36に設けられたガス通路(図示せず)を通ってフレーム36下部の圧縮容器37内に至り、圧縮容器37の側壁に設けられた吐出パイプ38から圧縮機外に排出される。また、本圧縮機では、圧力容器37内に、永久磁石式回転電機1が内封されており、別置のインバータ(図示せず)によって制御された回転速度で回転し、圧縮動作を行う。ここで、永久磁石式回転電機1は、固定子2と回転子3から構成され、クランクシャフト33の内部には油孔39が形成され、クランクシャフト33の回転によってフレーム36の下部にある油溜め部40の潤滑油が油孔39を介して滑り軸受け41,軸受け42に供給される。
【0040】
図14では固定子2と回転子3の軸方向位置を同じくしているが、図15に示すように、固定子2と回転子3の軸方向位置をずらしても差し支えない。
【0041】
圧縮機は空気調和機,冷蔵庫、あるいは冷凍庫等の駆動源として用いられているが、一年中稼動しているため、地球温暖化問題から省エネルギー化を図る最重要製品である。この駆動源に永久磁石式回転電機を使用すると回転電機の高効率化によって省エネルギー化を図れるが、騒音を小さくしなければ採用できない。しかし、本発明の永久磁石式回転電機を駆動源とした場合、騒音が小さく、環境問題を解消できるので、高効率で省エネルギー化が図れる圧縮機を提供できる。
【0042】
【発明の効果】
上述のように、本発明によれば、集中巻を採用した固定子のティースの内周面にベベリングを施し、回転子の磁極部を軸方向にあって円周方向にずらすことにより運転時の脈動トルクを半減できることから、低騒音の永久磁石式回転電機を提供できる。
【図面の簡単な説明】
【図1】本発明による永久磁石式回転電機の実施形態1の径方向断面形状を示す断面図。
【図2】本発明による実施形態1の固定子の径方向断面形状を示す断面図。
【図3】図1の回転子を拡大して、回転子の径方向断面形状を示す断面図。
【図4】本発明による永久磁石式回転電機の実施形態1の回転子の斜視図。
【図5】本発明による永久磁石式回転電機の実施形態1の脈動トルクを示す図。
【図6】本発明による永久磁石式回転電機の実施形態2の回転子の径方向断面形状を示す断面図。
【図7】本発明による永久磁石式回転電機の実施形態2の回転子の斜視図。
【図8】本発明による永久磁石式回転電機の実施形態3の回転子を拡大して、回転子の斜視図。
【図9】本発明による永久磁石式回転電機の実施形態4の回転子を拡大して、回転子の斜視図。
【図10】本発明による永久磁石式回転電機の実施形態5の回転子を拡大して、回転子の斜視図。
【図11】本発明による永久磁石式回転電機の実施形態6の回転子を拡大して、回転子の斜視図。
【図12】本発明による永久磁石式回転電機の実施形態7の回転子を拡大して、回転子の斜視図。
【図13】本発明による永久磁石式回転電機の実施形態8の回転子を拡大して、回転子の斜視図。
【図14】本発明に関わる圧縮機の断面形状。
【図15】本発明に関わる圧縮機の断面形状。
【符号の説明】
1…永久磁石式回転電機、2…固定子、3…回転子、4…ティース、5…コアバック、6…固定子鉄心、7…スロット、8…電機子巻線、9…ティース円弧状部分、10…ベベリング、11…回転子鉄心、12,20…永久磁石挿入孔、13,21…永久磁石、14…シャフト孔、15,22…凹部、16,19,25,26…磁極鉄心、17,23…円弧凹部、18,24…磁極部、27…固定スクロール部材、28,31…端板、29,32…ラップ、30…旋回スクロール部材、33…シャフト、34…圧縮室、35…吐出口、36…フレーム、37…圧縮容器、38…吐出パイプ、39…油孔、40…油溜め部、41…滑り軸受け、42…軸受け。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet type rotating electric machine having a permanent magnet for a field in a rotor, and more particularly to a permanent magnet type rotating electric machine mounted on a compressor such as an air conditioner, a refrigerator and a freezer.
[0002]
[Prior art]
Conventionally, various shapes have been adopted in this type of permanent magnet type rotating electrical machine. For example, in the permanent magnet type rotating electrical machine described in Japanese Patent Laid-Open No. 2001-175389, a pseudo skew is obtained by forming an outer peripheral surface shape by cutting one side of a magnetic pole of a rotor core and inverting it in the axial direction and stacking it. Thus, the cogging torque related to the generation of noise is reduced. In the permanent magnet type rotating electrical machine described in Japanese Patent Laid-Open No. 2002-84693, the effective magnetic pole opening θ2 from the rotor axis of the permanent magnet and its gap length g2 are used, and the relationship between the two types of gap length and the magnetic pole opening. By optimizing the above, the cogging torque related to the generation of noise is reduced.
[0003]
[Problems to be solved by the invention]
The above prior art focuses on reducing cogging torque. However, it is the magnitude of the pulsating torque accompanying the rotating electrical machine structure including the cogging torque that affects the noise problem as a rotating electrical machine.
[0004]
In particular, when concentrated armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator core, the armature winding itself is 120 ° winding unlike the 180 ° winding of distributed winding. Because it is a wire, it contains a lot of harmonic magnetomotive forces of 5th, 7th, 11th, 13th, 17th, 19th, etc., and for rotors, 6th, 12th, 18th. Because the pulsation torque is the same, and the cogging torque is based on the 6th order component, the pulsation torque during operation increases, often causing noise problems. In order to reduce these, it is sufficient to skew the rotor or stator core, but there is a problem that even if only the cogging torque is reduced, the actual pulsation torque itself cannot be significantly reduced.
[0005]
An object of the present invention is to provide a permanent magnet type rotating electrical machine capable of solving a noise problem by reducing a pulsation torque together with a cogging torque.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a stator in which concentrated winding armature windings are provided so as to surround teeth in a plurality of slots formed in the stator core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a plurality of formed permanent magnet insertion holes is rotatably supported via a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is When the d axis and the axis orthogonal thereto are the q axis, the permanent magnet insertion hole provided in the rotor core is arranged at the same position in the axial direction, and the gap length on the d axis side is used to collect the magnetic flux of the permanent magnet. A permanent magnet type rotating electrical machine in which a magnetic core with a large gap on the q-axis side is formed, a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic core, and the position of the magnetic core is shifted stepwise with respect to the axial direction. suggest.
[0007]
The present invention also includes a stator in which concentrated winding armature windings are provided so as to surround the teeth in a plurality of slots formed in the stator iron core, and a plurality of permanent magnets formed in the rotor iron core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q axis, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnet. A magnetic pole core with a large gap is formed, a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic pole core, and the opening of the magnetic core with a small gap length is set within the range of about 90 degrees to about 120 degrees in electrical angle. To move in a staircase with respect to the direction Suggest location with permanent magnet type rotating electrical machine.
[0008]
The present invention further includes a stator having concentrated winding armature windings so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q-axis, the permanent magnet insertion hole provided in the rotor core is at the same position in the axial direction, and the gap length on the q-axis side is made larger than the gap length on the d-axis side in order to collect the magnetic flux of the permanent magnet. A large magnetic core is formed, the arc-shaped portion of the magnetic core is asymmetrical with respect to the center of the d axis, a plurality of gap surfaces are provided on the outer surface of the magnetic core, and the position of the magnetic core is V-shaped in the axial direction. Permanent magnet type times Suggest Electric.
[0009]
The present invention further includes a stator having concentrated winding armature windings so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q-axis, the permanent magnet insertion hole provided in the rotor core is at the same position in the axial direction, and the gap length on the q-axis side is made larger than the gap length on the d-axis side in order to collect the magnetic flux of the permanent magnet. A large magnetic core is formed, the arc-shaped portion of the magnetic core is asymmetrical with respect to the center of the d axis, a plurality of gap surfaces are provided on the outer surface of the magnetic core, and the opening angle of the magnetic core with a small gap is defined as an electrical angle. In the range of about 90 degrees to about 120 degrees And inner proposes a permanent magnet rotating electrical machine arranged so as to shift the position of the magnetic pole cores with respect to the axial direction in a V-shape.
[0010]
The present invention further includes a stator in which concentrated winding armature windings are provided so as to surround teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is accommodated in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q axis, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnet. A magnetic pole core with a large diameter is formed, the arc-shaped portion of the magnetic core is asymmetrical with respect to the center of the d axis, a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic core, and the position of the magnetic core is stepped in the axial direction The axis of the pole core Upper and lower proposes a permanent magnet rotating electrical machine of the same shape.
[0011]
The present invention further includes a stator in which concentrated winding armature windings are provided so as to surround teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q axis, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnet. A magnetic pole core with a large gap is formed, the arc-shaped part of the magnetic core is asymmetrical with respect to the center of the d axis, and a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic core. From about 90 degrees to about 120 degrees And 囲内, with shifting the stepped relative axial position of the magnetic pole cores, it proposes a permanent magnet rotating electrical machine axially upper and lower portions of the magnetic pole cores are the same shape.
[0012]
The present invention further includes a stator having concentrated winding armature windings so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is accommodated in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q axis, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnet. A magnetic pole core with a large diameter is formed, the arc-shaped part of the magnetic core is asymmetrical with respect to the center of the d axis, a plurality of gap surfaces are provided on the outer surface of the magnetic core, and the position of the magnetic core is stepped with respect to the axial direction. The axis of the magnetic core Improved lower proposes a permanent magnet type rotary electric machine which is different shapes.
[0013]
The present invention further includes a stator having concentrated winding armature windings so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q axis, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnet. A magnetic pole core with a large diameter is formed, the arc-shaped portion of the magnetic core is asymmetrical with respect to the center of the d axis, a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic core, and the position of the magnetic core is stepped in the axial direction And the gap length Is a the degree of opening of the magnetic pole cores in electrical angle is in a range of approximately 120 degrees from the approximately 90 degrees, the axial upper and lower portions of the magnetic pole cores proposes a permanent magnet type rotary electric machine which is different shapes.
[0014]
The present invention further includes a stator having concentrated winding armature windings so as to surround the teeth in a plurality of slots formed in the stator core, and a plurality of permanent coils formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is housed in a magnet insertion hole is rotatably supported through a gap on the inner periphery of the stator, the magnetic flux axis of the permanent magnet is perpendicular to the d axis. When the axis is the q axis, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnet. A magnetic pole core with a large diameter is formed, the arc-shaped part of the magnetic core is asymmetrical with respect to the center of the d axis, a plurality of gap surfaces are provided on the outer surface of the magnetic core, and the position of the magnetic core is stepped with respect to the axial direction. Magnetic pole core I shifted to Provided the magnetic pole cores II having a single gap surface Kokorogaishu surface, it proposes a permanent magnet type rotating electric machine substantially intermediate to place the magnetic pole cores II of magnetic pole cores I.
[0015]
Permanent magnet that combines an embedded magnet structure in which a magnet is embedded in a rotor core and a stator structure in which concentrated armature windings are provided so as to surround teeth in a plurality of slots formed in the stator core In order to reduce the noise of the rotary electric machine, it is known that the cogging torque resulting from the stator and rotor structure should be reduced, and various methods have been proposed as countermeasures. In the present invention, the torque of the rotor includes a magnet torque, which is similarly caused by the structure of the stator and the rotor, but the concentrated winding armature winding is 120 unlike the conventional distributed winding 180 degree winding. Because it is a second winding, even if a sinusoidal current is supplied, the magnetomotive force of the fifth, seventh, eleventh, thirteenth, seventeenth, and nineteenth harmonic magnetomotive force components For the rotor, the pulsating torque is 6th, 12th, 18th, etc., and the cogging torque is based on the 6th order component. It was a cause of noise problems. Therefore, in the present invention, instead of reducing the cogging torque, the cogging torque is generated, and the phase difference from the pulsating torque by the armature winding is set to 180 degrees so that the cogging torque and the pulsating torque by the armature winding are reduced. It effectively cancels out and reduces the pulsating torque of the rotor that causes noise during operation. The structure includes a stator in which concentrated armature windings are provided so as to surround teeth in a plurality of slots formed in the stator core, and a plurality of permanent magnets formed in the rotor core are inserted. In a permanent magnet type rotating electrical machine in which a rotor in which a permanent magnet is accommodated in a hole is rotatably supported via a gap on the inner periphery of the stator, a magnetic flux axis of the permanent magnet is d-axis, and an axis that is orthogonal thereto. When the q axis is set, the permanent magnet insertion holes provided in the rotor core are arranged at the same position in the axial direction, and the gap length on the q axis side is made larger than the gap length on the d axis side in order to collect the magnetic flux of the permanent magnets. By forming a magnetic core with a plurality of gaps on the outer peripheral surface of the magnetic core and disposing the magnetic core in a stepwise manner relative to the axial direction, the cogging torque and the pulsating torque due to the armature winding can be reduced. Phase difference of 18 It becomes degrees, effectively to offset the torque ripple caused by cogging torque and armature windings, thereby reducing the torque ripple of the rotor which is a cause of noise during operation. Further, according to this principle, it is necessary to adjust the magnitude of the cogging torque for each rotating electric machine. This can be adjusted by beveling the magnetic pole pieces on the inner peripheral surface of the teeth of the stator core. Therefore, it is possible to provide a permanent magnet type rotating electrical machine with low noise while ensuring the necessary output of the rotating electrical machine.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. In each figure, the common code | symbol shows the same thing. Also, here, a 4-pole permanent magnet type rotating electrical machine is shown, and the ratio of the number of rotor poles to the number of stator slots is set to 2: 3.
[0017]
(Embodiment 1)
FIG. 1 is a radial cross-sectional shape of a first embodiment of a permanent magnet type rotating electrical machine according to the present invention, FIG. 2 is an enlarged view of a radial cross-sectional shape of a stator according to a first embodiment of the present invention, and FIG. The thing which expanded the radial direction cross-sectional shape of the rotor of form 1 is shown. 1A and 2, a permanent magnet type rotating electrical machine 1 includes a stator 2 and a rotor 3. The stator 2 includes a stator core 6 including a tooth 4 and a core back 5, and concentrated armature windings 8 (three-phase windings) wound around the teeth 4 in slots 7 between the teeth 4. U-phase winding 8a, V-phase winding 8b, and W-phase winding 8c). Here, since the permanent magnet type rotating electrical machine 1 has 4 poles and 6 slots, the slot pitch is 120 degrees in electrical angle. An arcuate portion 9 and a beveling 10 formed so as to gradually move away from the outer peripheral surface of the rotor 3 are provided on the inner peripheral surface of the tooth 4 facing the rotor 3.
[0018]
1 (a) and 3 (a), the rotor 3 is fitted with a shaft (not shown) in which a permanent magnet 13 is placed in a single-letter permanent magnet insertion hole 12 formed in the rotor core 11. It consists of a shaft hole 14 for this purpose. Here, an axis extending in the direction of the magnetic pole center of the rotor 3 is defined as a d-axis, and an axis extending in a direction between the magnetic poles separated by 90 degrees in electrical angle from the magnetic pole center direction is defined as a q-axis. By providing a concave portion 15 having a shape that is a combination of two substantially V-shaped cuts linearly on the interpolar (q-axis) side of the outer peripheral surface of the rotor core 11, the magnetic flux of the permanent magnet 13 is gathered to the magnetic pole side. The magnetic pole iron core 16 that plays the role of forming is formed. This magnetic pole core 16 has a magnetic pole opening θ1 substantially equal to the slot pitch, and further forms a magnetic pole portion 18 having a magnetic pole opening θ2 narrower than the magnetic pole opening θ1 through an arc recess 17 cut into a substantially arc shape. Yes. As a result, the outermost periphery of the magnetic pole surface of the rotor 3 becomes the magnetic pole portion 18 with the magnetic pole opening θ2, the next is the magnetic pole opening θ1, the next is the concave portion 15, and between the magnetic pole opening θ2 and the magnetic pole opening θ1. Since the one side is the same, the step of the A portion indicated by a circle is formed on the right side of the magnetic pole portion 18 (as viewed from the center O of the rotor 3). Further, when the angle θ4 to the end of the magnetic pole core 16 is set to the angle θ3 to the step A portion as viewed from the d axis, θ4> θ3 and the magnetic pole portion 18 becomes asymmetrical, and the teeth of the magnetic pole portion 18 and the stator 2 are obtained. When the gap length g1 between 4 is short and the gap length g2 between the circular arc concave portion 17 and the teeth 4 of the stator 2 is set, a plurality of gaps satisfying the relationship of g2> g1 are provided.
[0019]
FIGS. 1B and 3B are radial cross-sectional shapes showing cross sections at different axial positions. 1 (b) and 3 (b) differ from FIGS. 1 (a) and 3 (a) in that the magnetic pole angle θ1 is substantially equal to the slot pitch on the d-axis side outer peripheral surface of the rotor core 11. A magnetic pole core 16 is formed, and further, a magnetic pole portion 18 having a magnetic pole opening θ2 that is narrower than the magnetic pole opening θ1 is formed on both sides of the magnetic pole opening 16 via circular arc recesses 17 cut in an arc shape. Here, since the magnetic pole opening θ2 is arranged at the center of the magnetic pole, a step between the A part and the B part indicated by a circle is formed on both sides of the magnetic pole part 18 between the magnetic pole opening θ1 and the magnetic pole opening θ2. Is done. Assuming that the angle θ5 between the steps A and B as seen from the d axis is θ4>θ5> θ3.
[0020]
FIGS. 1C and 3C are radial cross-sectional shapes showing cross sections at different axial positions. 1 (c) and 3 (c) differ from FIGS. 1 (a) and 3 (a) in that the magnetic pole angle θ1 is substantially equal to the slot pitch on the d-axis side outer peripheral surface of the rotor core 11. A magnetic pole core 16 is formed, and a magnetic pole portion 18 having a magnetic pole opening θ2 that is narrower than the magnetic pole opening θ1 is formed through an arc recess 17 that is cut into a substantially arc shape. As a result, since one side is the same between the magnetic pole opening θ2 and the magnetic pole opening θ1, the step at the B portion indicated by a circle is on the left side of the magnetic pole portion 18 (as viewed from the center O of the rotor 3). It is formed.
[0021]
Although the steps A and B indicated by the circles in the first embodiment are illustrated with acute angles, they may be gently formed from the production surface.
[0022]
The stator 2 of the first embodiment has the same cross section at any position in the axial cross section, but the rotor 3 has a different axial cross section depending on the location. FIG. 4 shows a perspective view of the rotor according to the first embodiment of the present invention. In FIG. 4, a single-letter permanent magnet 13 is housed in a permanent magnet insertion hole 12 that is continuous at the same position in the axial direction, and the circumferential position of only the magnetic pole portion 18 differs depending on the axial direction. In other words, the position of the magnetic pole core of the rotor is shifted in a staircase pattern with respect to the axial direction.
[0023]
By the way, in the permanent magnet type rotating electrical machine 1 for driving a compressor which is an object of the present invention, noise often becomes a problem. Although the pulsation torque is a factor that increases the noise of the permanent magnet type rotating electrical machine 1, the pulsation torque can be simply increased by increasing the gap length and decreasing the magnetic flux density of the gap. However, if the gap length is increased and the magnetic flux density of the gap is reduced, the output is reduced by that amount. Consequently, it is necessary to increase the physique to maintain the same output. Thus, through various experiments, we have found a countermeasure for reducing the pulsating torque that causes noise without reducing the magnetic flux of the permanent magnet that contributes to the magnet torque.
[0024]
FIG. 5 shows the pulsation torque of the first embodiment according to the present invention. In FIG. 5A, the rotor angle is taken on the horizontal axis, and the vertical axis shows the pulsating torque caused by the winding generated when the sinusoidal current is supplied to the concentrated armature winding 8 and the structure of the stator and the rotor. FIG. 5 (b) shows the rotor angle on the horizontal axis, and the vertical axis shows the torque when operated as a permanent magnet type rotating electrical machine as pu. As shown in FIG. 5 (a), the concentrated torque is used for the pulsating torque due to the winding, so that the generated torque increases or decreases depending on the rotor angle, and the ± peak value is 21 p.u. at the maximum. On the other hand, the cogging torque generated due to the structure of the stator and the rotor also changes depending on the rotor angle, and its ± peak value is 16 p.u. at the maximum. Is 180 degrees different. As a result, as shown in FIG. 5B, the ± peak value of the torque when operated as the permanent magnet type rotating electrical machine 1 could be reduced by about half to 10 p.u.
[0025]
From the above, beveling 10 is applied to the inner peripheral surface of the teeth 4 of the stator 2 adopting concentrated winding, and the pulsating torque during operation is obtained by shifting the magnetic pole portion 18 of the rotor 3 in the axial direction and in the circumferential direction. Since it can be halved, noise can be reduced.
[0026]
In order to reduce the pulsating torque during operation to near zero, the cogging torque may be increased. However, when there are various rotational speeds and load torques as operating conditions, the magnitude of the cogging torque may be determined as a whole. . The magnitude of the cogging torque can be adjusted by the magnitude of the beveling 10.
[0027]
Also, in order to make the phase of the pulsation torque and the cogging torque caused by the windings 180 degrees different, the angles θ1 and θ2 are important. Θ1 is an electrical angle of approximately 120 degrees, and θ2 is an electrical angle of approximately 90 degrees. However, depending on the situation, there is an optimum value within the range of 90 to 120 degrees.
[0028]
(Embodiment 2)
FIG. 6 is a cross-sectional view showing the radial cross-sectional shape of the rotor of the second embodiment of the permanent magnet type rotating electric machine according to the present invention, and FIG. 6 and FIG. 7 is different from the first embodiment of FIG. 2 in that two permanent magnet insertion holes 20 are formed per pole in the rotor core 11 and the permanent magnet insertion holes 20 are formed. A flat permanent magnet 21 is inserted therein, and a convex V-shaped arrangement is formed with respect to the rotor shaft. Here, FIG. 6A shows a magnetic pole core 19 formed by providing a V-shaped recess 22 on the interpolar (q-axis) side of the outer peripheral surface of the rotor core 11, and the outer periphery of the rotor core 11 on the d-axis side. A magnetic pole angle θ1 substantially equal to the slot pitch is formed on the surface, and a magnetic pole portion 24 having a magnetic pole opening θ2 narrower than the magnetic pole opening θ1 is formed via an arc recess 23 cut into an arc shape. As a result, since one side is made the same between the magnetic pole opening θ2 and the magnetic pole opening θ1, the step at the A portion indicated by a circle is on the right side of the magnetic pole portion 24 (as viewed from the center O of the rotor 3). It is formed.
[0029]
FIG. 6B is a radial cross-sectional shape showing a cross section at another axial position. 6 (b) is different from FIG. 6 (a) in that the magnetic pole core 19 is formed by providing a magnetic pole angle θ1 substantially equal to the slot pitch on the d-axis side outer peripheral surface of the rotor core 11, and further on both sides thereof. A magnetic pole part 24 having a magnetic pole opening θ2 narrower than the magnetic pole opening θ1 is formed through an arc recess 23 cut into an arc shape. Here, since the magnetic pole opening θ2 is arranged at the center of the magnetic pole, a step between the A part and the B part indicated by a circle is formed on both sides of the magnetic pole part 24 between the magnetic pole opening θ1 and the magnetic pole opening θ1. Is done.
[0030]
FIG. 6C shows a radial cross-sectional shape showing a cross section at another axial position. 6 (c) is different from FIG. 6 (a) in that a magnetic pole core 19 is formed by providing a magnetic pole angle θ1 substantially equal to the slot pitch on the d-axis side outer peripheral surface of the rotor core 11, and further in an arc shape. A magnetic pole part 24 having a magnetic pole angle θ2 narrower than the magnetic pole opening θ1 is formed through the cut arc recess 23, and one side is the same between the magnetic pole opening θ2 and the magnetic pole opening θ1, so that it is indicated by a circle. A step B is formed on the left side of the magnetic pole portion 24. The steps indicated by the circles are illustrated with acute angles, but they may be gently formed from the production surface.
[0031]
6A, 6B, and 6C are stacked in the axial direction. FIG. 7 shows that the V-shaped permanent magnet 21 is located at the same position in the axial direction. It can be seen that the position in the circumferential direction of only the magnetic pole portion 24 differs depending on the axial direction.
[0032]
In this embodiment, what is different from FIG. 4 is the shape of the permanent magnet 21, and the same effect as that of the first embodiment can be obtained.
[0033]
(Embodiment 3)
FIG. 8 is an enlarged view of the rotor 3 of the third embodiment of the permanent magnet type rotating electric machine according to the present invention, and is a view showing a perspective view of the rotor. The third embodiment shown in FIG. 8 differs from the first embodiment shown in FIG. 1 in that only the rotor core 11 shown in FIG. 1A and the rotor core 11 shown in FIG. The magnetic change at the mating surface of the rotor core 11 shown in FIG. 1A and the rotor core 11 shown in FIG. 1C is steep. In general, also in the third embodiment, the same effects as those of the first embodiment shown in FIG. 1 can be obtained.
[0034]
(Embodiment 4)
FIG. 9 is an enlarged view of the rotor 3 of the fourth embodiment of the permanent magnet type rotating electrical machine according to the present invention, and is a view showing a perspective view of the rotor. The fourth embodiment shown in FIG. 9 differs from the first embodiment shown in FIG. 1 in that the rotor cores 11 shown in FIG. 1A are arranged on both sides in the axial direction, and the rotor shown in FIG. The iron core 11 is disposed in the center and laminated in the axial direction. As a result, the magnetic pole portion 18 is arranged in a V shape, so that no axial thrust is generated in the rotor 3 and the same effect as that of the first embodiment of FIG. 1 is obtained. Here, since the upper and lower portions in the axial direction of the magnetic poles of the rotor core have the same shape, the same member can be used in the upper and lower portions, and the manufacturing cost can be reduced.
[0035]
(Embodiment 5)
FIG. 10 is an enlarged view of the rotor 3 of the fifth embodiment of the permanent magnet type rotating electric machine according to the present invention, and is a view showing a perspective view of the rotor. The fifth embodiment shown in FIG. 10 differs from the second embodiment shown in FIG. 7 in that only the rotor core 11 shown in FIG. 6A and the rotor core 11 shown in FIG. The magnetic changes at the mating surfaces of the rotor core 11 shown in FIG. 6A and the rotor core 11 shown in FIG. 6C are steep. In general, also in the fifth embodiment, the same effect as in the first embodiment of FIG. 1 can be obtained.
[0036]
(Embodiment 6)
FIG. 11 is an enlarged view of the rotor 3 of the sixth embodiment of the permanent magnet type rotating electric machine according to the present invention, and shows a perspective view of the rotor. The sixth embodiment shown in FIG. 11 differs from the second embodiment shown in FIG. 7 in that the rotor cores 11 shown in FIG. 6A are arranged on both sides in the axial direction, and the rotor shown in FIG. The iron core 11 is disposed in the center and laminated in the axial direction. As a result, the magnetic pole portion 24 is arranged in a V shape, so that no axial thrust is generated in the rotor 3 and the same effect as that of the first embodiment of FIG. 1 is obtained.
[0037]
(Embodiment 7)
FIG. 12 is an enlarged view of the rotor 3 of the seventh embodiment of the permanent magnet type rotating electric machine according to the present invention, and is a view showing a perspective view of the rotor. The seventh embodiment shown in FIG. 12 is different from the first embodiment shown in FIG. 1 in that the rotor cores 11 shown in FIG. 1A are arranged on both sides in the axial direction and the circular arc recess 17 is not formed. The magnetic pole core 25 of the iron core 11 is disposed in the center and laminated in the axial direction. In other words, the rotor core 11 shown in FIG. 1 (a) and the rotor core 11 shown in FIG. 1 (c) are stacked (abbreviated as magnetic core I), and an arc recess 17 is formed in the middle. A magnetic pole core 25 (abbreviated as magnetic pole core II) of the non-rotor core 11 is arranged. Thereby, since the magnetic pole core II exists between the magnetic cores I, the magnetic change is alleviated, and the same effect as that of the first embodiment of FIG.
[0038]
(Embodiment 8)
FIG. 13 is an enlarged view of the rotor 3 of the eighth embodiment of the permanent magnet type rotating electric machine according to the present invention, and is a view showing a perspective view of the rotor. The difference between the eighth embodiment shown in FIG. 13 and the second embodiment shown in FIG. 7 is that the rotor core 11 shown in FIG. 6A is arranged on both sides in the axial direction, and the arc recess 17 is not formed. The magnetic pole core 26 of the iron core 11 is disposed in the center and laminated in the axial direction. In other words, the rotor core 11 shown in FIG. 6 (a) and the rotor core 11 shown in FIG. 6 (c) are stacked (abbreviated as magnetic pole core I), and an arc recess 17 is formed between them. A magnetic pole core 26 (abbreviated as magnetic pole core II) of the non-rotor core 11 is arranged. Thereby, since the magnetic pole core II exists between the magnetic pole cores I, the magnetic change is alleviated, and the same effect as that of the first embodiment of FIG.
[0039]
(Embodiment 9)
FIG. 14 is a sectional structure of a compressor according to the present invention. The compressor is formed by meshing a spiral wrap 29 standing upright on the end plate 28 of the fixed scroll member 27 and a spiral wrap 32 standing upright on the end plate 31 of the orbiting scroll member 30. A compression operation is performed by rotating the shaft 33. Of the compression chambers 34 (34a, 34b,...) Formed by the fixed scroll member 27 and the orbiting scroll member 30, the compression chamber located on the outermost side is the scroll members 27 and 30 accompanying the orbiting motion. The volume gradually decreases. When the compression chambers 34 a and 34 b reach the vicinity of the centers of the scroll members 27 and 30, the compressed gas in both the compression chambers 34 is discharged from the discharge port 35 communicating with the compression chamber 34. The discharged compressed gas passes through gas passages (not shown) provided in the fixed scroll member 27 and the frame 36 and reaches the compression container 37 below the frame 36, and a discharge pipe provided on the side wall of the compression container 37. 38 is discharged out of the compressor. Moreover, in this compressor, the permanent magnet type rotary electric machine 1 is enclosed in the pressure vessel 37, rotates at a rotational speed controlled by a separate inverter (not shown), and performs a compression operation. Here, the permanent magnet type rotating electrical machine 1 is composed of a stator 2 and a rotor 3, and an oil hole 39 is formed in the crankshaft 33. Lubricating oil in the portion 40 is supplied to the sliding bearing 41 and the bearing 42 through the oil hole 39.
[0040]
Although the axial positions of the stator 2 and the rotor 3 are the same in FIG. 14, the axial positions of the stator 2 and the rotor 3 may be shifted as shown in FIG. 15.
[0041]
The compressor is used as a drive source for air conditioners, refrigerators, freezers, etc., but it is the most important product to save energy from global warming problems because it operates all year round. If a permanent magnet type rotating electric machine is used for this drive source, energy saving can be achieved by increasing the efficiency of the rotating electric machine, but it cannot be adopted unless the noise is reduced. However, when the permanent magnet type rotating electrical machine of the present invention is used as a drive source, noise can be reduced and environmental problems can be solved, so that a compressor capable of achieving high efficiency and energy saving can be provided.
[0042]
【The invention's effect】
As described above, according to the present invention, beveling is performed on the inner peripheral surface of the stator teeth adopting concentrated winding, and the magnetic pole portion of the rotor is axially shifted in the circumferential direction during operation. Since the pulsation torque can be halved, a low noise permanent magnet type rotating electrical machine can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a radial cross-sectional shape of a first embodiment of a permanent magnet type rotating electrical machine according to the present invention.
FIG. 2 is a sectional view showing a radial sectional shape of the stator according to the first embodiment of the present invention.
3 is an enlarged cross-sectional view of the rotor of FIG. 1 showing the radial cross-sectional shape of the rotor.
FIG. 4 is a perspective view of a rotor according to a first embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 5 is a diagram showing pulsation torque of the first embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 6 is a cross-sectional view showing a radial cross-sectional shape of a rotor according to a second embodiment of a permanent magnet type rotating electrical machine according to the present invention.
FIG. 7 is a perspective view of a rotor according to a second embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 8 is an enlarged perspective view of a rotor of a third embodiment of a permanent magnet type rotating electrical machine according to the present invention.
FIG. 9 is an enlarged perspective view of a rotor according to a fourth embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 10 is an enlarged perspective view of a rotor of a fifth embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 11 is an enlarged perspective view of a rotor of a sixth embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 12 is an enlarged perspective view of a rotor of a seventh embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 13 is an enlarged perspective view of a rotor of Embodiment 8 of the permanent magnet type rotating electric machine according to the present invention.
FIG. 14 is a cross-sectional shape of a compressor according to the present invention.
FIG. 15 is a sectional view of a compressor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet type rotary electric machine, 2 ... Stator, 3 ... Rotor, 4 ... Teeth, 5 ... Core back, 6 ... Stator core, 7 ... Slot, 8 ... Armature winding, 9 ... Teeth circular arc part DESCRIPTION OF SYMBOLS 10 ... Beveling, 11 ... Rotor core, 12, 20 ... Permanent magnet insertion hole, 13, 21 ... Permanent magnet, 14 ... Shaft hole, 15, 22 ... Recessed part, 16, 19, 25, 26 ... Magnetic pole core, 17 , 23 ... Arc recess, 18, 24 ... Magnetic pole part, 27 ... Fixed scroll member, 28, 31 ... End plate, 29, 32 ... Wrap, 30 ... Orbiting scroll member, 33 ... Shaft, 34 ... Compression chamber, 35 ... Discharge Outlet, 36 ... frame, 37 ... compression container, 38 ... discharge pipe, 39 ... oil hole, 40 ... oil reservoir, 41 ... sliding bearing, 42 ... bearing.

Claims (11)

固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、該固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、前記永久磁石の磁束軸をd軸、該d軸と電気角で90度隔たった軸をq軸としたとき、前記回転子鉄心に設けた前記永久磁石挿入孔を軸方向同一位置に配置するとともに、該永久磁石の磁束を集合させるために該d軸側の前記ギャップ長より該q軸側の該ギャップ長を大きくした磁極鉄心を形成し、該d軸中心に対して該磁極鉄心の円弧状部分を左右非対称に設けて該磁極鉄心外周面に複数の該ギャップ面を設け、該磁極鉄心の位置を軸方向に対しV字状にずらすように配置したことを特徴とする永久磁石式回転電機。  A plurality of slots formed in the stator core have a stator in which concentrated winding armature windings are provided so as to surround the teeth, and are permanently inserted into a plurality of permanent magnet insertion holes formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a magnet is housed is rotatably supported on the inner circumference of the stator via a gap, the magnetic flux axis of the permanent magnet is d-axis, and the d-axis is an electrical angle. When the axis separated by 90 degrees is the q-axis, the permanent magnet insertion hole provided in the rotor core is arranged at the same position in the axial direction, and the d-axis side of the magnet is assembled to collect the magnetic flux of the permanent magnet. A magnetic pole core having the gap length on the q-axis side larger than the gap length is formed, and an arc-shaped portion of the magnetic pole core is provided asymmetrically with respect to the center of the d-axis, and a plurality of the gaps are formed on the outer peripheral surface of the magnetic core. A surface is provided, and the position of the magnetic core is V A permanent magnet type rotating electrical machine, characterized in that arranged to shift to Jo. 固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、該固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、前記永久磁石の磁束軸をd軸、該d軸と電気角で90度隔たった軸をq軸としたとき、前記回転子鉄心に設けた前記永久磁石挿入孔を軸方向同一位置に配置するとともに、該d軸側の前記ギャップ長より該q軸側の該ギャップ長を大きくした磁極鉄心を形成し、該d軸中心に対して該磁極鉄心の円弧状部分を左右非対称に設けて該磁極鉄心外周面に複数の該ギャップ面を設け、該磁極鉄心の位置を軸方向に対しV字状にずらすとともに、該ギャップ長の小さな該磁極鉄心の開度を電気角で略90度から略120
度の範囲内としたことを特徴とする永久磁石式回転電機。
A plurality of slots formed in the stator core have a stator in which concentrated winding armature windings are provided so as to surround the teeth, and are permanently inserted into a plurality of permanent magnet insertion holes formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a magnet is housed is rotatably supported on the inner circumference of the stator via a gap, the magnetic flux axis of the permanent magnet is d-axis, and the d-axis is an electrical angle. When the axis separated by 90 degrees is the q-axis, the permanent magnet insertion hole provided in the rotor core is disposed at the same position in the axial direction, and the gap on the q-axis side from the gap length on the d-axis side. A magnetic pole core having an increased length is formed, and arc-shaped portions of the magnetic pole core are asymmetrically provided with respect to the center of the d axis, and a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic pole core. The gap length is shifted in a V shape with respect to the axial direction. Approximately 120 from about 90 degrees the opening of a small magnetic pole core by an electrical angle
A permanent magnet type rotating electrical machine characterized by being within a range of degrees.
固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、該固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、前記永久磁石の磁束軸をd軸、該d軸と電気角で90度隔たった軸をq軸としたとき、前記回転子鉄心に設けた前記永久磁石挿入孔を軸方向同一位置に配置するとともに、該d軸側の前記ギャップ長より該q軸側の該ギャップ長を大きくした磁極鉄心を形成し、該d軸中心に対して該磁極鉄心の円弧状部分を左右非対称に設けて該磁極鉄心外周面に複数の該ギャップ面を設け、前記磁極鉄心の位置を軸方向に対しV字状にずらすとともに、該磁極鉄心の軸方向上下部が同一形状であることを特徴とする永久磁石式回転電機。A plurality of slots formed in the stator core have a stator in which concentrated winding armature windings are provided so as to surround the teeth, and are permanently inserted into a plurality of permanent magnet insertion holes formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a magnet is housed is rotatably supported on the inner circumference of the stator via a gap, the magnetic flux axis of the permanent magnet is d-axis, and the d-axis is an electrical angle. When the axis separated by 90 degrees is the q-axis, the permanent magnet insertion hole provided in the rotor core is disposed at the same position in the axial direction, and the gap on the q-axis side from the gap length on the d-axis side. A magnetic pole core having an increased length is formed, an arc-shaped portion of the magnetic pole core is provided asymmetrically with respect to the center of the d axis, and a plurality of gap surfaces are provided on the outer peripheral surface of the magnetic pole core. with shifted into a V-shape with respect to the axial direction, the magnetic pole iron core A permanent magnet type rotating electrical machine, wherein the axial upper and lower portions have the same shape. 固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、該固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、前記永久磁石の磁束軸をd軸、それと直行する軸をq軸としたとき、前記回転子鉄心に設けた前記永久磁石挿入孔を軸方向同一位置に配置するとともに、該d軸側の前記ギャップ長より該q軸側の該ギャップ長を大きくした磁極鉄心を形成し、該d軸中心に対して該磁極鉄心の円弧状部分を左右非対称に設けて該磁極鉄心外周面に複数の該ギャップ面を設け、前記磁極鉄心の位置を軸方向に対しV字状にずらすとともに、該ギャップ長の小さな該磁極鉄心の開度を電気角で略90度から略120度の範囲内とし、該磁極鉄心の軸方向上下部が同一形状であることを特徴とする永久磁石式回転電機。A plurality of slots formed in the stator core have a stator in which concentrated winding armature windings are provided so as to surround the teeth, and are permanently inserted into a plurality of permanent magnet insertion holes formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor containing a magnet is rotatably supported on the inner periphery of the stator via a gap, the magnetic flux axis of the permanent magnet is d-axis, and the axis perpendicular thereto is q-axis. The permanent magnet insertion hole provided in the rotor core is disposed at the same position in the axial direction, and a magnetic pole core is formed in which the gap length on the q-axis side is larger than the gap length on the d-axis side. A circular arc portion of the magnetic core is provided asymmetrically with respect to the center of the d axis, and a plurality of the gap surfaces are provided on the outer peripheral surface of the magnetic core, so that the position of the magnetic core is V- shaped in the axial direction. The magnetic pole with a small gap length Heart opening an electrical angle is in a range of approximately 120 degrees from the approximately 90 degrees, a permanent magnet type rotating electrical machine, characterized in that the axial upper and lower portions of the magnetic pole core is the same shape. 請求項1ないし請求項4の何れかに記載の永久磁石式回転電機において、前記回転子の
極数と前記固定子のスロット数との比が2:3であることを特徴とする永久磁石式回転電機。
5. The permanent magnet type rotating electrical machine according to claim 1, wherein the ratio of the number of poles of the rotor to the number of slots of the stator is 2: 3. Rotating electric machine.
請求項1ないし請求項項5の何れかに記載の永久磁石式回転電機において、前記回転子鉄心の外周面にカット形状を施して磁極面を形成するとともに、該カット形状が略直線状カットと略円弧状カットを組み合わせたものであることを特徴とする永久磁石式回転電機。The permanent magnet type rotating electrical machine according to any one of claims 1 to 5 , wherein a magnetic pole surface is formed by applying a cut shape to the outer peripheral surface of the rotor core, and the cut shape is a substantially linear cut. A permanent magnet type rotating electrical machine characterized by combining substantially arc-shaped cuts. 請求項1ないし請求項5の何れかに記載の永久磁石式回転電機において、前記回転子鉄心の外周面にカット形状を施して磁極面を形成するとともに、該カット形状が略V字形状を複数個組み合わせた凹部と一つの略円弧状凹部とを有するものであることを特徴とする永久磁石式回転電機。6. The permanent magnet type rotating electrical machine according to claim 1, wherein the outer peripheral surface of the rotor core is cut to form a magnetic pole surface, and the cut shape includes a plurality of substantially V-shaped shapes. A permanent magnet type rotating electrical machine characterized by having a combined concave portion and one substantially arc-shaped concave portion. 請求項1ないし請求項項7の何れかに記載の永久磁石式回転電機において、前記回転子鉄心に埋設される永久磁石の形状が、前記回転子の軸に対して一文字状であるかもしくは該回転子の軸に対して凸のV字形状であることを特徴とする永久磁石式回転電機。The permanent magnet type rotating electrical machine according to any one of claims 1 to 7 , wherein the shape of the permanent magnet embedded in the rotor core is a single letter with respect to the axis of the rotor, or A permanent magnet type rotating electrical machine having a V-shape which is convex with respect to a rotor axis. 請求項1ないし請求項項8の何れかに記載の永久磁石式回転電機において、前記固定子鉄心の前記ティースの内周面にベベリングを施したことを特徴とする永久磁石式回転電機。The permanent magnet type rotating electrical machine according to any one of claims 1 to 8 , wherein an inner peripheral surface of the teeth of the stator core is beveled. 固定子鉄心に形成された複数のスロット内にティースを取り囲むように集中巻の電機子巻線が施された固定子を有し、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子が、該固定子の内周にギャップを介して回転自在に支承された永久磁石式回転電機において、前記永久磁石の磁束軸をd軸、該d軸と電気角で90度隔たった軸をq軸としたとき、前記回転子鉄心に設けた前記永久磁石挿入孔を軸方向同一位置に配置するとともに、該永久磁石の磁束を集合させるために該d軸側の前記ギャップ長より該q軸側の該ギャップ長を大きくした磁極鉄心を形成し、該d軸中心に対して該磁極鉄心の円弧状部分を左右非対称に設けて該磁極鉄心外周面に複数の該ギャップ面を設け、該磁極鉄心の位置を軸方向に対しV字状にずらすように配置した永久磁石式回転電機を備え、前記永久磁石を駆動源とすることを特徴とする圧縮機。 A plurality of slots formed in the stator core have a stator in which concentrated winding armature windings are provided so as to surround the teeth, and are permanently inserted into a plurality of permanent magnet insertion holes formed in the rotor core. In a permanent magnet type rotating electrical machine in which a rotor in which a magnet is housed is rotatably supported on the inner circumference of the stator via a gap, the magnetic flux axis of the permanent magnet is d-axis, and the d-axis is an electrical angle. When the axis separated by 90 degrees is the q-axis, the permanent magnet insertion hole provided in the rotor core is arranged at the same position in the axial direction, and the d-axis side of the magnet is assembled to collect the magnetic flux of the permanent magnet. A magnetic pole core having the gap length on the q-axis side larger than the gap length is formed, and an arc-shaped portion of the magnetic pole core is provided asymmetrically with respect to the center of the d-axis, and a plurality of gaps are formed on the outer peripheral surface of the magnetic pole core A surface is provided, and the position of the magnetic core is V With the placed permanent magnet electric motor so as to shift the Jo, compressor, characterized by a drive source the permanent magnet. 請求項10において、前記永久磁石回転電機は前記固定子と前記回転子の軸方向位置がずれていることを特徴とする圧縮機。The compressor according to claim 10 , wherein the permanent magnet rotating electric machine has an axial position shift between the stator and the rotor.
JP2002203401A 2002-07-12 2002-07-12 Permanent magnet type rotating electric machine and compressor using the same Expired - Lifetime JP3938726B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002203401A JP3938726B2 (en) 2002-07-12 2002-07-12 Permanent magnet type rotating electric machine and compressor using the same
CN200610115650A CN100594651C (en) 2002-07-12 2003-07-11 Permanent magnet type rotary electric machine
CN 03147457 CN1278472C (en) 2002-07-12 2003-07-11 Permanent magnet type rotary motor and compressor using same
CNB2005100228979A CN100546149C (en) 2002-07-12 2003-07-11 Permanent magnet type electric rotary machine and use the compressor of this motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203401A JP3938726B2 (en) 2002-07-12 2002-07-12 Permanent magnet type rotating electric machine and compressor using the same

Publications (2)

Publication Number Publication Date
JP2004048912A JP2004048912A (en) 2004-02-12
JP3938726B2 true JP3938726B2 (en) 2007-06-27

Family

ID=31709274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203401A Expired - Lifetime JP3938726B2 (en) 2002-07-12 2002-07-12 Permanent magnet type rotating electric machine and compressor using the same

Country Status (2)

Country Link
JP (1) JP3938726B2 (en)
CN (2) CN100546149C (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101606A (en) * 2004-09-29 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet rotating electrical machine and compressor using the same
EP1657800B1 (en) * 2004-11-12 2007-08-08 Grundfos A/S Permanent-magnet rotor
JP2006149158A (en) * 2004-11-24 2006-06-08 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same
JP5259934B2 (en) 2006-07-20 2013-08-07 株式会社日立産機システム Permanent magnet type rotating electric machine and compressor using the same
KR101106647B1 (en) 2007-06-05 2012-01-18 삼성전자주식회사 Permanent magnet motor
JP5147343B2 (en) * 2007-09-25 2013-02-20 日立アプライアンス株式会社 Permanent magnet type rotary motor for washing machine fan drive
JP5193548B2 (en) * 2007-10-02 2013-05-08 日立アプライアンス株式会社 Permanent magnet rotating electric machine for fan drive of washing and drying machine
JP5208662B2 (en) * 2008-10-07 2013-06-12 株式会社日立産機システム Permanent magnet type rotating electric machine and compressor using the same
US20100277027A1 (en) * 2009-04-30 2010-11-04 Gm Global Technology Operations, Inc. Skew pattern for a permanent magnet rotor
CN102222996A (en) * 2010-04-14 2011-10-19 上海日立电器有限公司 A permanent magnet motor rotor used in compressor
CN102222995B (en) * 2010-04-14 2015-11-25 上海日立电器有限公司 A kind of permanent magnet motor stator rotor structure for compressor
JP5491344B2 (en) * 2010-10-07 2014-05-14 アスモ株式会社 motor
JP5147928B2 (en) * 2010-11-24 2013-02-20 日立オートモティブシステムズ株式会社 Rotating electric machines and electric vehicles
US20120169171A1 (en) * 2010-12-30 2012-07-05 Jansen Patrick L Electrical machine, rotor apparatus, and method
JP5897939B2 (en) * 2012-03-13 2016-04-06 アスモ株式会社 Rotor and motor
DE102012020895A1 (en) 2011-10-28 2013-05-02 Asmo Co., Ltd. Rotor and motor
US10199890B2 (en) 2012-09-07 2019-02-05 Mitsubishi Electric Corporation Embedded permanent magnet electric motor
CN102916547B (en) * 2012-10-23 2015-06-10 浙江西子富沃德电机有限公司 Permanent magnet synchronous motor for electric forklift
JP6314479B2 (en) * 2013-04-03 2018-04-25 株式会社ジェイテクト Manufacturing method of rotor for rotating electrical machine
KR101587423B1 (en) 2013-08-23 2016-02-03 한국전기연구원 Electric Machine Having Asymmetric Magnetic Pole Shape for Torque Ripple Reduction
CN103956874A (en) * 2014-04-25 2014-07-30 联合汽车电子有限公司 Permanent magnet synchronous motor and rotor thereof
CN105099028B (en) * 2015-08-18 2018-02-09 重庆凌达压缩机有限公司 The rotor core and motor of motor
KR101642234B1 (en) * 2015-11-04 2016-07-22 한양대학교 산학협력단 Electric motor
CN105406626A (en) * 2015-12-18 2016-03-16 珠海凌达压缩机有限公司 Motor rotor and motor
JPWO2019187205A1 (en) * 2018-03-30 2020-10-22 株式会社東芝 Rotating machine
JPWO2023139637A1 (en) * 2022-01-18 2023-07-27

Also Published As

Publication number Publication date
CN1808844A (en) 2006-07-26
CN101039047A (en) 2007-09-19
CN100594651C (en) 2010-03-17
JP2004048912A (en) 2004-02-12
CN100546149C (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP3938726B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP5372468B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP5259934B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP4198545B2 (en) Permanent magnet type rotating electric machine and electric compressor using the same
JP5462011B2 (en) Permanent magnet type rotating electric machine and compressor using the same
US7501734B2 (en) Motor, compressor, and air conditioner
US20100194228A1 (en) Motor and compressor technology
JP2007074898A (en) Permanent magnet type rotary electric machine and compressor using same
JP2004007875A (en) Permanent magnet type electric motor and compressor employing it
CN109923757B (en) Permanent magnet type rotating electrical machine and compressor using the same
JP2012080713A (en) Permanent magnet-type rotary electric machine and compressor using the same
JP2005051841A (en) Motor, compressor, and air conditioner
JP5208662B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP5783898B2 (en) Permanent magnet motor and compressor
JP2008109794A (en) Axial gap type motor and compressor therewith
JP6470598B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP4253574B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP2002325410A (en) Permanent magnet type dynamo-electric machine and compressor using the same
JP6518720B2 (en) Permanent magnet type rotary electric machine and compressor using the same
JP5871469B2 (en) Electric motor and electric compressor using the same
JP4160410B2 (en) Permanent magnet type rotating electric machine and compressor using the same
WO2019146030A1 (en) Permanent magnet dynamo-electric machine, and compressor using same
WO2022244113A1 (en) Electric motor, compressor, and refrigeration circuit device
JP4969216B2 (en) Permanent magnet synchronous motor and compressor
KR101448648B1 (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Ref document number: 3938726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

EXPY Cancellation because of completion of term