JP2004144072A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2004144072A
JP2004144072A JP2003065370A JP2003065370A JP2004144072A JP 2004144072 A JP2004144072 A JP 2004144072A JP 2003065370 A JP2003065370 A JP 2003065370A JP 2003065370 A JP2003065370 A JP 2003065370A JP 2004144072 A JP2004144072 A JP 2004144072A
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
sulfur
sulfate
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003065370A
Other languages
English (en)
Other versions
JP4155065B2 (ja
Inventor
Masahiko Ishikawa
石川 雅彦
Masahito Tsuzuki
都築 雅人
Tatsumasa Sugiyama
杉山 辰優
Nobuki Kobayashi
小林 暢樹
Atsushi Tawara
田原 淳
Koichiro Nakatani
中谷 好一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003065370A priority Critical patent/JP4155065B2/ja
Publication of JP2004144072A publication Critical patent/JP2004144072A/ja
Application granted granted Critical
Publication of JP4155065B2 publication Critical patent/JP4155065B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】大気中に排出されるサルフェートの量を低減する。
【解決手段】燃焼室内で燃焼せしめられる混合気の空燃比がリーンに維持される内燃機関の排気通路内にパティキュレートフィルタを配置し、パティキュレートフィルタ上にNO触媒を担持させる。パティキュレートフィルタ上の堆積微粒子量を表す機関背圧Pが第1のしきい値P1よりも高くなると、パティキュレートフィルタ内に流入する排気ガスの空燃比をリーンに維持しながら、パティキュレートフィルタの温度を目標温度TPMまで上昇させ目標温度TPMに目標時間tPMだけ保持する微粒子酸化作用を行う。硫酸塩を形成することなくNO触媒内に蓄えられているSOの量を求め、硫酸塩を形成することなくNO触媒内に蓄えられているSOの量が多いときには少ないときに比べて、目標温度TPMを低くし、目標時間tPMを長くする。
【選択図】   図4

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
従来より、リーン空燃比のもとで継続して燃焼が行われる内燃機関の排気通路内に、流入する排気ガス中の微粒子を捕集するためのパティキュレートフィルタを配置し、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒をパティキュレートフィルタ上に担持させ、パティキュレートフィルタ上に捕集されている微粒子を酸化除去するために、パティキュレートフィルタ内に流入する排気ガスの空燃比をリーンに維持しながらパティキュレートフィルタの温度を目標温度まで上昇させ目標温度に目標時間だけ保持する微粒子酸化作用を行うようにした内燃機関の排気浄化装置が公知である(例えば、特許文献1参照)。
【0003】
また、NO触媒内にはNOだけでなくイオウ例えばSOが硫酸塩の形で蓄えられ、硫酸塩の形でNO触媒内に蓄えられているSOの量を減少させるためには、NO触媒の温度を例えば550℃以上に維持しかつNO触媒内に流入する排気ガスの空燃比を理論空燃比又はリッチに切り替えることが必要であることも知られている(例えば、特許文献1参照)。これによれば、NO触媒の温度が高くても流入排気ガスの空燃比がリーンであったり、流入排気ガスの空燃比がリッチであってもNO触媒の温度が低かったりすると、NO触媒からSOは排出されないということになる。
【0004】
【特許文献1】
特開2002−155724号公報
【特許文献2】
特開昭53−100314号公報
【特許文献3】
特開2000−87734号公報
【0005】
【発明が解決しようとする課題】
ところが、本願発明者によれば、NO触媒内に流入する排気ガスの平均空燃比がリーンに維持されていてもNO触媒の温度が高くなると、NO触媒から流出する排気ガス中のSO濃度がNO触媒内に流入する排気ガス中のSO濃度よりも一時的に高くなることが確認されている。このことは、NO触媒の温度が高くなるとNO触媒内に蓄えられているSOが排出され、このSOは硫酸塩を形成することなくNO触媒内に蓄えられているということを意味している。従って、パティキュレートフィルタの微粒子酸化作用を行うと、NO触媒から、硫酸塩を形成することなく蓄えられているSOが排出されるということになる。
【0006】
しかしながら、このとき流入排気ガスの空燃比がリーンであるので、硫酸塩を形成することなく蓄えられているSOがNO触媒内でサルフェートSOに酸化され、サルフェートSOの形でNO触媒から排出される恐れがある。NO触媒からSOのまま排出されたとしても、NO触媒下流に酸化能を有する触媒が配置されている場合には、この補助触媒内でサルフェートSOに酸化される恐れがある。
【0007】
そこで本発明の目的は、大気中に排出されるサルフェートの量を低減することができる内燃機関の排気浄化装置を提供することにある。
【0008】
【課題を解決するための手段】
前記課題を解決するために1番目の発明によれば、リーン空燃比のもとで継続して燃焼が行われる内燃機関の排気通路内に、流入する排気ガス中の微粒子を捕集するためのパティキュレートフィルタと、流入する排気ガスの空燃比がリーンのとき又はその温度が低いときに、流入する排気ガス中のイオウを、硫酸塩を形成することなく蓄え、流入する排気ガスの空燃比がリッチになるか又はその温度が高くなると硫酸塩を形成することなく蓄えているイオウの量が減少するイオウ蓄積剤とを配置し、パティキュレートフィルタ上に捕集されている微粒子を酸化除去するために、パティキュレートフィルタ内に流入する排気ガスの空燃比をリーンに維持しながら、パティキュレートフィルタの温度を目標温度まで上昇させ該目標温度に目標時間だけ保持する微粒子酸化作用を行うようにした内燃機関の排気浄化装置において、イオウ蓄積剤内に流入する排気ガスの空燃比がパティキュレートフィルタ内に流入する排気ガスの空燃比と一致するように、かつパティキュレートフィルタの温度が上昇するとイオウ蓄積剤の温度も上昇しパティキュレートフィルタの温度が低下するとイオウ蓄積剤の温度も低下するように、パティキュレートフィルタ及びイオウ蓄積剤が配置されており、硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量を求め、該硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に基づいて微粒子酸化作用を制御するようにしている。
【0009】
また、2番目の発明によれば1番目の発明において、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に基づいて前記微粒子酸化作用の目標温度を設定するようにしている。
【0010】
また、3番目の発明によれば2番目の発明において、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が多いときには少ないときに比べて低くなるように前記微粒子酸化作用の目標温度を設定している。
【0011】
また、4番目の発明によれば2番目の発明において、前記微粒子酸化作用の目標温度が低いときには高いときに比べて長くなるように前記微粒子酸化作用の目標時間を設定している。
【0012】
また、5番目の発明によれば2番目の発明において、前記微粒子酸化作用が開始されてからの経過時間が長くなると該経過時間が短いときに比べて高くなるように前記微粒子酸化作用の目標温度を設定している。
【0013】
また、6番目の発明によれば1番目の発明において、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に基づき、前記微粒子酸化作用時にイオウ蓄積剤内に流入する排気ガス中の酸素濃度を制御するようにしている。
【0014】
また、7番目の発明によれば6番目の発明において、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が多いときには少ないときに比べて低くなるように前記酸素濃度を制御している。
【0015】
また、8番目の発明によれば1番目の発明において、パティキュレートフィルタ上に捕集されている微粒子の量が求められ、該パティキュレートフィルタ上に捕集されている微粒子の量が予め定められた第1のしきい量を越えたときに前記微粒子酸化作用が行われるようになっており、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が予め定められた許容量よりも多いときには、該パティキュレートフィルタ上に捕集されている微粒子の量に関わらず、前記微粒子酸化作用を禁止するようにしている。
【0016】
また、9番目の発明によれば8番目の発明において、前記パティキュレートフィルタ上に捕集されている微粒子の量が、第1のしきい量よりも多く設定された第2のしきい量を越えたときには、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に関わらず、前記微粒子酸化作用を行うようにしている。
【0017】
また、10番目の発明によれば8番目の発明において、前記パティキュレートフィルタ上に捕集されている微粒子の量が第1のしきい量を越えたときに前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が前記許容量よりも多いときには、硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量を減少させた後に、前記微粒子酸化作用を行うようにしている。
【0018】
また、11番目の発明によれば1番目の発明において、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が予め定められた限界量を越えたときには、イオウ蓄積剤の温度を上昇させて前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量を減少させるようにしている。
【0019】
また、12番目の発明によれば11番目の発明において、イオウ蓄積剤の温度を上昇させるために前記微粒子酸化作用を行うようにしている。
【0020】
また、13番目の発明によれば1番目の発明において、前記イオウ蓄積剤を、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒から形成している。
【0021】
また、14番目の発明によれば1番目の発明において、前記イオウ蓄積剤が前記パティキュレートフィルタ上に担持されている。
【0022】
なお、本明細書では排気通路の或る位置よりも上流の排気通路、燃焼室、及び吸気通路内に供給された空気と炭化水素HC及び一酸化炭素COのような還元剤との比をその位置における排気ガスの空燃比と称している。
【0023】
【発明の実施の形態】
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。
【0024】
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。吸気ダクト13内にはステップモータ16により駆動されるスロットル弁17が配置され、更に吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するための冷却装置18が配置される。本発明による各実施例では、スロットル開度はほぼ全ての運転領域において最大開度に維持され、要求負荷Lがかなり小さくなると最大開度よりも小さくされ、要求負荷Lがゼロになると小さなアイドル開度にされる。
【0025】
一方、排気ポート10は排気マニホルド19及び排気管20を介して排気ターボチャージャ14の排気タービン21の入口に連結され、排気タービン21の出口は排気管20aを介してケーシング22aに連結される。ケーシング22a内には、排気ガス中の微粒子を捕集するためのパティキュレートフィルタ22bが収容され、パティキュレートフィルタ22b上には後述するようにNO触媒22が担持されている。また、触媒コンバータ22は排気管20bを介してケーシング23aに連結され、このケーシング23a内には酸化能を有する補助触媒23が収容される。この場合、NO触媒22内に流入する排気ガスの空燃比はパティキュレートフィルタ22b内に流入する排気ガスの空燃比に一致し、NO触媒22の温度もパティキュレートフィルタ22bの温度に一致する。
【0026】
更に図1を参照すると、排気マニホルド19とサージタンク12とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結され、EGR通路24内には電気制御式EGR制御弁25が配置される。また、EGR通路24周りにはEGR通路24内を流れるEGRガスを冷却するための冷却装置26が配置される。
【0027】
一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバ、いわゆるコモンレール27に連結される。このコモンレール27内へは電気制御式の吐出量可変な燃料ポンプ28から燃料が供給され、コモンレール27内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コモンレール27にはコモンレール27内の燃料圧を検出するための燃料圧センサ29が取付けられ、燃料圧センサ29の出力信号に基づいてコモンレール27内の燃料圧が目標燃料圧となるように燃料ポンプ28の吐出量が制御される。
【0028】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。燃料圧センサ29の出力信号は対応するAD変換器47を介して入力ポート45に入力される。パティキュレートフィルタ22b上流の排気管20aには排気管20a内の圧力、即ち機関背圧を検出するための圧力センサ49と、NO触媒22内に流入する排気ガスの空燃比AFPMを検出するための空燃比センサ50とが取り付けられ、NO触媒22下流の排気管20b内にはNO触媒22から流出した排気ガスの温度を検出するための温度センサ51が取り付けられる。これらセンサ48,49,50の出力電圧はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。ここで、空燃比センサ50は排気ガス中の酸素濃度を検出する酸素濃度センサから形成される。また、温度センサ51により検出される排気ガスの温度はNO触媒22の温度を表している。
【0029】
アクセルペダル52にはアクセルペダル52の踏み込み量に比例した出力電圧を発生する負荷センサ53が接続され、負荷センサ53の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ54が接続される。CPU44ではクランク角センサ54からの出力パルスに基づいて機関回転数Nが算出される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁駆動用ステップモータ16、EGR制御弁25、及び燃料ポンプ28にそれぞれ接続される。
【0030】
パティキュレートフィルタ22aの隔壁上即ち例えば隔壁の両側面及び細孔内壁面上には、NO触媒22がそれぞれ担持されている。このNO触媒22は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Pt、パラジウムPd、ロジウムRh、イリジウムIrのような貴金属とが担持されている。
【0031】
NO触媒は流入する排気ガスの平均空燃比がリーンのときにはNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量を減少させる蓄積還元作用を行う。
【0032】
NO触媒の蓄積還元作用の詳細なメカニズムについては完全には明らかにされていない。しかしながら、現在考えられているメカニズムを、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると次のようになる。
【0033】
即ち、NO触媒に流入する排気ガスの空燃比が理論空燃比よりもかなりリーンになると流入する排気ガス中の酸素濃度が大巾に増大し、酸素OがO 又はO2−の形で白金Ptの表面に付着する。一方、流入する排気ガス中のNOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、NOとなる(NO+O→NO+O、ここでOは活性酸素)。次いで生成されたNOの一部は白金Pt上でさらに酸化されつつNO触媒内に吸収されて酸化バリウムBaOと結合しながら、硝酸イオンNO の形でNO触媒内に拡散する。このようにしてNOがNO触媒内に蓄えられる。
【0034】
これに対し、NO触媒に流入する排気ガスの空燃比がリッチ又は理論空燃比になると、排気ガス中の酸素濃度が低下してNOの生成量が低下し、反応が逆方向(NO →NO+2O)に進み、斯くしてNO触媒内の硝酸イオンNO がNOの形でNO触媒から放出される。この放出されたNOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなるとNO触媒から次から次へとNOが放出されて還元され、NO触媒内に蓄えられているNOの量が次第に減少する。
【0035】
なお、硝酸塩を形成することなくNOを蓄え、NOを放出することなくNOを還元することも可能であると考えられている。また、活性酸素Oに着目すれば、NO触媒はNOの蓄積及び放出に伴って活性酸素Oを生成する活性酸素生成触媒と見ることもできる。
【0036】
一方、補助触媒23は本発明による各実施例では、アルカリ金属、アルカリ土類、及び希土類を含むことなく貴金属例えば白金Ptを含む貴金属触媒から形成される。しかしながら、補助触媒23を上述したNO触媒から形成してもよい。
【0037】
図1に示される内燃機関はリーン空燃比のもとでの燃焼が継続して行われており、従ってNO触媒22内に流入する排気ガスの空燃比はリーンに維持されている。その結果、排気ガス中のNOはNO触媒22内に蓄えられる。
【0038】
時間の経過と共にNO触媒22内の蓄積NO量は次第に増大する。そこで本発明による各実施例では、NO触媒22内の蓄積NO量を求め、NO触媒22内の蓄積NO量がNO許容量を越えたときには、NO触媒22内に蓄えられているNOを還元しNO触媒22内の蓄積NO量を減少させるために、NO触媒22内に流入する排気ガスの空燃比を一時的にリッチに切り替えるようにしている。
【0039】
ところで、排気ガス中にはイオウ分がSOの形で含まれており、NO触媒22内にはNOばかりでなくSOも蓄えられる。このSOのNO触媒22内への蓄積メカニズムはNOの蓄積メカニズムと同じであると考えられる。即ち、担体上に白金Pt及びバリウムBaを担持させた場合を例にとって簡単に説明すると、NO触媒22に流入する排気ガスの空燃比がリーンのときには上述したように酸素OがO 又はO2−の形で白金Ptの表面に付着しており、流入する排気ガス中のSOは白金Ptの表面に付着し白金Ptの表面上でO 又はO2−と反応し、SOとなる。次いで生成されたSOは白金Pt上でさらに酸化されつつNO触媒22内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO の形でNO触媒22内に拡散する。この硫酸イオンSO は次いでバリウムイオンBaと結合して硫酸塩BaSOを生成する。
【0040】
この硫酸塩BaSOは分解しにくく、NO触媒22内に流入する排気ガスの空燃比をただ単にリッチにしてもNO触媒22内の硫酸塩BaSOの量は減少しない。このため、時間が経過するにつれてNO触媒22内の硫酸塩BaSOの量が増大し、その結果NO触媒22が蓄えうるNOの量が減少することになる。
【0041】
ところが、NO触媒22の温度を要求温度例えば550℃以上に維持しつつNO触媒22に流入する排気ガスの平均空燃比を理論空燃比又はリッチにすると、NO触媒22内の硫酸塩BaSOが分解してSOの形でNO触媒22から放出される。この放出されたSOは排気ガス中に還元剤即ちHC,COが含まれているとこれらHC,COと反応してSOに還元せしめられる。このようにしてNO触媒22内に硫酸塩BaSOの形で蓄えられているSOの量が次第に減少し、このときNO触媒22からSOがSOの形で流出することがない。
【0042】
そこで本発明による第1実施例では、硫酸塩の形でNO触媒22内に蓄えられているSOの量を求め、このSOの量が予め定められたSO許容量を越えたときには、硫酸塩の形でNO触媒22内に蓄えられているSOの量を減少させるために、NO触媒22の温度を要求温度例えば550℃以上に維持しながら、NO触媒22に流入する排気ガスの平均空燃比をわずかばかりリッチに切り替えるSO処理を行うようにしている。
【0043】
NO触媒22の温度を上昇させる方法には様々な方法があり、例えばNO触媒22の上流端に電気ヒータを配置して電気ヒータによりNO触媒22又はNO触媒22に流入する排気ガスを加熱する方法や、NO触媒22上流の排気通路内に燃料を二次的に噴射してこの燃料を燃焼させることによりNO触媒22を加熱する方法や、内燃機関から排出される排気ガスの温度を上昇させてNO触媒22の温度を上昇させる方法がある。ここで、内燃機関から排出される排気ガスの温度を上昇させるために、例えば主燃料の噴射時期を遅角することもできるし、又は主燃料に加えて膨張行程中又は排気行程中に追加の燃料を噴射することもできる。
【0044】
一方、NO触媒22内に流入する排気ガスの空燃比を一時的にリッチに切り替えるにも様々な方法があり、例えば燃焼室5から排出される排気ガスの空燃比を一時的にリッチに切り替える方法や、NO触媒22上流の排気通路内に追加の燃料ないし還元剤を一時的に噴射する方法がある。ここで、燃焼室5から排出される排気ガスの空燃比をリッチに切り替えるために、例えば燃焼室5内で燃焼せしめられる混合気の空燃比をリッチに切り替えることもできるし、又は圧縮上死点付近で噴射される主燃料に加えて膨張行程中又は排気行程中に追加の燃料を噴射することもできる。
【0045】
本発明による第1実施例では、NO触媒22内のNOを還元しNO触媒22内の蓄積NO量を減少させるべきときには、図2の(I)に示されるように例えば排気行程に追加の燃料Qaが噴射される。これに対し、NO触媒22内の蓄積SO量を減少させるべきときには、図2の(II)に示されるように例えば膨張行程に追加の燃料Qaが噴射される。このようにすると、追加の燃料Qaのうち燃焼室5内又はNO触媒22内で燃焼する燃料量が多くなり、従ってNO触媒22の温度を高く維持しつつNO触媒22内に流入する排気ガスの空燃比をリッチにすることが可能になる。なお、図2においてQmは通常圧縮上死点付近で噴射される主燃料を示している。
【0046】
図3は硫酸塩の形でNO触媒22内に蓄えられているSOの量を減少させるためのSO処理ルーチンを示している。このルーチンは予め定められた処理サイクル時間毎の割り込みによって実行される。図3を参照すると、まずステップ100では、前回の処理サイクルから今回の処理サイクルまでに燃料噴射弁6から噴射された燃料量の合計値QFが積算値SQFに加算される(SQF=SQF+QF)。硫酸塩の形でNO触媒22内に蓄えられているSOの量は単位時間当たりNO触媒22内に流入するSOの量の積算値に依存し、単位時間当たりNO触媒22内に流入するSOの量は燃料噴射弁6から噴射された燃料の量に依存する。従って、一定時間内に燃料噴射弁6から噴射された燃料及び追加の燃料の合計量QFを積算して得られる積算値SQFは硫酸塩の形でNO触媒22内に蓄えられているSOの量を表していることになる。
【0047】
続くステップ101では積算値SQFが、上述したSO許容量に相当する許容値SQFAよりも大きいか否かが判別される。SQF≦SQFAのときには処理サイクルを終了し、QS>QSAのときには次いでステップ102に進み、NO触媒22の温度を例えば550℃以上に保持しながらNO触媒22内に流入する排気ガスの空燃比がわずかばかりリッチになるように、膨張行程に追加の燃料Qaが一定時間だけ噴射される。続くステップ103では積算値SQFがクリアされる。
【0048】
一方、排気ガス中に含まれる主に炭素の固体からなる微粒子はパティキュレートフィルタ22b上に捕集される。上述したように図1に示される内燃機関はリーン空燃比のもとでの燃焼が継続して行われており、また、NO触媒22は酸化能を有しているので、パティキュレートフィルタ22bの温度が微粒子を酸化しうる温度、例えば250℃以上に維持されていれば、パティキュレートフィルタ22b上で微粒子が酸化せしめられ除去される。
【0049】
この場合、上述したNO触媒22のNOの蓄積還元メカニズムによれば、NO触媒22内にNOが蓄えられるときにもNOが放出されるときにも活性酸素が生成される。この活性酸素は酸素Oよりも活性が高く、従ってパティキュレートフィルタ22b上に堆積している微粒子を速やかに酸化する。即ち、パティキュレートフィルタ22b上にNO触媒22を担持させると、パティキュレートフィルタ22b内に流入する排気ガスの空燃比がリーンであろうとリッチであろうとパティキュレートフィルタ22b上に堆積している微粒子が酸化される。このようにして微粒子が連続的に酸化される。
【0050】
ところが、パティキュレートフィルタ22bの温度が微粒子を酸化しうる温度に維持されなくなるか又は単位時間当たりにパティキュレートフィルタ22b内に流入する微粒子の量がかなり多くなると、パティキュレートフィルタ22b上に堆積する微粒子の量が次第に増大し、パティキュレートフィルタ22bの圧損が増大する。
【0051】
そこで本発明による第1実施例では、例えばパティキュレートフィルタ22b上の堆積微粒子量が微粒子許容量を越えたときには、パティキュレートフィルタ22bに流入する排気ガスの空燃比AFPMをリーンに維持しつつ、パティキュレートフィルタ22bの温度Tを目標温度TPMまで上昇し目標時間tPMだけ目標温度TPMに維持する微粒子酸化作用を行うようにしている。この微粒子酸化作用が行われると、パティキュレートフィルタ22b上に堆積した微粒子が着火燃焼せしめられ除去される。
【0052】
具体的に説明すると、本発明による第1実施例では、図4において矢印Xで示されるように、圧力センサ49により検出される機関背圧Pが第1のしきい値P1よりも高くなると、パティキュレートフィルタ22b上の堆積微粒子量が微粒子許容量を越えたと判断され、このとき微粒子酸化作用が開始される、即ちパティキュレートフィルタ22bの温度Tが上昇される。次いで、パティキュレートフィルタ22bの温度Tが目標温度TPMになるとこの目標温度TPMに維持され、次いで微粒子酸化作用が開始されてから目標時間tPMだけ経過すると、微粒子酸化作用が停止され、従ってパティキュレートフィルタ22bの温度Tが低下する。なお、図4に示される目標時間tPMは微粒子酸化作用が行われている時間であるけれども、パティキュレートフィルタ22bの温度Tが目標温度TPMに維持されている時間も表している。また、目標時間tPMはパティキュレートフィルタ22b上の堆積微粒子量を例えばほぼゼロにするのに必要な時間である。
【0053】
また、本発明による第1実施例では、微粒子酸化作用を行うべきときには、図2の(III)に示されるように例えば膨張行程に追加の燃料Qaが噴射される。このため、微粒子酸化作用時には、パティキュレートフィルタ22b内に流入する排気ガスの空燃比AFPMが若干小さくなる。この場合、パティキュレートフィルタ22bの温度Tが目標温度TPMよりも低いときには例えば追加の燃料Qaが増量され、内燃機関から排出される排気ガスの温度が上昇される。これに対し、パティキュレートフィルタ22bの温度Tが目標温度TPMよりも高いときには例えば追加の燃料Qaが減量され、内燃機関から排出される排気ガスの温度が低下される。このようにしてパティキュレートフィルタ22bの温度Tが目標温度TPMに維持される。
【0054】
ところが、冒頭で述べたように、NO触媒22内に流入する排気ガスの平均空燃比AFPMがリーンに維持されていてもNO触媒22の温度が高くなると、NO触媒22から流出する排気ガス中のSO濃度がNO触媒22内に流入する排気ガス中のSO濃度よりも一時的に高くなることが確認されている。このことは、NO触媒22の温度が高くなるとNO触媒22内に蓄えられているSOが排出され、このSOは硫酸塩を形成することなくNO触媒22内に蓄えられているということを意味している。
【0055】
このSOがどのような形でNO触媒22内に蓄えられているのかは必ずしも明らかではないが、次のようにして蓄えられていると考えられる。即ち、上述したようにNO触媒22内に流入する排気ガス中のSOはまず例えば白金Pt表面上に付着した後に硫酸塩の形で蓄えられる。硫酸塩の形でNO触媒22内に蓄えられているSOの量が少ないときには、白金Pt表面上に付着したSOは比較的容易に硫酸塩を形成する。ところが、硫酸塩の形で蓄えられているSOの量が多くなると、白金Pt表面上に付着しているSOが硫酸塩を形成しにくくなり、SOのまま白金Pt表面上に付着し続ける。このようにしてSOが硫酸塩を形成することなく蓄えられる。このように、NO触媒22内には硫酸塩の形で蓄えられるSOもあれば、硫酸塩を形成することなく蓄えられるSOもあるということになる。
【0056】
例えば微粒子酸化作用が開始されてNO触媒22の温度が例えば300℃以上になると、硫酸塩を形成することなく蓄えられているSOがNO触媒22から排出される。このときNO触媒22内に流入する排気ガスの空燃比がリーンに維持されているので、このSOはNO触媒22内か又は補助触媒23内でサルフェートSOに酸化される恐れがある。
【0057】
そこで本発明による各実施例では、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量を求め、このSOの量に基づいて微粒子酸化作用を制御するようにしている。
【0058】
硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量を直接求めることは困難である。ところが、硫酸塩の形でNO触媒22内に蓄えられているSOの量を表す積算値SQFが小さいときには、上述したように硫酸塩が形成されやすいので、硫酸塩を形成することなく蓄えられるSOの量が少なく、積算値SQFが大きくなると硫酸塩が形成されにくくなるので、硫酸塩を形成することなく蓄えられるSOの量が多くなると考えられる。
【0059】
そうすると、積算値SQFは硫酸塩の形でNO触媒22内に蓄えられているSOの量を表すだけでなく、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量も表しているということになる。なお、硫酸塩の形でNO触媒22内に蓄えられているSOの量がNO触媒22内に流入するSOの量に基づいて求められることを考えると、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量もNO触媒22内に流入するSOの量に基づいて求められるということになる。
【0060】
本発明による第1実施例では、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量を表すSOカウント値QSが積算値SQFとされる。その上で、このSOカウント値QSが許容値QSAよりも大きいときには、微粒子酸化作用を禁止するようにしている。
【0061】
即ち、図5において矢印Xで示されるように機関背圧Pが上述した第1のしきい値P1よりも高くなったときに、SOカウント値QSが許容値QSAよりも大きいときには、微粒子酸化作用が行われず、即ち微粒子酸化作用が禁止される。SOカウント値QSが大きく従って硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が多いときに微粒子酸化作用を行うと、高濃度のサルフェートが大気中に排出される恐れがあるからである。
【0062】
硫酸塩を形成することなくNO触媒22内に蓄えられているSOは、NO触媒22内に流入する排気ガスの空燃比がリッチになると、NO触媒22の温度が比較的低くても、SOの形でNO触媒22から排出される。また、NO触媒22内に流入する排気ガスの空燃比AFPMがリッチのときには、補助触媒23内に流入する排気ガスの空燃比もリッチになっており、従ってNO触媒22から排出されたSOが補助触媒23内でもサルフェートSOまで酸化されない。
【0063】
そこで、QS>QSAのときには図5に示されるように、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量を例えばほぼゼロまで減少させるために、NO触媒22内に流入する排気ガスの空燃比AFPMを一時的にリッチに切り替えるリッチ処理を行うようにしている。
【0064】
この場合、NO触媒22内に流入する排気ガスの空燃比AFPMが目標リッチ空燃比AFNSに目標時間tNSだけ保持される。これら目標リッチ空燃比AFNS及び目標時間tNSを一定とすることもできる。しかしながら、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が多いときには少ないときに比べて、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量を減少させるのに必要な還元剤の量は多くなる。従って、目標リッチ空燃比AFNS及び目標時間tNSをSOカウント値QSに応じて設定することもできる。即ち、図6(A)に示されるようにSOカウント値QSが大きいときには小さいときに比べて小さくなるように目標リッチ空燃比AFNSを設定することもできるし、図6(B)に示されるようにSOカウント値QSが大きいときには小さいときに比べて長くなるように目標時間tNSを設定することもできる。なお、リッチ処理を行うべきときには例えば図2の(I)に示されるように、排気行程に追加の燃料Qaが噴射される。
【0065】
また、リッチ処理では、NO触媒22の温度を上述したSO処理における要求温度以上にする必要がない。そこで本発明による第1実施例のリッチ処理では、NO触媒22の温度が要求温度を越えないようにしながらNO触媒22内に流入する排気ガスの空燃比AFPMを一時的にリッチに切り替えるようにしている。
【0066】
次いで、リッチ処理が完了すると、図5に示されるようにSOカウント値QSがクリアされ、次いで微粒子酸化作用が開始される。このとき、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量はほぼゼロであり、従って微粒子酸化作用を行ってもサルフェートSOが排出される恐れがない。
【0067】
このように機関背圧Pが第1のしきい値P1よりも高くなっても、SOカウント値QSが許容値QSAよりも大きければ、微粒子酸化作用が禁止される。しかしながら、機関背圧Pが第1のしきい値P1よりも高い第2のしきい値P2よりも高いときには、SOカウント値QSに関わらず、微粒子酸化作用を行うようにしている。パティキュレートフィルタ22b上の堆積微粒子量が多いときに微粒子酸化作用を禁止してリッチ処理を行うと、リッチ処理が完了した時点で堆積微粒子量がかなり多くなっている場合がある。この状態で微粒子酸化作用を行うと、パティキュレートフィルタ22b上の堆積微粒子がいっきに酸化し、その結果パティキュレートフィルタ22bの温度Tが局所的に急激に上昇してパティキュレートフィルタ22bが溶損する恐れがある。そこで、機関背圧Pが第2のしきい値P2よりも高く従ってパティキュレートフィルタ22b上の堆積微粒子量がかなり多いときには、微粒子酸化作用を禁止せず、直ちに堆積微粒子を酸化除去するようにしている。
【0068】
ところが、このときSOカウント値QSが大きい場合もあり、従ってこの状態で微粒子酸化作用を行うと高濃度のサルフェートSOが排出される恐れがあることは上述した通りである。そこで本発明による第1実施例では、微粒子酸化作用の制御パラメータをSOカウント値QSに基づいて設定するようにしている。
【0069】
即ち、本発明による第1実施例では図7に示されるように、SOカウント値QSが大きいときには小さいときに比べて、目標温度TPMが低くされている。硫酸塩を形成することなくNO触媒22内に蓄えられているSOが単位時間当たりにNO触媒22から排出される量は、NO触媒22の温度Tが高くなるにつれて多くなる。そこで、SOカウント値QSが大きく従って硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が多いときには、NO触媒22の温度Tが高くならないようにしている。
【0070】
目標温度TPMが低いときには、パティキュレートフィルタ22b上の堆積微粒子の酸化速度が低く、即ちパティキュレートフィルタ22b上のほぼ全ての堆積微粒子を酸化するために長時間を要する。そこで本発明による第1実施例では、目標温度TPMが低いときには高いときに比べて、目標時間tPMが長くなるようにしている。
【0071】
即ち、SOカウント値QSが小さいときには図8(A)に示されるように目標温度TPMが高くされ、目標時間tPMが短くされる。これに対し、SOカウント値QSが大きいときには図8(B)に示されるように目標温度TPMが低くされ、目標時間tPMが長くされる。このようにすると、大気中に高濃度のサルフェートSOが排出されるのを阻止しつつ、パティキュレートフィルタ22b上の堆積微粒子を確実に酸化除去することができる。
【0072】
ここで、目標温度TPMは図7に示されるように、下限値TL例えば300℃から上限値UL例えば650℃までの間に設定される。パティキュレートフィルタ22bの温度Tが下限値TLよりも低くなると微粒子の酸化が促進されず、上限値ULよりも高くなるとパティキュレートフィルタ22bが溶損する恐れがあるからである。
【0073】
また、機関背圧Pが第1のしきい値P1よりも高くなったときにSOカウント値QSが許容値QSAよりも小さいときにも、SOカウント値QSに基づいて目標温度TPM及び目標時間tPMが設定され、これら目標温度TPM及び目標時間tPMに従って微粒子酸化作用が行われる。
【0074】
図9は本発明による第1実施例の排気浄化制御ルーチンを示している。このルーチンは予め定められた処理サイクル時間毎の割り込みによって実行される。
【0075】
図9を参照すると、まずステップ110では、図3のステップ100で求められる積算値SQFがSOカウント値QSとされる。続くステップ111では、機関背圧Pが第1のしきい値P1よりも高いか否かが判別される。P≦P1のときには処理サイクルを終了し、P>P1のときには次いでステップ112に進み、SOカウント値QSが許容値QSAよりも大きいか否かが判別される。QS≦QSAのときには次いでステップ113に進み、微粒子酸化作用ルーチンが実行される。この微粒子酸化作用ルーチンは図10に示されている。
【0076】
これに対し、QS>QSAのときには次いでステップ114に進み、機関背圧Pが第2のしきい値P2よりも高いか否かが判別される。P>P2のときには次いでステップ113に進み、微粒子酸化作用ルーチンが実行される。P≦P2のときには次いでステップ115に進んでリッチ処理ルーチンが実行される。このリッチ処理ルーチンは図11に示されている。次いでステップ113に進んで微粒子酸化作用ルーチンが実行される。
【0077】
微粒子酸化作用ルーチンを示す図10を参照すると、まずステップ120では図7のマップから目標温度TPMが算出され、続くステップ121では図7のマップから目標時間tPMが算出され、続くステップ122では例えば膨張行程中に追加の燃料Qaが噴射される。続くステップ123では微粒子酸化作用が開始されてから目標時間tPMだけ経過したか否かが判別される。目標時間tPMだけ経過していないときにはステップ122に戻り、目標時間tPMだけ経過すると処理サイクルを終了する。
【0078】
リッチ処理ルーチンを示す図11を参照すると、まずステップ130では図6(A)のマップから目標リッチ空燃比AFNSが算出され、続くステップ131では図6(B)のマップから目標時間tNSが算出され、続くステップ132では追加の燃料Qaが排気行程に噴射される。続くステップ133ではリッチ処理が開始されてから目標時間tNSだけ経過したか否かが判別される。目標時間tNSだけ経過していないときにはステップ132に戻り、目標時間tNSだけ経過するとステップ134に進んでSOカウント値QSをクリアする。
【0079】
次に、本発明による第2実施例を説明する。
【0080】
上述したリッチ処理が直前に行われたときは別として、微粒子酸化作用が開始されてからの経過時間が長くなるにつれて、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が次第に減少する。このように硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が少なくなったときには、パティキュレートフィルタ22bの温度Tが高くなっても、高濃度サルフェートSOが排出されない。
【0081】
そこで本発明による第2実施例では、微粒子酸化作用が開始されてからの経過時間が長くなると経過時間が短いときに比べて高くなるように微粒子酸化作用の目標温度TPMを設定している。即ち、図12に示される例では、微粒子酸化作用が時間dtだけ行われる毎に、目標温度TPMが初期値TPMiからdTだけステップ状に増大せしめられる。この初期値TPMiは例えば図7のマップから求めることができる。なお、目標温度TPMが上限温度TMAXまで上昇されると、上限温度TMAXに保持される。
【0082】
図13は本発明による第2実施例の微粒子酸化作用ルーチンを示している。この微粒子酸化作用ルーチンは図9のステップ113で実行される。
【0083】
図13を参照すると、まずステップ140では図7のマップからTPMが算出され、このTPMが目標温度の初期値TPMiとされる。続くステップ141では図7のマップから目標時間tPMが算出され、続くステップ142では例えば膨張行程中に追加の燃料Qaが噴射される。続くステップ143では微粒子酸化作用が開始されてから目標時間tPMだけ経過したか否かが判別される。目標時間tPMだけ経過していないときには次いでステップ144に進み、例えば図12のマップに従って目標温度TPMを更新した後にステップ142に戻る。次いで、目標時間tPMだけ経過すると処理サイクルを終了する。
【0084】
排気浄化装置のその他の構成及び作用は上述した第1実施例と同様であるので、説明を省略する。
【0085】
次に、本発明による第3実施例を説明する。
【0086】
NO触媒22から排出されるSOがサルフェートSOの形で排出されるのは上述したように、NO触媒22内のSOがサルフェートSOに酸化されるからであると考えられる。そうすると、微粒子酸化作用が行われてもこのときサルフェートSOへの酸化を抑制できれば、NO触媒22から排出されるサルフェートSOの量を抑制できることになる。一方、サルフェートSOへの酸化の生じ易さはNO触媒22内に流入する排気ガス中の酸素濃度に依存する。
【0087】
そこで本発明による第3実施例では、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が多いときに少ないときに比べて低くなるように、微粒子酸化作用時にNO触媒22内に流入する排気ガス中の酸素濃度を制御している。具体的には、SOカウント値QSが大きいときには小さいときに比べて小さくなるように目標リーン空燃比AFLが設定され、微粒子酸化作用時にNO触媒22内に流入する排気ガスの空燃比AFPMがこの目標リーン空燃比AFLに一致するように制御される。この場合、流入排気ガスの空燃比AFPMが目標リーン空燃比AFLよりもリーンのときには例えば追加の燃料Qaが増量され、流入排気ガスの空燃比AFPMが目標リーン空燃比AFLよりもリッチのときには例えば追加の燃料Qaが減量される。
【0088】
その結果、サルフェートSOの生成を抑制しながら、パティキュレートフィルタ22b上の堆積微粒子を確実に酸化除去することができる。なお、本発明による第3実施例では、微粒子酸化作用の目標温度TPM及び目標時間tPMがそれぞれ一定値とされる。
【0089】
図15は本発明による第3実施例による微粒子酸化作用ルーチンを示している。この微粒子酸化作用ルーチンは図9のステップ113で実行される。
【0090】
図15を参照すると、まずステップ150では図14のマップから目標リーン空燃比AFPMが算出され、続くステップ151では例えば膨張行程中に追加の燃料Qaが噴射される。続くステップ152では微粒子酸化作用が開始されてから目標時間tPMだけ経過したか否かが判別される。目標時間tPMだけ経過していないときにはステップ151に戻り、目標時間tPMだけ経過すると処理サイクルを終了する。
【0091】
なお、本発明による第3実施例においても、図12及び図13を参照して説明した実施例におけるように、微粒子酸化作用の経過時間が長くなるにつれて目標リーン空燃比AFLが大きくなるようにしてもよい。
【0092】
排気浄化装置のその他の構成及び作用は上述した第1実施例と同様であるので、説明を省略する。
【0093】
次に、本発明による第4実施例を説明する。
【0094】
まず、図16のSO処理ルーチンを参照して本発明による第4実施例のSO処理を説明する。このルーチンは予め定められた処理サイクル時間毎の割り込みによって実行される。
【0095】
図16を参照すると、まずステップ160では、前回の処理サイクルから今回の処理サイクルまでに燃料噴射弁6から噴射された燃料量の合計値QFが積算値SQFに加算される(SQF=SQF+QF)。この積算値SQFは硫酸塩の形でNO触媒22内に蓄えられているSOの量を表している。続くステップ161では積算値SQFがSO許容量に相当する許容値SQFAよりも大きいか否かが判別される。SQF≦SQFAのときには処理サイクルを終了し、QS>QSAのときには次いでステップ162に進み、要求負荷Lが機関回転数Nの関数として定められている設定負荷X(N)よりも高いか否かが判別される。L≦X(N)のときには処理サイクルを終了する。これに対し、L>X(N)のときには次いでステップ163に進み、NO触媒22の温度を例えば550℃以上に保持しながらNO触媒22内に流入する排気ガスの空燃比がわずかばかりリッチになるように、膨張行程に追加の燃料Qaが一定時間だけ噴射される。続くステップ164では積算値SQFがクリアされる。
【0096】
即ち、図17に示されるように、要求負荷Lが設定負荷X(N)よりも低い低負荷運転時には燃焼温度が低いので、NO触媒22の温度を例えば550℃以上に保持するために多量の追加の燃料Qaが必要になる。これに対して、要求負荷Lが設定負荷X(N)よりも高い高負荷運転時には燃焼温度が高いので多量の追加の燃料Qaを要しない。
【0097】
そこで本発明による第4実施例では、SQF>SQFAとなったときにL≦X(N)のときにはSO処理を行わず、SQF>SQFAとなったときにL>X(N)のときにはSO処理を行うようにしている。このようにすると、NO触媒22から硫酸塩の形でNO触媒22内に蓄えられているSOの量を減少させるために必要な燃料量を低減することができる。
【0098】
このようなSO処理が行われると、硫酸塩の形でNO触媒22内に蓄えられているSOの量だけでなく、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量も減少し、しかもこのときNO触媒22内に流入する排気ガスの空燃比がリッチであるのでサルフェートSOが生成されない。
【0099】
さて、本発明による第4実施例でも、機関背圧Pがしきい値PAを越えたときに微粒子酸化作用が行われる。しかしながら、このしきい値PAは先のSO処理が行われてからの経過時間tSRに応じて設定され、図18に示される例では経過時間tSRが長いときには短いときに比べて小さくなるように設定されている。
【0100】
詳しく説明すると、図19(A)及び(B)に示されるように機関背圧Pがしきい値PAを越えると矢印Zで示されるように微粒子酸化作用が行われる。ここで、経過時間tSRが短く従ってしきい値PAが大きい場合には図19(A)に示されるように、先の微粒子酸化作用が行われてから次の微粒子酸化作用が行われるまでの時間間隔INTが長くなり、微粒子酸化作用の実行頻度が低くなる。これに対し、経過時間tSRが長く従ってしきい値PAが小さい場合には図19(B)に示されるように、時間間隔INTが短くなり、微粒子酸化作用の実行頻度が高くなる。
【0101】
上述したように、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が多いときに微粒子酸化作用を行うと、高濃度のサルフェートSOが大気中に排出される恐れがある。しかしながら、逆に言えば、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が少ないうちに微粒子酸化作用を行えば、高濃度のサルフェートSOが排出されないということになる。これが本発明による第4実施例の基本的な考え方である。
【0102】
SO処理が行われない限り、硫酸塩の形でNO触媒22内に蓄えられているSOの量は減少せず、従って経過時間tSRが長くなるにつれて、硫酸塩の形でNO触媒22内に蓄えられているSOの量が次第に増大する。このように、経過時間tSRは硫酸塩の形でNO触媒22内に蓄えられているSOの量を表している。
【0103】
一方、上述したように、硫酸塩の形でNO触媒22内に蓄えられているSOの量が多いときには少ないときに比べて、SOが硫酸塩を形成することなくNO触媒22内に蓄えられやすく、従って硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が速やかに増大すると考えられる。
【0104】
従って、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が少ないうちに微粒子酸化作用を行うためには、硫酸塩の形でNO触媒22内に蓄えられているSOの量が多いときには少ないときに比べて、微粒子酸化作用の時間間隔INTを短くする必要がある。
【0105】
そこで本発明による第4実施例では、経過時間tSRが長いときには短いときに比べてしきい値PAが小さくなるようにしているのである。
【0106】
図16を参照して上述したように本発明による第4実施例では、硫酸塩の形でNO触媒22内に蓄えられているSOの量がSO許容量を越えたとしても、L≦X(N)である機関低負荷運転が行われる限りSO処理が行われない。このため、硫酸塩の形でNO触媒22内に蓄えられているSOの量がかなり多くなる場合があり、このとき硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量もかなり多くなる恐れがある。
【0107】
このような場合でも本発明による第4実施例では、微粒子酸化作用の頻度が高められているので、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が多くなるのが阻止されており、従って高濃度のサルフェートSOが排出されるのが阻止されている。
【0108】
微粒子酸化作用が行われたときに大気中に排出されるサルフェートSOの量は微粒子酸化作用が開始される時点で硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量に応じて定まり、このSOの量はしきい値PAに応じて定まる。本発明による第4実施例では、微粒子酸化作用が行われたときに大気中に排出されるサルフェートSOの量が許容限界以下に維持されるようにしきい値PAが予め設定されている。
【0109】
ところで、このように微粒子酸化作用が開始される時点で硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量に着目すると、本発明による第4実施例では、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が或る一定量を越えたときに微粒子酸化作用を行うようにしていると見ることもできる。この場合の一定量は上述したサルフェートSOについての許容限界に相当するものであり、以下では限界量と称することにする。
【0110】
硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量がこの限界量を越えたときに、SO処理や図5及び図6を参照して説明したリッチ処理を行うようにしてもよい。しかしながら、燃料消費率や機関背圧のことを考えると、微粒子酸化作用が好ましい。
【0111】
従って、本発明による第4実施例では一般的に言うと、硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量が予め定められた限界量を越えたときには、NO触媒22の温度を上昇させて硫酸塩を形成することなくNO触媒22内に蓄えられているSOの量を減少させるようにしているということになる。
【0112】
図20は本発明による第4実施例の排気浄化制御ルーチンを示している。このルーチンは予め定められた処理サイクル時間毎の割り込みによって実行される。
【0113】
図20を参照すると、まずステップ170では、前回のSO処理が行われてからの経過時間tSRが算出される。続くステップ171では、図18のマップからしきい値PAが算出される。続くステップ172では、機関背圧Pがしきい値PAよりも高いか否かが判別される。P≦PAのときには処理サイクルを終了し、P>PAのときには次いでステップ173に進み、例えば図10に示される微粒子酸化作用ルーチンが実行される。
【0114】
排気浄化装置のその他の構成及び作用は上述した第1実施例と同様であるので、説明を省略する。
【0115】
これまで述べてきた本発明による各実施例では、NO触媒22がパティキュレートフィルタ22b上に担持されている。しかしながら、NO触媒22をパティキュレートフィルタ22bとは別個に形成してパティキュレートフィルタ22b下流の排気通路内に配置することもできる。また、上述した本発明による各実施例のように、内燃機関から排出される排気ガスの空燃比及び温度を制御することにより、NO触媒22又はパティキュレートフィルタ22b内に流入する排気ガスの空燃比及び温度を制御するようにした場合には、NO触媒22をパティキュレートフィルタ22b上流の排気通路内に配置するようにしてもよい。
【0116】
【発明の効果】
大気中に排出されるサルフェートの量を低減することができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】追加の燃料を説明するための図である。
【図3】SO処理ルーチンを示すフローチャートである。
【図4】微粒子酸化作用を説明するための図である。
【図5】本発明による第1実施例を説明するための図である。
【図6】目標リッチ空燃比AFNS及び目標時間tNSを示す線図である。
【図7】目標温度TPM及び目標時間tPMを示す線図である。
【図8】温度変化の違いを説明するための図である。
【図9】排気浄化制御ルーチンを実行するためのフローチャートである。
【図10】微粒子酸化作用ルーチンを実行するためのフローチャートである。
【図11】リッチ処理ルーチンを実行するためのフローチャートである。
【図12】目標温度TPMの変化を示す線図である。
【図13】本発明による第2実施例の微粒子酸化作用ルーチンを実行するためのフローチャートである。
【図14】目標リーン空燃比AFLを示す線図である。
【図15】本発明による第3実施例の微粒子酸化作用ルーチンを実行するためのフローチャートである。
【図16】本発明による第4実施例のSO処理ルーチンを実行するためのフローチャートである。
【図17】設定負荷X(N)を示す線図である。
【図18】しきい値PAを示す線図である。
【図19】時間間隔INTを説明するための図である。
【図20】本発明による第4実施例の排気浄化制御ルーチンを実行するためのフローチャートである。
【符号の説明】
1…機関本体
20a,20b…排気管
22…NO触媒
22a…パティキュレートフィルタ

Claims (14)

  1. リーン空燃比のもとで継続して燃焼が行われる内燃機関の排気通路内に、流入する排気ガス中の微粒子を捕集するためのパティキュレートフィルタと、流入する排気ガスの空燃比がリーンのとき又はその温度が低いときに、流入する排気ガス中のイオウを、硫酸塩を形成することなく蓄え、流入する排気ガスの空燃比がリッチになるか又はその温度が高くなると硫酸塩を形成することなく蓄えているイオウの量が減少するイオウ蓄積剤とを配置し、パティキュレートフィルタ上に捕集されている微粒子を酸化除去するために、パティキュレートフィルタ内に流入する排気ガスの空燃比をリーンに維持しながら、パティキュレートフィルタの温度を目標温度まで上昇させ該目標温度に目標時間だけ保持する微粒子酸化作用を行うようにした内燃機関の排気浄化装置において、イオウ蓄積剤内に流入する排気ガスの空燃比がパティキュレートフィルタ内に流入する排気ガスの空燃比と一致するように、かつパティキュレートフィルタの温度が上昇するとイオウ蓄積剤の温度も上昇しパティキュレートフィルタの温度が低下するとイオウ蓄積剤の温度も低下するように、パティキュレートフィルタ及びイオウ蓄積剤が配置されており、硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量を求め、該硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に基づいて微粒子酸化作用を制御するようにした内燃機関の排気浄化装置。
  2. 前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に基づいて前記微粒子酸化作用の目標温度を設定するようにした請求項1に記載の内燃機関の排気浄化装置。
  3. 前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が多いときには少ないときに比べて低くなるように前記微粒子酸化作用の目標温度を設定する請求項2に記載の内燃機関の排気浄化装置。
  4. 前記微粒子酸化作用の目標温度が低いときには高いときに比べて長くなるように前記微粒子酸化作用の目標時間を設定する請求項2に記載の内燃機関の排気浄化装置。
  5. 前記微粒子酸化作用が開始されてからの経過時間が長くなると該経過時間が短いときに比べて高くなるように前記微粒子酸化作用の目標温度を設定する請求項2に記載の内燃機関の排気浄化装置。
  6. 前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に基づき、前記微粒子酸化作用時にイオウ蓄積剤内に流入する排気ガス中の酸素濃度を制御するようにした請求項1に記載の内燃機関の排気浄化装置。
  7. 前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が多いときには少ないときに比べて低くなるように前記酸素濃度を制御する請求項6に記載の内燃機関の排気浄化装置。
  8. パティキュレートフィルタ上に捕集されている微粒子の量が求められ、該パティキュレートフィルタ上に捕集されている微粒子の量が予め定められた第1のしきい量を越えたときに前記微粒子酸化作用が行われるようになっており、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が予め定められた許容量よりも多いときには、該パティキュレートフィルタ上に捕集されている微粒子の量に関わらず、前記微粒子酸化作用を禁止するようにした請求項1に記載の内燃機関の排気浄化装置。
  9. 前記パティキュレートフィルタ上に捕集されている微粒子の量が、第1のしきい量よりも多く設定された第2のしきい量を越えたときには、前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量に関わらず、前記微粒子酸化作用を行うようにした請求項8に記載の内燃機関の排気浄化装置。
  10. 前記パティキュレートフィルタ上に捕集されている微粒子の量が第1のしきい量を越えたときに前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が前記許容量よりも多いときには、硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量を減少させた後に、前記微粒子酸化作用を行うようにした請求項8に記載の内燃機関の排気浄化装置。
  11. 前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量が予め定められた限界量を越えたときには、イオウ蓄積剤の温度を上昇させて前記硫酸塩を形成することなくイオウ蓄積剤内に蓄えられているイオウの量を減少させるようにした請求項1に記載の内燃機関の排気浄化装置。
  12. イオウ蓄積剤の温度を上昇させるために前記微粒子酸化作用を行うようにした請求項11に記載の内燃機関の排気浄化装置。
  13. 前記イオウ蓄積剤を、流入する排気ガスの空燃比がリーンのときに流入する排気ガス中のNOを蓄え、流入する排気ガスの空燃比が低下したときに排気ガス中に還元剤が含まれていると蓄えているNOを還元して蓄えているNOの量が減少するNO触媒から形成した請求項1に記載の内燃機関の排気浄化装置。
  14. 前記イオウ蓄積剤が前記パティキュレートフィルタ上に担持されている請求項1に記載の内燃機関の排気浄化装置。
JP2003065370A 2002-08-30 2003-03-11 内燃機関の排気浄化装置 Expired - Fee Related JP4155065B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065370A JP4155065B2 (ja) 2002-08-30 2003-03-11 内燃機関の排気浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002255245 2002-08-30
JP2003065370A JP4155065B2 (ja) 2002-08-30 2003-03-11 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2004144072A true JP2004144072A (ja) 2004-05-20
JP4155065B2 JP4155065B2 (ja) 2008-09-24

Family

ID=32472884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065370A Expired - Fee Related JP4155065B2 (ja) 2002-08-30 2003-03-11 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP4155065B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120285139A1 (en) * 2011-05-09 2012-11-15 Stephen Mark Geyer Emissions control diagnostic method and system
JPWO2012117566A1 (ja) * 2011-02-28 2014-07-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2014148249A1 (ja) * 2013-03-21 2014-09-25 トヨタ自動車株式会社 内燃機関の制御装置
CN104981599A (zh) * 2013-02-06 2015-10-14 丰田自动车株式会社 内燃机的控制装置
JP2015209838A (ja) * 2014-04-30 2015-11-24 株式会社クボタ ディーゼルエンジンの排気処理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012117566A1 (ja) * 2011-02-28 2014-07-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
US20120285139A1 (en) * 2011-05-09 2012-11-15 Stephen Mark Geyer Emissions control diagnostic method and system
US8813479B2 (en) * 2011-05-09 2014-08-26 General Electric Company Emissions control diagnostic method and system
CN104981599A (zh) * 2013-02-06 2015-10-14 丰田自动车株式会社 内燃机的控制装置
EP2955356A4 (en) * 2013-02-06 2016-03-23 Toyota Motor Co Ltd INTERNAL COMBUSTION ENGINE CONTROL DEVICE
US9702311B2 (en) 2013-02-06 2017-07-11 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
KR101764041B1 (ko) * 2013-02-06 2017-08-14 도요타지도샤가부시키가이샤 내연 기관의 제어 장치
WO2014148249A1 (ja) * 2013-03-21 2014-09-25 トヨタ自動車株式会社 内燃機関の制御装置
JP2014185527A (ja) * 2013-03-21 2014-10-02 Toyota Motor Corp 内燃機関の制御装置
JP2015209838A (ja) * 2014-04-30 2015-11-24 株式会社クボタ ディーゼルエンジンの排気処理装置

Also Published As

Publication number Publication date
JP4155065B2 (ja) 2008-09-24

Similar Documents

Publication Publication Date Title
EP0984146A2 (en) Exhaust discharge control device for internal combustion engine
JP3702924B2 (ja) 排気浄化装置
KR20050110636A (ko) 내연기관의 배기 정화 방법 및 배기 정화 장치
EP1176298A2 (en) Emission control system and method for internal combustion engine
JP3353650B2 (ja) 内燃機関の触媒被毒再生装置
JP4556364B2 (ja) 内燃機関の排気浄化装置
JP4155065B2 (ja) 内燃機関の排気浄化装置
JP4357918B2 (ja) 内燃機関の排気浄化装置
JP3624747B2 (ja) 内燃機関の排気浄化装置
JPH06346768A (ja) 内燃機関の排気浄化装置
JP2003035132A (ja) 内燃機関の排気浄化装置
JP4106913B2 (ja) 内燃機関の排気浄化装置
JP3896920B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
JP2004076682A (ja) 内燃機関の排気浄化装置
JP2010127182A (ja) 内燃機関の排気浄化装置
JP4321117B2 (ja) 内燃機関の排気浄化装置
JP4297762B2 (ja) 内燃機関の排気浄化装置
JP3414323B2 (ja) 内燃機関の排気浄化装置
JP4007059B2 (ja) 内燃機関の排気浄化装置
JP4192532B2 (ja) 内燃機関の排気浄化装置
JP2005016387A (ja) 内燃機関の排気浄化方法
JP3496572B2 (ja) 内燃機関の排気浄化装置
JP4327584B2 (ja) 内燃機関の排気浄化装置
JP2004100586A (ja) 内燃機関の排気浄化装置
JP2004232555A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees