JP4193064B2 - Polyurethane elastic fiber mixed knitted fabric and method for producing the same - Google Patents
Polyurethane elastic fiber mixed knitted fabric and method for producing the same Download PDFInfo
- Publication number
- JP4193064B2 JP4193064B2 JP2004558453A JP2004558453A JP4193064B2 JP 4193064 B2 JP4193064 B2 JP 4193064B2 JP 2004558453 A JP2004558453 A JP 2004558453A JP 2004558453 A JP2004558453 A JP 2004558453A JP 4193064 B2 JP4193064 B2 JP 4193064B2
- Authority
- JP
- Japan
- Prior art keywords
- polyurethane elastic
- elastic fiber
- knitted fabric
- yarn
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000004177 elastic tissue Anatomy 0.000 title claims description 296
- 239000004814 polyurethane Substances 0.000 title claims description 283
- 229920002635 polyurethane Polymers 0.000 title claims description 281
- 239000004744 fabric Substances 0.000 title claims description 176
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000002844 melting Methods 0.000 claims description 98
- 238000009940 knitting Methods 0.000 claims description 79
- 230000008018 melting Effects 0.000 claims description 62
- 150000002009 diols Chemical class 0.000 claims description 49
- 229920000642 polymer Polymers 0.000 claims description 47
- 238000009987 spinning Methods 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 37
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 36
- 229920000570 polyether Polymers 0.000 claims description 36
- 230000014759 maintenance of location Effects 0.000 claims description 25
- 239000000835 fiber Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 20
- 230000004927 fusion Effects 0.000 claims description 19
- 238000009998 heat setting Methods 0.000 claims description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 238000002074 melt spinning Methods 0.000 claims description 14
- 238000003780 insertion Methods 0.000 claims description 13
- 230000037431 insertion Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 9
- 238000009941 weaving Methods 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 42
- 230000000052 comparative effect Effects 0.000 description 31
- 238000012360 testing method Methods 0.000 description 28
- 125000005442 diisocyanate group Chemical group 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 20
- 229920001778 nylon Polymers 0.000 description 16
- 239000004677 Nylon Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 15
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 14
- 238000005406 washing Methods 0.000 description 13
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 12
- 230000008520 organization Effects 0.000 description 12
- 238000003756 stirring Methods 0.000 description 10
- -1 pentyl glycol Chemical compound 0.000 description 9
- 150000004985 diamines Chemical class 0.000 description 8
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 229920005862 polyol Polymers 0.000 description 8
- 150000003077 polyols Chemical class 0.000 description 8
- 238000009958 sewing Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 239000012948 isocyanate Substances 0.000 description 7
- 150000002513 isocyanates Chemical class 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- BJZYYSAMLOBSDY-QMMMGPOBSA-N (2s)-2-butoxybutan-1-ol Chemical compound CCCCO[C@@H](CC)CO BJZYYSAMLOBSDY-QMMMGPOBSA-N 0.000 description 5
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 5
- 239000004970 Chain extender Substances 0.000 description 4
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 150000002334 glycols Chemical class 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- 239000004611 light stabiliser Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000003739 neck Anatomy 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- ZMWRRFHBXARRRT-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC(C(C)(C)CC)=CC(N2N=C3C=CC=CC3=N2)=C1O ZMWRRFHBXARRRT-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 101001006782 Homo sapiens Kinesin-associated protein 3 Proteins 0.000 description 2
- 101000753286 Homo sapiens Transcription intermediary factor 1-beta Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 102100022012 Transcription intermediary factor 1-beta Human genes 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 2
- 238000009954 braiding Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- BIIBYWQGRFWQKM-JVVROLKMSA-N (2S)-N-[4-(cyclopropylamino)-3,4-dioxo-1-[(3S)-2-oxopyrrolidin-3-yl]butan-2-yl]-2-[[(E)-3-(2,4-dichlorophenyl)prop-2-enoyl]amino]-4,4-dimethylpentanamide Chemical compound CC(C)(C)C[C@@H](C(NC(C[C@H](CCN1)C1=O)C(C(NC1CC1)=O)=O)=O)NC(/C=C/C(C=CC(Cl)=C1)=C1Cl)=O BIIBYWQGRFWQKM-JVVROLKMSA-N 0.000 description 1
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- XYXJKPCGSGVSBO-UHFFFAOYSA-N 1,3,5-tris[(4-tert-butyl-3-hydroxy-2,6-dimethylphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1CN1C(=O)N(CC=2C(=C(O)C(=CC=2C)C(C)(C)C)C)C(=O)N(CC=2C(=C(O)C(=CC=2C)C(C)(C)C)C)C1=O XYXJKPCGSGVSBO-UHFFFAOYSA-N 0.000 description 1
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- STEYNUVPFMIUOY-UHFFFAOYSA-N 4-Hydroxy-1-(2-hydroxyethyl)-2,2,6,6-tetramethylpiperidine Chemical compound CC1(C)CC(O)CC(C)(C)N1CCO STEYNUVPFMIUOY-UHFFFAOYSA-N 0.000 description 1
- HFGHRUCCKVYFKL-UHFFFAOYSA-N 4-ethoxy-2-piperazin-1-yl-7-pyridin-4-yl-5h-pyrimido[5,4-b]indole Chemical compound C1=C2NC=3C(OCC)=NC(N4CCNCC4)=NC=3C2=CC=C1C1=CC=NC=C1 HFGHRUCCKVYFKL-UHFFFAOYSA-N 0.000 description 1
- FZLSDZZNPXXBBB-KDURUIRLSA-N 5-chloro-N-[3-cyclopropyl-5-[[(3R,5S)-3,5-dimethylpiperazin-1-yl]methyl]phenyl]-4-(6-methyl-1H-indol-3-yl)pyrimidin-2-amine Chemical compound C[C@H]1CN(Cc2cc(Nc3ncc(Cl)c(n3)-c3c[nH]c4cc(C)ccc34)cc(c2)C2CC2)C[C@@H](C)N1 FZLSDZZNPXXBBB-KDURUIRLSA-N 0.000 description 1
- XTJZKALDRPVFSN-HNNXBMFYSA-N 8-n-[(2s)-3,3-dimethylbutan-2-yl]-2-n-[2-methoxy-4-(1-methylpyrazol-4-yl)phenyl]pyrido[3,4-d]pyrimidine-2,8-diamine Chemical compound C=1C=C(NC=2N=C3C(N[C@@H](C)C(C)(C)C)=NC=CC3=CN=2)C(OC)=CC=1C=1C=NN(C)C=1 XTJZKALDRPVFSN-HNNXBMFYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101100008047 Caenorhabditis elegans cut-3 gene Proteins 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 241000233855 Orchidaceae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- CGRTZESQZZGAAU-UHFFFAOYSA-N [2-[3-[1-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]-2-methylpropan-2-yl]-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]-2-methylpropyl] 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCC(C)(C)C2OCC3(CO2)COC(OC3)C(C)(C)COC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 CGRTZESQZZGAAU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 1
- QVYARBLCAHCSFJ-UHFFFAOYSA-N butane-1,1-diamine Chemical compound CCCC(N)N QVYARBLCAHCSFJ-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- AYOOGWWGECJQPI-NSHDSACASA-N n-[(1s)-1-(5-fluoropyrimidin-2-yl)ethyl]-3-(3-propan-2-yloxy-1h-pyrazol-5-yl)imidazo[4,5-b]pyridin-5-amine Chemical compound N1C(OC(C)C)=CC(N2C3=NC(N[C@@H](C)C=4N=CC(F)=CN=4)=CC=C3N=C2)=N1 AYOOGWWGECJQPI-NSHDSACASA-N 0.000 description 1
- VOVZXURTCKPRDQ-CQSZACIVSA-N n-[4-[chloro(difluoro)methoxy]phenyl]-6-[(3r)-3-hydroxypyrrolidin-1-yl]-5-(1h-pyrazol-5-yl)pyridine-3-carboxamide Chemical compound C1[C@H](O)CCN1C1=NC=C(C(=O)NC=2C=CC(OC(F)(F)Cl)=CC=2)C=C1C1=CC=NN1 VOVZXURTCKPRDQ-CQSZACIVSA-N 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 150000005677 organic carbonates Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
- D04B1/18—Other fabrics or articles characterised primarily by the use of particular thread materials elastic threads
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
- D04B1/16—Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/14—Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
- D04B21/16—Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/14—Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
- D04B21/18—Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating elastic threads
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/04—Heat-responsive characteristics
- D10B2401/041—Heat-responsive characteristics thermoplastic; thermosetting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
- Y10T442/3065—Including strand which is of specific structural definition
- Y10T442/313—Strand material formed of individual filaments having different chemical compositions
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Knitting Of Fabric (AREA)
- Artificial Filaments (AREA)
- Woven Fabrics (AREA)
- Treatment Of Fiber Materials (AREA)
Description
【技術分野】
【0001】
本発明は、ポリウレタン弾性繊維と他の繊維とを混合使用した織編物及びその製造方法に関する。更に詳述すると、該織編物から作られた製品が着用中に繰り返し伸長されることにより生じる生地の「変形、目ずれ、わらい」、裁断部より糸が抜け出す所謂「ほつれ」、組織に発生したはしご状の傷やずれ、即ち「ラン、デンセン」、生地が湾曲した状態になる「カール」及び裁断、縫製した製品の縫目部分から弾性繊維のみが抜け出し部分的に生地の伸縮性がなくなる「スリップイン」等を起き難くした天竺編み、ゴム編み、パール編み等の丸編地やその他の緯編地、クサリ編、デンビ編、コード編、アトラス編等の経編地、織物等のポリウレタン弾性繊維混用織編物及びその製造方法に関する。
【背景技術】
【0002】
ポリウレタン弾性繊維を混用した緯編地、経編地、織物等のストレッチ生地を使用した製品は、伸びが大きく、伸長状態からの回復力やフィット性が良いため広く利用されている。しかし、ポリウレタン弾性繊維を混用した生地を裁断、縫製して作られた製品を繰り返し伸張すると、変形して不均一な生地になり「変形、目ずれ、わらい」、糸が抜け出す「ほつれ」、生地の組織にはしご状の傷やずれが発生した「ラン、デンセン」、生地が湾曲した「カール」等の問題が起き易い。また、繰り返し伸長により縫製部分でポリウレタン弾性繊維が縫目から抜け出す、いわゆる「スリップイン」も起き易い。このスリップインが発生して弾性繊維が抜け出した生地の部分は、当然のことであるが、収縮力が無くなるので生地に密度斑が発生し、着用できなくなり問題である。
【0003】
これらの現象は、ポリウレタン弾性繊維以外の弾性繊維を使用した織編物でも起きるが、伸縮性の強いポリウレタン弾性繊維の場合は特に顕著である。
【0004】
これらの問題の対策としてこれまでに以下の提案がなされている。
(1)ポリウレタン弾性繊維の収縮力を抑制する。
(i)ポリウレタン弾性繊維の伸長倍率をあまり高くしない。
(ii)織編物の加工温度を高くしてポリウレタン弾性繊維の収縮力を抑える。
(iii)セット性が高い弾性繊維を選択する。
(2)セット温度を高くすることにより、ポリウレタン弾性繊維同士の交点で相互に融着させる。
(3)低融点のポリウレタン弾性繊維を使用し低温で融着させて防止する。
(4)縫製時の縫目密度を高くしてポリウレタン弾性繊維の滑りを抑え、スリップインを起き難くする。
(5)カバリング糸の形で使用される場合には、撚数を高くしたり、ダブルカバリングの形にする。また、カバリング糸とさらに別な糸をエア交絡する方法も提案されている(特開平04−11036号公報参照)。
(6)スリップインや目ずれし難い織り方、編み方にする(特開2002−69804号公報,特開2002−13052号公報参照)。
【0005】
しかしながら、(1)(i)のようにポリウレタン弾性繊維の伸長倍率を落とす方法は、生地の伸縮性が低下し、ポリウレタン弾性繊維の使用量増加によりコストアップとなる。また、(1)(ii)のようにセット温度を高くしてポリウレタン弾性繊維の収縮力を弱くする方法は、混用相手繊維の風合い変化、織編物の染色堅牢度低下の原因となり、好ましくない。更に、(2)のように緯編地、経編地で弾性繊維同士の交点のある編地は、弾性繊維を融着させる方法でカールやスリップイン等の問題を防止できるが、高温でのセットが必要なので、やはり混用相手繊維の風合い変化や堅牢度低下が起きるという問題がある。また、(4)のように縫製の縫目密度を上げることは、縫製部分が分厚くなり、製品の着心地が悪くなるため、市場の要請には合致しない。
【0006】
一方、(3)のように低温で融着する弾性繊維を使うと、140〜160℃の低いセット温度で融着させることができるが、高融点ポリウレタン弾性繊維と混合使用する際、高融点ポリウレタン弾性繊維がセット不充分となり、生地の寸法安定性が悪くなり、高融点ポリウレタン弾性繊維が充分にセットできる高温領域でセットすると、一般的に低温で融着する弾性繊維は、強力低下が大きく、生地の伸長回復力が弱くなるので好ましくない。また、(4)、(5)のように特殊な複合糸を使ったり、特殊な編み方にする方法は、製品の性状を制限することになる。
【0007】
融点の異なる2つのポリエーテルエステル弾性繊維を使用した編織物を200℃で熱処理して目ずれを防止する方法も提案されている(特開2001−159052号公報参照)が、ポリエーテルエステル弾性繊維は、ポリウレタン弾性繊維に比較して弾性回復力、歪の点で性能が不十分であり、満足できるものではない。
【発明の開示】
【0008】
本発明は、裁断、縫製部分から使用したポリウレタン弾性繊維や非弾性糸が抜け出すことがなく、生地が安定し、目ずれ、わらい、ほつれ、ラン、デンセン、カールやスリップインの起こり難い弾性繊維織編物及びその製造方法を提供することを目的とする。
【0009】
本発明者は、上記目的を達成するため鋭意検討を行った結果、ポリオールとジイソシアネートを反応させて得られるプレポリマーから合成したポリマーを溶融紡糸する等して得られ、好ましくは原料ポリオール全量に対してポリエーテルポリオールのみを含有する高融着ポリウレタン弾性繊維と、非弾性繊維とを含み、上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して製織編されてなる織編物を160〜190℃で30秒〜2分間の乾熱セットすることにより、ポリウレタン弾性繊維が非弾性繊維に接触している部分や、ポリウレタン弾性繊維相互が接触している部分で熱融着を生じ、強度が低下することなく、目ずれ、わらい、ほつれ、ラン、デンセン、カール、スリップインや目ずれが生じにくい生地が得られることを発見し、本発明をなすに至った。
【0010】
即ち、本発明は下記のポリウレタン弾性繊維混用編地及びその製造方法、並びに上記編地を用いた製品を提供する。
[I]100%伸長した状態で150℃、45秒間の乾熱処理後の強力保持率が50%以上であり、且つ155〜175℃の融点を有する高融着ポリウレタン弾性繊維と、少なくとも1種類の非弾性糸とを含み、
上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して、
(a)上記高融着ポリウレタン弾性繊維及び上記非弾性糸を全コースに、
(b)上記高融着ポリウレタン弾性繊維と、上記非弾性糸とを1コースごと交互に、
(c)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、200℃以上の融点を有する高融点ポリウレタン弾性繊維及び上記非弾性糸とを1コースごと交互に、又は
(d)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、上記非弾性糸とを1コースごと交互に
用いて製編されてなり、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させてなるポリウレタン弾性繊維混用緯編地であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸してなることを特徴とするポリウレタン弾性繊維混用緯編地。
[II]上記高融着ポリウレタン弾性繊維が、挿入又は編み込みで製編されてなる[I]記載のポリウレタン弾性繊維混用緯編地。
[III]裁断部を有し、該裁断部が無縫製である[I]又は[II]記載のポリウレタン弾性繊維混用緯編地。
[IV]100%伸長した状態で150℃、45秒間の乾熱処理後の強力保持率が50%以上であり、且つ155〜175℃の融点を有する高融着ポリウレタン弾性繊維と、少なくとも1種類の非弾性糸とを含み、
上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して、上記高融着ポリウレタン弾性繊維及び少なくとも1種類の非弾性糸を全面に又は間隔をあけて、挿入又は編み込みで用いて製編されてなり、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸との交差部を熱融着させてなるポリウレタン弾性繊維混用経編地であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸してなることを特徴とするポリウレタン弾性繊維混用経編地。
[V]更に200℃以上の融点を有する高融点ポリウレタン弾性繊維を、挿入又は編み込みで用いて製編されてなり、この高融点ポリウレタン弾性繊維と上記高融着ポリウレタン弾性繊維との交差部を熱融着させた[IV]記載のポリウレタン弾性繊維混用経編地。
[VI]100%伸長した状態で150℃、45秒間の乾熱処理後の強力保持率が50%以上であり、且つ155〜175℃の融点を有する高融着ポリウレタン弾性繊維と、少なくとも1種類の非弾性糸とを含み、
上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して、上記高融着ポリウレタン弾性繊維を単独でもしくは2本で又は200℃以上の融点を有する高融点ポリウレタン弾性繊維との引き揃えで用い、全面又は1本おきに、挿入又は編み込みで製編されてなり、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させてなるポリウレタン弾性繊維混用経編地であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸してなることを特徴とするポリウレタン弾性繊維混用経編地。
[VII]裁断部を有し、該裁断部が無縫製である[IV]乃至[VI]のいずれかに記載のポリウレタン弾性繊維混用経編地。
[VIII][I]乃至[VII]のいずれかに記載のポリウレタン弾性繊維混用編地を用いた衣料製品。
[IX]100%伸長した状態で150℃、45秒間の乾熱処理後の強力保持率が50%以上であり、且つ155〜175℃の融点を有する高融着ポリウレタン弾性繊維と、少なくとも1種類の非弾性糸を別々に供給して、
(a)上記高融着ポリウレタン弾性繊維及び上記非弾性糸を全コースに、
(b)上記高融着ポリウレタン弾性繊維と、上記非弾性糸とを1コースごと交互に、
(c)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、200℃以上の融点を有する高融点ポリウレタン弾性繊維及び上記非弾性糸とを1コースごと交互に、又は
(d)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、上記非弾性糸とを1コースごと交互に
用いて緯編地を形成した後、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させるポリウレタン弾性繊維混用緯編地の製造方法であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸することを特徴とするポリウレタン弾性繊維混用緯編地の製造方法。
[X]100%伸長した状態で150℃、45秒間の乾熱処理後の強力保持率が50%以上であり、且つ155〜175℃の融点を有する高融着ポリウレタン弾性繊維と、少なくとも1種類の非弾性糸を別々に供給して、
上記高融着ポリウレタン弾性繊維及び少なくとも1種類の非弾性糸を全面に又は間隔をあけて、挿入又は編み込みで用いて経編地を形成した後、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸との交差部を熱融着させるポリウレタン弾性繊維混用経編地の製造方法であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸することを特徴とするポリウレタン弾性繊維混用経編地の製造方法。
[XI]更に200℃以上の融点を有する高融点ポリウレタン弾性繊維を、挿入又は編み込みで用いて経編地を形成した後、この高融点ポリウレタン弾性繊維と上記高融着ポリウレタン弾性繊維との交差部を熱融着させた[X]記載のポリウレタン弾性繊維混用経編地の製造方法。
[XII]100%伸長した状態で150℃、45秒間の乾熱処理後の強力保持率が50%以上であり、且つ155〜175℃の融点を有する高融着ポリウレタン弾性繊維と、少なくとも1種類の非弾性糸を別々に供給して、
上記高融着ポリウレタン弾性繊維を単独でもしくは2本で又は200℃以上の融点を有する高融点ポリウレタン弾性繊維との引き揃えで用い、全面又は1本おきに、挿入又は編み込みで経編地を形成した後、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させるポリウレタン弾性繊維混用経編地の製造方法であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸することを特徴とするポリウレタン弾性繊維混用経編地の製造方法。
【0011】
本発明によれば、低いセット温度で加工でき、目ずれ、わらい、ほつれ、ラン、カール、スリップインや目ずれ現象が生じにくいポリウレタン弾性繊維混用織編物を得ることができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明につき更に詳しく説明する。
本発明に用いられるポリウレタン弾性繊維は、低い温度でも融着しやすく、且つ耐熱性を有する高融着ポリウレタン弾性繊維であれば、その組成、製造方法等は特に制限されるものはなく、例えば、ポリオールと過剰モル量のジイソシアネートを反応させ、両末端にイソシアネート基を有するポリウレタン中間重合体を製造し、該中間重合体のイソシアネート基と容易に反応し得る活性水素を有する低分子量ジアミンや低分子量ジオールを不活性な有機溶剤中で反応させポリウレタン溶液(ポリマー溶液)を製造した後、溶剤を除去し糸条に成形する方法や、ポリオールとジイソシアネートと低分子量ジアミン又は低分子量ジオールとを反応させたポリマーを固化し溶剤に溶解させた後、溶剤を除去し糸条に成形する方法、前記固化したポリマーを溶剤に溶解させることなく加熱により糸条に成形する方法、前記ポリオールとジイソシアネートと低分子量ジオールとを反応させてポリマーを得、該ポリマーを固化することなく糸条に成形する方法、更には、上記のそれぞれの方法で得られたポリマー又はポリマー溶液を混合した後、混合ポリマー溶液から溶剤を除去し糸条に成形する方法等がある。これらの中で特に、(A)ポリオールとジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマー(以下「両末端NCO基プレポリマー」とする)と、(B)ポリオールとジイソシアネートと低分子量ジオールとを、反応させて得られる両末端水酸基プレポリマー(以下「両末端OH基プレポリマー」とする)とを反応させて得られるポリマーを固化することなく溶融紡糸する方法が、低温で融着しやすく、且つ耐熱性を有する高融着ポリウレタン弾性繊維を得る上で好ましく、また溶剤の回収を含まないため経済的である。
【0013】
この場合、(A)、(B)成分のプレポリマーを構成するポリオールは、同じであっても違っていても良いが、数平均分子量が800〜3,000程度のポリマージオールを用いることが好ましい。
このようなポリマージオールとしては、ポリエーテルグリコール、ポリエステルグリコール、ポリカーボネートグリコール等を用いることができる。
【0014】
ポリエーテルグリコールとしては、例えばエチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテルの開環重合により得られるポリエーテルジオール;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール等のグリコールの重縮合により得られるポリエーテルグリコール等が例示できる。
ポリエステルグリコールとしては、例えばエチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール等のグリコール類から選ばれる少なくとも1種と、アジピン酸、セバシン酸、アゼライン酸等の二塩基酸類から選ばれる少なくとも1種との重縮合によって得られるポリエステルグリコール;ε−カプロラクトン、バレロラクトン等のラクトン類の開環重合により得られるポリエステルグリコール等が例示される。
【0015】
ポリカーボネートグリコールとしては、例えばジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート;エチレンカーボネート、プロピレンカーボネート等のアルキレンカーボネート;ジフェニルカーボネート、ジナフチルカーボネート等のジアリールカーボネート等から選ばれる少なくとも1種の有機カーボネートと、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール等から選ばれる少なくとも1種の脂肪族ジオールとのエステル交換反応によって得られるカーボネートグリコール等が例示される。
【0016】
上記例示したポリエーテルグリコール、ポリエステルグリコール、又はポリカーボネートグリコールは1種を単独で又は2種以上を組み合わせて用いることができるが、良好な融着性を得るためには使用する合計量のポリマージオールに対してポリエーテルジオール成分を50質量%以上、好ましくは60質量%以上使用することが望ましく、ポリエーテルジオール成分が100質量%であってもよい。なお、ポリエーテルジオール成分としては、特にポリテトラメチレンエーテルグリコールが好適に使用される。
【0017】
(A)、(B)成分のプレポリマーを構成するジイソシアネートとしては、ポリウレタンの製造に際して通常使用されている脂肪族系、脂環式系、芳香族系、芳香脂肪族系等の任意のジイソシアネートを使用することができる。
【0018】
このようなジイソシアネートとしては、例えば4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、1,5−ナフタレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、p−フェニレンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、メタ−テトラメチルキシレンジイソシアネート、パラ−テトラメチルキシレンジイソシアネート等が挙げられ、これらの1種を単独で又は組み合わせて用いることができるが、中でも4,4’−ジフェニルメタンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネートが好ましく用いられる。
【0019】
鎖長延長剤である低分子量ジオールや低分子量ジアミンは、反応速度が適当であり、適度な耐熱性を与えるものが好ましく、イソシアネートと反応し得る2個の活性水素原子を有し、一般に分子量が500以下の低分子量化合物が使用される。
【0020】
このような低分子量ジオールとしては、例えばエチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール等の脂肪族ジオール類を用いることができ、紡糸性を阻害しない範囲内でグリセリン等3官能グリコール類も使用することができる。これらは1種を単独で又は2種以上を組み合わせて用いることができるが、作業性や得られる繊維に適度な物性を与える点からエチレングリコール、1,4−ブタンジオールが好ましい。
【0021】
また、このような低分子量ジアミンとしては、例えば、エチレンジアミン、ブタンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、キシリレンジアミン、4,4−ジアミノジフェニルメタン、ヒドラジン等を用いることができる。
【0022】
低分子量ジオールと低分子量ジアミンを併用することもできるが、本発明においては、鎖長延長剤として低分子量ジオールをより好ましく使用することができる。
【0023】
また、反応調整剤又は重合度調整剤として、ブタノール等の1官能性のモノオールやジエチルアミンやジブチルアミン等の1官能性のモノアミンを混合して用いることもできる。
【0024】
ポリウレタン重合反応の際、もしくは紡糸溶液として使用される不活性溶媒としては、N,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N,N,N’,N’−テトラメチル尿素、N−メチルピロリドン、ジメチルスルフォキシド等の極性溶媒が挙げられる。
【0025】
上記(A)、(B)成分のプレポリマーには、耐候性、耐熱酸化性、耐黄変性改善のために、紫外線吸収剤、酸化防止剤、光安定剤等の任意成分を添加することができる。
【0026】
紫外線吸収剤としては、例えば2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ビスフェニル)ベンゾトリアゾール等のベンゾトリアゾール系の紫外線吸収剤が挙げられる。
【0027】
酸化防止剤としては、例えば3,9−ビス(2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸、ペンタエリスルチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]等のヒンダードフェノール系酸化防止剤が挙げられる。
【0028】
光安定剤としては、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、コハク酸ジメチル−1−(2−ヒドロキシエチル) −4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン縮合物等ヒンダードアミン系光安定剤を挙げることができる。
【0029】
次に、本発明のポリウレタン弾性繊維を得る方法は、特に制限されるものではないが、例えば、溶融紡糸法として以下の3つの方法が知られている。
(1)ポリウレタン弾性体チップを溶融紡糸する方法。
(2)ポリウレタン弾性体チップを溶融した後、ポリイソシアネート化合物を混合して紡糸する方法。
(3)ポリオールとジイソシアネートを反応させたプレポリマーと低分子量ジオールとを反応させた紡糸用ポリマーを合成した後、固化させることなく紡糸する反応紡糸方法。
【0030】
(3)の方法は、(1)、(2)の方法に比べ、ポリウレタン弾性体チップを取り扱う工程が無いため簡略であり、また、プレポリマーの反応機への注入割合を調節して、紡糸後のポリウレタン弾性繊維中の残留NCO基の量を調整でき、この残留NCO基による鎖延長反応で耐熱性の向上を得ることもできるため、好適な方法である。更に、(3)の方法では、WO99/39030に開示されているように、低分子量ジオールをプレポリマーの一部と事前に反応させ、OH基過剰のプレポリマーとして反応機に注入する方法も行なうことができる。
【0031】
本発明のポリウレタン弾性繊維は、(3)の方法に従い、(A)、(B)成分のプレポリマーを反応機に連続して定量的に注入し、得られた紡糸用ポリマーを固化することなく溶融紡糸することにより得ることが特に好ましい。
【0032】
この場合、紡糸用ポリマーの合成は、(I)両末端NCO基プレポリマーの合成と、(II)両末端OH基プレポリマーの合成と、(III)これら二つのプレポリマーを反応機に導き、連続的に反応させる紡糸用ポリマーの合成の3つの反応で構成されるが、原料の組成比は上記3つの反応を通算して、全ジイソシアネートのモル量と、全ポリマージオール及び全低分子量ジオールの合計モル量とのモル比が1.02〜1.20であることが好ましい。
【0033】
具体的には、上記(I)の両末端NCO基プレポリマーは、例えば温水ジャケット及び撹拌機を具備したタンクに所定量のジイソシアネートを仕込んだ後、撹拌しながら所定量のポリマージオールを注入し、80℃で1時間窒素パージ下で撹拌することで得ることができる。この反応で得られた両末端NCO基プレポリマーは、ジャケット付きギアポンプ(例えば、KAP−1 川崎重工業株式会社製)を用いてポリウレタン弾性繊維用反応機に注入する。
(II)の両末端OH基プレポリマーは、温水ジャケット及び撹拌機を具備したタンクに所定量のジイソシアネートを仕込んだ後、撹拌しながら所定量のポリマージオールを注入し、80℃で1時間窒素パージ下で撹拌して前駆体を得、次いで、低分子量ジオールを注入し、撹拌して前駆体と反応させることで得ることができる。得られた両末端OH基プレポリマーはジャケット付きギアポンプ(例えば、KAP−1 川崎重工業株式会社製)を用いてポリウレタン弾性繊維用反応機に注入する。
【0034】
なお、この両プレポリマー合成時に、耐候性、耐熱酸化性、耐黄変性等を改善するための上記各種薬品類を添加することができる。
【0035】
(III)の紡糸用ポリマーの合成は、一定比率で送り込まれた(A)、(B)のプレポリマーを、連続反応させて得ることができる。この場合、反応機としては、通常のポリウレタン弾性繊維の溶融紡糸法に用いられるものでよく、紡糸用ポリマーを加熱、溶融状態で撹拌、反応させ、更に紡糸ヘッドに移送する機構を備えた反応機が好ましい。反応条件は、160〜220℃で1〜90分、好ましくは180〜210℃で3〜80分である。
【0036】
本発明のポリウレタン弾性繊維は、合成された紡糸用ポリマーを固化させることなく紡糸ヘッドに移送し、ノズルから吐出、紡糸して得ることができるが、紡糸用ポリマーの反応機内での平均滞留時間は反応機の種類によって異なり、下式により計算される。
反応機内での平均滞留時間=
(反応機容積/紡糸用ポリマー吐出量)×紡糸用ポリマーの比重
【0037】
一般的に円筒形反応機を用いる場合は約1時間であり、2軸押出し機を用いる場合は5〜10分である。紡糸温度は180〜230℃で、ノズルより連続的に押出した後、冷却し、紡糸油剤を付着して巻取ることによって得ることができる。
【0038】
ここで、両末端NCO基プレポリマーと両末端OH基プレポリマーとの比率は紡糸した直後の糸中にNCO基が0.3〜1質量%、より好ましくは0.35〜0.85質量%残るように注入ギアポンプの回転比率を適宜調整することが好ましい。NCO基が0.3質量%以上過剰に含まれていると、紡糸後の鎖延長反応により強伸度、耐熱性等の物性を向上させることもできる。しかし、NCO基が0.3質量%より少ないと、得られるポリウレタン弾性繊維の耐熱強力保持率が低下するおそれがあり、また、1質量%を超えると紡糸用ポリマーの粘度が低くなり、紡糸が困難になる場合が生じる。
【0039】
なお、紡糸した繊維中のNCO基の含有率は以下のように測定する。
紡糸した繊維(約1g)をジブチルアミン/ジメチルフォルムアミド/トルエン溶液で溶解した後、過剰のジブチルアミンと試料中のNCO基を反応させ、残ったジブチルアミンを塩酸で滴定し、NCO基の含有量を算出する。
【0040】
本発明で用いられるポリウレタン弾性繊維は、上述のようにポリエーテルジオールを主原料に用い、溶融反応紡糸法で製造されたポリウレタン弾性繊維であることが特に好ましい。
【0041】
本発明で使用するポリウレタン弾性繊維は、100%伸長状態で150℃、45秒間乾熱処理した後の強力保持率が50%以上、好ましくは55%以上である。強力保持率が50%より低いと熱セット後の製品の伸縮性が低下し好ましくない。
なお、強力保持率の上限は特に制限されないが、通常90%以下、特に80%以下である。
【0042】
また、ポリウレタン弾性繊維の融点は、180℃以下であり、好ましくは175℃以下である。180℃より高いと、融着させる為の熱処理温度が高くなり過ぎ製品の風合い、染色堅牢度等に悪い影響を与え好ましくない。
なお、融点の下限は150℃以上、特に155℃以上であることが、高融点ポリウレタン弾性繊維との混合使用の際の寸法安定性や、生地の伸長回復力の点から好ましい。
なお、強力保持率の測定方法は後述の通りである。
【0043】
本発明のポリウレタン弾性繊維混用織編物は、上記高融着ポリウレタン弾性繊維及び非弾性糸を用い、更に、例えば200℃以上の融点を有する高融点ポリウレタン弾性繊維も混用した以下の構造を有するものとすることができる。
(1)高融着ポリウレタン弾性繊維と少なくとも1種類の非弾性糸とを含む複合糸を経糸及び/又は緯糸に使用した織物。組織は平織、綾織、朱子織等のいずれでもよく、織機についてもシャトル式織機、レピア式織機、エアージェット式織機等を使用することができる。更に、経糸及び緯糸は全部該複合糸であっても良いし、複合糸と非弾性糸とを1:1、1:2又は1:3等の打ち込み比率で混合使用しても良い。
(2)編機の同じコースに高融着ポリウレタン弾性繊維及び少なくとも1種類以上の非弾性糸を混用した緯編地。高融着ポリウレタン弾性繊維及び非弾性糸を編み込んだ緯編地の編組織は平編、ゴム編、パール編、両面編、及びこれらを組み合わせたり、変化させたりした組織等のいずれの組織でも編成することができ、編機についても丸編機、横編機、フルファッション編機、靴下編機等の全ての編機を使用することができる。高融着ポリウレタン弾性繊維は挿入又は編み込みのどちらでも良い。また、高融着ポリウレタン弾性繊維と非弾性糸のプレーティング編でも良いし、高融着ポリウレタンと非弾性糸の複合糸を使用しても良い。(1)と同様に全コースに高融着ポリウレタン弾性繊維を編み込んでも良いし、1コース以上おきに編み込んでも良い。高融着ポリウレタン弾性繊維と非弾性糸を交互、又は適当な間隔おきに編み込んでも良い。更に、高融点ポリウレタン弾性繊維を混用してもよい。以下に例を示すがこれに限定されるものではない。
【0044】
(2)−1 全コースの例:
1口目 高融着糸及び非弾性糸、又は複合糸
2口目 高融着糸及び非弾性糸、又は複合糸
3口目 高融着糸及び非弾性糸、又は複合糸
4口目 高融着糸及び非弾性糸、又は複合糸
【0045】
(2)−2 1コースおきの例:
1口目 高融着糸及び非弾性糸、又は複合糸
2口目 非弾性糸
3口目 高融着糸及び非弾性糸、又は複合糸
4口目 非弾性糸
【0046】
(2)−3 高融着糸と高融点糸を1コースおきに使用した例:
1口目 高融着糸及び非弾性糸、又は複合糸
2口目 高融点糸及び非弾性糸、又は複合糸
3口目 高融着糸及び非弾性糸、又は複合糸
4口目 高融点糸及び非弾性糸、又は複合糸
【0047】
(2)−4 交互の例:
1口目 高融着糸
2口目 非弾性糸、又は高融着糸及び非弾性糸
3口目 高融着糸
4口目 非弾性糸、又は高融着糸及び非弾性糸
【0048】
(3)高融着ポリウレタン弾性繊維及び少なくとも1種類以上の非弾性糸を混用した経編地。高融着ポリウレタン弾性繊維及び非弾性糸を編み込んだ経編地の編組織はクサリ編、デンビ編、コード編、アトラス編、及びこれらを組み合わせたり、変化させたりした組織等のいずれの組織でも編成することができ、編機についてもトリコット編機、ラッシェル編機、ミラニーズ編機等の全ての編機を使用することができる。(1)と同様に全面に高融着ポリウレタン弾性繊維を編み込んでも良いし、適当な間隔おきに編み込んでも良い。また、高融着ポリウレタン弾性繊維は挿入又は編込みのどちらでもよい。更に、高融点ポリウレタン弾性繊維を混用してもよい。以下に例を示すがこれに限定されるものではない。
【0049】
(3)−1 クサリ組織の編地
図1及び図2はレース地等に多く用いられるクサリ組織を示す。このクサリ組織は切り口縫製後にラン、ほどけ等の欠点がおきやすい。対策としてラン止め組織が提案されているが、ラン止め組織の跡が生地に汚く残り、高級感を阻害する問題が残る。そこで、図1及び図2において、aを非弾性糸として、bを本発明の高融着ポリウレタン弾性繊維、又は高融着ポリウレタン弾性繊維と高融点ポリウレタン弾性繊維の引き揃えとして編み込み熱セットすると、図1に示すX部において、高融着ポリウレタン弾性繊維と非弾性糸、及び高融着ポリウレタン弾性繊維と高融点ポリウレタン弾性繊維とが接触して熱融着し、伸長回復性が良く、且つラン・ほどけ等の欠点を防止し、また審美性も何等損なうことのない編地を得ることが可能となる。
【0050】
(3)−2 クサリ組織以外の編地
クサリ組織以外で一般に使用されている組織でも、本発明の高融着ポリウレタン弾性繊維を挿入又は編み込み使用すると、非弾性糸との融着、更にはポリウレタン弾性繊維相互の融着により、わらい(弾性繊維のずれ、抜け、飛び出し)等が起こり難くなり、実質的に生地の耐久性を格段に向上することができる。また、生地がより安定し、カールが起き難くなり、縫製時のコストダウンも見込むことができる。
【0051】
例えば、図3〜8に示した組織図において、高融着ポリウレタン弾性繊維を適宜使用することによって、目ずれ、わらい、ほつれ、ラン、デンセン、カールやスリップインが生じにくい編地を得ることが可能となる。
【0052】
図3において、L1及びL2は全面挿入(All−in)、図4中のL1とL2、L3とL4は1本おきに挿入(1in−1out)、図5〜8中のL1、L2、L3は全面挿入(All−in)である。また、図3〜8のaは非弾性糸、bは本発明の高融着ポリウレタン弾性繊維を単独で又は高融点ポリウレタン弾性繊維との引き揃えで使用し、図5及び図6のcは本発明の高融着ポリウレタン弾性繊維を2本使用するか、本発明の高融着ポリウレタン弾性繊維と高融点ポリウレタン弾性繊維とを各1本ずつ使用することができる。
【0053】
更に、使用用途によっては、断ち切り口を無縫製でそのまま使用する場合、従来は洗濯や着用時等のすれにより、ほつれ等の耐久性に問題があったが、これも大きく改善することができる。
【0054】
ここで、高融着ポリウレタン弾性繊維と混用される非弾性糸としては、特に制限は無く、例えば木綿、麻、羊毛、絹等の天然繊維、レーヨン、キュプラ、ポリノジック等の再生繊維、アセテート等の半再生繊維、ナイロン、ポリエステル、アクリル等の化学合成繊維等の繊維を使用することができるが、ポリウレタン弾性繊維の混用割合は、1〜40%程度が好ましい。
【0055】
また、本発明のポリウレタン弾性繊維混用織編物においては、ジアミンで鎖長反応を行なった乾式紡糸法による耐熱性、弾性回復性に優れた200℃以上、好ましくは210℃以上の融点を有する高融点ポリウレタン弾性繊維を混合使用することにより、融着性を保ちながら良好な弾性性能を有する織編物を得ることも可能である。この場合、この高融点ポリウレタン弾性繊維の使用量は、2〜40%程度が好ましい。
【0056】
ここで、乾熱セットの方法は、ピンテンターのようなセット機を使い、熱風による熱固定することにより行なうことができる。この場合、セット温度は140〜200℃、特に170〜190℃であり、セット時間は10秒〜3分、特に30秒〜2分とすることができる。
【0057】
一方、湿熱セットの方法は、編地等を型板に入れた状態で所定圧力の飽和蒸気により熱固定することにより行なうことができる。この場合、セット温度は100〜130℃、特に105〜125℃であり、セット時間は2〜60秒、特に5〜30秒とすることができる。
【実施例】
【0058】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、以下の例において、部はいずれも質量部である。
【0059】
〔実施例1〕
ポリウレタン弾性繊維合成用の原料として、以下の両末端NCO基プレポリマーと両末端OH基プレポリマーを合成した。
【0060】
両末端OH基プレポリマーの合成
ジイソシアネートとして、4,4’−ジフェニルメタンジイソシアネート(以下MDIとする)25部を窒素ガスでシールされた80℃の温水ジャケット付き反応釜に仕込み、ポリマージオールとして、数平均分子量2,000のポリテトラメチレンエーテルグリコール(以下PTMGとする)100部を撹拌しながら注入した。1時間反応後、低分子量ジオールとして、1,4−ブタンジオール27.6部を更に注入し、両末端OH基プレポリマーを合成した。
【0061】
両末端NCO基プレポリマーの合成
窒素ガスでシールした80℃の反応釜にジイソシアネートとしてMDIを47.4部仕込み、紫外線吸収剤(2−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール:20%)、酸化防止剤(3,9−ビス(2−(3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオニルオキシ)−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン:50%)、光安定剤(ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート:30%)の混合物2.2部を添加し、撹拌しながらポリマージオールとして数平均分子量2,000のPTMGを100部注入し、1時間撹拌を継続して、両末端NCO基プレポリマーを得た。
【0062】
得られた両末端NCO基プレポリマーと両末端OH基プレポリマーを1:0.475の質量比で撹拌翼を有する容量2,200mlのポリウレタン弾性繊維用円筒形反応機に連続的に供給した。供給速度は両末端NCO基プレポリマー28.93g/分、両末端OH基プレポリマー13.74g/分であった。反応機内での平均滞留時間は約1時間、反応温度は約190℃であった。
【0063】
得られたポリマーを固化することなく、192℃の温度に保った8ノズルの紡糸ヘッド2台に導入した。紡糸用ポリマーをヘッドに設置したギアポンプにより計量、加圧し、フィルターでろ過後、径0.6mm、1ホールのノズルから2.67g/分の速度で、長さ6mの紡糸筒内に吐出させ(ノズルからの吐出総量:
42.67g/分)、油剤を付与しながら600m/分の速度で巻き取り、44デシテックスのポリウレタン弾性繊維を得た。
【0064】
吐出直後のポリウレタン弾性繊維のNCO基含有率は0.42質量%であった。このポリウレタン弾性繊維の物性を下記方法により測定した結果、融点は168℃、耐熱強力保持率は65%であった。更に、この弾性繊維を使用して下記方法にて編地を作成し、熱セット後の編地の解編張力を測定した。結果を表1に示す。
【0065】
融点の測定方法
測定装置:TMA(熱機器測定装置)
石英プローブ使用
把握長:20mm
伸長:0.5%
温度範囲:室温〜250℃
昇温速度:20℃/min
評価:熱応力が0mgfになったときの温度を融点と定義した。
【0066】
耐熱強力保持率の測定方法
ポリウレタン弾性繊維を10cmの把握長で保持し、20cmに伸長する。伸長した状態で150℃に保った熱風乾燥機中に45秒間入れ、熱処理を行なった。熱処理後のポリウレタン弾性繊維の強力を、定伸長速度の引っ張り試験機を使用し、把握長5cm、伸長速度500mm/分で測定した。測定時の環境は温度20℃、相対湿度65%であった。熱処理前の繊維に対する耐熱強力保持率を表示する。
【0067】
編地の作成
パンスト編機(ロナティ社製、針数400本)の給糸口2、4口にそれぞれ6−ナイロンフィラメント糸13デシテックス7フィラメント、1、3口にポリウレタン弾性繊維を給糸し交編を行なった。
【0068】
熱セット
作成した編地を160℃及び180℃に保った乾燥機中にて1分間乾熱処理した。
【0069】
解編張力の測定
ナイロン糸及びポリウレタン弾性繊維の編地からの解編張力を測定した。解編速度は100mm/分とし、1分間の平均張力を計算した。
【0070】
〔参考例1〕
PTMGの代わりに数平均分子量2,000のポリエチレングリコールアジペートを使う以外は実施例1と同様な方法でポリエステルジオールを用いたポリウレタン弾性繊維を製造した。吐出直後のポリウレタン弾性繊維のNCO基含有率は0.45質量%であった。実施例1と同様に物性を測定した結果、この44デシテックスポリウレタン弾性繊維の融点は170℃、耐熱強力保持率は62%であった。
【0071】
この弾性繊維を使用して実施例1と同様に編地を作成し、熱セット後の編地の解編張力を測定した。結果を表1に示す。
【0072】
〔比較例1〕
ポリマージオールとしてPTMGを、鎖長延長剤としてジアミンを用いた44デシテックスのポリウレタン弾性繊維(モビロンPタイプ糸 日清紡績(株)製)を使用した。実施例1と同様に物性を測定した結果、このポリウレタン弾性繊維の融点は221℃、耐熱強力保持率は95%であった。
この弾性繊維を使用して実施例1と同様に編地を作成し、熱セット後の編地の解編張力を測定した。結果を表1に示す。
【0073】
〔比較例2〕
実施例1と同じ方法で紡糸用ポリマーを合成し、反応機から径4mmのオリフィスを通してストランド状に押出し、冷却後、カットしてポリウレタン弾性体ペレットを得た。このペレットを真空乾燥機で乾燥後、単軸押出機で再溶融し、実施例1と同様に紡糸ヘッドに設置したギアポンプにより計量、加圧し、フィルターでろ過後、径0.6mm、1ホールのノズルから毎分2.67gの速度で長さ6mの紡糸筒内に吐出させ(ノズルからの吐出総量:42.67g/分)、油剤を付与しながら600m/分の速度で巻き取り、44デシテックスのポリウレタン弾性繊維を得た。吐出直後のポリウレタン弾性繊維のNCO基含有率は0.13質量%であった。
【0074】
実施例1と同様に物性を測定した結果、このポリウレタン弾性繊維の融点は152℃、耐熱強力保持率は38%であった。この弾性繊維を使用して実施例1と同様に編地を作成し、熱セット後の編地の解編張力を測定した。結果を表1に示す。
【0075】
【表1】
【0076】
実施例1では融着のため解編張力が高く、実施例1のポリエーテルジオールを用いたポリウレタン弾性繊維の場合は特に解編張力が高かった。また、実施例1は180℃熱セットでも編地中の弾性繊維は糸切れしなかった。比較例1の高融点ポリウレタン弾性繊維との組み合わせでは融着が生じ難く、比較例2では160℃熱セットによる解編張力は高いが、180℃熱セットにより編地中でポリウレタン弾性繊維の糸切れが発生した。
【0077】
〔実施例2〕
実施例1で得られたポリウレタン弾性繊維を用いて、下記方法にて作成した編地を熱セット後、洗濯試験を行ない、編地のほつれ、スリップイン、編地面を目視観察した。結果を表2に示す。
【0078】
編地の作成
パンスト編機(ロナティ社製、針数400本)の給糸口1、3口に6−ナイロン仮撚加工糸Z撚33デシテックス10フィラメント、2、4口に6−ナイロン仮撚加工糸S撚33デシテックス10フィラメント、更に全4口にポリウレタン弾性繊維を給糸し、プレーティング編で編地を作成した。編み込み倍率は2.5倍に設定した。
【0079】
熱セット
作成した編地を180℃に保った乾燥機中にて1分間乾熱処理した。
【0080】
洗濯試験
セット後の編地から15×20cmのカット試料を作成し、スガ試験機(株)LM−160洗濯試験機を使用して繰り返し20回の洗濯を行なった。
液量:150ml
鋼球10個使用
温度:50℃
時間:1サイクル30分
【0081】
評価方法
ほつれ:編地のコース方向に平行にカットした編地端を観察した。
スリップイン:編地ウェル方向にカットした編地端を観察し、弾性繊維が編
地端から5mm以上スリップインしている本数の比率(%)
で評価した。
目ずれ:編地の平滑度合いを観察した。
カール:編地端を観察した。
【0082】
〔実施例3〕
実施例2と同様の編機を使用し、1、3口に実施例1のポリウレタン弾性繊維、2、4口に比較例1の弾性繊維を給糸して実施例2と同様に編地を作成し、実施例2と同様の試験を行なった。結果を表2に示す。
【0083】
〔比較例3〕
比較例1の弾性繊維のみを使って、実施例2と同様に編地を作り、同様の試験を行なった。結果を表2に示す。
【0084】
〔比較例4〕
比較例2の弾性繊維のみを使って、実施例2と同様に編地を作り、同様の試験を行なった。結果を表2に示す。
【0085】
【表2】
【0086】
比較例4では、編地中でポリウレタン弾性繊維の糸切れが発生した。
【0087】
〔実施例4〕
実施例1と同じ方法にて156デシテックスのポリウレタン弾性繊維を得た。実施例1と同様に物性を測定した結果、このポリウレタン弾性繊維の融点は170℃、耐熱強力保持率は68%であった。更に、この弾性繊維を使用して下記方法にて経編地を作成し、熱セット後の編地よりポリウレタン弾性繊維の引き抜き抵抗値を測定した。結果を表3に示す。
【0088】
編地の作成
ラッシェル編機(カールマイヤ社製、28ゲージ)を使用し、図9のL1のa及びL3のcに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L2のbにポリウレタン弾性繊維を使用し、経編地を作成した。
【0089】
熱セット
上記編地を190℃に保った乾燥機にて1分間、乾熱処理した。
【0090】
引き抜き抵抗値の測定
上記編地から、図10に示した通り緯方向(幅)25mm×経方向(長さ)100mmの試験片を採取した。この時、ポリウレタン弾性繊維の引き抜き方向が編み始め及び編み終わり方向となるように、試験片は各5枚ずつ合計10枚採取した。
【0091】
続いて、試験片を図10の通り作成した。当該試験片下端(D−D’)より40mmの位置(B−B’)で、経方向に挿入したポリウレタン弾性繊維1を1本残した状態で試験片を切り取った。次いで、残した当該ポリウレタン弾性繊維を、上部つかみ2の方向に向かって5mm分(E−F)試験片から取り出した。更に、当該ポリウレタン弾性繊維の延長線上で、且つ試験片上端より30mmの位置で緯方向に幅3mmの切り込み3を入れた。
【0092】
引き抜き抵抗値を引張試験機で測定する場合、引張試験機のつかみ間隔を40mmに調整し、次いで、当該試験片の2の上部つかみ代25mm(A−A’より上部)で試験片上部を把握し、当該ポリウレタン弾性繊維に0.1cN初荷重をかけ、4の下部つかみ代35mm(C−C’より下部)で当該ポリウレタン弾性繊維を把握し、引張速度100mm/minで引張り、当該ポリウレタン弾性繊維が引き抜かれるまでの最大引き抜き荷重を測定した。これを編み始め及び編み終わり方向とも各5回、合計10回実施して、その平均値を計算し引き抜き抵抗値を求めた。
【0093】
〔比較例5〕
ポリマージオールとしてPTMGを、鎖長延長剤としてジアミンを用いた156デシテックスのポリウレタン弾性繊維(モビロンPタイプ糸 日清紡績(株)製、融点217℃、耐熱強力保持率93%)を図9のL2のbに挿入糸として使用した以外は実施例4と同様に経編地を作成した。熱セット後、実施例4と同様にL2のb糸の引き抜き抵抗値を測定した。結果を表3に示す。
【0094】
〔実施例5〕
実施例4と同様の編機を使用し、図3のL1のaに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L2のbに実施例4のポリウレタン弾性繊維を使用して経編地を作成し、実施例4と同様の試験を行った。結果を表3に示す。
【0095】
〔比較例6〕
比較例5と同様の弾性繊維を図3のL2のbに使用した以外は実施例5と同様に編地を作成し、同様の試験を行った。結果を表3に示す。
【0096】
〔実施例6〕
実施例4と同様の編機を使用し、図4のL1及びL2のaに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L3及びL4のbに実施例4のポリウレタン弾性繊維を使用して経編地を作成し、実施例4と同様の試験を行った。結果を表3に示す。
【0097】
〔比較例7〕
比較例5の弾性繊維を図4のL3及びL4のbに使用した以外は実施例6と同様に経編地を作成し、同様の試験を行った。結果を表3に示す。
【0098】
【表3】
【0099】
実施例4、6では融着のため引き抜き抵抗値が高くなっており、実施例5では、引き抜けない程度に融着しており、目ずれ、わらいの生じにくい編地が得られた。比較例5、6、7の高融点ポリウレタン弾性繊維との組み合わせでは融着が生じ難く、引き抜き抵抗値も低く、目ずれ、わらいが発生した。
【0100】
〔実施例7〕
下記の方法にて編地を作成し、熱セット後、編地の解編張力の測定とポリウレタン弾性繊維相互の融着状況の確認、並びに洗濯試験により編地の傷み(洗濯耐久性)を目視評価した。結果を表4に示す。
【0101】
編地の作成
ラッシェル編機(カールマイヤ社製、28ゲージ)を使用し、図5に示した組織図の編地を作成した。図5において、L1のaに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L2のcに比較例5と同じ弾性繊維を、L3のcに実施例1のポリウレタン弾性繊維を使用して経編地を編成し主編地とした。更に、主編地の間に抜き糸として、ナイロンフィラメント糸110デシテックス24フィラメントを使用して経編地を作成した。
【0102】
熱セット
上記編地を190℃に保った乾燥機にて1分間、乾熱処理した。
【0103】
解編張力の測定
抜き糸のナイロン糸の解編張力を測定した。解編速度は100mm/分とし、1分間の解編張力を測定し、ピーク点5箇所の平均値を計算した。
【0104】
融着状況の確認
主編地のナイロン糸を20%希塩酸にて溶解し、ポリウレタン弾性繊維相互の接触部の融着状況を観察した。
【0105】
編地の傷み評価における試料の作成
熱セットした編地の編方向に対してタテ3.3cm、ヨコ24.0cmの短冊状試料を切り取り、ヨコ方向の裁断面より編方向に対して40度の角度に切れ目を入れ、「編み始め側」と「編み終わり側」に分け、タテ方向の裁断部を合わせてオーバーロックミシンで縫製し環状の試料を作成した。
【0106】
編地の傷み評価における試料の洗濯
作成した試料を、下記の条件にて連続300分の洗濯を行った。
洗濯機:家庭用二槽式洗濯機
洗剤量:1.3g/Lに調整(弱アルカリ洗剤使用)
水量 :30L
負荷布:綿、ポリウレタン弾性繊維混用ベア天竺編地、1.0kg
【0107】
編地の傷み評価
「編み始め側」、「編み終わり側」の裁断部の傷みの程度を観察し、下記の4段階で評価した。
◎:傷みが認められない
○:やや傷みが認められる
△:傷みが認められる
×:傷みが激しい
このうち、△と×は衣料として着用をためらう程度の傷みであり、◎ないし○が洗濯耐久性の点で好ましい。
【0108】
〔比較例8〕
比較例1の弾性繊維を図5のL3のcに使用した以外は実施例7と同様に経編地を作成した。熱セット後、抜き糸の解編張力を測定し、ポリウレタン弾性繊維の融着状況を確認し、実施例7と同様の試験を行った。結果を表4に示す。
【0109】
〔実施例8〕
実施例7と同様の編機を使用し、図6のL1のaに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L2のcに比較例1のポリウレタン弾性繊維を、L3のcに実施例1のポリウレタン弾性繊維を使用して経編地を作成し、実施例7と同様の試験を行った。結果を表4に示す。
【0110】
〔比較例9〕
比較例1の弾性繊維を図6のL3のcに使用した以外は実施例8と同様に経編地を作成し、同様の試験を行った。結果を表4に示す。
【0111】
〔実施例9〕
実施例7と同様の編機を使用し、図7のL1のaに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L2のbに実施例1のポリウレタン弾性繊維を使用し、抜き糸は使用せず経編地を作成し、実施例7と同様の試験を行った。結果を表4に示す。
【0112】
〔比較例10〕
比較例1の弾性繊維を図7のL2のbに使用した以外は実施例9と同様に経編地を作成し、同様の試験を行った。結果を表4に示す。
【0113】
〔実施例10〕
実施例7と同様の編機を使用し、図8のL1のaに6−ナイロンフィラメント糸56デシテックス17フィラメントを、L2のbに実施例1のポリウレタン弾性繊維を使用し、抜き糸は使用せず経編地を作成し、実施例7と同様の試験を行った。結果を表4に示す。
【0114】
〔比較例11〕
比較例1の弾性繊維を図8のL2のbに使用した以外は実施例10と同様に経編地を作成し、同様の試験を行った。結果を表4に示す。
【0115】
【表4】
【0116】
実施例7、8では抜き糸の解編張力が高くなり、抜き糸と高融着ポリウレタン弾性繊維が強く融着していることを示している。比較例8、9では抜き糸の解編張力が低く、高融点ポリウレタン弾性繊維との融着が生じにくいことを示している。また、ポリウレタン弾性繊維相互の融着状況についても、実施例7、8では高融着ポリウレタン弾性繊維と高融点ポリウレタン弾性繊維が完全に融着しており、接触部を引っ張っても剥離することが出来なかった。比較例8、9の高融点ポリウレタン弾性繊維相互では融着は弱く、接触部を引っ張ると接触部が分離した。また、実施例9、10では高融着ポリウレタン弾性繊維相互が完全に融着しており、融着部を剥離することは出来なかった。比較例10、11では高融点ポリウレタン弾性繊維相互の融着は弱く、剥離可能であった。
【0117】
洗濯による編地の傷み具合について、高融着ポリウレタン弾性繊維を使用し熱融着が進んだ実施例7、8、9、10については「編み始め側」、「編み終わり側」の裁断部共に◎又は○となり、洗濯耐久性の点で好ましい結果となった。高融点ポリウレタン弾性繊維を使用し熱融着の弱い比較例8、9、10、11については「編み始め側」、「編み終わり側」の裁断部共に△又は×となり、洗濯により衣料として着用をためらう程度の傷みが発生しており、好ましくない結果となった。
【0118】
クサリ組織又はクサリ組織以外で一般に使用されている組織(弾性繊維の挿入又は編みこみ)でも、本発明の高融着ポリウレタン弾性繊維を使用すると、非弾性糸との融着、更にポリウレタン弾性繊維相互の融着により、目ずれ、わらい、ほつれ、ラン、デンセン、カールやスリップインが生じ難くなり、実質的に生地の耐久性が格段に向上した。また、断ち切り口は洗濯によってもほつれ難いあるいは傷み難いものであった。
【図面の簡単な説明】
【0119】
【図1】図1は、クサリ編地の組織図の一例である。
【図2】図2は、クサリ編地の組織図の一例である。
【図3】図3は、経編地の組織図の一例である。
【図4】図4は、経編地の組織図の一例である。
【図5】図5は、経編地の組織図の一例である。
【図6】図6は、経編地の組織図の一例である。
【図7】図7は、経編地の組織図の一例である。
【図8】図8は、経編地の組織図の一例である。
【図9】図9は、経編地の組織図の一例である。
【図10】図10は、経編地の引張り試験用試験片である。
【符号の説明】
【0120】
a 非弾性糸
b 本発明の高融着ポリウレタン弾性繊維又は高融着ポリウレタン弾性繊維と高融点ポリウレタン弾性繊維の引き揃え
X 熱融着部
c 本発明の高融着ポリウレタン弾性繊維2本又は本発明の高融着ポリウレタン弾性繊維1本と高融点ポリウレタン弾性繊維1本【Technical field】
[0001]
The present invention relates to a woven or knitted fabric using a mixture of polyurethane elastic fibers and other fibers, and a method for producing the same. More specifically, the product made from the knitted or knitted fabric is repeatedly deformed during wearing, and the fabric is `` deformed, misaligned, soft '', the so-called `` frayed '' where the yarn comes out from the cut part, and the ladder generated in the structure. Scratches and misalignment, that is, “run, densen”, “curl” where the fabric is curved and cut, only elastic fibers are pulled out from the stitched portion of the sewn product, and “slip” is partially lost Polyester elastic fibers such as knitted fabrics such as round knitted fabrics, rubber knitted fabrics, pearl knitted fabrics, other weft knitted fabrics, combed knitted fabrics, denvi knitted fabrics, corded knitted fabrics, atlas knitted fabrics, etc. The present invention relates to a mixed woven or knitted fabric and a method for producing the same.
[Background]
[0002]
Products using stretch fabrics such as weft knitted fabrics, warp knitted fabrics and woven fabrics mixed with polyurethane elastic fibers are widely used because of their high elongation and good recovery and fit from the stretched state. However, if a product made by cutting and sewing a fabric mixed with polyurethane elastic fibers is repeatedly stretched, it will be deformed and become a non-uniform fabric, “deformation, misalignment, soft”, “fraying”, yarn coming out, and fabric Problems such as “run, densen” in which ladder-like scratches and displacement occur, and “curl” in which the fabric is curved are likely to occur. In addition, so-called “slip-in”, in which the polyurethane elastic fiber comes out of the seam at the sewing portion due to repeated elongation, is likely to occur. Naturally, the portion of the fabric from which the slip-in occurs and the elastic fibers are pulled out is a problem, since the shrinkage force is lost, density spots are generated on the fabric, and it becomes impossible to wear.
[0003]
These phenomena occur even in a woven or knitted fabric using elastic fibers other than polyurethane elastic fibers, but are particularly remarkable in the case of polyurethane elastic fibers having strong stretchability.
[0004]
The following proposals have been made as countermeasures against these problems.
(1) The shrinkage force of the polyurethane elastic fiber is suppressed.
(I) The elongation ratio of the polyurethane elastic fiber is not so high.
(Ii) Increase the processing temperature of the woven or knitted fabric to suppress the shrinkage force of the polyurethane elastic fiber.
(Iii) An elastic fiber having a high setting property is selected.
(2) By making the set temperature high, the polyurethane elastic fibers are fused to each other at the intersections.
(3) Use a low-melting polyurethane elastic fiber and prevent it by fusing at a low temperature.
(4) The stitch density at the time of sewing is increased to prevent the polyurethane elastic fiber from slipping and to prevent slip-in.
(5) When used in the form of covering yarn, increase the number of twists or form a double covering. In addition, a method has been proposed in which a covering yarn and another yarn are entangled with air (see Japanese Patent Application Laid-Open No. 04-11036).
(6) Weaving or knitting is less likely to slip-in or misalignment (see JP 2002-69804 A and JP 2002-13052 A).
[0005]
However, the method of reducing the stretch ratio of the polyurethane elastic fiber as in (1) (i) decreases the stretchability of the fabric and increases the cost due to an increase in the amount of polyurethane elastic fiber used. Further, the method of increasing the set temperature and reducing the shrinkage force of the polyurethane elastic fiber as in (1) (ii) is not preferable because it causes a change in the texture of the mixed partner fiber and a decrease in the dyeing fastness of the woven or knitted fabric. Furthermore, as in (2), a knitted fabric with an intersection of elastic fibers in a weft knitted fabric and a warp knitted fabric can prevent problems such as curling and slip-in by the method of fusing elastic fibers, but at high temperatures Since the set is necessary, there is still a problem that the texture of the mixed partner fiber is changed and the fastness is lowered. Further, increasing the stitch density of the sewing as in (4) does not meet the market demand because the sewing portion becomes thicker and the comfort of the product becomes worse.
[0006]
On the other hand, when an elastic fiber fused at a low temperature as in (3) is used, it can be fused at a low set temperature of 140 to 160 ° C., but when mixed with a high melting point polyurethane elastic fiber, a high melting point polyurethane is used. If the elastic fiber is insufficiently set, the dimensional stability of the fabric is deteriorated, and the high melting point polyurethane elastic fiber is set in a high temperature region where it can be sufficiently set, generally the elastic fiber fused at a low temperature has a large decrease in strength, This is not preferable because the stretch recovery force of the dough is weakened. Moreover, the method of using special composite yarns as in (4) and (5) or using special knitting methods restricts the properties of the product.
[0007]
There has also been proposed a method for preventing misalignment by heat treating a knitted fabric using two polyether ester elastic fibers having different melting points at 200 ° C. (see Japanese Patent Application Laid-Open No. 2001-159052). Is not satisfactory in terms of elastic recovery and strain in comparison with polyurethane elastic fibers.
DISCLOSURE OF THE INVENTION
[0008]
The present invention is an elastic fiber woven fabric in which polyurethane elastic fibers and non-elastic threads used from the cut and sewn parts do not come out, the fabric is stable, misalignment, soft, fraying, run, densen, curl and slip-in are unlikely to occur. It aims at providing a knitted fabric and its manufacturing method.
[0009]
As a result of intensive studies to achieve the above object, the present inventor is obtained by, for example, melt spinning a polymer synthesized from a prepolymer obtained by reacting a polyol and a diisocyanate. Polyether polyolOnlyContains highly fused polyurethane elastic fibers and non-elastic fibers,UpA woven or knitted fabric obtained by weaving and knitting by separately supplying a high-fusion polyurethane elastic fiber and the inelastic yarn160-190℃30 seconds to 2 minutesBy setting the dry heat of, heat fusion occurs in the part where the polyurethane elastic fiber is in contact with the non-elastic fiber and the part where the polyurethane elastic fiber is in contact with each other, and the misalignment without reducing the strength, It has been discovered that a fabric that is less susceptible to soft, fraying, orchid, densen, curl, slip-in and misalignment can be obtained, leading to the present invention.
[0010]
That is, the present invention provides the following polyurethane elastic fiber mixed knitted fabric, a method for producing the same, and a product using the knitted fabric.
[I] The strength retention after dry heat treatment at 150 ° C. for 45 seconds in a state of 100% elongation is 50% or more, and155-175 ° CA highly fused polyurethane elastic fiber having a melting point and at least one inelastic yarn;
UpHighly fused polyurethane elastic fiber and inelastic yarnAnotherTo supply
(A)Highly fused polyurethane elastic fiberAnd the inelastic yarnTo all courses,
(B) The highly fused polyurethane elastic fiber and the non-elastic yarn are alternately arranged for each course.
(C) The high-melting polyurethane elastic fiber and the non-elastic yarn, and the high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more and the non-elastic yarn alternately for each course, or
(D) The highly fused polyurethane elastic fiber and the inelastic yarn, and the inelastic yarn are alternately provided for each course.
UseHave been knitted
160-190℃30 seconds to 2 minutesHighly fused polyurethane elastic fiber or dry and non-elastic yarnOr high melting point polyurethane elastic fiberPolyurethane elastic fiber mixed weft knitted fabric obtained by heat-sealing the intersection with
The highly fused polyurethane elastic fiber is (A)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticBoth end isocyanate prepolymers obtained by reacting with diisocyanate; (B)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticWith diisocyanateAliphatic with a molecular weight of 500 or lessA hydroxyl-terminated prepolymer obtained by reacting with a low molecular weight diolThe residual NCO group in the yarn immediately after spinning is 0.35 to 0.85% by mass.Do not melt spin the polymer obtained by the reaction.RuA polyurethane elastic fiber mixed weft knitted fabric characterized by that.
[II] aboveHighly fused polyurethane elastic fiber is knitted by insertion or knitting[I] The polyurethane elastic fiber mixed weft knitted fabric according to [I].
[III][I] or [II] The polyurethane elastic fiber mixed weft knitted fabric of description.
[IVThe strength retention after dry heat treatment at 150 ° C. for 45 seconds in a state of 100% elongation is 50% or more, and155-175 ° CA highly fused polyurethane elastic fiber having a melting point and at least one inelastic yarn;
UpHighly fused polyurethane elastic fiber and inelastic yarnAnotherThe high-fusing polyurethane elastic fiber and at least one inelastic yarn are supplied over the entire surface or at intervals.Used for insertion or braidingKnitted,
160-190℃30 seconds to 2 minutesA polyurethane elastic fiber mixed warp knitted fabric obtained by heat-sealing the cross-bonding part between highly elastic polyurethane elastic fibers or non-elastic yarns by dry heat set of
The highly fused polyurethane elastic fiber is (A)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticBoth end isocyanate prepolymers obtained by reacting with diisocyanate; (B)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticWith diisocyanateAliphatic with a molecular weight of 500 or lessA hydroxyl-terminated prepolymer obtained by reacting with a low molecular weight diolThe residual NCO group in the yarn immediately after spinning is 0.35 to 0.85% by mass.Do not melt spin the polymer obtained by the reaction.RuA warp knitted fabric mixed with polyurethane elastic fibers.
[V] Further, a high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more is knitted by insertion or knitting, and the intersection between the high-melting polyurethane elastic fiber and the high-fusion polyurethane elastic fiber is heated. The warp knitted fabric mixed with polyurethane elastic fiber according to [IV], which is fused.
[VIThe strength retention after dry heat treatment at 150 ° C. for 45 seconds in a state of 100% elongation is 50% or more, and155-175 ° CA highly fused polyurethane elastic fiber having a melting point and at least one inelastic yarn;
UpHighly fused polyurethane elastic fiber and inelastic yarnAnotherThe high-melting polyurethane elastic fiber is used alone or in combination with a high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more, or the entire surface or every other one.By insertion or weavingKnitted,
160-190℃30 seconds to 2 minutesHighly fused polyurethane elastic fiber or dry and non-elastic yarnOr high melting point polyurethane elastic fiberPolyurethane elastic fiber mixed warp knitted fabric obtained by heat-sealing the intersection with
The highly fused polyurethane elastic fiber is (A)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticBoth end isocyanate prepolymers obtained by reacting with diisocyanate; (B)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticWith diisocyanateAliphatic with a molecular weight of 500 or lessA hydroxyl-terminated prepolymer obtained by reacting with a low molecular weight diolThe residual NCO group in the yarn immediately after spinning is 0.35 to 0.85% by mass.Do not melt spin the polymer obtained by the reaction.RuA warp knitted fabric mixed with polyurethane elastic fibers.
[VII] It has a cutting part, and this cutting part is non-sewn [IV] To [VI] The warp knitted fabric mixed with polyurethane elastic fiber according to any one of the above.
[VIII] [I] to [VII] The polyurethane elastic fiber mixed knitted fabric according to any one ofClothingProduct.
[IXThe strength retention after dry heat treatment at 150 ° C. for 45 seconds in a state of 100% elongation is 50% or more, and155-175 ° CHighly fused polyurethane elastic fiber having a melting point and at least one inelastic yarnAnotherTo supply
(A)Highly fused polyurethane elastic fiberAnd the inelastic yarnTo all courses,
(B) The highly fused polyurethane elastic fiber and the non-elastic yarn are alternately arranged for each course.
(C) The high-melting polyurethane elastic fiber and the non-elastic yarn, and the high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more and the non-elastic yarn alternately for each course, or
(D) The highly fused polyurethane elastic fiber and the inelastic yarn, and the inelastic yarn are alternately provided for each course.
UseAfter forming the weft knitted fabric,
160-190℃30 seconds to 2 minutesHighly fused polyurethane elastic fiber or dry and non-elastic yarnOr high melting point polyurethane elastic fiberA method for producing a polyurethane elastic fiber mixed weft knitted fabric that is heat-sealed at an intersection with
The highly fused polyurethane elastic fiber is (A)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticBoth end isocyanate prepolymers obtained by reacting with diisocyanate; (B)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticWith diisocyanateAliphatic with a molecular weight of 500 or lessA hydroxyl-terminated prepolymer obtained by reacting with a low molecular weight diolThe residual NCO group in the yarn immediately after spinning is 0.35 to 0.85% by mass.Melt spinning polymer obtained by reactionDoA method for producing a weft knitted fabric mixed with polyurethane elastic fibers.
[XThe strength retention after dry heat treatment at 150 ° C. for 45 seconds in a state of 100% elongation is 50% or more, and155-175 ° CHighly fused polyurethane elastic fiber having a melting point and at least one inelastic yarnAnotherTo supply
The above-mentioned highly fused polyurethane elastic fiber and at least one kind of inelastic yarn are entirely or spaced apart.Used for insertion or braidingAfter forming the warp knitted fabric,
160-190℃30 seconds to 2 minutesA method for producing a warp knitted fabric for blending polyurethane elastic fibers, in which high-bonding polyurethane elastic fibers or a crossing portion between these and non-elastic yarns is heat-sealed by dry heat set of
The highly fused polyurethane elastic fiber is (A)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticBoth end isocyanate prepolymers obtained by reacting with diisocyanate; (B)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticWith diisocyanateAliphatic with a molecular weight of 500 or lessA hydroxyl-terminated prepolymer obtained by reacting with a low molecular weight diolThe residual NCO group in the yarn immediately after spinning is 0.35 to 0.85% by mass.Melt spinning polymer obtained by reactionDoA method for producing a warp knitted fabric mixed with polyurethane elastic fibers.
[XI] Further, after forming a warp knitted fabric using high-melting polyurethane elastic fibers having a melting point of 200 ° C. or higher by insertion or knitting, the intersection between the high-melting polyurethane elastic fibers and the high-fusion polyurethane elastic fibers A method for producing a warp knitted fabric mixed with polyurethane elastic fiber according to [X], wherein
[XIIThe strength retention after dry heat treatment at 150 ° C. for 45 seconds in a state of 100% elongation is 50% or more, and155-175 ° CHighly fused polyurethane elastic fiber having a melting point and at least one inelastic yarnAnotherTo supply
Use the above high-melting polyurethane elastic fiber alone or in combination with two or high-melting polyurethane elastic fibers having a melting point of 200 ° C. or more, and the entire surface or every otherBy insertion or weavingAfter forming the warp knitted fabric,
160-190℃30 seconds to 2 minutesHighly fused polyurethane elastic fiber or dry and non-elastic yarnOr high melting point polyurethane elastic fiberA method of manufacturing a warp knitted fabric mixed with polyurethane elastic fiber, wherein the intersection with the heat-sealing is heat-sealed,
The highly fused polyurethane elastic fiber is (A)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticBoth end isocyanate prepolymers obtained by reacting with diisocyanate; (B)Polyether di having a number average molecular weight of 2000 to 3000With oarsAromaticWith diisocyanateAliphatic with a molecular weight of 500 or lessA hydroxyl-terminated prepolymer obtained by reacting with a low molecular weight diolThe residual NCO group in the yarn immediately after spinning is 0.35 to 0.85% by mass.Melt spinning polymer obtained by reactionDoA method for producing a warp knitted fabric mixed with polyurethane elastic fibers.
[0011]
According to the present invention, it is possible to obtain a polyurethane elastic fiber mixed woven or knitted fabric which can be processed at a low set temperature and hardly causes misalignment, softness, fraying, run, curl, slip-in and misalignment.
BEST MODE FOR CARRYING OUT THE INVENTION
[0012]
Hereinafter, the present invention will be described in more detail.
The polyurethane elastic fiber used in the present invention is not particularly limited in its composition, production method, etc., as long as it is a highly fused polyurethane elastic fiber that is easily fused at low temperatures and has heat resistance. A low molecular weight diamine or a low molecular weight diol having an active hydrogen capable of easily reacting with an isocyanate group of the intermediate polymer by reacting a polyol with an excess molar amount of diisocyanate to produce a polyurethane intermediate polymer having isocyanate groups at both ends. A polyurethane solution (polymer solution) by reacting in an inert organic solvent and then forming the yarn by removing the solvent, or a polymer obtained by reacting polyol, diisocyanate and low molecular weight diamine or low molecular weight diol A method of solidifying and dissolving in a solvent, then removing the solvent and forming into a yarn, the solidified poly A method of forming a yarn by heating without dissolving it in a solvent, a method of obtaining a polymer by reacting the polyol, diisocyanate and low molecular weight diol, and forming the polymer without solidifying the polymer, There is a method of mixing the polymer or polymer solution obtained by each of the above methods and then removing the solvent from the mixed polymer solution to form a yarn. Among these, (A) both-end isocyanate group prepolymer (hereinafter referred to as “both-terminal NCO group prepolymer”) obtained by reacting polyol and diisocyanate, (B) polyol, diisocyanate and low molecular weight diol Are melt-spun without solidifying the polymer obtained by reacting with both-end hydroxyl group prepolymer (hereinafter referred to as “both-end OH group prepolymer”) obtained by reacting It is easy to obtain highly fused polyurethane elastic fibers having heat resistance and is preferable, and is economical because it does not include solvent recovery.
[0013]
In this case, the polyols constituting the prepolymers of the components (A) and (B) may be the same or different, but it is preferable to use a polymer diol having a number average molecular weight of about 800 to 3,000. .
As such a polymer diol, polyether glycol, polyester glycol, polycarbonate glycol or the like can be used.
[0014]
Examples of the polyether glycol include polyether diols obtained by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran; ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neo Examples thereof include polyether glycols obtained by polycondensation of glycols such as pentyl glycol, 1,6-hexanediol, and 3-methyl-1,5-pentanediol.
Examples of the polyester glycol include glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and 3-methyl-1,5-pentanediol. Polyester glycol obtained by polycondensation of at least one selected from the group with at least one selected from dibasic acids such as adipic acid, sebacic acid, and azelaic acid; the opening of lactones such as ε-caprolactone and valerolactone Examples thereof include polyester glycol obtained by ring polymerization.
[0015]
Examples of the polycarbonate glycol include dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; alkylene carbonates such as ethylene carbonate and propylene carbonate; at least one organic carbonate selected from diaryl carbonates such as diphenyl carbonate and dinaphthyl carbonate; and ethylene glycol. At least one aliphatic diol selected from propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, and the like And carbonate glycol obtained by the transesterification reaction.
[0016]
The polyether glycol, polyester glycol, or polycarbonate glycol exemplified above can be used singly or in combination of two or more, but in order to obtain good fusing property, the total amount of polymer diol used is On the other hand, the polyether diol component is desirably used in an amount of 50% by mass or more, preferably 60% by mass or more, and the polyether diol component may be 100% by mass. As the polyether diol component, polytetramethylene ether glycol is particularly preferably used.
[0017]
As the diisocyanate constituting the prepolymers of the components (A) and (B), any diisocyanate usually used in the production of polyurethane such as aliphatic, alicyclic, aromatic and araliphatic is used. Can be used.
[0018]
Examples of such diisocyanates include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene. Diisocyanate, p-phenylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, meta-tetramethylxylene diisocyanate, para-tetramethylxylene diisocyanate, and the like can be used alone or in combination. Of these, 4,4′-diphenylmethane diisocyanate and 4,4′-dicyclohexylmethane diisocyanate are preferably used.
[0019]
The low molecular weight diol or low molecular weight diamine which is a chain extender preferably has an appropriate reaction rate and gives moderate heat resistance, has two active hydrogen atoms capable of reacting with isocyanate, and generally has a molecular weight. Less than 500 low molecular weight compounds are used.
[0020]
Examples of such low molecular weight diols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, and 3-methyl-1,5-pentane. Aliphatic diols such as diol can be used, and trifunctional glycols such as glycerin can also be used within a range that does not impair spinnability. These can be used singly or in combination of two or more, but ethylene glycol and 1,4-butanediol are preferable from the viewpoint of giving workability and appropriate physical properties to the obtained fiber.
[0021]
Examples of such low molecular weight diamines that can be used include ethylenediamine, butanediamine, propylenediamine, hexamethylenediamine, xylylenediamine, 4,4-diaminodiphenylmethane, and hydrazine.
[0022]
A low molecular weight diol and a low molecular weight diamine can be used in combination, but in the present invention, a low molecular weight diol can be more preferably used as a chain extender.
[0023]
Moreover, monofunctional monools, such as butanol, and monofunctional monoamines, such as diethylamine and dibutylamine, can also be mixed and used as a reaction regulator or a polymerization degree regulator.
[0024]
As the inert solvent used in the polyurethane polymerization reaction or as the spinning solution, N, N-dimethylformamide, N, N-dimethylacetamide, N, N, N ′, N′-tetramethylurea, N— Examples include polar solvents such as methyl pyrrolidone and dimethyl sulfoxide.
[0025]
In order to improve weather resistance, heat oxidation resistance, and yellowing resistance, optional components such as ultraviolet absorbers, antioxidants, and light stabilizers may be added to the prepolymers of the above components (A) and (B). it can.
[0026]
Examples of the ultraviolet absorber include 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole and 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chloro. Examples include benzotriazole-based ultraviolet absorbers such as benzotriazole and 2- (2-hydroxy-3,5-bisphenyl) benzotriazole.
[0027]
As the antioxidant, for example, 3,9-bis (2- (3- (3-t-butyl-4-hydroxy-5-methylphenyl) -propionyloxy) -1,1-dimethylethyl) -2,4 , 8,10-tetraoxaspiro (5.5) undecane, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, pentaerythrityl-tetrakis [3 Hindered phenolic antioxidants such as-(3,5-di-t-butyl-4-hydroxyphenyl) propionate].
[0028]
Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and dimethyl succinate. Examples thereof include hindered amine light stabilizers such as 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine condensate.
[0029]
Next, the method for obtaining the polyurethane elastic fiber of the present invention is not particularly limited. For example, the following three methods are known as melt spinning methods.
(1) A method of melt spinning a polyurethane elastic chip.
(2) A method of spinning a polyurethane elastic chip after mixing a polyisocyanate compound.
(3) A reactive spinning method in which a spinning polymer obtained by reacting a prepolymer obtained by reacting a polyol and diisocyanate with a low molecular weight diol is synthesized and then spun without solidification.
[0030]
The method (3) is simpler than the methods (1) and (2) because there is no process for handling the polyurethane elastic chip, and the injection rate of the prepolymer into the reactor is adjusted to perform spinning. This is a preferred method because the amount of residual NCO groups in the subsequent polyurethane elastic fiber can be adjusted, and heat resistance can be improved by chain extension reaction with the residual NCO groups. Furthermore, in the method (3),WO99 / 39030As described in JP-A-2006-101, a method in which a low molecular weight diol is reacted in advance with a part of a prepolymer and then injected into a reactor as a prepolymer having an excess of OH groups can be performed.
[0031]
In the polyurethane elastic fiber of the present invention, the prepolymers of the components (A) and (B) are continuously and quantitatively injected into the reactor according to the method of (3), and the obtained spinning polymer is solidified. It is particularly preferred to obtain it by melt spinning.
[0032]
In this case, the spinning polymer is synthesized by (I) synthesis of NCO group prepolymers at both ends, (II) synthesis of OH group prepolymers at both ends, and (III) these two prepolymers to the reactor, The composition of the raw material is composed of three reactions that are continuously reacted, and the composition ratio of the raw materials is the sum of the above three reactions, and the molar amount of the total diisocyanate, the total polymer diol, and the total low molecular weight diol. The molar ratio with respect to the total molar amount is preferably 1.02 to 1.20.
[0033]
Specifically, the NCO group prepolymer at both ends of the above (I) is prepared by, for example, charging a predetermined amount of diisocyanate into a tank equipped with a warm water jacket and a stirrer, and then injecting a predetermined amount of polymer diol while stirring. It can be obtained by stirring under a nitrogen purge at 80 ° C. for 1 hour. Both terminal NCO group prepolymers obtained by this reaction are injected into a polyurethane elastic fiber reactor using a jacketed gear pump (for example, KAP-1 manufactured by Kawasaki Heavy Industries, Ltd.).
The OH group prepolymer at both ends of (II) is charged with a predetermined amount of diisocyanate in a tank equipped with a warm water jacket and a stirrer, and then a predetermined amount of polymer diol is injected while stirring, and then purged with nitrogen at 80 ° C. for 1 hour. It can be obtained by stirring under to obtain a precursor, then injecting a low molecular weight diol, stirring and reacting with the precursor. The obtained both terminal OH group prepolymers are injected into a polyurethane elastic fiber reactor using a jacketed gear pump (for example, KAP-1 manufactured by Kawasaki Heavy Industries, Ltd.).
[0034]
In addition, at the time of synthesis | combination of both these prepolymers, the said various chemicals for improving a weather resistance, heat oxidation resistance, yellowing resistance, etc. can be added.
[0035]
The synthesis of the spinning polymer (III) can be obtained by continuously reacting the prepolymers (A) and (B) fed at a constant ratio. In this case, the reactor may be one that is used in the usual melt spinning method of polyurethane elastic fibers, and is equipped with a mechanism that heats, stirs and reacts the spinning polymer in a molten state, and further transports it to the spinning head. Is preferred. The reaction conditions are 160 to 220 ° C. for 1 to 90 minutes, preferably 180 to 210 ° C. for 3 to 80 minutes.
[0036]
The polyurethane elastic fiber of the present invention can be obtained by transporting the synthesized spinning polymer to the spinning head without solidifying, and discharging and spinning from the nozzle. The average residence time of the spinning polymer in the reactor is It depends on the type of reactor and is calculated by the following formula.
Average residence time in reactor =
(Reactor volume / spinning polymer discharge rate) x specific gravity of spinning polymer
[0037]
Generally, it takes about 1 hour when using a cylindrical reactor, and 5 to 10 minutes when using a twin screw extruder. The spinning temperature is 180 to 230 ° C., and it can be obtained by continuously extruding from a nozzle, cooling, attaching a spinning oil agent and winding.
[0038]
Here, the ratio of the NCO group prepolymer at both ends and the OH group prepolymer at both ends is 0.3 to 1% by mass, more preferably 0.35 to 0.85% by mass of NCO groups in the yarn immediately after spinning. It is preferable to appropriately adjust the rotation ratio of the injection gear pump so as to remain. When the NCO group is contained in an excess of 0.3% by mass or more, physical properties such as high elongation and heat resistance can be improved by a chain extension reaction after spinning. However, if the NCO group is less than 0.3% by mass, the heat-resistant strength retention of the resulting polyurethane elastic fiber may be lowered, and if it exceeds 1% by mass, the viscosity of the spinning polymer will be low, and spinning will not be possible. It can be difficult.
[0039]
In addition, the content rate of the NCO group in the spun fiber is measured as follows.
After the spun fiber (about 1 g) was dissolved in a dibutylamine / dimethylformamide / toluene solution, excess dibutylamine was reacted with NCO groups in the sample, and the remaining dibutylamine was titrated with hydrochloric acid to contain NCO groups. Calculate the amount.
[0040]
The polyurethane elastic fiber used in the present invention is particularly preferably a polyurethane elastic fiber produced by a melt reaction spinning method using polyether diol as a main raw material as described above.
[0041]
The polyurethane elastic fiber used in the present invention has a strength retention of 50% or more, preferably 55% or more after dry heat treatment at 150 ° C. for 45 seconds in a 100% stretched state. When the strength retention is lower than 50%, the stretchability of the product after heat setting is lowered, which is not preferable.
The upper limit of the strength retention is not particularly limited, but is usually 90% or less, particularly 80% or less.
[0042]
The melting point of the polyurethane elastic fiber is 180 ° C. or less, preferably 175 ° C. or less. When the temperature is higher than 180 ° C., the heat treatment temperature for fusing is excessively high, which adversely affects the texture of the product, fastness to dyeing, and the like.
The lower limit of the melting point is preferably 150 ° C. or higher, particularly 155 ° C. or higher from the viewpoint of dimensional stability when mixed with a high melting point polyurethane elastic fiber and the elongation recovery force of the fabric.
The method for measuring the strength retention rate is as described later.
[0043]
The polyurethane elastic fiber mixed woven or knitted fabric of the present invention has the following structure using the above-mentioned highly fused polyurethane elastic fiber and non-elastic yarn, and also using, for example, a high melting point polyurethane elastic fiber having a melting point of 200 ° C. or higher. can do.
(1) A woven fabric in which a composite yarn including a highly fused polyurethane elastic fiber and at least one inelastic yarn is used as a warp and / or a weft. The texture may be any of plain weave, twill weave, satin weaving, and the like, and shuttle looms, rapier looms, air jet looms and the like can be used as the loom. Furthermore, the warp and the weft may be the composite yarn, or the composite yarn and the inelastic yarn may be mixed and used at a driving ratio of 1: 1, 1: 2, or 1: 3.
(2) Weft knitted fabric in which high-fusion polyurethane elastic fibers and at least one kind of inelastic yarn are mixed in the same course of the knitting machine. The knitted fabric of weft knitted fabric knitted with high-fusion polyurethane elastic fibers and non-elastic yarns is knitted with any organization, such as flat knitting, rubber knitting, pearl knitting, double-sided knitting, or a combination or change of these. As the knitting machine, all knitting machines such as a circular knitting machine, a flat knitting machine, a full fashion knitting machine, and a sock knitting machine can be used. The highly fused polyurethane elastic fiber may be either inserted or knitted. Also, a plating knitting of highly fused polyurethane elastic fiber and inelastic yarn may be used, or a composite yarn of highly fused polyurethane and inelastic yarn may be used. As in (1), highly fused polyurethane elastic fibers may be knitted in all courses, or may be knitted every other course. Highly fused polyurethane elastic fibers and inelastic yarns may be knitted alternately or at appropriate intervals. Furthermore, a high melting point polyurethane elastic fiber may be mixed. Examples are shown below, but are not limited thereto.
[0044]
(2) -1 Examples of all courses:
1st neck High fusing yarn and inelastic yarn, or composite yarn
2nd high fusing yarn and inelastic yarn, or composite yarn
3rd high fusing yarn and inelastic yarn or composite yarn
4th high fusing yarn and inelastic yarn, or composite yarn
[0045]
(2) -2 Example of every other course:
1st neck High fusing yarn and inelastic yarn, or composite yarn
2nd inelastic thread
3rd high fusing yarn and inelastic yarn or composite yarn
4th inelastic thread
[0046]
(2) -3 Example of using high fusing yarn and high melting yarn every other course:
1st neck High fusing yarn and inelastic yarn, or composite yarn
2nd high-melting yarn and inelastic yarn or composite yarn
3rd high fusing yarn and inelastic yarn or composite yarn
4th high-melting yarn and inelastic yarn, or composite yarn
[0047]
(2) -4 Alternating example:
1st high fusing yarn
2nd inelastic yarn, or high fusing yarn and inelastic yarn
3rd high fusing yarn
4th inelastic thread, or high fusing thread and inelastic thread
[0048]
(3) A warp knitted fabric in which highly fused polyurethane elastic fibers and at least one kind of inelastic yarn are mixed. The knitting structure of warp knitted fabric knitted with high fusion polyurethane elastic fiber and inelastic yarn is knitted with any structure such as combed knitting, denvi knitting, cord knitting, atlas knitting, or a combination or change of these. As the knitting machine, all knitting machines such as a tricot knitting machine, a Raschel knitting machine, and a Milanese knitting machine can be used. As in (1), highly fused polyurethane elastic fibers may be knitted on the entire surface, or may be knitted at appropriate intervals. Further, the highly fused polyurethane elastic fiber may be either inserted or knitted. Furthermore, a high melting point polyurethane elastic fiber may be mixed. Examples are shown below, but are not limited thereto.
[0049]
(3) -1 Knitted fabric
FIG. 1 and FIG. 2 show a comb structure that is often used in race sites and the like. This comb structure is prone to defects such as run and unravel after cutting. A run stop structure has been proposed as a countermeasure, but the trace of the run stop structure remains dirty in the fabric, and there remains a problem that impairs the sense of quality. Therefore, in FIGS. 1 and 2, when a is a non-elastic yarn, b is a high-melting polyurethane elastic fiber of the present invention, or a high-melting polyurethane elastic fiber and a high-melting polyurethane elastic fiber are knitted and heat-set, In the part X shown in FIG. 1, the high-fusion polyurethane elastic fiber and the non-elastic yarn, and the high-fusion polyurethane elastic fiber and the high-melting-point polyurethane elastic fiber are in contact with each other and heat-sealed. -It is possible to obtain a knitted fabric which prevents defects such as unraveling and does not impair any aesthetics.
[0050]
(3) -2 Knitted fabric other than comb
Even in a structure that is generally used other than the comb structure, when the highly fused polyurethane elastic fiber of the present invention is inserted or knitted, it is soft (elastic) due to fusion with non-elastic yarns and also between polyurethane elastic fibers. The fiber is less likely to slip, come off, and jump out), and the durability of the fabric can be substantially improved. In addition, the fabric is more stable, curling is less likely to occur, and cost reduction during sewing can be expected.
[0051]
For example, in the organization charts shown in FIGS. 3 to 8, by appropriately using high-fusion polyurethane elastic fibers, it is possible to obtain a knitted fabric in which misalignment, softness, fraying, run, densen, curl and slip-in are unlikely to occur. It becomes possible.
[0052]
3, L1 and L2 are fully inserted (All-in), L1 and L2 in FIG. 4, L3 and L4 are inserted every other line (1in-1out), and L1, L2, and L3 in FIGS. Is full insertion (All-in). 3 to 8, a is a non-elastic yarn, b is a high-fusion polyurethane elastic fiber of the present invention used alone or in alignment with a high-melting polyurethane elastic fiber, and c in FIGS. 5 and 6 is a book. Two high-melting polyurethane elastic fibers of the invention can be used, or one high-melting polyurethane elastic fiber and one high-melting-point polyurethane elastic fiber of the invention can be used.
[0053]
Furthermore, depending on the intended use, when the cut edge is used as it is without sewing, there has been a problem in terms of durability such as fraying due to rubbing during washing or wearing, but this can also be greatly improved.
[0054]
Here, the non-elastic yarn mixed with the high-melting polyurethane elastic fiber is not particularly limited. For example, natural fibers such as cotton, hemp, wool, and silk, regenerated fibers such as rayon, cupra, and polynosic, acetate, and the like. Although fibers such as semi-regenerated fibers, chemically synthesized fibers such as nylon, polyester, and acrylic can be used, the mixed proportion of polyurethane elastic fibers is preferably about 1 to 40%.
[0055]
Further, in the woven or knitted fabric mixed with polyurethane elastic fiber of the present invention, a high melting point having a melting point of 200 ° C. or higher, preferably 210 ° C. or higher, excellent in heat resistance and elastic recovery by a dry spinning method in which a chain length reaction is performed with diamine. By mixing and using polyurethane elastic fibers, it is also possible to obtain a woven or knitted fabric having good elastic performance while maintaining the fusion property. In this case, the amount of the high melting point polyurethane elastic fiber used is preferably about 2 to 40%.
[0056]
Here, the dry heat setting method can be performed by using a setting machine such as a pin tenter and heat fixing with hot air. In this case, the set temperature is 140 to 200 ° C., particularly 170 to 190 ° C., and the set time can be 10 seconds to 3 minutes, particularly 30 seconds to 2 minutes.
[0057]
On the other hand, the wet heat setting method can be performed by heat-setting with saturated steam at a predetermined pressure in a state in which a knitted fabric or the like is placed in a template. In this case, the set temperature is 100 to 130 ° C., particularly 105 to 125 ° C., and the set time can be 2 to 60 seconds, particularly 5 to 30 seconds.
【Example】
[0058]
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, all parts are parts by mass.
[0059]
[Example 1]
As raw materials for polyurethane elastic fiber synthesis, the following NCO group prepolymers at both ends and OH group prepolymers at both ends were synthesized.
[0060]
Synthesis of OH group prepolymers at both ends
As a diisocyanate, 25 parts of 4,4′-diphenylmethane diisocyanate (hereinafter referred to as “MDI”) was charged into a reaction vessel with a warm water jacket at 80 ° C. sealed with nitrogen gas, and a polytetramethylene having a number average molecular weight of 2,000 as a polymer diol. 100 parts of ether glycol (hereinafter referred to as PTMG) was injected with stirring. After the reaction for 1 hour, 27.6 parts of 1,4-butanediol was further injected as a low molecular weight diol to synthesize both terminal OH group prepolymers.
[0061]
Synthesis of NCO group prepolymers at both ends
47.4 parts of MDI as diisocyanate was charged into a reaction vessel at 80 ° C. sealed with nitrogen gas, and an ultraviolet absorber (2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole: 20%), Antioxidants (3,9-bis (2- (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) -propionyloxy) -1,1-dimethylethyl) -2,4,8, Add 2.2 parts of a mixture of 10-tetraoxaspiro (5.5) undecane: 50%), light stabilizer (bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate: 30%) Then, 100 parts of PTMG having a number average molecular weight of 2,000 was injected as a polymer diol while stirring, and stirring was continued for 1 hour to obtain an NCO group prepolymer at both ends.
[0062]
The obtained NCO group prepolymers at both ends and OH group prepolymers at both ends were continuously fed into a cylindrical reactor for polyurethane elastic fibers having a mass of 1: 0.475 and a stirring blade having a capacity of 2,200 ml. The feed rate was 28.93 g / min for both ends NCO group prepolymer and 13.74 g / min for both ends OH group prepolymer. The average residence time in the reactor was about 1 hour, and the reaction temperature was about 190 ° C.
[0063]
The obtained polymer was introduced into two 8-nozzle spinning heads maintained at a temperature of 192 ° C. without solidifying. The spinning polymer is weighed and pressurized by a gear pump installed on the head, filtered through a filter, and discharged from a nozzle with a diameter of 0.6 mm into a 6 m long spinning tube at a speed of 2.67 g / min ( Total discharge from nozzle:
42.67 g / min), and rolled up at a speed of 600 m / min while applying an oil agent to obtain 44 dtex polyurethane elastic fiber.
[0064]
The NCO group content of the polyurethane elastic fiber immediately after discharge was 0.42% by mass. As a result of measuring the physical properties of this polyurethane elastic fiber by the following method, the melting point was 168 ° C., and the heat-resistant strength retention was 65%. Furthermore, using this elastic fiber, a knitted fabric was prepared by the following method, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1.
[0065]
Melting point measurement method
Measuring device: TMA (thermal equipment measuring device)
Using quartz probe
Holding length: 20mm
Elongation: 0.5%
Temperature range: room temperature to 250 ° C
Temperature increase rate: 20 ° C / min
Evaluation: The temperature at which the thermal stress reached 0 mgf was defined as the melting point.
[0066]
Measurement method of heat resistance and strength retention
The polyurethane elastic fiber is held at a grip length of 10 cm and stretched to 20 cm. It heat-processed by putting for 45 second in the hot air dryer maintained at 150 degreeC in the expand | extended state. The strength of the polyurethane elastic fiber after the heat treatment was measured at a grasping length of 5 cm and an elongation rate of 500 mm / min using a tensile tester having a constant elongation rate. The environment during the measurement was a temperature of 20 ° C. and a relative humidity of 65%. Displays the heat resistant strength retention rate for the fiber before heat treatment.
[0067]
Creating a knitted fabric
In a pantyhose knitting machine (manufactured by Lonati, 400 needles), 6-
[0068]
Heat set
The prepared knitted fabric was subjected to a dry heat treatment for 1 minute in a drier kept at 160 ° C and 180 ° C.
[0069]
Measurement of knitting tension
The knitting tension from the knitted fabric of nylon yarn and polyurethane elastic fiber was measured. The knitting speed was 100 mm / min, and the average tension for 1 minute was calculated.
[0070]
[referenceExample1]
A polyurethane elastic fiber using a polyester diol was produced in the same manner as in Example 1 except that polyethylene glycol adipate having a number average molecular weight of 2,000 was used instead of PTMG. The NCO group content of the polyurethane elastic fiber immediately after discharge was 0.45% by mass. As a result of measuring physical properties in the same manner as in Example 1, the melting point of this 44 decitex polyurethane elastic fiber was 170 ° C., and the heat-resistant and strong retention rate was 62%.
[0071]
A knitted fabric was prepared using this elastic fiber in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1.
[0072]
[Comparative Example 1]
44 decitex polyurethane elastic fiber (Mobilon P type yarn manufactured by Nisshinbo Co., Ltd.) using PTMG as the polymer diol and diamine as the chain extender was used. The physical properties were measured in the same manner as in Example 1. As a result, the polyurethane elastic fiber had a melting point of 221 ° C. and a heat resistant strength retention of 95%.
A knitted fabric was prepared using this elastic fiber in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1.
[0073]
[Comparative Example 2]
A spinning polymer was synthesized in the same manner as in Example 1, extruded from a reactor through a 4 mm diameter orifice into a strand shape, cooled, and cut to obtain polyurethane elastic pellets. The pellets were dried with a vacuum dryer, remelted with a single screw extruder, weighed and pressurized with a gear pump installed on the spinning head in the same manner as in Example 1, filtered with a filter, 0.6 mm in diameter, 1 hole 44 dtex is discharged from a nozzle at a speed of 2.67 g per minute into a 6 m long spinning cylinder (total amount discharged from the nozzle: 42.67 g / min) and wound at a speed of 600 m / min while applying an oil. Polyurethane elastic fiber was obtained. The polyurethane elastic fiber immediately after discharge had an NCO group content of 0.13% by mass.
[0074]
The physical properties were measured in the same manner as in Example 1. As a result, the polyurethane elastic fiber had a melting point of 152 ° C. and a heat resistant strength retention of 38%. A knitted fabric was prepared using this elastic fiber in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1.
[0075]
[Table 1]
[0076]
Example1Was high in the knitting tension due to fusion, and in the case of the polyurethane elastic fiber using the polyether diol of Example 1, the knitting tension was particularly high. Example 1IsThe elastic fiber in the knitted fabric did not break even when heat set at 180 ° C. In the combination with the high melting point polyurethane elastic fiber of Comparative Example 1, fusion hardly occurs. In Comparative Example 2, the unknitting tension by heat setting at 160 ° C. is high, but the polyurethane elastic fiber breaks in the knitted fabric by heat setting at 180 ° C. There has occurred.
[0077]
〔Example2]
Using the polyurethane elastic fiber obtained in Example 1, the knitted fabric prepared by the following method was heat-set and then subjected to a washing test. The frayed fabric, slip-in, and knitted fabric were visually observed. The results are shown in Table 2.
[0078]
Creating a knitted fabric
Pantyhose knitting machine (manufactured by Lonati, 400 needles)
[0079]
Heat set
The prepared knitted fabric was dry-heat treated for 1 minute in a drier kept at 180 ° C.
[0080]
Washing test
A cut sample of 15 × 20 cm was prepared from the knitted fabric after setting, and washing was repeated 20 times using a suga test machine LM-160 washing test machine.
Liquid volume: 150ml
Use 10 steel balls
Temperature: 50 ° C
Time: 1 cycle 30 minutes
[0081]
Evaluation methods
Fraying: The edge of the knitted fabric cut parallel to the course direction of the knitted fabric was observed.
Slip-in: Elastic fiber is knitted by observing the edge of the knitted fabric cut in the knitted fabric well
Ratio of the number slipping in 5mm or more from the ground edge (%)
It was evaluated with.
Misalignment: The smoothness of the knitted fabric was observed.
Curl: The edge of the knitted fabric was observed.
[0082]
〔Example3]
Example2Using the same knitting machine as in Example 1, the polyurethane elastic fiber of Example 1 was fed to 1, 3 ports, and the elastic fiber of Comparative Example 1 was fed to 2 and 4 ports.2Create a knitted fabric in the same way as in Example2The same test was conducted. The results are shown in Table 2.
[0083]
[Comparative Example 3]
Example using only elastic fiber of Comparative Example 12A knitted fabric was made in the same manner as above and the same test was performed. The results are shown in Table 2.
[0084]
[Comparative Example 4]
Example using only elastic fiber of Comparative Example 22A knitted fabric was made in the same manner as above and the same test was performed. The results are shown in Table 2.
[0085]
[Table 2]
[0086]
In Comparative Example 4, yarn breakage of the polyurethane elastic fiber occurred in the knitted fabric.
[0087]
〔Example4]
In the same manner as in Example 1, 156 dtex polyurethane elastic fiber was obtained. The physical properties were measured in the same manner as in Example 1. As a result, the polyurethane elastic fiber had a melting point of 170 ° C. and a heat resistant strength retention of 68%. Furthermore, a warp knitted fabric was prepared by the following method using this elastic fiber, and the pulling resistance value of the polyurethane elastic fiber was measured from the knitted fabric after heat setting. The results are shown in Table 3.
[0088]
Creating a knitted fabric
Using a Raschel knitting machine (Carl Meyer, 28 gauge), using 6-nylon filament yarn 56 dtex 17 filaments for L1 a and L3 c in FIG. 9 and polyurethane elastic fiber for L2 b, warp knitting Created the ground.
[0089]
Heat set
The knitted fabric was subjected to a dry heat treatment for 1 minute in a drier maintained at 190 ° C.
[0090]
Drawing resistance measurement
From the knitted fabric, a test piece having a weft direction (width) of 25 mm and a warp direction (length) of 100 mm was collected as shown in FIG. At this time, a total of 10 test pieces were sampled in each of 5 pieces so that the drawing direction of the polyurethane elastic fiber was the knitting start and knitting end direction.
[0091]
Subsequently, a test piece was prepared as shown in FIG. The test piece was cut off at a position (B-B ') 40 mm from the lower end (D-D') of the test piece, with one polyurethane
[0092]
When measuring the pull-out resistance value with a tensile testing machine, adjust the gripping interval of the tensile testing machine to 40 mm, and then grasp the upper part of the test piece with the upper gripping margin of 25 mm (above AA ′) of the test piece. Then, an initial load of 0.1 cN is applied to the polyurethane elastic fiber, the polyurethane elastic fiber is grasped at a lower grip margin of 4 (lower than CC ′), and is pulled at a pulling speed of 100 mm / min. The maximum pull-out load until the was pulled out was measured. This was carried out 5 times each in the knitting start and knitting end directions, a total of 10 times, and the average value was calculated to obtain the pulling resistance value.
[0093]
[Comparative Example 5]
A 156 dtex polyurethane elastic fiber (Mobilon P type yarn manufactured by Nisshinbo Co., Ltd., melting point 217 ° C., heat-resistant strength retention 93%) using PTMG as a polymer diol and diamine as a chain extender is shown in FIG. Example except that b was used as an insertion thread4A warp knitted fabric was created in the same way. Example after heat setting4In the same manner as above, the pull-out resistance value of the b yarn of L2 was measured. The results are shown in Table 3.
[0094]
〔Example5]
Example4Using the same knitting machine as shown in FIG. 3, L1 a of 6-nylon filament yarn 56 dtex 17 filament, L2 b of Example4Example of creating warp knitted fabric using polyurethane elastic fiber4The same test was conducted. The results are shown in Table 3.
[0095]
[Comparative Example 6]
Example except that elastic fiber similar to Comparative Example 5 was used for b of L2 in FIG.5A knitted fabric was prepared in the same manner as described above, and the same test was performed. The results are shown in Table 3.
[0096]
〔Example6]
Example4The same knitting machine is used, and the 6-nylon filament yarn 56 dtex 17 filament is applied to L1 and L2 a in FIG.4Example of creating warp knitted fabric using polyurethane elastic fiber4The same test was conducted. The results are shown in Table 3.
[0097]
[Comparative Example 7]
Example except that the elastic fiber of Comparative Example 5 was used for b of L3 and L4 in FIG.6A warp knitted fabric was prepared in the same manner as above, and the same test was performed. The results are shown in Table 3.
[0098]
[Table 3]
[0099]
Example4,6In the example, the pull-out resistance value is high due to fusion.5Thus, a knitted fabric that was fused to such an extent that it could not be pulled out and was less prone to misalignment and softness was obtained. In the combination with the high melting point polyurethane elastic fibers of Comparative Examples 5, 6, and 7, fusion did not easily occur, the pulling resistance value was low, and misalignment and softness occurred.
[0100]
〔Example7]
Create a knitted fabric by the following method, heat set, measure the knitting tension of the knitted fabric, confirm the fusion between polyurethane elastic fibers, and visually check the knitted fabric for damage (washing durability). evaluated. The results are shown in Table 4.
[0101]
Creating a knitted fabric
Using a Raschel knitting machine (28 gauge, manufactured by Karl Mayer), a knitted fabric having the organization chart shown in FIG. 5 was prepared. In FIG. 5, a warp knitted fabric using 6-nylon filament yarn 56 dtex 17 filament in L1 a, the same elastic fiber as Comparative Example 5 in c in L2, and the polyurethane elastic fiber of Example 1 in c in L3 Was formed as the main knitted fabric. Further, a warp knitted fabric was prepared using nylon filament yarn 110 dtex 24 filaments as a cut yarn between the main knitted fabrics.
[0102]
Heat set
The knitted fabric was subjected to a dry heat treatment for 1 minute in a drier maintained at 190 ° C.
[0103]
Measurement of knitting tension
The deknitting tension of the nylon thread was measured. The knitting speed was 100 mm / min, the knitting tension for 1 minute was measured, and the average value at five peak points was calculated.
[0104]
Checking the fusion status
The nylon yarn of the main knitted fabric was dissolved in 20% dilute hydrochloric acid, and the fusion state of the contact portion between the polyurethane elastic fibers was observed.
[0105]
Preparation of specimens for knitting fabric damage evaluation
Cut a strip-shaped sample with a length of 3.3 cm and a width of 24.0 cm in the knitting direction of the heat-set knitted fabric, and make a cut at an angle of 40 degrees with respect to the knitting direction. The sample was divided into “side” and “knitting end side”, and the cut portions in the vertical direction were combined and sewn with an overlock sewing machine to prepare an annular sample.
[0106]
Laundry of samples in knitting fabric damage assessment
The prepared sample was continuously washed for 300 minutes under the following conditions.
Washing machine: Household two-tank washing machine
Detergent amount: Adjust to 1.3 g / L (use weak alkaline detergent)
Water volume: 30L
Load cloth: Cotton, Polyurethane elastic fiber mixed bare Tendon knitted fabric, 1.0kg
[0107]
Knitting fabric damage evaluation
The degree of damage of the cut portions on the “knitting start side” and “knitting end side” was observed and evaluated according to the following four levels.
A: No damage is observed
○: Somewhat damaged
Δ: Scratch is observed
×: Severe damage
Among these, Δ and × are bruises that are hesitant to wear as clothing, and ◎ to ○ are preferable from the viewpoint of washing durability.
[0108]
[Comparative Example 8]
Example except that the elastic fiber of Comparative Example 1 was used for c of L3 in FIG.7A warp knitted fabric was created in the same way. After heat setting, measure the knitting tension of the punched yarn and confirm the fusion status of the polyurethane elastic fiber.7The same test was conducted. The results are shown in Table 4.
[0109]
〔Example8]
Example76, a nylon nylon fiber 56 dtex 17 filaments in L1 a of FIG. 6, polyurethane elastic fibers of Comparative Example 1 in c of L2, polyurethane elasticity of Example 1 in c of L3 Example of creating warp knitted fabric using fiber7The same test was conducted. The results are shown in Table 4.
[0110]
[Comparative Example 9]
Example except that the elastic fiber of Comparative Example 1 was used for c of L3 in FIG.8A warp knitted fabric was prepared in the same manner as described above, and the same test was performed. The results are shown in Table 4.
[0111]
〔Example9]
Example77 using 6-nylon filament yarn 56 dtex 17 filament in L1 a of FIG. 7, polyurethane elastic fiber of Example 1 in L2 b, warp knitting without using a yarn. Create a ground, an example7The same test was conducted. The results are shown in Table 4.
[0112]
[Comparative Example 10]
Example except that the elastic fiber of Comparative Example 1 was used for b of L2 in FIG.9A warp knitted fabric was prepared in the same manner as described above, and the same test was performed. The results are shown in Table 4.
[0113]
〔Example10]
Example7The same knitting machine is used, 6-nylon filament yarn 56 dtex 17 filament is used for L1a in FIG. 8, polyurethane elastic fiber of Example 1 is used for L2b, warp knitting is not used. Create a ground, an example7The same test was conducted. The results are shown in Table 4.
[0114]
[Comparative Example 11]
Example except that the elastic fiber of Comparative Example 1 was used for b of L2 in FIG.10A warp knitted fabric was prepared in the same manner as described above, and the same test was performed. The results are shown in Table 4.
[0115]
[Table 4]
[0116]
Example7,8Shows that the unraveling tension of the drawn yarn is increased, and the drawn yarn and the highly fused polyurethane elastic fiber are strongly fused. In Comparative Examples 8 and 9, the knitting tension of the drawn yarn is low, which indicates that the fusion with the high melting point polyurethane elastic fiber hardly occurs. In addition, as for the fusion situation between polyurethane elastic fibers,7,8Then, the high-melting polyurethane elastic fiber and the high-melting-point polyurethane elastic fiber were completely fused, and could not be peeled even when the contact portion was pulled. The fusion between the high melting point polyurethane elastic fibers of Comparative Examples 8 and 9 was weak, and the contact part separated when the contact part was pulled. Examples9,10Then, the highly fused polyurethane elastic fibers were completely fused together, and the fused part could not be peeled off. In Comparative Examples 10 and 11, the high melting point polyurethane elastic fibers were weakly bonded to each other and could be peeled off.
[0117]
Example of heat-sealing using high-bonding polyurethane elastic fibers for the degree of damage to the knitted fabric due to washing7,8,9,10With respect to knitting, the cut portions on the “knitting start side” and “knitting end side” were both “◎” or “◯”, which was a preferable result in terms of washing durability. For comparative examples 8, 9, 10, and 11 that use high-melting point polyurethane elastic fibers and have weak heat fusion, the cut portions of “knitting start side” and “knitting end side” are Δ or ×, and they are worn as clothes by washing. Some hesitation was generated, which resulted in an undesirable result.
[0118]
Even in a structure that is generally used other than a comb structure or a comb structure (insertion or knitting of elastic fibers), if the high-melting polyurethane elastic fiber of the present invention is used, it can be fused with non-elastic yarns, As a result of this fusion, misalignment, softness, fraying, run, densen, curl and slip-in are less likely to occur, and the durability of the fabric is substantially improved. Further, the cut edge was not easily frayed or damaged by washing.
[Brief description of the drawings]
[0119]
FIG. 1 is an example of an organization chart of a knitted fabric.
FIG. 2 is an example of an organization chart of a comb knitted fabric.
FIG. 3 is an example of an organization chart of a warp knitted fabric.
FIG. 4 is an example of an organization chart of a warp knitted fabric.
FIG. 5 is an example of an organization chart of a warp knitted fabric.
FIG. 6 is an example of an organization chart of a warp knitted fabric.
FIG. 7 is an example of an organization chart of a warp knitted fabric.
FIG. 8 is an example of an organization chart of a warp knitted fabric.
FIG. 9 is an example of an organization chart of a warp knitted fabric.
FIG. 10 is a test piece for a tensile test of a warp knitted fabric.
[Explanation of symbols]
[0120]
a Inelastic yarn
b Alignment of Highly Fused Polyurethane Elastic Fiber or Highly Fused Polyurethane Elastic Fiber and High Melting Point Polyurethane Elastic Fiber of the Present Invention
X heat fusion part
c Two highly fused polyurethane elastic fibers of the present invention or one highly fused polyurethane elastic fiber of the present invention and one high melting point polyurethane elastic fiber
Claims (12)
上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して、
(a)上記高融着ポリウレタン弾性繊維及び上記非弾性糸を全コースに、
(b)上記高融着ポリウレタン弾性繊維と、上記非弾性糸とを1コースごと交互に、
(c)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、200℃以上の融点を有する高融点ポリウレタン弾性繊維及び上記非弾性糸とを1コースごと交互に、又は
(d)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、上記非弾性糸とを1コースごと交互に
用いて製編されてなり、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させてなるポリウレタン弾性繊維混用緯編地であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸してなることを特徴とするポリウレタン弾性繊維混用緯編地。Highly fused polyurethane elastic fiber having a tenacity retention ratio of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in a stretched state of 100% and a melting point of 155 to 175 ° C. , and at least one inelastic yarn Including
On Kidaka fused polyurethane elastic fibers and the inelastic yarn fed separately,
(A) The highly fused polyurethane elastic fiber and the non-elastic yarn are used in all courses .
(B) The highly fused polyurethane elastic fiber and the non-elastic yarn are alternately arranged for each course .
(C) The high-melting polyurethane elastic fiber and the non-elastic yarn, and the high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more and the non-elastic yarn alternately for each course, or
(D) The highly fused polyurethane elastic fiber and the inelastic yarn, and the inelastic yarn are alternately provided for each course.
Knitted using ,
Polyurethane elastic fiber mixed weft obtained by heat-sealing high -bonding polyurethane elastic fibers or crossing portions thereof with non-elastic yarns or high-melting polyurethane elastic fibers by dry heat setting at 160 to 190 ° C. for 30 seconds to 2 minutes A knitted fabric,
The highly fused polyurethane elastic fiber comprises (A) a polyether diol having a number average molecular weight of 2000 to 3000 and an aromatic diisocyanate, and a biterminal isocyanate group prepolymer (B) and a number average molecular weight of 2000 to 3000. The residual NCO groups in the yarn immediately after spinning of the both-end hydroxyl group prepolymer obtained by reacting a polyether diol , an aromatic diisocyanate, and an aliphatic low molecular weight diol having a molecular weight of 500 or less are 0.35 to 0.003. polyurethane elastic fiber mix weft knitted fabric, wherein ing by melt-spinning the resulting polymer by reacting such that 85% by weight.
上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して、上記高融着ポリウレタン弾性繊維及び少なくとも1種類の非弾性糸を全面に又は間隔をあけて、挿入又は編み込みで用いて製編されてなり、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸との交差部を熱融着させてなるポリウレタン弾性繊維混用経編地であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸してなることを特徴とするポリウレタン弾性繊維混用経編地。Highly fused polyurethane elastic fiber having a tenacity retention ratio of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in a stretched state of 100% and a melting point of 155 to 175 ° C. , and at least one inelastic yarn Including
On Kidaka fused polyurethane elastic fibers and the inelastic yarn is supplied separately, the non-elastic yarn of the high fusing polyurethane elastic fibers and at least one opened on the entire surface or interval, by using insertion or knitting Knitted,
A polyurethane elastic fiber mixed warp knitted fabric obtained by heat-sealing high-fusion polyurethane elastic fibers or crossing portions thereof with inelastic yarns by dry heat setting at 160 to 190 ° C. for 30 seconds to 2 minutes ,
The highly fused polyurethane elastic fiber comprises (A) a polyether diol having a number average molecular weight of 2000 to 3000 and an aromatic diisocyanate, and a biterminal isocyanate group prepolymer (B) and a number average molecular weight of 2000 to 3000. The residual NCO groups in the yarn immediately after spinning of the both-end hydroxyl group prepolymer obtained by reacting a polyether diol , an aromatic diisocyanate, and an aliphatic low molecular weight diol having a molecular weight of 500 or less are 0.35 to 0.003. polyurethane elastic fiber mix warp knitted fabric, wherein ing by melt-spinning the resulting polymer by reacting such that 85% by weight.
上記高融着ポリウレタン弾性繊維及び上記非弾性糸を別々に供給して、上記高融着ポリウレタン弾性繊維を単独でもしくは2本で又は200℃以上の融点を有する高融点ポリウレタン弾性繊維との引き揃えで用い、全面又は1本おきに、挿入又は編み込みで製編されてなり、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させてなるポリウレタン弾性繊維混用経編地であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸してなることを特徴とするポリウレタン弾性繊維混用経編地。Highly fused polyurethane elastic fiber having a tenacity retention ratio of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in a stretched state of 100% and a melting point of 155 to 175 ° C. , and at least one inelastic yarn Including
On Kidaka fused polyurethane elastic fibers and the inelastic yarn is supplied separately, pulling the high melting polyurethane elastic fibers having a singly or two or 200 ° C. or higher melting point the high-fusing polyurethane elastic fiber Used in alignment, knitted by insertion or knitting on the entire surface or every other piece,
Polyurethane elastic fiber blending process in which high -bonding polyurethane elastic fibers or crossing portions thereof with non-elastic yarns or high-melting polyurethane elastic fibers are heat-sealed by dry heat setting at 160 to 190 ° C. for 30 seconds to 2 minutes. A knitted fabric,
The highly fused polyurethane elastic fiber comprises (A) a polyether diol having a number average molecular weight of 2000 to 3000 and an aromatic diisocyanate, and a biterminal isocyanate group prepolymer (B) and a number average molecular weight of 2000 to 3000. The residual NCO groups in the yarn immediately after spinning of the both-end hydroxyl group prepolymer obtained by reacting a polyether diol , an aromatic diisocyanate, and an aliphatic low molecular weight diol having a molecular weight of 500 or less are 0.35 to 0.003. polyurethane elastic fiber mix warp knitted fabric, wherein ing by melt-spinning the resulting polymer by reacting such that 85% by weight.
(a)上記高融着ポリウレタン弾性繊維及び上記非弾性糸を全コースに、
(b)上記高融着ポリウレタン弾性繊維と、上記非弾性糸とを1コースごと交互に、
(c)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、200℃以上の融点を有する高融点ポリウレタン弾性繊維及び上記非弾性糸とを1コースごと交互に、又は
(d)上記高融着ポリウレタン弾性繊維及び上記非弾性糸と、上記非弾性糸とを1コースごと交互に
用いて緯編地を形成した後、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させるポリウレタン弾性繊維混用緯編地の製造方法であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸することを特徴とするポリウレタン弾性繊維混用緯編地の製造方法。Highly fused polyurethane elastic fiber having a tenacity retention ratio of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in a stretched state of 100% and a melting point of 155 to 175 ° C. , and at least one inelastic yarn the supplied separately,
(A) The highly fused polyurethane elastic fiber and the non-elastic yarn are used in all courses .
(B) The highly fused polyurethane elastic fiber and the non-elastic yarn are alternately arranged for each course .
(C) The high-melting polyurethane elastic fiber and the non-elastic yarn, and the high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more and the non-elastic yarn alternately for each course, or
(D) The highly fused polyurethane elastic fiber and the inelastic yarn, and the inelastic yarn are alternately provided for each course.
After using the weft knitted fabric,
Polyurethane elastic fiber mixed weft knitted fabric in which high -bonding polyurethane elastic fibers or crossing portions thereof with non-elastic yarns or high-melting polyurethane elastic fibers are heat-sealed by dry heat setting at 160 to 190 ° C. for 30 seconds to 2 minutes A manufacturing method of
The highly fused polyurethane elastic fiber comprises (A) a polyether diol having a number average molecular weight of 2000 to 3000 and an aromatic diisocyanate, and a biterminal isocyanate group prepolymer (B) and a number average molecular weight of 2000 to 3000. The residual NCO groups in the yarn immediately after spinning of the both-end hydroxyl group prepolymer obtained by reacting a polyether diol , an aromatic diisocyanate, and an aliphatic low molecular weight diol having a molecular weight of 500 or less are 0.35 to 0.003. A method for producing a weft knitted fabric mixed with polyurethane elastic fibers, comprising melt spinning a polymer obtained by reacting to 85% by mass .
上記高融着ポリウレタン弾性繊維及び少なくとも1種類の非弾性糸を全面に又は間隔をあけて、挿入又は編み込みで用いて経編地を形成した後、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸との交差部を熱融着させるポリウレタン弾性繊維混用経編地の製造方法であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0 .85質量%になるように反応させて得られるポリマーを溶融紡糸することを特徴とするポリウレタン弾性繊維混用経編地の製造方法。Highly fused polyurethane elastic fiber having a tenacity retention ratio of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in a stretched state of 100% and a melting point of 155 to 175 ° C. , and at least one inelastic yarn the supplied separately,
After forming the warp knitted fabric using the highly fused polyurethane elastic fiber and at least one type of inelastic yarn over the entire surface or at intervals, and inserting or weaving ,
A method for producing a warp knitted fabric with a mixture of polyurethane elastic fibers in which high-bonding polyurethane elastic fibers or crossing portions thereof with non-elastic yarns are heat-sealed by dry heat setting at 160 to 190 ° C. for 30 seconds to 2 minutes . ,
The highly fused polyurethane elastic fiber comprises (A) a polyether diol having a number average molecular weight of 2000 to 3000 and an aromatic diisocyanate, and a biterminal isocyanate group prepolymer (B) and a number average molecular weight of 2000 to 3000. The residual NCO groups in the yarn immediately after spinning of the both-end hydroxyl group prepolymer obtained by reacting a polyether diol , an aromatic diisocyanate and an aliphatic low molecular weight diol having a molecular weight of 500 or less were 0.35 to . A method for producing a warp knitted fabric mixed with polyurethane elastic fibers, comprising melt spinning a polymer obtained by reacting to 85% by mass .
上記高融着ポリウレタン弾性繊維を単独でもしくは2本で又は200℃以上の融点を有する高融点ポリウレタン弾性繊維との引き揃えで用い、全面又は1本おきに、挿入又は編み込みで経編地を形成した後、
160〜190℃で30秒〜2分間の乾熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸もしくは高融点ポリウレタン弾性繊維との交差部を熱融着させるポリウレタン弾性繊維混用経編地の製造方法であって、
上記高融着ポリウレタン弾性繊維が、(A)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートとを反応させて得られる両末端イソシアネート基プレポリマーと、(B)数平均分子量2000〜3000のポリエーテルジオールと芳香族ジイソシアネートと分子量500以下の脂肪族低分子量ジオールとを反応させて得られる両末端水酸基プレポリマーとを、紡糸した直後の糸中の残留NCO基が0.35〜0.85質量%になるように反応させて得られるポリマーを溶融紡糸することを特徴とするポリウレタン弾性繊維混用経編地の製造方法。Highly fused polyurethane elastic fiber having a tenacity retention ratio of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in a stretched state of 100% and a melting point of 155 to 175 ° C. , and at least one inelastic yarn the supplied separately,
The above high- melting polyurethane elastic fibers are used alone or in combination with two or high-melting polyurethane elastic fibers having a melting point of 200 ° C. or more, and warp knitted fabric is formed by inserting or weaving the entire surface or every other fiber. After
Polyurethane elastic fiber mixed warp knitted fabric in which high-fusion polyurethane elastic fibers or crossing portions thereof with non-elastic yarns or high-melting polyurethane elastic fibers are heat-sealed by dry heat setting at 160 to 190 ° C. for 30 seconds to 2 minutes . A manufacturing method of
The highly fused polyurethane elastic fiber comprises (A) a polyether diol having a number average molecular weight of 2000 to 3000 and an aromatic diisocyanate, and a biterminal isocyanate group prepolymer (B) and a number average molecular weight of 2000 to 3000. The residual NCO groups in the yarn immediately after spinning of the both-end hydroxyl group prepolymer obtained by reacting a polyether diol , an aromatic diisocyanate, and an aliphatic low molecular weight diol having a molecular weight of 500 or less are 0.35 to 0.003. A method for producing a warp knitted fabric mixed with polyurethane elastic fibers, comprising melt spinning a polymer obtained by reacting to 85% by mass .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002360811 | 2002-12-12 | ||
JP2002360811 | 2002-12-12 | ||
PCT/JP2003/015778 WO2004053218A1 (en) | 2002-12-12 | 2003-12-10 | Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2004053218A1 JPWO2004053218A1 (en) | 2006-04-13 |
JP4193064B2 true JP4193064B2 (en) | 2008-12-10 |
Family
ID=32501007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004558453A Expired - Lifetime JP4193064B2 (en) | 2002-12-12 | 2003-12-10 | Polyurethane elastic fiber mixed knitted fabric and method for producing the same |
Country Status (8)
Country | Link |
---|---|
US (1) | US20060030229A1 (en) |
EP (1) | EP1595987B1 (en) |
JP (1) | JP4193064B2 (en) |
KR (1) | KR101165244B1 (en) |
CN (1) | CN100567604C (en) |
AU (1) | AU2003289006A1 (en) |
TW (1) | TW200427884A (en) |
WO (1) | WO2004053218A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011132644A (en) * | 2009-12-25 | 2011-07-07 | Nisshinbo Textile Inc | Woven or knitted fabric |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3983729B2 (en) * | 2003-10-10 | 2007-09-26 | グンゼ株式会社 | Clothing with chopped openings |
JP4761018B2 (en) * | 2004-06-09 | 2011-08-31 | 日清紡テキスタイル株式会社 | Weft knitted fabric mixed with polyurethane elastic fiber and method for producing the same |
JP4883280B2 (en) * | 2005-03-31 | 2012-02-22 | 日清紡ホールディングス株式会社 | Heat-sealable polyurethane elastic fiber, production method thereof, and woven / knitted fabric using the polyurethane elastic fiber |
KR100967088B1 (en) * | 2005-04-01 | 2010-07-01 | 군제 가부시키가이샤 | Garment having cut-off opening part |
US7572504B2 (en) * | 2005-06-03 | 2009-08-11 | The Procter + Gamble Company | Fibrous structures comprising a polymer structure |
JP3966423B2 (en) * | 2005-11-24 | 2007-08-29 | 株式会社Kuroda Tex | Lace knitted fabric and knitted lace |
JP5105039B2 (en) * | 2005-11-30 | 2012-12-19 | 日清紡ホールディングス株式会社 | Heat-sealable polyurethane elastic fiber, method for producing the same, and woven / knitted fabric using the polyurethane elastic fiber |
US20090117799A1 (en) * | 2006-01-26 | 2009-05-07 | Yuji Yoshida | Cellulose Fiber Blended Fabric |
JP5067974B2 (en) * | 2006-07-04 | 2012-11-07 | 旭化成せんい株式会社 | Polyurethane urea elastic fiber |
JP4986121B2 (en) * | 2006-10-12 | 2012-07-25 | 日清紡ホールディングス株式会社 | Heat-fusible elastic fiber, method for producing the same, and woven / knitted fabric using the elastic fiber |
JP4993277B2 (en) * | 2007-01-26 | 2012-08-08 | 旭化成せんい株式会社 | Panty stocking |
JP2008240211A (en) * | 2007-03-28 | 2008-10-09 | Kuroda Tex Co Ltd | Method for producing knitted lace and knitted lace |
JP5083561B2 (en) * | 2007-06-20 | 2012-11-28 | 日清紡ホールディングス株式会社 | Suspension knitted fabric product with wire prevention function |
TWI473916B (en) * | 2007-07-13 | 2015-02-21 | Seiren Co Ltd | A double weft knit fabric having superior run and curl resistant characteristic and a method for treating a double weft knit fabric |
KR100897362B1 (en) * | 2008-07-10 | 2009-05-15 | 이중석 | Run proof knit fabric with polyurethan yarn and manufacturing method for the same |
BRPI0915235B1 (en) | 2008-10-17 | 2018-10-09 | Invista Tech Sarl | fibers, fabric and process for the preparation of a multi-component, spun-solution, fusible, elastic fiber |
JP5394875B2 (en) * | 2009-09-30 | 2014-01-22 | 日清紡テキスタイル株式会社 | Woven knitting |
DE102009048720B4 (en) * | 2009-10-09 | 2014-01-16 | Medi Gmbh & Co. Kg | Process for producing a flat knitted fabric with a secured end edge, in particular a bandage, and flat knit fabric |
JP5835869B2 (en) * | 2009-12-15 | 2015-12-24 | 旭化成せんい株式会社 | Cylindrical circular knitted fabric |
WO2011158978A1 (en) * | 2010-06-16 | 2011-12-22 | (주)효성 | Polyurethane mono-elastic yarn |
US20140101825A1 (en) * | 2011-04-15 | 2014-04-17 | Lubrizol Advanced Materials, Inc. | Elastomer Fibers And Methods Of Making And Using Thereof |
JP5777721B2 (en) * | 2011-09-29 | 2015-09-09 | 旭化成せんい株式会社 | Elastic knitted fabric and garment |
EP2805638B1 (en) * | 2012-01-20 | 2017-03-15 | Shima Seiki Mfg., Ltd | Footwear, and knitting method for knit fabric |
US8499587B1 (en) * | 2012-07-21 | 2013-08-06 | Eclat Textile Co., Ltd. | Method for knitting a windproof fabric |
CN103572493A (en) * | 2012-07-27 | 2014-02-12 | 东莞超盈纺织有限公司 | Method for producing ultrastrong anti-fatigue elastic fabric |
JP6204031B2 (en) * | 2013-03-12 | 2017-09-27 | 株式会社ニューニット | Warp knitted fabric |
PL2980290T3 (en) * | 2013-03-29 | 2017-10-31 | Asahi Chemical Ind | Elastic knitted fabric and clothing item |
CN103173890A (en) * | 2013-04-11 | 2013-06-26 | 浙江华峰氨纶股份有限公司 | Preparation method of high monofilament cohesive force polyurethane elastic fiber |
KR20160012207A (en) | 2013-05-29 | 2016-02-02 | 인비스타 테크놀러지스 에스.에이 알.엘. | Fusible bicomponent spandex |
JP5486723B1 (en) * | 2013-07-24 | 2014-05-07 | クロス工業株式会社 | Warp knitted fabric |
CN104552934A (en) * | 2013-10-22 | 2015-04-29 | 谢贤晓 | Fabric forming method |
CN105274718A (en) * | 2014-05-30 | 2016-01-27 | 江苏新雪竹国际服饰有限公司 | Nylon free-cutting knitted fabric |
CN105133162A (en) * | 2014-05-30 | 2015-12-09 | 江苏新雪竹国际服饰有限公司 | Low-temperature Lycra free-cut double-sided knitting fabric |
CN104088109A (en) * | 2014-07-15 | 2014-10-08 | 浙江理工大学 | Machining shaping method capable of arbitrarily clipping shell fabrics |
TWI658181B (en) | 2014-12-24 | 2019-05-01 | 盧森堡商英威達技術有限公司 | Easily settable stretch fabrics including low-melt fiber |
CN104562402A (en) * | 2015-01-08 | 2015-04-29 | 互太纺织有限公司 | High-elasticity sticky weft knitted fabric, preparation method and application thereof |
CN105239187A (en) * | 2015-11-13 | 2016-01-13 | 淄博正大聚氨酯有限公司 | Ultraviolet-proof polyurethane compound fabric and preparation method thereof |
CN107523920B (en) * | 2016-06-21 | 2021-03-23 | 顺益材料股份有限公司 | Composite reinforced fabric and method for making same |
JP6893418B2 (en) * | 2017-01-06 | 2021-06-23 | 旭化成株式会社 | Elastic warp knitted fabric |
US11060215B2 (en) | 2017-01-26 | 2021-07-13 | Bright Cheers International Limited | Reinforced composite fabric and method for preparing the same |
TWI684686B (en) * | 2017-11-01 | 2020-02-11 | 三芳化學工業股份有限公司 | Fabric and method for manufacturing the same |
CN109957869A (en) * | 2019-05-06 | 2019-07-02 | 三六一度(中国)有限公司 | A kind of cloth and clothes |
CA3135677A1 (en) * | 2019-05-08 | 2020-11-12 | Delta Galil Industries Ltd. | Garment and clothes that are unravel-free and roll-free |
KR20210046436A (en) * | 2019-10-18 | 2021-04-28 | 현대자동차주식회사 | Interior Material of the Vehicle |
TWI757684B (en) * | 2020-01-31 | 2022-03-11 | 三芳化學工業股份有限公司 | Bristle fabric and method of making the same |
JP7410307B2 (en) | 2020-08-12 | 2024-01-09 | 旭化成株式会社 | Polyurethane elastic fibers, spools thereof, gather members, and sanitary materials |
CN114717734B (en) * | 2022-05-05 | 2024-04-19 | 青岛全季服饰有限公司 | Sun-proof knitted fabric and preparation method thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2906091C3 (en) * | 1979-02-17 | 1982-04-08 | Fa. Carl Freudenberg, 6940 Weinheim | Use of polyurethanes for the heat sealing of textile fabrics |
JPS57101016A (en) * | 1980-12-17 | 1982-06-23 | Nisshinbo Ind Inc | Preparation of elastic polyurethane |
JPS60224847A (en) * | 1983-12-21 | 1985-11-09 | 東洋紡績株式会社 | Elastic warp knitted fabric and its production |
JP2796171B2 (en) * | 1990-04-03 | 1998-09-10 | 旭化成工業株式会社 | High durability stretch knit fabric |
DE69228606T2 (en) * | 1991-07-03 | 1999-06-24 | Kanebo, Ltd., Tokio/Tokyo | METHOD AND DEVICE FOR PRODUCING A THERMOPLASTIC POLYURETHANE ELASTOMER |
JP3359396B2 (en) * | 1993-11-15 | 2002-12-24 | 第一工業製薬株式会社 | Aqueous polyurethane composition |
JPH07149883A (en) * | 1993-11-30 | 1995-06-13 | Dainippon Ink & Chem Inc | Production of lactone-based polyester polyether polyol and polyurethane resin produced by using the polymer |
US5795835A (en) * | 1995-08-28 | 1998-08-18 | The Tensar Corporation | Bonded composite knitted structural textiles |
JP3733170B2 (en) * | 1996-04-02 | 2006-01-11 | 日清紡績株式会社 | Polyurethane resin |
JP2000303326A (en) * | 1999-04-23 | 2000-10-31 | Kanegafuchi Chem Ind Co Ltd | Elastic fabric and elastic yarn |
JP4560691B2 (en) | 1999-11-29 | 2010-10-13 | 東洋紡績株式会社 | Elastic knitted fabric and cushioning material with excellent cushioning and sag resistance |
TR200200857T2 (en) * | 1999-09-30 | 2002-06-21 | Asahi Kasei Kabushiki Kaisha | Weft knitted fabrics |
JP2002013044A (en) * | 2000-06-30 | 2002-01-18 | Unitica Fibers Ltd | Fabric having anisotropy on hardness |
JP3567982B2 (en) * | 2000-10-10 | 2004-09-22 | 日清紡績株式会社 | Coated elastic yarn, stocking, and method of manufacturing stocking |
JP3614392B2 (en) * | 2001-02-20 | 2005-01-26 | 平岡織染株式会社 | Multi-layer monofilament yarn mesh sheet for printing |
US7015299B2 (en) * | 2001-04-30 | 2006-03-21 | Wilkinson W Kenneth | Melt spun thermoplastic polyurethanes useful as textile fibers |
DE60218593T2 (en) * | 2001-10-05 | 2007-12-06 | Toyo Boseki K.K. | Elastic woven or knitted material, and upholstery material and seats using this |
US6776014B1 (en) * | 2003-06-02 | 2004-08-17 | Invista North America S.A.R.L. | Method to make circular-knit elastic fabric comprising spandex and hard yarns |
-
2003
- 2003-12-10 WO PCT/JP2003/015778 patent/WO2004053218A1/en active Application Filing
- 2003-12-10 JP JP2004558453A patent/JP4193064B2/en not_active Expired - Lifetime
- 2003-12-10 US US10/538,075 patent/US20060030229A1/en not_active Abandoned
- 2003-12-10 TW TW92134897A patent/TW200427884A/en not_active IP Right Cessation
- 2003-12-10 AU AU2003289006A patent/AU2003289006A1/en not_active Abandoned
- 2003-12-10 KR KR1020057010007A patent/KR101165244B1/en active IP Right Grant
- 2003-12-10 EP EP20030778770 patent/EP1595987B1/en not_active Expired - Lifetime
- 2003-12-10 CN CNB2003801056979A patent/CN100567604C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011132644A (en) * | 2009-12-25 | 2011-07-07 | Nisshinbo Textile Inc | Woven or knitted fabric |
Also Published As
Publication number | Publication date |
---|---|
CN100567604C (en) | 2009-12-09 |
US20060030229A1 (en) | 2006-02-09 |
EP1595987B1 (en) | 2012-09-05 |
KR20050085304A (en) | 2005-08-29 |
JPWO2004053218A1 (en) | 2006-04-13 |
CN1723307A (en) | 2006-01-18 |
TW200427884A (en) | 2004-12-16 |
KR101165244B1 (en) | 2012-07-17 |
EP1595987A4 (en) | 2009-06-24 |
WO2004053218A1 (en) | 2004-06-24 |
EP1595987A1 (en) | 2005-11-16 |
AU2003289006A1 (en) | 2004-06-30 |
TWI334892B (en) | 2010-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4193064B2 (en) | Polyurethane elastic fiber mixed knitted fabric and method for producing the same | |
JP4761018B2 (en) | Weft knitted fabric mixed with polyurethane elastic fiber and method for producing the same | |
KR101626407B1 (en) | Fusible bicomponent spandex | |
JP4883280B2 (en) | Heat-sealable polyurethane elastic fiber, production method thereof, and woven / knitted fabric using the polyurethane elastic fiber | |
JP5067974B2 (en) | Polyurethane urea elastic fiber | |
CN102177285B (en) | Core-sheath conjugate thread, fabric, clothing article, and method for producing core-sheath conjugate thread | |
JP5105039B2 (en) | Heat-sealable polyurethane elastic fiber, method for producing the same, and woven / knitted fabric using the polyurethane elastic fiber | |
US20230087881A1 (en) | Elastic fiber, composite yarns and fabrics with anti-slippage performance | |
WO2012166504A2 (en) | Elastic fabric | |
JP4114084B2 (en) | Suspension knitted fabric product with wire prevention function | |
CN107849746A (en) | Polyurethane fiber including copolymer polyols | |
JP3874676B2 (en) | Stockings and tights with color change using original polyurethane elastic fiber | |
JP2007154370A (en) | Formed knitted fabric having shape-retaining function and run/fray-stopping function | |
JP2018204157A (en) | Core-sheath type composite fiber, false twist yarn and fibrous structure superior in hygroscopicity | |
JP2009068147A (en) | Covered elastic yarn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061215 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20070215 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20070305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070502 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080827 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4193064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |