JP4196573B2 - 内燃機関の排気浄化方法及び浄化装置 - Google Patents

内燃機関の排気浄化方法及び浄化装置 Download PDF

Info

Publication number
JP4196573B2
JP4196573B2 JP2002079296A JP2002079296A JP4196573B2 JP 4196573 B2 JP4196573 B2 JP 4196573B2 JP 2002079296 A JP2002079296 A JP 2002079296A JP 2002079296 A JP2002079296 A JP 2002079296A JP 4196573 B2 JP4196573 B2 JP 4196573B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
sulfur component
metal element
solidifying agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002079296A
Other languages
English (en)
Other versions
JP2003278529A (ja
Inventor
慎二 辻
健治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002079296A priority Critical patent/JP4196573B2/ja
Publication of JP2003278529A publication Critical patent/JP2003278529A/ja
Application granted granted Critical
Publication of JP4196573B2 publication Critical patent/JP4196573B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関から排出される排気ガスの浄化方法及び浄化装置に関する。
【0002】
【従来の技術】
内燃機関の排気ガスは、三元触媒などの排気浄化触媒によって浄化された後に大気に放出される。そして、このような排気浄化触媒の一つとして、排気ガス中に酸素O2が過剰にあるときは窒素酸化物NOxを吸蔵し、排気ガス中の酸素O2が少ないときに吸蔵した窒素酸化物をNOx放出して還元させる(このとき排気ガス中の一酸化炭素COや炭化水素HCは酸化される)、NOx吸蔵還元型の排気浄化触媒も用いられるようになってきている。
【0003】
このような排気浄化触媒を用いることによって、リーン運転時の排気ガス中の窒素酸化物NOxを吸蔵し、ストイキ又はリッチ運転時に吸蔵した窒素酸化物NOxを放出・還元することによって、排気浄化率をより一層向上させることができる。このようなNOx吸蔵還元型の排気浄化触媒は、通常のエンジンよりもリーン運転を積極的に行うリーンバーンエンジンの排気浄化率を向上させるのに有用で、燃費改善との両立にも寄与している。
【0004】
【発明が解決しようとする課題】
しかし、これらのNOx吸蔵還元型の排気浄化触媒は、窒素酸化物NOxよりも硫黄酸化物SOxをより安定的に吸蔵してしまうという性質を有している。排気ガス中の硫黄酸化物SOxは、燃料中やエンジンオイル中に含まれる硫黄成分が、内燃機関の燃焼によって酸化されることによって生じる。燃料中やエンジンオイル中に含まれる硫黄成分は微量であるが、NOx吸蔵還元型の排気浄化触媒に安定的に吸蔵されてしまうために吸蔵量は徐々に蓄積されて増加する。NOx吸蔵還元型の排気浄化触媒に硫黄酸化物SOxが多量に吸蔵されてしまうと、窒素酸化物NOxの吸蔵と放出・還元とを適正に行えなくなってしまう。これが、いわゆる、NOx吸蔵還元型の排気浄化触媒における「SOx被毒」現象である。
【0005】
従来のNOx吸蔵還元型の排気浄化触媒においては、新品時には吸蔵能力のほとんどが窒素酸化物NOxの吸蔵に用いられるが、SOx被毒を受けると吸蔵能力の僅かしか窒素酸化物NOxの吸蔵に用いられなくなってしまう。このSOx被毒現象を抑止することができれば、窒素酸化物NOxの吸蔵可能量や放出可能量を大きくとることができ、NOx吸蔵還元型の排気浄化触媒の排気浄化性能を大幅に向上させることができる。なお、このようなNOx吸蔵還元触媒のSOx被毒を抑止するものとして、特開2000-27712号公報に記載のものなども知られているが、まだその効果は充分でなく、更なる改良が望まれていた。
【0006】
さらに、排気ガス中には、粒子状物質(Particulate Matter:以下単にPMと呼ぶ)も含まれる。このPMはディーゼルエンジンの燃焼時に顕著に生成されるとされているが、上述したリーンバーンエンジンなどでもリーン燃焼時に生成され得る。PMの主成分は、煤(Soot)、未燃燃料の炭化水素HCやエンジンオイルの燃え滓であるSOF(Soluble Organic Fraction:有機溶剤に溶ける物質)及びサルフェート(硫酸ミスト)などである。これらのPMも排気ガスを大気に放出する以前に浄化する必要があり、パティキュレートフィルタなどで捕集・分解することが行われている。
【0007】
しかし、NOxとPMの排出は相反する関係にある。PMの生成を減らそうとして高温で燃焼させるとNOxの生成が助長されてしまうし、NOxの生成を減らそうとして燃焼温度を下げるとPMの生成が増加してしまう。このため、NOx及びPMの双方の排出を有効に抑止する改善も望まれていた。
【0008】
従って、本発明の目的は、NOx吸蔵還元型の排気浄化触媒のSOx被毒現象を抑止すると共に排気ガス中の粒子状物質も効果的に浄化し、排気ガスの浄化率をより一層向上させることのできる内燃機関の排気浄化方法及び浄化装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1に記載の内燃機関の排気浄化方法は、排気通路上に配されたパティキュレートフィルタよりも上流側で、内燃機関の燃焼後に硫黄酸化物を生成させる原因となる硫黄成分を、塩基性金属元素を含む硫黄成分固形化剤を用いて固形化し、固形化した硫黄成分を内燃機関の燃焼時に生成される粒子状物質と共にパティキュレートフィルタで捕集し、捕集した粒子状物質を硫黄成分固形化剤によって分解すると共に、排気ガス中の窒素酸化物、炭化水素、及び/又は、一酸化炭素をパティキュレートフィルタよりも下流側に配されたNOx吸蔵還元型排気浄化触媒で浄化し、パティキュレートフィルタの下流側には、 NOx 吸蔵還元型排気浄化触媒に加えて三元触媒も配設されており、パティキュレートフィルタへの排気ガス温度が所定温度よりも高い場合には、 NOx 吸蔵還元型排気浄化触媒への排気ガス流路を遮断し、排気ガスが三元触媒への流路のみを通るようにすることを特徴としている。
【0011】
請求項に記載の内燃機関の排気浄化方法は、請求項に記載の発明において、硫黄成分固形化剤を、予め燃料に混合させておくことを特徴としている。
【0012】
請求項に記載の内燃機関の排気浄化方法は、請求項に記載の発明において、硫黄成分固形化剤を、燃料とは別に、吸気通路、燃焼室内、又は、排気通路において添加することを特徴としている。
【0013】
請求項に記載の内燃機関の排気浄化方法は、請求項1に記載の発明において、NOx吸蔵還元型排気浄化触媒にはアルカリ金属元素又はアルカリ土類金属元素が担持され、かつ、硫黄成分固形化剤に含まれる塩基性の金属元素がアルカリ金属元素又はアルカリ土類金属元素であり、硫黄成分固形化剤中のアルカリ金属元素又はアルカリ土類金属元素として、排気浄化触媒に担持されたアルカリ金属元素又はアルカリ土類金属元素よりも塩基性の強いものを用いることを特徴としている。
【0014】
請求項に記載の内燃機関の浄化装置は、排気通路上に配されて、塩基性金属元素を含む硫黄成分固形化剤を用いて固形化した硫黄成分を燃焼時に生成される粒子状物質と共に捕集するパティキュレートフィルタパティキュレートフィルタよりも下流側に配されて、排気ガス中の窒素酸化物、炭化水素、及び/又は、一酸化炭素を浄化するNOx吸蔵還元型排気浄化触媒と、パティキュレートフィルタよりも下流側に配される三元触媒と、パティキュレートフィルタへの排気ガス温度が所定温度よりも高い場合には、 NOx 吸蔵還元型排気浄化触媒への排気ガス流路を遮断し、排気ガスが三元触媒への流路のみを通るようにする切替手段と、を有していることを特徴としている。
【0015】
【発明の実施の形態】
本発明の排気浄化方法及び浄化装置の一実施形態について、以下に説明する。本実施形態の浄化方法を行う浄化装置を有する内燃機関(エンジン)1を図1に示す。
【0016】
以下に説明するエンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみを断面図として示す。エンジン1は、燃料を直接シリンダ3内に噴射する筒内噴射型エンジンであり、リーンバーン(希薄燃焼)エンジンである。エンジン1は、点火プラグ2によって各シリンダ3内の混合気に対して点火を行うことによって駆動力を発生する。エンジン1の燃焼に際して、外部から吸入した空気は吸気通路4を通り、インジェクタ5から噴射された燃料と混合されて混合気となる。シリンダ3の内部と吸気通路4との間は、吸気バルブ6によって開閉される。シリンダ3の内部で燃焼された混合気は、排気ガスとして排気通路7に排気される。シリンダ3の内部と排気通路7との間は、排気バルブ8によって開閉される。
【0017】
吸気通路4上には、シリンダ3内に吸入される吸入空気量を調節するスロットルバルブ9が配設されている。このスロットルバルブ9には、その開度を検出するスロットルポジションセンサ10が接続されている。スロットルバルブ9に付随して、アクセルペダル11の踏み込み位置を検出するアクセルポジションセンサ12や、スロットルバルブ9を駆動するスロットルモータ13なども配設されている。また、図1に示されていないが、吸気通路4上には吸入空気の温度を検出する吸気温センサも取り付けられている。
【0018】
また、スロットルバルブ9の下流側には、サージタンク14が形成されており、サージタンク14の内部に、バキュームセンサ15及びコールドスタートインジェクタ17が配設されている。バキュームセンサ15は、吸気通路4内の圧力(吸気管圧力)を検出する。コールドスタートインジェクタ17は、エンジン1の冷間始動性を向上させるためのもので、冷間始動時にサージタンク14内に燃料を拡散噴霧させて均質な混合気を形成させるものである。
【0019】
サージタンク14のさらに下流側には、スワールコントロールバルブ18が配設されている。スワールコントロールバルブ18は、希薄燃焼(成層燃焼)時にシリンダ3の内部に安定したスワールを発生させるためのものである。スワールコントロールバルブ18に付随して、スワールコントロールバルブ18の開度を検出するSCVポジションセンサ19やスワールコントロールバルブ18を駆動するDCモータ20なども配設されている。
【0020】
また、本実施形態のエンジン1における吸気バルブ6は、その開閉タイミングを可変バルブタイミング機構21によって可変制御することができる。吸気バルブ6の開閉状況は、吸気バルブ6を開閉させるカムが形成されているカムシャフトの回転位置を検出するカムポジションセンサ22によって検出できる。さらに、エンジン1のクランクシャフト近傍には、クランクシャフトの回転位置を検出するクランクポジションセンサ23が取り付けられている。クランクポジションセンサ23の出力からは、シリンダ3内のピストン24の位置や、エンジン回転数を求めることもできる。エンジン1には、エンジン1のノッキングを検出するノックセンサ25や冷却水温度を検出する水温センサ26も取り付けられている。
【0021】
一方、排気通路7上には、エンジン1本体に近い側に、、通常の三元触媒である始動時触媒27が配設されている。始動時触媒27は、エンジン1の燃焼室(シリンダ3)に近いので排気ガスによって昇温されやすく、エンジン始動直後に、より早期に触媒活性温度にまで上昇して排気ガス中の有害物質を浄化するように配設されている。このエンジン1は四気筒であり、二気筒毎に一つずつ、計二つの始動時触媒27が取り付けられている。各始動時触媒27には、それぞれ排気温センサ28が取り付けられており、排気温センサ28は排気ガスの温度を検出している。
【0022】
始動時触媒27の下流側では排気管が一つにまとめられてNOx吸蔵還元型排気浄化触媒39a(以下単に排気浄化触媒39aとも言うこととする)と通常の三元触媒(酸化触媒)39bとが直列に配設されている。この排気浄化触媒39aについては、追って詳しく説明する。排気浄化触媒39aの上流側には、排気浄化触媒39aに流入する排気ガスの排気空燃比を検出する空燃比センサ40が取り付けられている。空燃比センサ40としては、排気空燃比をリッチ域からリーン域にかけてリニアに検出し得るリニア空燃比センサや、排気空燃比がリッチ域にあるかリーン域にあるかをオン−オフ的に検出するO2センサ(酸素センサ)などが用いられる。
【0023】
また、排気通路7上には、排気浄化触媒39aをバイパスするバイパス路45が形成されている。バイパス路45と排気通路7のメイン流路との接合部には、排気ガスの流路を排気浄化触媒39a側とバイパス路45側とに切り替える切替弁46が配設されている。切替弁46を制御するモータは後述するECU37に接続されており、切替弁46はECU37によって制御される。切替弁46は、上述した空燃比センサ40よりも下流側に位置している。
【0024】
さらに、空燃比センサ40のさらに上流側には、排気ガス中のPMを捕集するパティキュレートフィルタ47が配設されている。このパティキュレートフィルタ47についても、追って詳しく説明する。パティキュレートフィルタ47の上流側には、パティキュレートフィルタ47へに流入する排気ガスの温度を検出する温度センサ48が配設されている。この温度センサ48も後述するECU37に接続されている。
【0025】
排気通路7から吸気通路4にかけては、排気ガスを還流させる外部EGR(Exhaust Gas Recirculation)通路43が形成されている。外部EGR通路43の吸気通路4側はサージタンク14に接続され、排気通路7側は始動時触媒27の上流側に接続されている。外部EGR通路43上には、還流させる排気ガス量を調節するEGRバルブ44が配設されている。EGR機構は、吸気通路4内の吸気管負圧を利用して排気ガスの一部を吸気通路4に戻し、NOx生成抑制効果や燃費向上効果を得るものである。なお、吸気バルブ6の開閉タイミングを制御することで同様の効果を得る内部EGR制御も併用され得る。
【0026】
エンジン1のインジェクタ5には、燃料タンク29に貯蔵された燃料が送出用の低圧フューエルポンプ30によって送出され、これがフューエルフィルタ31を経過して高圧フューエルポンプ32によって高圧化された後に供給される。このエンジン1は希薄燃焼可能なものであり、良好な希薄燃焼(成層燃焼)を行わせるために圧縮行程中のシリンダ3内に燃料を直接噴射して成層燃焼に適した状態を形成させなくてはならず、そのために燃料を高圧にしてからインジェクタ5によって噴射する。
【0027】
インジェクタ5に付随して、精密な制御を行うために燃料の圧力を検出する燃圧センサ33も配設されている。高圧フューエルポンプ32は、エンジン1の動力、即ち、排気バルブ8側のカムシャフトの回転を利用して燃料を高圧化している。なお、コールドスタートインジェクタ17に対しては、低圧フューエルポンプ30によって送出された燃料がそのまま供給される。
【0028】
燃料タンク29に付随して、燃料タンク29内で蒸発した燃料を捕集するチャコールキャニスタ34が配設されている。チャコールキャニスタ34は、内部に活性炭フィルタを有しており、この活性炭フィルタで蒸発燃料を捕集する。そして、捕集された燃料は、パージコントロールバルブ35によってパージ量を制御されつつ、吸気通路4にパージされてシリンダ3内で燃焼される。なお、燃料タンク29には、燃料噴射されなかった残りの燃料を燃料タンクに戻すリターンパイプ36も取り付けられている。
【0029】
上述した点火プラグ2、インジェクタ5、スロットルポジションセンサ10、アクセルポジションセンサ12、スロットルモータ13、バキュームセンサ15、コールドスタートインジェクタ17、DCモータ20、可変バルブタイミング機構21のアクチュエータ、カムポジションセンサ22、クランクポジションセンサ23、ノックセンサ25、水温センサ26、排気温センサ28、パージコントロールバルブ35、空燃比センサ40、EGRバルブ44、吸気温センサやその他のアクチュエータ類・センサ類は、エンジン1を総合的に制御する電子制御ユニット(ECU)37と接続されている。
【0030】
なお、図1に示されるシステムでは、ECU37とインジェクタ5との間に電子制御ドライブユニット(EDU)38が設けられている。EDU38は、ECU37からの駆動電流を増幅して、高電圧・大電流によってインジェクタ5を駆動するためのものである。これらのアクチュエータ類・センサ類は、ECU37からの信号に基づいて制御され、あるいは、検出結果をECU37に対して送出している。ECU37は、内部に演算を行うCPUや演算結果などの各種情報量を記憶するRAM、バッテリによってその記憶内容が保持されるバックアップRAM、各制御プログラムを格納したROM等を有している。ECU37は、吸気通路内圧力や空燃比などの各種情報量に基づいてエンジン1を制御する。
【0031】
NOx吸蔵還元型の排気浄化触媒39aについて説明する。
【0032】
排気浄化触媒39aは、表面にアルミナの薄膜層がコーティングされた担体上に、白金やパラジウムやロジウムなどの貴金属の他にアルミナコーティング層上に、アルカリ金属(K,Na,Li,Csなど)、アルカリ土類金属(Ba,Caなど)又は希土類元素(La,Yなど)などをもさらに担持させ、エンジンがリーン空燃比で運転されたときに排気ガス中に含まれるNOxを吸蔵させることができるようにしたものである。このため、排気浄化触媒39aは、通常の三元触媒としての機能、即ち、理論空燃比近傍で燃焼されたときの排気ガス内のHC,CO,NOxを浄化する機能に加えて、リーン空燃比で排気ガス中に含まれるNOxを吸蔵することができる。これに対して、三元触媒39bは、NOx吸蔵還元機能を有しない通常の酸化還元触媒である。
【0033】
また、パティキュレートフィルタ47は、ウォールフロー構造(ウォールスルー構造とも言われる)を有している。ここに言うウォールフロー構造とは、多孔質の薄肉壁によって仕切られた細長い多数のセルを有し、上流側を開口させ下流側を閉塞させたセルと下流側を開口させ上流側を閉塞させたセルとが互いに隣接して配置されてなり、排気ガスが薄肉壁を通って、上流側を開口させたセルから下流側を開口させたセルに流れるようにした構造をいう。ここでは、上述した細長いセルが、排気ガスの流れ方向にほぼ平行となるように配置される。ウォールフロー構造については、特開平9-94434号公報などに具体的構造が記載されている。
【0034】
排気浄化触媒39aは、上述したように、NOxよりもSOxを安定的に吸蔵してしまうという性質を有しており、これによってSOx被毒現象が生じる。本実施形態では、このようなSOxの原因となる硫黄成分を固形化してしまい、排気浄化触媒39aよりも上流側のパティキュレートフィルタ47でPMと共に捕集する。これにより、排気ガス中のSOx濃度を低減し、NOx吸蔵還元型の排気浄化触媒39aに吸蔵されるSOxの量を減らす(あるいはSOxが吸蔵されないようにする)。この結果、排気浄化触媒39aのNOx吸蔵還元に用いられる容量(NOx吸蔵可能量)が拡大し、排気ガス中のNOxの浄化率を向上させることができる。本実施形態の浄化方法は、硫黄成分を固形化するために硫黄成分固形化剤を用いる。
【0035】
硫黄成分固形化剤(以下、単に「固形化剤」とも言う)を用いて排気ガス中の硫黄成分を固形化するが、その固形化は、排気ガス中の硫黄成分がパティキュレートフィルタ47に流入する以前に固形化すればよい。この場合、硫黄成分固形化剤の添加は、シリンダ3よりも上流側の吸入空気中に添加しても良いし、シリンダ3内で添加しても良いし、シリンダ3から排出された排気ガスに対して添加しても良い。また、燃料(ガソリン)に予め添加されても良いし、燃料タンクへ添加しても良い。
【0036】
本実施形態の固形化剤は、硫黄成分を酸化させる機能を有する金属元素(以下、単に「酸化機能を有する金属元素」とも言う)と、塩基性の金属元素とを含んでいる。この両成分を有していることによって、硫黄成分を効果的に固形化することができる。ここで、酸化機能を有する金属元素は、遷移元素であると効果的である。さらに、塩基性の金属元素としては、アルカリ金属元素又はアルカリ土類金属元素であることが好ましく、特に、カリウムの原子番号以上の原子番号を持つアルカリ金属であることが特に好ましい。
【0037】
酸化機能を有する金属元素としては、具体的には、Pt,Pd,Rh,Fe,Ce,In,Ag,Au,Irがある。このうち、In以外のものが遷移元素である。一方、塩基性の金属元素としては、具体的には、Li,Na,K,Rb,Cs,Fr,Be,Mg,Ca,Sr,Ba,Ral,Zn,Zr,Laがある。このうち、アルカリ金属は、Li,Na,K,Rb,Cs,Frであり、このうち、カリウムの原子番号以上の原子番号を持つものは、K,Rb,Cs,Frである。アルカリ土類金属は、Be,Mg,Ca,Sr,Ba,Raである。
【0038】
硫黄成分の固形化は、以下のように行われると思われる(ここで、酸化機能を有する金属元素をM1とし、塩基性の金属元素をM2とする)。エンジン1の燃焼によって、SO2やSO3が生成される。そして、これらが、
SO2−(M1)→SO3→M2SO3→M2SO4 …▲1▼
のように反応する。
【0039】
上述したように、固形化剤に酸化機能を有する金属元素を含有させることによって、硫黄成分の酸化反応が進みやすくなる。即ち、上記▲1▼に示されるように、SO2がSO3になりやすくなり、硫黄の固形化率を向上させることができる。そして、酸化された硫黄酸化物は、塩基性の金属元素によって、亜硫酸塩や硫酸塩として固形化される。
【0040】
このとき、塩基性の金属元素として、カリウムの原子番号以上の原子番号を持つアルカリ金属を用いることによって、硫黄成分の固形化率を向上させることができる。これは、カリウムの原子番号以上の原子番号を持つアルカリ金属は塩基性が強いので硫黄成分と結び付きやすく、上述した▲1▼以外に、
SO2→M2SO2−(M1)→M2SO3→M2SO4…▲2▼
のような反応が起き、結果として硫黄成分の固形化率が向上するものと考えられる。(上記▲2▼では、酸化機能を有する金属元素M1は、亜硫酸ガスSO2と塩基性の金属元素M2との化合物M2SO2を酸化させると考えられる。)
【0041】
通常、エンジン1などの内燃機関の燃焼時のような燃焼時の高温下では、SO2は、一旦SO3に酸化されるが、化学平衡的にSO3ガスよりも亜硫酸ガスSO2状態となるため、上述した▲2▼の反応も起きないと、硫黄の固形化率向上は望めない。なお、SOxとしては、SOなどもあり得るが、これは酸化されることによってSO2やSO3となるので、その後は上述したように固形化される。
【0042】
上述した固形化剤の効果を実験的に検証した。実験には、硫黄分を重量比で500ppm含有する燃料中に固形化剤を投入したものを試験燃料として用いた。エンジン回転数が2000rpm、負荷が60Nmの条件でエンジンを運転したときの排気ガス中のSOx濃度を測定し、固形化剤を投入しない通常の燃料で運転したときの排気ガス中のSOx濃度からの減少分を硫黄成分の固形化率として算出した。なお、固形化剤の投入量は、固形化剤に含まれる塩基性の金属元素(M2)と燃料中に含まれる硫黄とによる生成硫黄塩(M2SO4)の理論モル数から計算される。各固形化剤として各元素を含有させた場合の硫黄成分の固形化率を次の〔表1〕に示す。
【0043】
【表1】
Figure 0004196573
【0044】
〔表1〕から明らかなように、酸化機能を有する金属元素(Ce,Fe)のみの場合は塩を形成するための相手がないので、当然ながらほとんど効果がない。塩基性金属元素(Ca,Ba,K,Cs)のみを含む場合は、固形化率20%〜30%程度の効果があるが、これら両者を含有させた場合は更なる効果がある。特に、塩基性金属として、カリウムの原子番号以上の原子番号を有するアルカリ金属元素(K,Cs)を用いると飛躍的な効果がある。さらに、ここで用いた酸化機能を有する金属元素(Ce,Fe)では、Ceを塩基性金属と併用する場合の方が固形化率が良く、KとCeの組み合わせが一番固形化率が良かった。
【0045】
なお、固形化剤は、酸化機能を有する金属元素や塩基性を有する金属元素をイオンとして含んでいても良いし、可溶性の化合物として含んでいても良い。固形化剤は、固体でも液体でも、あるいは、気体でも良く、上述した可溶性の化合物も溶剤に溶かしたものや、燃料となるガソリンを溶剤として溶ける固体など、様々な形態で提供され得る。
【0046】
例えば、塩基性金属の化合物であるクエン酸カリウムやナフテン酸カルシウムをエタノールに溶かして溶液中でイオンとし、これを燃料であるガソリンに添加することが考えられる。あるいは、塩基性金属の化合物である炭酸カリウムや炭酸ナトリウムや水酸化カルシウムを水で溶かして水溶液中でイオンとし、これを吸気通路やシリンダ、排気通路上に噴霧して添加することも考えられる。
【0047】
上述したように、排気ガス中に含まれる硫黄成分の大部分を固形化させてパティキュレートフィルタ47で捕集してしまうことによって、NOx吸蔵還元型の排気浄化触媒39aにSOxが吸蔵され難くなる。このため、その分、排気浄化触媒39aの吸蔵能力をNOxの吸蔵に用いることができ、NOxの浄化率を向上させることができる。
【0048】
さらに、パティキュレートフィルタ47に固形化された硫黄成分が捕集されることによって、パティキュレートフィルタ47に固形化剤中の酸化機能を有する金属元素(上述したCeなど)が保持されるが、これがPMを燃焼させる触媒成分として機能する。即ち、固形化剤は、パティキュレートフィルタ47に保持されることによってPMを酸化させる触媒となり、パティキュレートフィルタ47の目詰まりによる圧損増加を抑止し、排気浄化性能を高く維持することができる。そして、この固形化剤によるPMの燃焼は、比較的低温から起こるので、PMの浄化の上で非常に都合がよい。
【0049】
ここで、パティキュレートフィルタ47がウォールフロー構造であると、パティキュレートフィルタ47の内部に、固形化された硫黄成分及びPMが均一に保持されやすくなり、下流側の排気浄化触媒39aでのNOx浄化を促進して排気ガスの浄化性能を向上させることができる。なお、パティキュレートフィルタ47に捕集されたPMは上述したように燃焼されるが、捕集された硫黄成分はそのままでは徐々に蓄積されてしまう。硫黄成分が蓄積されすぎればパティキュレートフィルタ47が目詰まりを起こし、圧力損失が増加してしまう。そこで、このパティキュレートフィルタ47に捕集された固形化された硫黄成分を除去するために、リッチスパイク運転が行われる。リッチスパイク運転とは、リッチ空燃比で短時間エンジンを運転するもので、排気ガスの温度が一時的に高温となり、捕集された硫黄成分を分解することとなる。
【0050】
なお、このリッチスパイク時には、捕集されたPMも燃焼が促進されることになる。このリッチスパイク運転を行うことによって、パティキュレートフィルタ47の目詰まりによる圧力損失の増加を抑止できる。ただし、リッチスパイク時には、分解された硫黄成分が排気通路7の下流側に流出することとなる。これを排気浄化触媒39aを通過させてしまうと、上述したように排気浄化触媒39aに安定的に吸着されてしまうので、このようなときには排気ガスを上述したバイパス路45を通過させることによって、硫黄成分の排気浄化触媒39aへの吸蔵を回避する。
【0051】
なお、意図的にリッチスパイク運転を行う場合の他、運転状態によっては排気ガス温が高温となって同様なことが起こる場合も充分考えられる。そこで、ここではパティキュレートフィルタ47に流入する排気ガスの温度を温度センサ48で監視し、パティキュレートフィルタ47から硫黄成分が分解脱離すると思われる排気ガス温度以上となったときに、排気ガスの流れをバイパス路45側に切り替えるような制御を行っている。
【0052】
ここでは、温度センサ48によって検出される排気ガスの温度が500℃以上の場合は、排気ガスがバイパス路45を通過するように切替弁46が切り替えられる。また、温度センサ48によって検出される排気ガスの温度が500℃未満となると、再び切替弁46が切り替えられ、排気ガスは排気浄化触媒39aを通過するようになる。なお、排気通路7内での排気ガスの移動にかかる時間を考慮して、温度センサ48による所定温度検出と切替弁46の切替とのタイミングを意図的にずらすなどしても良い。
【0053】
なお、図1に示される例においては、パティキュレートフィルタ47、吸蔵還元型の排気浄化触媒39a、及び、三元触媒39bが排気通路7上に直列状に配列された。しかし、パティキュレートフィルタ47に流入する排気ガスの温度が所定温度よりも高い場合に排気浄化触媒39aへの排気ガス流路を遮断し、排気ガスが三元触媒39bへの流路のみを通るようにするには、図1以外の配置方法も考えられる。別の実施形態を図2に示す。図2には、排気通路7上のパティキュレートフィルタ47、吸蔵還元型の排気浄化触媒39a、及び、三元触媒39bが配設される部分のみを示してある。
【0054】
図2に示される実施形態においては、上述した図1の実施形態における排気浄化触媒39aと三元触媒39bとが一体化されて、排気通路7上の触媒拡径部39の内部に配置されている。なお、ここでは、上述した実施形態と同等又は同一の構成部分には同一の符号を付してその詳しい説明は省略する。また、図示されていない部分は、上述した実施液体と同一の構成である。触媒拡径部39の内部では、その中央部に円柱状のNOx吸蔵還元型排気浄化触媒39aが配置され、円筒形の隔壁39cを介してその外方に円筒状の三元触媒39bが配置されている。三元触媒の外周面は、触媒拡径部39の内周面と接している。
【0055】
さらに、隔壁39cの上流側は縮径されており、この縮径された部分に切替弁46が配設されている。切替弁46が開いているときは、排気ガスは排気浄化触媒39aと三元触媒39bの双方に流れ得るが、切替弁46が閉じられているときは、排気浄化触媒39aへの排気ガス流路が遮断され、排気ガスが三元触媒39bのみを通過する。このようにしても、パティキュレートフィルタ47から硫黄成分が脱離する際の排気浄化触媒39aのSOx被毒を抑止することができる。
【0056】
次に、固形化剤の添加方法について説明する。固形化剤を添加するには、上述したように、いくつかの方法が考えられる。まず、上述した硫黄成分固形化剤を燃料に混合させておく場合について簡単に説明する。上述した図1の内燃機関は、この場合の構成を示してある。この場合、吸排気系及び燃料系を含むエンジン1全体が固形化剤を固形化させる硫黄成分固形化手段として機能している。ここでは、塩基性のアルカリ金属元素としてカリウムを用いており、クエン酸カリウムをエタノールに溶かした溶液を固定化剤として使用する。この固定化剤には、酸化機能を有する遷移金属元素として、Ceをオクチル酸セリウムとしてさらに含有させている。
【0057】
この固形化剤を燃料タンク29内に投入した。固形化剤の投入は、ガソリンタンクに燃料を一杯まで補充した直後などに行えば、燃料であるガソリンとの混合比を所定の混合比にしやすく都合がよい。このように、燃料であるガソリンに固形化剤を添加すれば、燃料をシリンダ3内に噴射して燃焼させることによって、上述した硫黄成分を固形化する反応が起こり、排気ガス中の硫黄成分(その元は燃料中、又は、エンジンオイル中の硫黄成分)が固形化され、パティキュレートフィルタ47に捕集されて排気浄化触媒39aに吸蔵されなくなる。
【0058】
次に、上述した硫黄成分固形化剤を吸気通路4上に噴霧させることによって添加する場合について簡単に説明する。この場合のエンジン1及びその周辺の構成を図3に示す。なお、上述した図1に示されるものと同一又は同等の構成部位に関しては同一の符号を付し、その詳しい説明は省略する。ここでは、塩基性のアルカリ金属元素としてカリウムを用いており、水酸化カリウム水溶液を固定化剤として使用する。この固定化剤には、酸化機能を有する遷移金属元素として、Ceをオクチル酸セリウムとしてさらに含有させている。
【0059】
そして、この固形化剤を溜めておく固形化剤タンク41が、エンジン1に付随して配設されている。固形化剤タンク41からサージタンク14まで配管が配されており、この配管の先端には、サージタンク14内に向けて固形化剤を噴霧する噴霧ノズル16が接続されている。また、この配管の途中には、固形化剤を噴霧するための噴霧ポンプ42が配設されている。噴霧ポンプ42は、バッテリの電力あるいは、エンジン1の出力の一部によって駆動される。さらに、噴霧ノズル16は、上述したECU37に接続されており、ECU37によって固形化剤の噴霧タイミングや噴霧量が制御される。
【0060】
噴霧ノズル16を用いて、吸入空気に対して固形化剤を噴霧すると、これがそのままシリンダ3内に吸気されてインジェクタ5から噴射された燃料と共に燃焼される。この結果、上述した硫黄成分を固形化する反応が起こり、排気ガス中の硫黄成分(その元は燃料中、又は、エンジンオイル中の硫黄成分)が固形化され、パティキュレートフィルタ47に捕集されて排気浄化触媒39aに吸蔵されなくなる。この場合、吸排気系及び燃料系を含むエンジン1全体と、固形化剤を供給する噴霧ノズル16、固形化剤タンク41、噴霧ポンプ42などが固形化剤を固形化させる硫黄成分固形化手段として機能している。
【0061】
次に、上述した硫黄成分固形化剤をシリンダ3内に噴霧させることによって添加する場合について簡単に説明する。この場合のエンジン1及びその周辺の構成を図4に示す。なお、上述した図1及び図3に示されるものと同一又は同等の構成部位に関しては同一の符号を付し、その詳しい説明は省略する。ここでも、塩基性のアルカリ金属元素としてカリウムを用いており、水酸化カリウム水溶液を固定化剤として使用する。この固定化剤には、酸化機能を有する遷移金属元素として、Ceをオクチル酸セリウムとしてさらに含有させている。
【0062】
そして、この固形化剤を溜めておく固形化剤タンク41が、エンジン1に付随して配設されている。固形化剤タンク41からシリンダ3まで配管が配されており、この配管の先端には、シリンダ3の内部に向けて固形化剤を噴霧する噴霧ノズル16が接続されている。また、この配管の途中には、固形化剤を噴霧するための噴霧ポンプ42が配設されている。噴霧ポンプ42は、バッテリの電力あるいは、エンジン1の出力の一部によって駆動される。さらに、噴霧ノズル16は、上述したECU37に接続されており、ECU37によって固形化剤の噴霧タイミングや噴霧量が制御される。
【0063】
噴霧ノズル16を用いて、シリンダ3内に固形化剤を噴霧すると、上述した硫黄成分を固形化する反応が起こり、排気ガス中の硫黄成分(その元は燃料中、又は、エンジンオイル中の硫黄成分)が固形化され、パティキュレートフィルタ47に捕集されて排気浄化触媒39aに吸蔵されなくなる。この場合も、吸排気系及び燃料系を含むエンジン1全体と、固形化剤を供給する噴霧ノズル16、固形化剤タンク41、噴霧ポンプ42などが固形化剤を固形化させる硫黄成分固形化手段として機能している。
【0064】
次に、上述した硫黄成分固形化剤を排気通路7上に噴霧させることによって添加する場合について簡単に説明する。この場合のエンジン1及びその周辺の構成を図5に示す。なお、上述した図1、図3及び図4に示されるものと同一又は同等の構成部位に関しては同一の符号を付し、その詳しい説明は省略する。ここでも、塩基性のアルカリ金属元素としてカリウムを用いており、水酸化カリウム水溶液を固定化剤として使用する。この固定化剤には、酸化機能を有する遷移金属元素として、Ceをオクチル酸セリウムとしてさらに含有させている。
【0065】
そして、この固形化剤を溜めておく固形化剤タンク41が、エンジン1に付随して配設されている。固形化剤タンク41から排気通路7まで配管が配されており、この配管の先端には、パティキュレートフィルタ47の上流側の排気通路7上に固形化剤を噴霧する噴霧ノズル16が接続されている。また、この配管の途中には、固形化剤を噴霧するための噴霧ポンプ42が配設されている。噴霧ポンプ42は、バッテリの電力あるいは、エンジン1の出力の一部によって駆動される。さらに、噴霧ノズル16は、上述したECU37に接続されており、ECU37によって固形化剤の噴霧タイミングや噴霧量が制御される。
【0066】
噴霧ノズル16を用いて、排気通路7上に固形化剤を噴霧すると、固形化剤は硫黄成分を含む排気ガスと混ざり合い、上述した硫黄成分を固形化する反応が起こる。この反応時には、排気ガスの持つ熱が反応を促進させ得る。この反応によって、排気ガス中の硫黄成分(その元は燃料中、又は、エンジンオイル中の硫黄成分)が固形化され、パティキュレートフィルタ47に捕集されて排気浄化触媒39aに吸蔵されなくなる。この場合も、吸排気系及び燃料系を含むエンジン1全体と、固形化剤を供給する噴霧ノズル16、固形化剤タンク41、噴霧ポンプ42などが固形化剤を固形化させる硫黄成分固形化手段として機能している。
【0067】
次に、上述した硫黄成分固形化剤を外部EGR通路43上に噴霧させることによって添加する場合について簡単に説明する。この場合のエンジン1及びその周辺の構成を図6に示す。なお、上述した図1及び図3〜図5に示されるものと同一又は同等の構成部位に関しては同一の符号を付し、その詳しい説明は省略する。ここでも、塩基性のアルカリ金属元素としてカリウムを用いており、水酸化カリウム水溶液を固定化剤として使用する。この固定化剤には、酸化機能を有する遷移金属元素として、Ceをオクチル酸セリウムとしてさらに含有させている。
【0068】
そして、この固形化剤を溜めておく固形化剤タンク41が、エンジン1に付随して配設されている。固形化剤タンク41から外部EGR通路43上まで配管が配されており、この配管の先端には、外部EGR通路43上の内部に固形化剤を噴霧する噴霧ノズル16が接続されている。また、この配管の途中には、固形化剤を噴霧するための噴霧ポンプ42が配設されている。噴霧ポンプ42は、バッテリの電力あるいは、エンジン1の出力の一部によって駆動される。さらに、噴霧ノズル16は、上述したECU37に接続されており、ECU37によって固形化剤の噴霧タイミングや噴霧量が制御される。
【0069】
噴霧ノズル16を用いて、外部EGR通路43上に固形化剤を噴霧すると、固形化剤は硫黄成分を含む排気ガスと混ざり合い、さらに、吸気通路4上で吸入空気と混ざり合い、これがそのままシリンダ3内に吸気されてインジェクタ5から噴射された燃料と共に燃焼される。この結果、上述した硫黄成分を固形化する反応が起こる。この反応によって、排気ガス中の硫黄成分(その元は燃料中、又は、エンジンオイル中の硫黄成分)が固形化され、パティキュレートフィルタ47に捕集されて排気浄化触媒39aに吸蔵されなくなる。この場合も、吸排気系及び燃料系を含むエンジン1全体と、固形化剤を供給する噴霧ノズル16、固形化剤タンク41、噴霧ポンプ42などが固形化剤を固形化させる硫黄成分固形化手段として機能している。
【0070】
なお、本発明は上述した実施形態に制限されることはない。例えば、上述した実施形態における内燃機関(エンジン1)は筒内噴射型のリーンバーンガソリンエンジンであったが、本発明は、他の形態のガソリンエンジンやディーゼルエンジンに対しても適用が可能である。また、図3〜図6における実施形態においても、図2のような触媒構成を取ることが可能である。
【0071】
【発明の効果】
請求項1に記載の発明によれば、排気通路上に設置されたパティキュレートフィルタに排気ガスが流入する以前に排気ガス中の硫黄成分を固形化させてパティキュレートフィルタで捕集するので、NOx吸蔵還元型の排気浄化触媒のSOx被毒を抑止し、排気ガスの浄化をより一層向上させることができる。この結果、排気浄化触媒のSOx被毒の原因となる硫黄酸化物を効果的に固形化することができ、浄化性能の向上を確実に実現することができる。そして、重要なこととして、ここでは、固形化された硫黄成分と共にPMもパティキュレートフィルタに捕集され、捕集した硫黄成分を分解させる(が分解する)時にPMを低温で燃焼させて浄化させることができる。このため、排気浄化性能をさらに向上させることができ、排気浄化触媒の劣化を抑止することができる。
【0072】
更に、排気ガス温度が所定温度より高く、捕集した硫黄成分がパティキュレートフィルタから脱離すると思われる状況には、NOx吸蔵還元型排気浄化触媒への排気ガス流路を遮断して排気ガスが三元触媒への流路のみを通るようにすることによって、パティキュレートフィルタの目詰まり解消とNOx吸蔵還元型排気浄化触媒のSOx被毒回避を両立することができる。
【0073】
請求項に記載の発明によれば、硫黄成分固形化剤を予め燃料に含有させることで、燃料量に対する硫黄成分固形化剤の添加量の比率調整が容易となる。一方、請求項に記載の発明によれば、硫黄成分固形化剤を、燃料とは別に、吸気通路、燃焼室内、又は、排気通路において添加するので、固形化の反応に適した添加位置及び添加時期を選択できると共に、内燃機関の運転状態などに応じて添加量(添加したくない場合も含む)を調整することができる。何れの場合も、硫黄成分の固形化率向上に寄与する。状況に応じて最適な方を採用すればよい。
【0074】
請求項に記載の発明によれば、硫黄成分固形化剤中のアルカリ金属元素又はアルカリ土類金属元素として、NOx吸蔵還元型排気排気浄化触媒に当初から担持されていたアルカリ金属元素又はアルカリ土類金属元素よりも塩基性の強いものを用いるので、固形化されなかったガス状の硫黄酸化物が新たに排気浄化触媒に流入しても、排気浄化触媒に当初から担持されているアルカリ金属元素又はアルカリ土類金属元素と結合しにくくなる。その結果、元来の排気浄化触媒のNOx吸蔵能力は劣化せず、排気浄化触媒の初期性能が維持され、結果として排気浄化性能を高く維持することができる。
【0075】
請求項に記載の発明によれば、固形化された排気ガス中の硫黄成分を捕集するパティキュレートフィルタを排気通路上に有しているので、NOx吸蔵還元型の排気浄化触媒のSOx被毒を抑止し、排気ガスの浄化をより一層向上させることができる。この結果、排気浄化触媒のSOx被毒の原因となる硫黄酸化物を効果的に固形化することができ、浄化性能の向上を確実に実現することができる。そして、重要なこととして、ここでは、パティキュレートフィルタによって固形化された硫黄成分と共にPMも捕集され、捕集した硫黄成分を分解させる(が分解する)時にPMを低温で燃焼させて浄化させることができる。このため、排気浄化性能をさらに向上させることができ、排気浄化触媒の劣化を抑止することができる。
更に、排気ガス温度が所定温度より高く、捕集した硫黄成分がパティキュレートフィルタから脱離すると思われる状況には、切替手段が、 NOx 吸蔵還元型排気浄化触媒への排気ガス流路を遮断して排気ガスが三元触媒への流路のみを通るようにするため、パティキュレートフィルタの目詰まり解消と NOx 吸蔵還元型排気浄化触媒の SOx 被毒回避を両立することができる。
【図面の簡単な説明】
【図1】本発明の排気浄化方法の第一実施形態を実施する内燃機関及びその周辺を示す構成図である。
【図2】 NOx吸蔵還元型排気浄化触媒及び三元触媒の他の構成例を示す一部断面図である。
【図3】本発明の排気浄化方法の第二実施形態を実施する内燃機関及びその周辺を示す構成図である。
【図4】本発明の排気浄化方法の第三実施形態を実施する内燃機関及びその周辺を示す構成図である。
【図5】本発明の排気浄化方法の第四実施形態を実施する内燃機関及びその周辺を示す構成図である。
【図6】本発明の排気浄化方法の第五実施形態を実施する内燃機関及びその周辺を示す構成図である。
【符号の説明】
1…エンジン(内燃機関)、3…シリンダ、4…吸気通路、7…排気通路、8…排気バルブ、16…噴霧ノズル、27…始動時触媒、29…燃料タンク、39a…排気浄化触媒(NOx吸蔵還元型)、39b…三元触媒、41…固形化剤タンク、42…噴霧ポンプ、43…外部EGR通路、45…バイパス路、46…切替弁、47…パティキュレートフィルタ、48…温度センサ。

Claims (5)

  1. 内燃機関の排気ガスを浄化する内燃機関の排気浄化方法において、
    排気通路上に配されたパティキュレートフィルタよりも上流側で、前記内燃機関の燃焼後に硫黄酸化物を生成させる原因となる硫黄成分を、塩基性金属元素を含む硫黄成分固形化剤を用いて固形化し、
    固形化した硫黄成分を前記内燃機関の燃焼時に生成される粒子状物質と共に前記パティキュレートフィルタで捕集し、
    捕集した粒子状物質を前記硫黄成分固形化剤によって分解すると共に、
    排気ガス中の窒素酸化物、炭化水素、及び/又は、一酸化炭素を前記パティキュレートフィルタよりも下流側に配されたNOx吸蔵還元型排気浄化触媒で浄化し、
    前記パティキュレートフィルタの下流側には、前記 NOx 吸蔵還元型排気浄化触媒に加えて三元触媒も配設されており、
    前記パティキュレートフィルタへの排気ガス温度が所定温度よりも高い場合には、前記 NOx 吸蔵還元型排気浄化触媒への排気ガス流路を遮断し、排気ガスが前記三元触媒への流路のみを通るようにすることを特徴とする内燃機関の排気浄化方法。
  2. 前記硫黄成分固形化剤を、予め燃料に混合させておくことを特徴とする請求項に記載の内燃機関の排気浄化方法。
  3. 前記硫黄成分固形化剤を、燃料とは別に、吸気通路、燃焼室内、又は、排気通路において添加することを特徴とする請求項に記載の内燃機関の排気浄化方法。
  4. 前記NOx吸蔵還元型排気浄化触媒にはアルカリ金属元素又はアルカリ土類金属元素が担持され、かつ、前記硫黄成分固形化剤に含まれる塩基性の金属元素がアルカリ金属元素又はアルカリ土類金属元素であり、前記硫黄成分固形化剤中のアルカリ金属元素又はアルカリ土類金属元素として、前記排気浄化触媒に担持されたアルカリ金属元素又はアルカリ土類金属元素よりも塩基性の強いものを用いることを特徴とする請求項1に記載の内燃機関の排気浄化方法。
  5. 内燃機関の排気ガスを浄化する内燃機関の排気浄化装置において、
    排気通路上に配されて、塩基性金属元素を含む硫黄成分固形化剤を用いて固形化した硫黄成分を燃焼時に生成される粒子状物質と共に捕集するパティキュレートフィルタ
    前記パティキュレートフィルタよりも下流側に配されて、排気ガス中の窒素酸化物、炭化水素、及び/又は、一酸化炭素を浄化するNOx吸蔵還元型排気浄化触媒と、
    前記パティキュレートフィルタよりも下流側に配される三元触媒と、
    前記パティキュレートフィルタへの排気ガス温度が所定温度よりも高い場合には、前記 NOx 吸蔵還元型排気浄化触媒への排気ガス流路を遮断し、排気ガスが前記三元触媒への流路のみを通るようにする切替手段と、
    有していることを特徴とする内燃機関の排気浄化装置。
JP2002079296A 2002-03-20 2002-03-20 内燃機関の排気浄化方法及び浄化装置 Expired - Lifetime JP4196573B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079296A JP4196573B2 (ja) 2002-03-20 2002-03-20 内燃機関の排気浄化方法及び浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079296A JP4196573B2 (ja) 2002-03-20 2002-03-20 内燃機関の排気浄化方法及び浄化装置

Publications (2)

Publication Number Publication Date
JP2003278529A JP2003278529A (ja) 2003-10-02
JP4196573B2 true JP4196573B2 (ja) 2008-12-17

Family

ID=29228823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079296A Expired - Lifetime JP4196573B2 (ja) 2002-03-20 2002-03-20 内燃機関の排気浄化方法及び浄化装置

Country Status (1)

Country Link
JP (1) JP4196573B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925048A (zh) * 2014-04-28 2014-07-16 济南大学 一种吸滤液循环利用的汽车尾气吸收滤清器及其工作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2414690A (en) * 2004-06-04 2005-12-07 Ford Global Tech Llc An emission control apparatus for an engine
US7503166B2 (en) * 2005-11-18 2009-03-17 Ford Global Technologies, Llc Gasoline internal combustion engine with dynamic combustion mode allocation
JP2009114908A (ja) * 2007-11-05 2009-05-28 Honda Motor Co Ltd 内燃機関の排気浄化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925048A (zh) * 2014-04-28 2014-07-16 济南大学 一种吸滤液循环利用的汽车尾气吸收滤清器及其工作方法

Also Published As

Publication number Publication date
JP2003278529A (ja) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3899884B2 (ja) 内燃機関の排気浄化装置
US6684627B2 (en) Method of purifying exhaust gas from internal combustion engine
JP2000303878A (ja) 内燃機関の排気浄化装置
JP3460503B2 (ja) 筒内噴射型内燃機関の排気浄化装置
JP4196573B2 (ja) 内燃機関の排気浄化方法及び浄化装置
JP3798612B2 (ja) 内燃機関の排気浄化方法
JP3799984B2 (ja) 内燃機関の排気浄化方法
JP4374797B2 (ja) 内燃機関の排気浄化方法
JP4106913B2 (ja) 内燃機関の排気浄化装置
JP4380465B2 (ja) 水素燃料エンジンの制御装置
JP3799985B2 (ja) 内燃機関の排気浄化方法
JP3799986B2 (ja) 内燃機関の排気浄化方法
JP2004076682A (ja) 内燃機関の排気浄化装置
JP3525854B2 (ja) 内燃機関の排気浄化装置
JP2004144072A (ja) 内燃機関の排気浄化装置
JP3558015B2 (ja) 内燃機関の排気ガス浄化方法
JP4297762B2 (ja) 内燃機関の排気浄化装置
JP5142086B2 (ja) 排気浄化システム
JP2002047956A (ja) 内燃機関の排気浄化方法
JP2010025014A (ja) 内燃機関の排気ガス浄化装置
JP2000027714A (ja) 内燃機関
JP2004060537A (ja) 内燃機関の排気浄化装置及び排気浄化方法
JP3558046B2 (ja) 内燃機関の排気浄化装置
JP2002047957A (ja) 内燃機関
JP4192532B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4