JP4197923B2 - 半導体集積回路 - Google Patents
半導体集積回路 Download PDFInfo
- Publication number
- JP4197923B2 JP4197923B2 JP2002313954A JP2002313954A JP4197923B2 JP 4197923 B2 JP4197923 B2 JP 4197923B2 JP 2002313954 A JP2002313954 A JP 2002313954A JP 2002313954 A JP2002313954 A JP 2002313954A JP 4197923 B2 JP4197923 B2 JP 4197923B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor integrated
- circuit
- power supply
- integrated circuit
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Read Only Memory (AREA)
- Semiconductor Integrated Circuits (AREA)
- Electronic Switches (AREA)
- Logic Circuits (AREA)
Description
【発明の属する技術分野】
本発明は、昇圧回路を有する半導体集積回路に関する。特に本発明は、昇圧回路によって生成される高電圧の値を電源電圧に応じて調整する技術に関する。
【0002】
【従来の技術】
半導体の素子構造の微細化に伴い、トランジスタを構成する絶縁膜は薄くなってきており、トランジスタの信頼性は低下する傾向にある。半導体集積回路に供給される電源電圧は、信頼性の低下を防止するために、年々低くなっている。
一方、電源電圧が低くなり、電源電圧とトランジスタの閾値電圧との差が小さくなると、トランジスタはオンしにくくなり、動作速度が低下する。高速動作が要求されるトランジスタに高電圧を供給するため、電源電圧より高い高電圧を供給する昇圧回路が、半導体集積回路内に形成されている。高電圧は、例えば、オン抵抗を低くする必要のあるトランジスタのゲート、あるいは高速動作が必要なトランジスタのゲートに与えられる。
【0003】
フラッシュメモリおよびDRAM等の半導体メモリは、メモリセルトランジスタのゲートに接続されるワード線の高レベル電圧を高電圧にするための昇圧回路を備えている。ワード線の高レベル電圧を高電圧にすることで、メモリセルトランジスタのオン抵抗が下がり、データがメモリセルから高速かつ確実に読み出される。
【0004】
ところで、昇圧回路は、電源電圧を利用して高電圧を生成する。このため、高電圧の値は、電源電圧に比例する。半導体集積回路に供給される電源電圧が、許容される最大値のとき、高電圧も最大になる。昇圧回路は、高電圧の値がトランジスタのゲートに与える許容電圧を超えないように設計される。
一方、半導体集積回路に供給される電源電圧が許容される最小値のとき、高電圧も、電源電圧に比例して低くなる。上述したように、高電圧は、高速動作が要求されるトランジスタに供給される。このため、高電圧が低く、高電圧が供給されるトランジスタの動作速度が低下すると、半導体集積回路の性能が低下してしまう。例えば、半導体メモリでは、高電圧が低くなることで、メモリセルトランジスタのオン抵抗が上がり、アクセス時間が長くなる。
【0005】
近時、高電圧の電源電圧に対する依存性を軽減する昇圧回路が提案されている。この昇圧回路では、カップリング容量の両端の電圧差を、電源電圧が高いときに小さくし、電源電圧が低いときに大きくしている。また、電源電圧が所定値を超えるときに、昇圧動作を停止し、電源電圧を高電圧として出力する(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開2000−196023号公報(11ページ、図2、3)
【0007】
【発明が解決しようとする課題】
上述した昇圧回路では、カップリング容量の両端の電圧差を電源電圧に応じて調整しているため、高電圧は、電源電圧の上昇とともに常に上昇してしまう。さらに、所定の電源電圧が所定値を超えるとき、電源電圧が高電圧として出力される。このため、高電圧の電源電圧依存性を十分に小さくできない。
本発明の目的は、昇圧回路により生成される高電圧の電源電圧依存性を小さくすることにある。
【0008】
【課題を解決するための手段】
請求項1の半導体集積回路では、昇圧回路は、電源電圧に応じて、電源電圧より高い高電圧を生成し、生成した高電圧を高電圧線に出力する。放電回路は、高電圧線に充電された電荷を、電源電圧の値に応じて抜き取る。高電圧線から放電する電荷量を、電源電圧が高いときに多くし、電源電圧が低いときに少なくすることで、高電圧の電源電圧依存性を小さくできる。したがって、高電圧を、電源電圧の値にかかわりなく回路が最適に動作する値に設定できる。この結果、回路を高速に動作できる。回路を高速に動作できるため、回路のタイミング余裕を向上できる。換言すれば、回路設計が容易になり、半導体集積回路の歩留を向上できる。
【0009】
請求項2の半導体集積回路では、放電回路は、高電圧線を放電線に接続する第1スイッチおよびスイッチ制御回路を有している。スイッチ制御回路は、第1スイッチを電源電圧に応じてオン/オフするためのスイッチ制御信号を生成する。このように、半導体集積回路に簡易な制御回路を形成することで、高電圧の電源電圧依存性を小さくできる。
【0010】
請求項3および請求項4の半導体集積回路では、パルス信号を生成するパルス生成回路を有している。スイッチ制御回路は、電圧検出回路およびパルス調整回路を有している。電圧検出回路は、電源電圧に対応する論理値を示す電圧検出信号を生成する。パルス調整回路は、パルス信号のパルス幅を電圧検出信号に応じて調整し、調整した信号をスイッチ制御信号として出力する。第1スイッチは、パルス幅に対応する期間オンする。例えば、パルス幅は、電源電圧が高いほど長くされる。高電圧線は、パルス幅の時間だけ放電線に接続される。パルス幅は、簡易な論理回路により細かく調整可能である。このため、高電圧線から放電する電荷量を細かく調整でき、高電圧の電源電圧依存性をより小さくできる。
【0011】
請求項5の半導体集積回路では、パルス調整回路は、一端が放電線に接続される少なくとも1つの容量と、容量の他端を電圧検出信号に応じてパルス信号の伝達経路に接続する第2スイッチとを有している。すなわち、パルス調整回路は、時定数回路を含んでいる。時定数回路の時定数を電源電圧に応じて変更することで、高電圧の電源電圧依存性を小さくできる。
【0012】
請求項6の半導体集積回路では、パルス調整回路は、一端がパルス信号の伝達経路に接続される少なくとも1つの抵抗と、抵抗の他端を電圧検出信号に応じて放電線に接続する第2スイッチとを有している。すなわち、パルス調整回路は、時定数回路を含んでいる。時定数回路の時定数を電源電圧に応じて変更することで、高電圧の電源電圧依存性を小さくできる。
【0013】
請求項7の半導体集積回路では、半導体集積回路は、複数のメモリセルを有している。各メモリセルは、高電圧をゲートで受けるトランジスタを含んでいる。パルス生成回路は、メモリセルを選択するために供給されるアドレス信号の遷移エッジを検出したときにパルス信号を生成する。このため、高電圧線の電荷は、メモリセルがアクセスされる毎に、電源電圧に応じて放電線に放電される。高電圧が供給される回路が動作するときのみ放電回路を動作させることで、放電線に放電される電荷量を減らすことができる。この結果、半導体集積回路の消費電力を削減できる。
【0014】
請求項8の半導体集積回路では、第1スイッチは、スイッチ制御信号をゲートで受け、ドレインが高電圧線に接続され、ソースが放電線に接続されたnMOSトランジスタで構成されている。スイッチ制御回路は、スイッチ制御信号の高レベル期間を、電源電圧が高いほど長くする。第1スイッチを、nMOSトランジスタで構成することで、放電回路を簡易に形成できる。
【0015】
請求項9の半導体集積回路では、放電線は、接地線である。接地線は、他の配線に比べ配線幅が広く、インピーダンスが低い。このため、高電圧線の電荷を確実に放電できる。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。図中、太線で示した信号線は、複数ビットで構成されている。図の二重丸は、外部端子を示している。
図1は、本発明の半導体集積回路の第1の実施形態を示している。この実施形態は、請求項1〜請求項6、請求項8〜請求項10に対応している。半導体集積回路は、シリコン基板上にCMOSプロセスを使用してフラッシュメモリとして形成されている。
【0017】
フラッシュメモリは、昇圧回路10、放電回路12、動作制御回路14、コマンドレジスタ16、アドレスラッチ18、メモリコア20、および入出力バッファ22を有している。メモリコア20は、メモリセルアレイ24、ロウデコーダ26、コラムデコーダ28、およびデータラッチ30とを有している。
昇圧回路10は、動作制御回路14からの制御信号PGに応答して動作し、電源電圧VCCに応じて電源電圧VCCより高い高電圧VBBを生成し、生成した高電圧VBBを高電圧線(VBB)に出力する。高電圧VBBは、ロウデコーダ26に供給され、プログラム電圧等に使用される。放電回路12は、動作制御回路14からの制御信号PGに応答して動作し、昇圧回路12が生成する高電圧VBBの値を電源電圧VCCの値に応じて調整する。
【0018】
動作制御回路14は、外部から供給される制御信号CNT(チップイネーブル信号、ライトイネーブル信号など)、およびコマンドレジスタ16からのコマンド信号CMDを受け、これ等制御信号に応じて読み出し動作、書き込み動作(プログラム動作)、および消去動作を実行するためのタイミング信号を生成する。また、動作制御回路14は、正のパルス信号である制御信号PGを生成するパルス生成回路14aを有している。パルス生成回路14aは、アドレス信号ADの遷移エッジに同期してアドレスラッチ18から出力されるアドレス遷移信号ATDに応答して、所定のパルス幅を有する制御信号PGを生成する。
【0019】
コマンドレジスタ16は、入出力端子I/Oに供給されるコマンド信号CMDを、入出力バッファ22を介して受け、受けた信号を動作制御回路14に出力する。アドレスラッチ18は、アドレス端子に供給されるアドレス信号ADを、動作制御回路14からの制御信号に同期してラッチし、ラッチした信号をロウデコーダ26およびコラムデコーダ28に出力する。アドレス信号ADは、メモリセルアレイ24のメモリセルMCを選択するために供給される。また、アドレスラッチ18は、アドレス信号ADの遷移エッジを検出したときに、アドレス遷移信号ATDを出力する。入出力バッファ22は、入出力端子I/Oを介してコマンド信号およびデータ信号を受ける。データ信号は、データラッチ30に入出力される。
【0020】
メモリセルアレイ24は、マトリックス状に配置された電気的に書き換え可能な複数の不揮発性のメモリセルMC、ロウデコーダ26に接続されたワード線WL、およびデータラッチ30に接続されたビット線(図示せず)を有している。1本のワード線WLには、例えば512バイトのメモリセルMCが接続されている。メモリセルMCは、フローティングゲートと、ワード線WLに接続されたコントロールゲートを有するトランジスタで構成されている。選択されるメモリセルMCのコントロールゲート(=ワード線WL)には、高電圧VBBが供給される。
【0021】
図2は、図1に示した放電回路12の詳細を示している。
放電回路12は、高電圧線VBBを接地線VSS(放電線)に接続する第1スイッチ32と、第1スイッチ32のオン/オフを制御するスイッチ制御回路34とを有している。第1スイッチ32は、ゲートでスイッチ制御回路34から出力されるスイッチ制御信号DCを受け、ドレインが高電圧線VBBに接続され、ソースが接地線VSSに接続されたnMOSトランジスタで構成されている。第1スイッチ32を、nMOSトランジスタで構成することで、放電回路12を簡易に形成できる。
【0022】
スイッチ制御回路34は、電源電圧VCCに対応する論理値を示す電圧検出信号VC1、VC2を生成する電圧検出回路36と、制御信号PGのパルス幅を電圧検出信号VC1、VC2に応じて調整し、調整した信号をスイッチ制御信号DCとして出力するパルス調整回路38とを有している。
電圧検出回路36は、電圧検出部40および2つの検出信号出力部42、44を有している。
【0023】
電圧検出部40は、電源線VCCと接地線VSSの間に直列に接続された7つのnMOSトランジスタ40a、40b、40c、40d、40e、40f、40gを有している。nMOSトランジスタ40a、40b、40c、40d、40e、40fのゲートは、電源線VCCに接続されている。nMOSトランジスタ40gのゲートは、制御信号PGを受けている。電圧検出部40は、制御信号PGが高レベルのときに動作し、電源電圧VCCを抵抗分割することで降圧した電圧を、nMOSトランジスタ40b、40cの接続ノードND1およびnMOSトランジスタ40c、40dの接続ノードND2に出力する。
【0024】
検出信号出力部42は、電源線VCCと接地線VSSの間に直列に接続された2つのnMOSトランジスタ42a、42bと、2つのインバータで構成され、入力がnMOSトランジスタ42a、42bの接続ノードに接続されたバッファ回路42cとを有している。nMOSトランジスタ42aのゲートは、電源線VCCに接続されている。nMOSトランジスタ42bのゲートは、接続ノードND1に接続されている。バッファ回路42cは、電源電圧VCCが第1電圧(例えば、3.0V)より低いときに、高レベルの電圧検出信号VC1を出力する。バッファ回路42cは、電源電圧VCCが第1電圧を超えたときに、低レベルの電圧検出信号VC1を出力する。
【0025】
検出信号出力部44は、検出信号出力部42と同じ回路である。nMOSトランジスタ44bのゲートは、接続ノードND2に接続されている。バッファ回路44cは、電源電圧VCCが第2電圧(例えば、3.3V)より低いときに、高レベルの電圧検出信号VC2を出力する。バッファ回路44cは、電源電圧VCCが第2電圧を超えたときに、低レベルの電圧検出信号VC2を出力する。なお、第2電圧は、常に第1電圧より高い。
【0026】
電圧検出回路36は、電源電圧VCCが第1電圧より低いとき、電圧検出信号VC1、VC2をともに高レベルに変化させ、電源電圧VCCが第1電圧より高く第2電圧より低いとき、電圧検出信号VC1のみを低レベルに変化させ、電源電圧VCCが第2電圧より高いとき、電圧検出信号VC1、VC2をともに低レベルに変化させる。
パルス調整回路38は、制御信号PGを受けるCMOSインバータ38a、3つの容量C1、C2、C3、容量C2、C3をCMOSインバータ38aの出力ノードND3(制御信号PGの伝達経路)にそれぞれ接続するための第2スイッチ38b、38c、およびAND回路38dを有している。
【0027】
CMOSインバータ38aは、電源線VCCと接地線VSSの間に、pMOSトランジスタ38e、抵抗R1、およびnMOSトランジスタ38fを直列に接続して構成されている。
容量C1は、一端を接地線VSSに接続し、他端をCMOSインバータ38aの出力に接続している。容量C2、C3は、一端を、接地線VSSに接続し、他端を第2スイッチ38b、38cにそれぞれ接続している。
【0028】
第2スイッチ38b、38cは、ゲートで電圧検出信号VC1、VC2をそれぞれ受け、ソースがCMOSインバータ38aの出力に接続され、ドレインが容量C2、C3の他端に接続されたpMOSトランジスタで構成されている。すなわち、第2スイッチ38b、38cは、容量C2、C3を、電圧検出信号VC1、VC2に応じてノードND3にそれぞれ接続する。
【0029】
AND回路38dは、CMOSインバータ38aの出力ノードND3および制御信号PGのAND論理をスイッチ制御信号DCとして出力する。
第1スイッチ32は、高レベルのスイッチ制御信号DCを受けたときに、高電圧線VBBを接地線VSSに接続する。すなわち、高電圧線VBBに充電された電荷は、スイッチ制御信号DCが高レベルのときに抜き取られる。
【0030】
図3は、第1の実施形態における放電回路12の動作を示している。
フラッシュメモリが搭載するシステムは、フラッシュメモリを動作させるときに、フラッシュメモリにアドレス信号ADを供給する(図3(a))。図1に示したアドレスラッチ18は、アドレス信号ADの遷移エッジを検出し、アドレス遷移信号ATDを出力する(図3(b))。動作制御回路14は、アドレス遷移信号ATDに同期して制御信号PGを高レベルに変化する(図3(c))。
【0031】
制御信号PGが低レベルの期間、ノードND3は、pMOSトランジスタ38eを介して充電され、高レベルを保持する(図3(d、e、f))。制御信号PGが高レベルに変化した後、ノードND3の電圧は、ノードND3の持つ時定数に従い徐々に低下する(図3(g、h、i))。そして、制御信号PGとノードND3のAND論理がスイッチ制御信号DCとして出力される(図3(j、k、l))。
【0032】
スイッチ制御信号DCのパルス幅(=高レベル期間)は、電源電圧VCCの値に応じて次の(1)〜(3)に設定される。そして、スイッチ制御信号DCが高レベルの期間に第1スイッチ32がオンし、高電圧線VBBに充電された電荷を接地線VSSに引き抜く。接地線VSSは、他の配線に比べ配線幅が広く、インピーダンスが低い。このため、高電圧線VBBの電荷を確実に放電できる。
【0033】
(1)電源電圧VCCが第1電圧より低い場合、図2に示したスイッチ制御回路34の電圧検出回路36は、制御信号PGの高レベル期間に、高レベルの電圧検出信号VC1、VC2を出力する(図3(m))。スイッチ制御回路34のパルス調整回路38は、高レベルの電圧検出信号VC1、VC2を受けて容量C2、C3をノードND3から切り離す。このため、ノードND3の持つ時定数は小さくなり、ノードND3は、低レベルに早く変化する。この結果、スイッチ制御信号DCのパルス幅は最も短いW1に設定される。
【0034】
(2)電源電圧VCCが第1電圧より高く第2電圧より低い場合、スイッチ制御回路34の電圧検出回路36は、制御信号PGの高レベル期間に、低レベルの電圧検出信号VC1および高レベルの電圧検出信号VC2を出力する(図3(n))。スイッチ制御回路34のパルス調整回路38は、電圧検出信号VC1、VC2を受けて容量C3のみをノードND3から切り離す。このため、ノードND3の持つ時定数は、標準になり、ノードND3は、上述よりゆっくりと低レベルに変化する。この結果、スイッチ制御信号DCのパルス幅は標準のW2に設定される。
【0035】
(3)電源電圧VCCが第2電圧より高い場合、スイッチ制御回路34の電圧検出回路36は、制御信号PGの高レベル期間に、低レベルの電圧検出信号VC1、VC2を出力する(図3(o))。スイッチ制御回路34のパルス調整回路38は、電圧検出信号VC1、VC2を受けて容量C2、C3をノードND3に接続する。このため、ノードND3の持つ時定数は、大きくなり、ノードND3は、ゆっくりと低レベルに変化する。この結果、スイッチ制御信号DCのパルス幅は最大のW3に設定される。
【0036】
このように、放電回路12は、電源電圧VCCが高いときにノードND3の時定数を増やしてスイッチ制御信号DCのパルス幅を大きくし、高電圧線VBBからの電荷の放電量を増やす。また、放電回路12は、電源電圧VCCが低いときにノードND3の時定数を減らしてスイッチ制御信号DCのパルス幅を小さくし、高電圧線VBBからの電荷の放電量を減らす。この結果、簡易な放電回路12で高電圧VBBの電源電圧VCCの依存性を小さくできる。
【0037】
なお、高電圧VBBは、ワード線WLの高レベル電圧として使用される。ロウデコーダ26は、アドレスラッチ18にラッチされたアドレス信号AD(ロウアドレス信号)をデコードし、アドレス信号ADに応じたワード線WLを選択する。同様に、コラムデコーダ28は、アドレスラッチ18にラッチされたアドレス信号AD(コラムアドレス信号)をデコードし、アドレス信号ADに応じたコラム選択線(図示せず)を選択する。そして、ワード線WLにより選択されたメモリセルMCからデータが読み出される。
【0038】
図4は、第1の実施形態における高電圧VBBの電源電圧依存性を示している。図中の一点鎖線および太線は、放電回路12が存在しない場合に昇圧回路10が生成する高電圧VBBおよびワード線WLに実際に供給される高電圧VBBをそれぞれ示している。電源電圧VCCが3.0Vより低いとき、スイッチ制御信号DCのパルス幅は、最小値W1になり、高電圧VBBは、昇圧回路10が生成可能な高電圧VBBよりV1だけ低くなる。電源電圧VCCが3.0〜3.3Vのとき、スイッチ制御信号DCのパルス幅は、標準値W2になり、高電圧VBBは、昇圧回路10が生成可能な高電圧VBBよりV2だけ低くなる。電源電圧VCCが3.3Vを超えるとき、スイッチ制御信号DCのパルス幅は、最大値W3になり、高電圧VBBは、昇圧回路10が生成可能な高電圧VBBよりV3だけ低くなる。
【0039】
フラッシュメモリを動作させるための電源電圧VCCの仕様(許容範囲)は、例えば、2.7〜3.6Vに設定されている。この実施形態では、電源電圧VCCの許容範囲において、高電圧VBBの変動は、4.5〜5.0Vに抑えられる。この結果、電源電圧VCCが高いときにワード線WLの電圧が高くなり過ぎることでメモリセルMCの信頼性が低下することが防止される。また、電源電圧VDDが低いときに、ワード線WLの電圧が低くなり、メモリセルMCのアクセス時間が長くなることが防止される。メモリセルMCを高速にアクセスできるため、フラッシュメモリのアクセス時間は短縮される。
【0040】
また、メモリセルMCを高速にアクセスできるため、アクセス時間を従来と同等にした場合、フラッシュメモリ内の制御回路の動作余裕を向上できる。この結果、回路設計が容易になり、フラッシュメモリの歩留も向上する。
図中の2点差線は、放電回路12を持たない従来のフラッシュメモリの高電圧VBBを示している。従来は、メモリセルMCの信頼性を確保するため、電源電圧VCCが最大値3.6Vのときに、高電圧VBBが最大値5.0Vになるように昇圧回路を設計している。昇圧回路が生成する高電圧VBBは、電源電圧VCCに比例するため、電源電圧VCCが最小値2.7Vのときに、高電圧VBBは、最小値3.5Vまで低下してしまう。この結果、ワード線WLに与えられる高電圧VBBが低くなり、フラッシュメモリのアクセス時間は長くなる。
【0041】
以上、本実施形態では、高電圧線VBBから放電する電荷量を、電源電圧VCCが高いときに多くし、電源電圧VCCが低いときに少なくすることで、高電圧VBBの電源電圧依存性を小さくできる。したがって、図4に示したように、高電圧VBBを、電源電圧VCCの値にかかわりなく、メモリセルアレイ24が最適に動作する値(4.5〜5.0V)に設定できる。この結果、メモリセルMCを高速にアクセスでき、電源電圧VCCが低い場合にもフラッシュメモリのアクセス時間を短縮できる。メモリセルMCを高速にアクセスできるため、制御回路のタイミング余裕を向上できる。換言すれば、回路設計が容易になり、フラッシュメモリの歩留を向上できる。
【0042】
高電圧線VBBの電荷は、電源電圧VCCに応じて調整されるパルス幅に対応する期間、高電圧線VBBが接地線VSSに接続されることで放電される。パルス幅は、時定数回路の時定数を電源電圧VCCに応じて変更することで調整される。このため、高電圧線VBBから放電される電荷量を細かく調整でき、高電圧VBBの電源電圧依存性をより小さくできる。
【0043】
高電圧線VBBの電荷は、アドレス信号ADの入力に応答して生成されるアドレス遷移信号ATDおよび制御信号PGに同期して接地線VSSに放電される。換言すれば、メモリセルMCのアクセスする毎に、高電圧線VBBの電荷は、電源電圧VCCに応じて接地線VSSに放電される。高電圧VBBが供給される回路が動作するときのみ放電回路12を動作させることで、接地線VSSに放電される電荷量を減らすことができる。この結果、フラッシュメモリの消費電力を削減できる。
【0044】
図5は、本発明の半導体集積回路の第2の実施形態を示している。この実施形態は、請求項1〜請求項5、請求項7〜請求項10に対応している。第1の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。
この実施形態では、第1の実施形態の放電回路12の代わりに放電回路46が形成されている。その他の構成は、第1の実施形態と同じである。
【0045】
図6は、図5に示した放電回路46の詳細を示している。
放電回路46は、第1の実施形態と同じ第1スイッチ32と、第1スイッチ32のオン/オフを制御するスイッチ制御回路48とを有している。
スイッチ制御回路48は、第1の実施形態と同じ電圧検出回路36と、制御信号PGのパルス幅を電圧検出信号VC1、VC2に応じて調整し、調整した信号をスイッチ制御信号DCとして出力するパルス調整回路50とを有している。
【0046】
パルス調整回路50は、第1の実施形態と同じCMOSインバータ38a、一端がCMOSインバータ38aの出力ノードND3(制御信号PGの伝達経路)に接続された抵抗R2、R3、抵抗R2、R3を接地線VSSにそれぞれ接続するための第2スイッチ38g、38h、容量C4、容量C4をノードND3に接続するためのpMOSトランジスタ38i、pMOSトランジスタ38iのオン/オフを制御するNORゲート38j、およびAND回路38dを有している。NORゲート38jの入力は、アドレス遷移信号ATDおよび制御信号PGを受けている。
【0047】
第2スイッチ38g、38hは、ゲートで電圧検出信号VC1、VC2をそれぞれ受け、ソースが接地線VSSに接続され、ドレインが抵抗R2、R3の他端に接続されたnMOSトランジスタで構成されている。すなわち、第2スイッチ38g、38hは、抵抗R2、R3を、電圧検出信号VC1、VC2に応じて接地線VSSにそれぞれ接続する。
【0048】
AND回路38dは、第1の実施形態と同様に、CMOSインバータ38aの出力ノードND3および制御信号PGのAND論理をスイッチ制御信号DCとして出力する。NORゲート38jは、アドレス遷移信号ATDまたは制御信号PGが高レベルのときに、容量C4をノードND3に接続するためにpMOSトランジスタ38iをオンする。
【0049】
図7は、第2の実施形態における放電回路46の動作を示している。
フラッシュメモリにアドレス信号ADを供給されると、アドレス遷移信号ATDおよび制御信号PGが順次高レベルに変化する(図7(a、b))。NORゲート38jの出力は、アドレス遷移信号ATDまたは制御信号PGが高レベルの期間、低レベルに変化し、容量C4をノードND3に接続する(図7(c))。このため、容量C4は、アドレス遷移信号ATDが高レベルの期間に充電される。ノードND3は、制御信号PGが低レベルの間、pMOSトランジスタ38eを介して電源線VCCに接続され、高レベルを保持する(図7(d、e、f))。
【0050】
制御信号PGが高レベルに変化した後、ノードND3の電圧は、第1の実施形態と同様に、ノードND3の持つ時定数に従い徐々に低下する(図7(g、h、i))。そして、制御信号PGとノードND3のAND論理がスイッチ制御信号DCとして出力される(図7(j、k、l))。スイッチ制御信号DCのパルス幅(=高レベル期間)は、電源電圧VCCの値に応じて次の(4)〜(6)に設定される。そして、スイッチ制御信号DCが高レベルの期間に第1スイッチ32がオンし、高電圧線VBBに充電された電荷を接地線VSSに引き抜く。
【0051】
(4)電源電圧VCCが第1電圧(例えば、3.0V)より低い場合、制御信号PGの高レベル期間に、高レベルの電圧検出信号VC1、VC2が出力される(図7(m))。パルス調整回路50は、高レベルの電圧検出信号VC1、VC2を受けて、ノードND3を抵抗R2、R3を介して接地線VSSに接続する。このため、ノードND3に充電された電荷は、抵抗R2、R3を介して接地線VSSに素早く放電される。すなわち、ノードND3の持つ時定数が小さいため、スイッチ制御信号DCのパルス幅は最も短いW4に設定される。
【0052】
(5)電源電圧VCCが第1電圧より高く第2電圧(例えば、3.3V)より低い場合、制御信号PGの高レベル期間に、低レベルの電圧検出信号VC1および高レベルの電圧検出信号VC2が出力される(図7(n))。パルス調整回路50は、電圧検出信号VC1、VC2を受けて抵抗R3を接地線VSSに接続する。このため、ノードND3の持つ時定数は、標準になり、ノードND3は、上述に比べてゆっくりと低レベルに変化する。この結果、スイッチ制御信号DCのパルス幅は標準のW5に設定される。
【0053】
(6)電源電圧VCCが第2電圧より高い場合、制御信号PGの高レベル期間に、低レベルの電圧検出信号VC1、VC2を出力する(図7(o))。パルス調整回路50は、電圧検出信号VC1、VC2を受けて抵抗R2、R3を接地線VSSから切り離す。このため、ノードND3に充電された電荷は、抵抗R1のみを介して放電される。すなわち、ノードND3の持つ時定数は、大きくなり、ノードND3は、ゆっくりと低レベルに変化する。この結果、スイッチ制御信号DCのパルス幅は最大のW6に設定される。
【0054】
この結果、スイッチ制御信号DCのパルス幅は、第1の実施形態と同様に、電源電圧VCCが高いときに大きくなり、電源電圧VCCが低いときに小さくなる。高電圧線VBBに充電された電荷を、電源電圧VCCに応じて接地線VSSに放電することで、高電圧VBBの電源電圧VCCの依存性を小さくできる。
この実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。
【0055】
なお、上述した実施形態では、本発明をフラッシュメモリに適用した例について述べた。しかしながら、本発明はかかる実施形態に限定されるものではない。例えば、本発明をワード線に与える高電圧を生成する昇圧回路を有するDRAMに適用してもよい。あるいは、本発明をトランジスタのゲートに与える高電圧を生成する昇圧回路を有する半導体集積回路に適用してもよい。
【0056】
以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。
【0057】
【発明の効果】
請求項1および請求項2の半導体集積回路では、高電圧の電源電圧依存性を小さくできる。したがって、高電圧を、電源電圧の値にかかわりなく、回路が最適に動作する値に設定できる。この結果、回路の高速に動作できる。回路を高速に動作できるため、回路のタイミング余裕を向上できる。換言すれば、回路設計が容易になり、半導体集積回路の歩留を向上できる。
請求項3の半導体集積回路では、半導体集積回路に簡易な論理回路を形成するだけで、高電圧の電源電圧依存性を小さくできる。
【0058】
請求項4および請求項5の半導体集積回路では、高電圧線を、パルス幅の時間だけ放電線に接続することで、高電圧線から放電する電荷量を細かく調整でき、高電圧の電源電圧依存性をより小さくできる。
請求項6および請求項7の半導体集積回路では、パルス調整回路の時定数を電源電圧に応じて変更することで、高電圧の電源電圧依存性を小さくできる。
【0059】
請求項8の半導体集積回路では、高電圧が供給される回路が動作するときのみ放電回路を動作させることで、放電線に放電される電荷量を減らすことができる。この結果、半導体集積回路の消費電力を削減できる。
請求項9の半導体集積回路では、第1スイッチを、nMOSトランジスタで構成することで、放電回路を簡易に形成できる。
請求項10の半導体集積回路では、高電圧線の電荷を確実に放電できる。
【図面の簡単な説明】
【図1】本発明の半導体集積回路の第1の実施形態を示すブロック図である。
【図2】図1の放電回路の詳細を示す回路図である。
【図3】第1の実施形態における放電回路の動作を示すタイミング図である。
【図4】第1の実施形態における高電圧の電源電圧依存性を示す波形図である。
【図5】本発明の半導体集積回路の第2の実施形態を示すブロック図である。
【図6】図5の放電回路の詳細を示す回路図である。
【図7】第2の実施形態における放電回路の動作を示すタイミング図である。
【符号の説明】
10 昇圧回路
12 放電回路
14 動作制御回路
14a パルス生成回路
16 コマンドレジスタ
18 アドレスラッチ
20 メモリコア
22 入出力バッファ
24 メモリセルアレイ
26 ロウデコーダ
28 コラムデコーダ
30 データラッチ
32 第1スイッチ
34 スイッチ制御回路
36 電圧検出回路
38 パルス調整回路
38b、38c 第2スイッチ
40 電圧検出部
42、44 検出信号出力部
46 放電回路
48 スイッチ制御回路
50 パルス調整回路
AD アドレス信号
ATD アドレス遷移信号
C1、C2、C3、C4 容量
CMD コマンド信号
CNT 制御信号
DC スイッチ制御信号
I/O 入出力端子
MC メモリセル
PG 制御信号
R1、R2、R3 抵抗
VBB 高電圧、高電圧線
VC1、VC2 電圧検出信号
VCC 電源電圧、電源線
VSS 接地線
WL ワード線
Claims (9)
- 電源電圧に応じて、この電源電圧より高い高電圧を生成し、生成した高電圧を高電圧線に出力する昇圧回路と、
前記高電圧線に充電された電荷を、前記電源電圧の値に応じて抜き取る放電回路とを備え、
前記放電回路が前記高電圧線から抜き取る電荷量は、前記電源電圧が高いほど多いことを特徴とする半導体集積回路。 - 請求項1記載の半導体集積回路において、
前記放電回路は、
前記高電圧線を放電線に接続する第1スイッチと、
前記第1スイッチを前記電源電圧に応じてオン/オフするためのスイッチ制御信号を生成するスイッチ制御回路とを備えていることを特徴とする半導体集積回路。 - 請求項2記載の半導体集積回路において、
パルス信号を生成するパルス生成回路を備え、
前記スイッチ制御回路は、
前記電源電圧に対応する論理値を示す電圧検出信号を生成する電圧検出回路と、
前記パルス信号のパルス幅を前記電圧検出信号に応じて調整し、調整した信号を前記スイッチ制御信号として出力するパルス調整回路とを備えていることを特徴とする半導体集積回路。 - 請求項3記載の半導体集積回路において、
前記パルス調整回路は、前記パルス信号の前記パルス幅を、前記電源電圧が高いほど長くし、
前記第1スイッチは、前記パルス幅に対応する期間オンすることを特徴とする半導体集積回路。 - 請求項3記載の半導体集積回路において、
前記パルス調整回路は、
一端が前記放電線に接続される少なくとも1つの容量と、
前記容量の他端を前記電圧検出信号に応じて前記パルス信号の伝達経路に接続する第2スイッチとを備えていることを特徴とする半導体集積回路。 - 請求項3記載の半導体集積回路において、
前記パルス調整回路は、
一端が前記パルス信号の伝達経路に接続される少なくとも1つの抵抗と、
前記抵抗の他端を前記電圧検出信号に応じて前記放電線に接続する第2スイッチとを備えていることを特徴とする半導体集積回路。 - 請求項3記載の半導体集積回路において、
前記高電圧をゲートで受けるトランジスタを含む複数のメモリセルを備え、
前記パルス生成回路は、前記メモリセルを選択するために供給されるアドレス信号の遷移エッジを検出したときに前記パルス信号を生成することを特徴とする半導体集積回路。 - 請求項2記載の半導体集積回路において、
前記第1スイッチは、前記スイッチ制御信号をゲートで受け、ドレインが前記高電圧線に接続され、ソースが前記放電線に接続されたnMOSトランジスタで構成され、
前記スイッチ制御回路は、前記スイッチ制御信号の高レベル期間を、前記電源電圧が高いほど長くすることを特徴とする半導体集積回路。 - 請求項2記載の半導体集積回路において、
前記放電線は、接地線であることを特徴とする半導体集積回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002313954A JP4197923B2 (ja) | 2002-10-29 | 2002-10-29 | 半導体集積回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002313954A JP4197923B2 (ja) | 2002-10-29 | 2002-10-29 | 半導体集積回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004152341A JP2004152341A (ja) | 2004-05-27 |
JP4197923B2 true JP4197923B2 (ja) | 2008-12-17 |
Family
ID=32458410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002313954A Expired - Fee Related JP4197923B2 (ja) | 2002-10-29 | 2002-10-29 | 半導体集積回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4197923B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5388663B2 (ja) * | 2009-04-08 | 2014-01-15 | 株式会社東芝 | 半導体集積回路装置 |
-
2002
- 2002-10-29 JP JP2002313954A patent/JP4197923B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004152341A (ja) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5864247A (en) | Voltage detection circuit, power-on/off reset circuit, and semiconductor device | |
JP5059199B2 (ja) | Cmosデコーディング回路 | |
US6373315B2 (en) | Signal potential conversion circuit | |
JP2002074996A (ja) | 半導体集積回路 | |
JP2002352580A (ja) | ワードライン放電方法及び半導体メモリ装置 | |
JP3820330B2 (ja) | 半導体メモリ装置 | |
US9558830B2 (en) | Semiconductor device | |
JPH11273360A (ja) | 強誘電体記憶装置 | |
JP2007323808A (ja) | 半導体記憶装置用xデコーダ | |
US8149632B2 (en) | Output circuit for a semiconductor memory device and data output method | |
US20010043104A1 (en) | Delay circuit applied to semiconductor memory device having auto power-down function | |
JP3636968B2 (ja) | 半導体装置及びそのテスト方法 | |
JP2005092965A (ja) | 半導体装置 | |
KR900001774B1 (ko) | 바이어스 전압 발생기를 포함하는 반도체 메모리 회로 | |
US6603700B2 (en) | Non-volatile semiconductor memory device having reduced power requirements | |
US5038327A (en) | Decoder circuit of erasable programmable read only memory for avoiding erroneous operation caused by parasitic capacitors | |
JP2003162895A (ja) | 半導体集積回路 | |
US20030071670A1 (en) | Semiconductor integrated circuit device | |
JP4197923B2 (ja) | 半導体集積回路 | |
US7400547B2 (en) | Semiconductor integrated circuit with power-reducing standby state | |
JP3166740B2 (ja) | 論理回路 | |
US7317334B2 (en) | Voltage translator circuit and semiconductor memory device | |
JP2010267355A (ja) | スタティックランダムアクセスメモリ | |
JPH06111591A (ja) | 半導体集積回路 | |
JP2595781B2 (ja) | 半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051026 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060522 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080325 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080930 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 5 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |