WO2004053218A1 - Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof - Google Patents

Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof Download PDF

Info

Publication number
WO2004053218A1
WO2004053218A1 PCT/JP2003/015778 JP0315778W WO2004053218A1 WO 2004053218 A1 WO2004053218 A1 WO 2004053218A1 JP 0315778 W JP0315778 W JP 0315778W WO 2004053218 A1 WO2004053218 A1 WO 2004053218A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane elastic
knitted fabric
elastic fiber
polyurethane
yarn
Prior art date
Application number
PCT/JP2003/015778
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiro Fukuoka
Kouji Nishio
Original Assignee
Nisshinbo Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries, Inc. filed Critical Nisshinbo Industries, Inc.
Priority to AU2003289006A priority Critical patent/AU2003289006A1/en
Priority to EP20030778770 priority patent/EP1595987B1/en
Priority to KR1020057010007A priority patent/KR101165244B1/en
Priority to US10/538,075 priority patent/US20060030229A1/en
Priority to JP2004558453A priority patent/JP4193064B2/en
Publication of WO2004053218A1 publication Critical patent/WO2004053218A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/18Other fabrics or articles characterised primarily by the use of particular thread materials elastic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/18Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating elastic threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • Y10T442/313Strand material formed of individual filaments having different chemical compositions

Definitions

  • the present invention relates to a woven or knitted fabric using a mixture of a polyurethane elastic fiber and another fiber, and a method for producing the same. More specifically, the fabric made from the woven or knitted fabric is repeatedly deformed and stretched while worn, resulting in "deformation, misalignment, and softness” of the fabric, and so-called “fraying" in which the yarn comes off from the cut portion.
  • the present invention relates to a woven or knitted fabric mixed with polyurethane elastic fibers and a method for producing the same.
  • the method of reducing the elongation ratio of polyurethane elastic fiber as in (1) reduces the elasticity of the fabric and increases the cost due to the increase in the amount of polyurethane elastic fiber used.
  • the method of (1) and (ii) increasing the set temperature to reduce the shrinkage of the polyurethane elastic fiber is not preferable because it causes a change in the texture of the mating fiber and a reduction in the color fastness of the woven or knitted fabric. .
  • problems such as curling and slip-in can be prevented by a method of fusing viscous fibers.
  • an elastic fiber that fuses at a low temperature as in (3) can be used, it can be fused at a low set temperature of 140 to 160 ° C.
  • the use of special composite yarns or special knitting methods as in (4) and (5) limit the properties of the product.
  • the present invention provides an elastic fiber in which the used polyurethane elastic fiber and non-elastic yarn do not come off from the cut or sewn portion, and the fabric is stable, and misalignment, softness, fraying, orchids, densen, and Karl Slipin are unlikely to occur.
  • An object of the present invention is to provide a woven or knitted fabric and a method for producing the same. Disclosure of the invention
  • the present inventors have conducted intensive studies in order to achieve the above-mentioned object, and as a result, obtained by, for example, melt-spinning a polymer synthesized from a prepolymer obtained by reacting a polyol and a disocyanate, and preferably based on the total amount of the raw material polyol. 50 mass of polyether polyol.
  • melt-spinning a polymer synthesized from a prepolymer obtained by reacting a polyol and a disocyanate, and preferably based on the total amount of the raw material polyol. 50 mass of polyether polyol.
  • the present invention provides the following woven / knitted fabric mixed with polyurethane elastic fibers and a method for producing the same.
  • At least one fused polyurethane polyurethane fiber having a strong retention of 50% or more after a dry heat treatment at 150 ° C for 45 seconds in a state of being stretched by 100% and a melting point of 180 ° C or less; After forming a woven or knitted fabric using various types of inelastic yarns, dry or hot heat setting is performed to form a high-fusion polyurethane elastic fiber with each other or at the intersection of the non-elastic yarn and the high-fusion polyurethane elastic fiber.
  • Figure 1 is an example of the organization chart of the knitted fabric.
  • Figure 2 is an example of the organization chart of the knitted fabric.
  • Figure 3 is an example of an organization chart of a warp knitted fabric.
  • Figure 4 is an example of an organization chart of a warp knitted fabric.
  • FIG. 5 is an example of an organization chart of a warp knitted fabric.
  • FIG. 6 is an example of an organization chart of a warp knitted fabric.
  • FIG. 7 is an example of an organization chart of a warp knitted fabric.
  • FIG. 8 is an example of an organization chart of a warp knitted fabric.
  • FIG. 9 is an example of an organization chart of a warp knitted fabric.
  • Fig. 10 shows a test specimen for a tensile test of a warp knitted fabric.
  • the polyurethane elastic fiber used in the present invention is easily fused even at a low temperature and has high heat resistance and is a highly fused polyurethane elastic fiber
  • its composition and production method are not particularly limited. Reacting a polyol with an excess molar amount of diisocyanate to produce a polyurethane intermediate polymer having isocyanate groups at both ends, and a low molecular weight diamine having active hydrogen capable of easily reacting with the isocyanate group of the intermediate polymer.
  • a polyurethane solution (polymer solution) by reacting a low molecular weight diol in an inert organic solvent
  • the solvent is removed to form a yarn, or a polyol and a diisocyanate are mixed with a low molecular weight diamine or a low molecular weight diol.
  • removing the solvent and forming it into yarn A method in which the solidified polymer is formed into a yarn by heating without dissolving in a solvent; a process in which the polyol, diisocyanate, and low-molecular-weight diol are reacted to obtain a polymer, and the polymer is formed into a yarn without solidification.
  • a solvent is removed from the mixed polymer solution to form a yarn.
  • a double-ended isocyanate mono-group prepolymer obtained by reacting a polyol and a di-isocyanate hereinafter referred to as a “double-ended NCO-group prepolymer”
  • B a polyol, a diisocyanate and a low molecular weight
  • the polyols constituting the prepolymers of the components (A) and (B) may be the same or different, but a polymer diol having a number average molecular weight of about 800 to 3,000 Preferably, it is used.
  • polystyrene diol examples include polyether glycol, polyester dalericol, and polycarbonate daricol.
  • Polyether glycols include, for example, those obtained by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran.
  • Ether diole ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanedio ⁇ "nore, neopentinole glycolone, 1,6-hexanediol, 3-methyl-1,5- Examples thereof include polyether daricol obtained by polycondensation of glycols such as pentanediol.
  • Polyester glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentinole glycolone, 1,6-hexanediole, and 3-methylinole 1,5-pentanediol.
  • Polyester glycol obtained by polycondensation of at least one selected from dalicols and at least one selected from dibasic acids such as adipic acid, sebacic acid, and azelaic acid; lactones such as prolactatone and valerolactone; Examples thereof include polyester dalicol obtained by ring-opening polymerization of tons.
  • polycarbonate glycol examples include at least one selected from the group consisting of dialkyl carbonates such as dimethyl carbonate and methyl carbonate; anoalkylene carbonates such as ethylene carbonate and propylene carbonate; and diaryl carbonates such as diphenylenocarbonate and dinaphthyl carbonate.
  • organic carbonates ethylene glycol, propylene dalicol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6_hexanediol, 3-methynole-1,5-pentanediol
  • organic carbonates ethylene glycol, propylene dalicol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6_hexanediol, 3-methynole-1,5-pentanediol
  • Examples thereof include carbonate glycol obtained by transesterification with at least one kind of aliphatic diol selected from glue and the like.
  • polyether glycol polyester glycol, or polycarbonate glycol
  • polyester glycol or polycarbonate glycol
  • polyether diol component in an amount of 50% by mass or more, preferably 60% by mass or more, based on the polymer diol, and the polyether diol component may be used in an amount of 100% by mass.
  • polyether diol component polytetramethylene ether glycol is particularly preferably used.
  • the diisocyanates constituting the prepolymers of the components (A) and (B) include aliphatic, alicyclic, aromatic, and the like generally used in the production of polyurethane. Any disocyanate, such as an araliphatic system, can be used.
  • Such diisocyanates include, for example, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate. , Isophorone diisocyanate, 1,6-hexamethylene diisocyanate, ⁇ -phenylene diisocyanate, 4,4,1-dicyclohexyl methane diisocyanate, methatetramethyl xylene diisocyanate And paratetramethinolexylene diisocyanate. One of these can be used alone or in combination.
  • 4,4′-diphenylmethanediisocyanate, 4,4 ′ 'Dicyclohexylmethane diisocyanate is preferably used.
  • the low molecular weight diol or low molecular weight diamine which is a chain extender preferably has an appropriate reaction rate and imparts appropriate heat resistance, has two active hydrogen atoms capable of reacting with isocyanate, and generally has a molecular weight of A low molecular weight compound of 500 or less is used.
  • Such low molecular weight diols include, for example, ethylene glycol, propylene glycol cornole, 1,4-butanediole, 1,5-pentanediole, neopentyl dioliconele, 1,6-hexanedioleone, 3-methyldioleone, 5 _ Aliphatic diols such as pentanediol can be used, and trifunctional glycols such as glycerin can also be used as long as spinnability is not impaired. These can be used alone or in combination of two or more. However, ethylene glycol and 1,4-butanediol are preferred from the viewpoint of workability and imparting appropriate physical properties to the obtained fiber.
  • a low molecular weight diamine for example, ethylenediamine, butanediamine, propylenediamine, hexamethylenediamine, xylylenediamine, 4,4-diaminodiphenylmethane, hydrazine and the like can be used.
  • a low molecular weight diol and a low molecular weight diamine can be used in combination, a low molecular weight diol can be more preferably used as a chain extender in the present invention.
  • a reaction regulator or a polymerization degree regulator a monofunctional monoamine such as butanol or the like, or monofunctional amine such as getylamine or dibutylamine may be mixed and used.
  • the inert solvent used in the polyurethane polymerization reaction or as the spinning solution includes N, N-dimethylformamide, N, N-dimethylacetamide, N, N, N ', N' — Polar solvents such as tetramethylurea, N-methylpyrrolidone and dimethylsulfoxide.
  • Optional components such as UV absorbers, antioxidants, and light stabilizers may be added to the prepolymers (A) and (B) to improve weather resistance, thermal oxidation resistance, and yellowing resistance. it can.
  • UV absorbers examples include 2- (3,5-di-t-amyl- 12-hydroxyphenyl) benzotriazole, 2- (3_t-butyl_5_methyl_2-hydroxyphenyl) -15-chlorobenzozotriazole, Examples include benzotriazole-based ultraviolet absorbers such as 2- (2-hydroxy-1,3,5-bisphenyl) benzotriazole.
  • antioxidants examples include 3,9_bis (2_ (3- (3-t-butyl-4-hydroxy-15-methylphenyl) -propio-loxy) -1,1,1-dimethylethyl) 1,2,4 , 8,10-Tetraoxaspiro (5.5) pentane, 1,3,5-tris (4-t-butyl-3, hydroxy-2,6-dimethinolevenyl) isocyanuric acid, pentaerythryl-tetrakis [ And hindered phenolic antioxidants such as 3- (3,5-di-t-butyl-1-4-hydroxyphenyl) propionate].
  • light stabilizers examples include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-14-piperidyl) sebacate, Examples include hindered amine photo stabilizers such as dimethyl succinate-11- (2-hydroxyethynole)-4-hydroxy-1,2,2,6,6-tetramethylpiperidine condensate.
  • the method for obtaining the polyurethane elastic fiber of the present invention is not particularly limited.
  • the following three methods are known as a melt spinning method.
  • the method of (3) is simpler than the methods of (1) and (2) because there is no process for handling the polyurethane elastic chip, and the spinning rate is adjusted by adjusting the injection ratio of the prepolymer to the reactor.
  • This is a preferable method because the amount of residual NCO groups in the polyurethane elastic fiber can be adjusted, and the heat resistance can be improved by a chain extension reaction by the residual NCO groups.
  • a low-molecular-weight diol is reacted in advance with a part of the prepolymer, and the OH group-excess prepolymer is supplied to the reactor.
  • An injection method can also be used.
  • the polyurethane elastic fiber of the present invention is prepared by continuously and quantitatively injecting the prepolymers of the components (A) and (B) into a reactor and melting the obtained polymer for spinning without solidifying. It is particularly preferred to obtain by spinning.
  • the synthesis of the polymer for spinning is carried out by (I) synthesis of a prepolymer having N-terminal NCO groups, (II) synthesis of prepolymers having OH groups at both ends, and (III) introduction of these two prepolymers into a reactor. It is composed of three reactions, ie, the synthesis of a spinning polymer that is continuously reacted.
  • the composition ratio of the raw materials is the sum of the above three reactions, and the molar amount of all diisocyanates, total polymer diol and total low
  • the molar ratio to the total molar amount of the molecular weight diol is preferably from 1.02 to 1.20.
  • the above-mentioned N-terminal NCO-based prepolymer of (I) is prepared, for example, by charging a predetermined amount of diisocyanate into a tank equipped with a hot water jacket and a stirrer, and then stirring the predetermined amount of polymer diol while stirring. It can be obtained by pouring and stirring at 80 for 1 hour under a nitrogen purge.
  • the NCO-based prepolymer at both ends obtained by this reaction is injected into a polyurethane elastic fiber reactor using a jacketed gear pump (for example, KAP-1 manufactured by Kawasaki Heavy Industries, Ltd.).
  • the prepolymer of OH group at both ends of (II) is prepared by charging a predetermined amount of diisocyanate into a tank equipped with a warm water jacket and a stirrer, then injecting a predetermined amount of polymer diol with stirring, and adding the mixture at 80 ° C. It can be obtained by stirring under a nitrogen purge for a period of time to obtain a precursor, and then injecting a low molecular weight diol and stirring to react with the precursor.
  • the obtained prepolymer at both ends is injected into a polyurethane elastic fiber reactor using a jacketed gear pump (for example, KAP-1 manufactured by Kawasaki Heavy Industries, Ltd.).
  • the spinning polymer (III) can be synthesized by continuously reacting the prepolymers (A) and (B) fed at a fixed ratio.
  • the reactor used may be any of those used in the ordinary melt spinning of polyurethane fiber, and the reaction is provided with a mechanism for heating, stirring and reacting the spinning polymer in a molten state, and further transferring the polymer to the spinning head. Machine is preferred.
  • the reaction conditions are 1 to 90 minutes at 160 to 220 ° C, preferably 3 to 80 minutes at 180 to 210 ° C.
  • the polyurethane elastic fiber of the present invention can be obtained by transferring the synthesized polymer for spinning to a spinning head without solidifying, discharging from a nozzle, and spinning.
  • the average residence time depends on the type of reactor and is calculated by the following formula.
  • the spinning temperature is 180 to 230 ° C. It can be obtained by continuously extruding through a nozzle, cooling, applying a spinning oil and winding it up.
  • the ratio between the polymer and the OH group prepolymer at both ends is determined by adjusting the injection gear pump so that the NCO group remains in the yarn immediately after spinning in an amount of 0.3 to 1% by mass, more preferably 0.35 to 0.85% by mass. It is preferable to adjust the rotation ratio appropriately.
  • the content of NCO groups in the spun fibers is measured as follows.
  • the polyurethane elastic fiber used in the present invention is particularly preferably a polyurethane elastic fiber produced by melt reaction spinning using polyetherdiol as a main raw material.
  • the polyurethane elastic fiber used in the present invention has a tenacity retention of 50% or more, preferably 55% or more after being subjected to dry heat treatment at 150 ° C. for 45 seconds in a 100% stretched state. If the strength retention is lower than 50%, the elasticity of the product after heat setting is undesirably reduced.
  • the upper limit of the strength retention is not particularly limited, but is usually 90% or less, particularly 80% or less.
  • the melting point of the polyurethane elastic fiber is at most 180 ° C, preferably at most 175 ° C. If the temperature is higher than 180 ° C, the heat treatment temperature for fusing becomes too high, which adversely affects the texture of the product and the color fastness, which is not preferable.
  • the lower limit of the melting point should be 150 ° C or higher, and especially 150 ° C or higher, in terms of dimensional stability when mixed with high-melting polyurethane elastic fiber and elongation recovery of fabric. This is preferred.
  • the method for measuring the strength retention is as described below.
  • the woven or knitted fabric mixed with polyurethane elastic fiber of the present invention uses the above-mentioned high-fusing polyurethane fiber and inelastic yarn, and further contains, for example, a high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more. Having the following structure.
  • a woven fabric using a composite yarn containing a highly fused polyurethane elastic fiber and at least one type of inelastic yarn as a warp and a Z or weft The organization is plain weave, twill weave, satin weave, etc. However, shuttle looms, levier looms, air jet looms, and the like can be used as looms. Further, the warp and the weft may all be the composite yarn, or the composite yarn and the non-resilient "raw yarn” may be mixed and used at a driving ratio of 1: 1, 1: 2 or 1: 3.
  • the knitting structure of the weft knitted fabric in which the high fusion polyurethane elastic fiber and inelastic yarn are knitted can be any of flat knitting, rubber knitting, pearl knitting, double-sided knitting, or a combination or change of these. Knitting machines can be used, and all knitting machines such as circular knitting machines, flat knitting machines, full fashion knitting machines, and sock knitting machines can be used.
  • the high fusion polyurethane elastic fiber may be either braided or braided.
  • plating knitting of high fusion polyurethane elastic fiber and inelastic yarn may be used, or composite yarn of high fusion polyurethane and inelastic yarn may be used.
  • a high fusion polyurethane elastic fiber may be knitted in all courses, or may be knitted in every other course or more.
  • High-fusing polyurethane elastic fibers and inelastic yarns may be alternately or knitted at appropriate intervals.
  • a high melting point polyurethane elastic fiber may be mixed. An example is shown below, but the present invention is not limited to this.
  • a warp knitted fabric in which highly fused poly-urethane elastic fibers and at least one or more inelastic yarns are mixed can be any structure such as a knitting knit, a denbi knitting, a cord knitting, an atlas knitting, or a combination of these or a structure changed. Knitting machines can be used, and all knitting machines such as tricot knitting machines, Raschel knitting machines, and Miranese knitting machines can be used.
  • a high fusion polyurethane elastic fiber may be woven over the entire surface, or may be woven at appropriate intervals. Further, the high fusion polyurethane elastic fiber may be either imported or knitted. Further, a high melting point polyurethane elastic fiber may be mixed. An example is shown below, but the present invention is not limited to this.
  • FIG. 1 and FIG. 2 show wedge yarns that are often used for lace ground and the like. This sari tissue is liable to have defects such as run and unravel after cut sewing. As a countermeasure, a run-stopping tissue has been proposed, but traces of the run-stopping tissue remain dirty on the fabric, leaving a problem of hindering luxury. Therefore, in FIGS. 1 and 2, a is a non-elastic raw silk, and b is a braided heat set as a high fusion polyurethane elastic fiber of the present invention, or a high melting polyurethane elastic fiber and high melting polyurethane elastic fiber are aligned. Then, in section X shown in Fig.
  • the high fusion polyurethane elastic fiber and the non-elastic yarn, and the high fusion polyurethane elastic fiber and the high melting point polyurethane resin come into contact with each other and thermally fuse, and the elongation recovery property is improved. It is possible to obtain a knitted fabric that is good, prevents defects such as run-out, and does not impair the aesthetics at all.
  • the highly fused polyurethane of the present invention can be used.
  • the non-woven fibers When the non-woven fibers are inserted or braided, they become less likely to be soft (displacement, slip-off, pop-out) due to fusion with the inelastic yarn and further fusion between the polyurethane elastic fibers.
  • the durability of the fabric can be significantly improved. Also, the fabric is more stable, curling is less likely to occur, and cost reduction during sewing can be expected.
  • L 1 and L 2 are the entire import (A 11 1 -in)
  • L 1 and L 2 are every other insert (lin_lout)
  • L l, L 2, and L 3 in Figs. 5 to 8 are the total import (A l 1-in).
  • a in FIGS. 3 to 8 is a non-elastic yarn
  • b is a high fusion polyurethane elastic fiber of the present invention used alone or in alignment with a high melting point polyurethane elastic fiber
  • c in FIGS. Force of Using Two High-Fusion Polyurethane Elastic Fibers of the Invention One high-fusion polyurethane elastic fiber and one high-melting polyurethane elastic fiber of the present invention can be used.
  • the inelastic yarn to be mixed with the high-fusible polyurethane elastic fiber and for example, natural fibers such as cotton, hemp, wool, and silk, and recycled fibers such as rayon, cuvula, and polynosic.
  • Fibers such as semi-regenerated fibers such as acetate and chemically synthetic fibers such as nylon, polyester and acrylic can be used, and the mixing ratio of polyurethane elastic fibers is preferably about 1 to 40%.
  • the woven or knitted fabric mixed with polyurethane elastic fibers of the present invention 200 ° C. or more, preferably 210 ° C., which is excellent in heat resistance and elastic recovery by a dry spinning method in which a chain length reaction is performed with diamine, is preferred.
  • a high-melting polyurethane elastic fiber having a melting point of C or higher it is possible to obtain a woven or knitted fabric having good elasticity while maintaining the fusibility.
  • the amount of the high-melting polyurethane fiber used is preferably about 2 to 40%.
  • the dry heat setting method can be performed by using a setting machine such as a pin tenter and heat-fixing with hot air.
  • the set temperature should be 140 to 200 ° C, especially 170 to 190 ° C
  • the set time should be 10 seconds to 3 minutes, especially 30 seconds to 2 minutes. it can.
  • the moist heat setting method can be performed by heat setting with saturated steam at a predetermined pressure in a state where a knitted fabric or the like is placed in a template.
  • the set temperature is 100 to 130 ° (particularly, 105 to 125 ° C.)
  • the set time can be 2 to 60 seconds, particularly 5 to 30 seconds.
  • ADVANTAGE OF THE INVENTION According to this invention, it can process at low set temperature, and can obtain the woven-knitted fabric mixed with polyurethane elastic fiber which is hard to generate misalignment, rag, fraying, run, force, slip-in and misalignment.
  • MDI 4,4'-diphenylmethane diisocyanate
  • PTMG polytetramethylene ether glycolone having a number average molecular weight of 2,000
  • the obtained polymer was introduced into two 8-nozzle spinning heads maintained at a temperature of 192 ° C.
  • the spinning polymer is weighed and pressurized by a gear pump installed on the head, filtered through a filter, and then through a 0.6 mm diameter, 1 hole nozzle at a speed of 2.67 g / min into a 6 m long spinning cylinder. (Total amount discharged from the nozzle:
  • the NCO group content of the polyurethane elastic fiber immediately after ejection was 0.42% by mass.
  • this polyurethane elastic fiber was measured by the methods described below. As a result, the melting point was 168 ° C. and the heat retention strength was 65%. Further, a knitted fabric was prepared using the elastic fiber by the following method, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1.
  • TMA thermo equipment measuring device
  • Heating rate 20 ° C / min Evaluation: The temperature when the thermal stress became 0 mgf was defined as the melting point.
  • the polyurethane elastic fiber is held at a grip length of 10 cm and stretched to 20 cm. In the stretched state, it was placed in a hot air drier maintained at 150 ° C. for 45 seconds to perform heat treatment.
  • the tenacity of the polyurethane elastic fiber after the heat treatment was measured using a tensile tester with a constant elongation speed at a grip length of 5 cm and an elongation speed of 50 O mmZ.
  • the environment at the time of measurement was a temperature of 20 ° C and a relative humidity of 65%. Shows the heat and strength retention of the fiber before heat treatment.
  • Yarn feeder 2 and 4 of the pantyhose knitting machine (manufactured by Ronati Co., Ltd., number of stitches: 400), 6 nylon filaments, 13 decitex, 7 filaments, and 1 and 3 polyester yarns was performed.
  • the prepared knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 160 ° C. and 180 ° C.
  • a polyurethane elastic fiber using polyester diol was produced in the same manner as in Example 1 except that polyethylene glycol adiate having a number average molecular weight of 2,000 was used instead of PTMG.
  • the NCO group content of the polyurethane elastic fiber immediately after the ejection was 0.45% by mass.
  • the physical properties were measured in the same manner as in Example 1. As a result, the melting point of the 44 decitex polyurethane elastic fiber was 170 ° C., and the retention of heat and strength was 62%.
  • Example 44 decitex polyurethane elastic fiber (Mobilon P-type yarn manufactured by Nisshinbo Industries Inc.) using PTMG as the polymer diol and diamine as the chain extender was used.
  • the physical properties were measured in the same manner as in Example 1.
  • the polyurethane elastic fiber had a melting point of 22 ° C. and a heat retention strength of 95%.
  • a spinning polymer was synthesized in the same manner as in Example 1, extruded from an reactor into a strand through an orifice having a diameter of 4 mm, cooled, and cut to obtain a polyurethane bullet-fe body pellet.
  • the pellets were dried in a vacuum drier, melted again in a single screw extruder, weighed and pressurized by a gear pump installed in the spinning head in the same manner as in Example 1, filtered through a filter, and filtered to a diameter of 0.6 mm.
  • the NCO group content of the polyurethane elastic fiber immediately after ejection was 0.13% by mass.
  • Example 1 The physical properties were measured in the same manner as in Example 1. As a result, the polyurethane elastic fiber had a melting point of 152 ° C. and a heat-resistant tenacity retention of 38%. A knitted fabric was prepared using this fusible fiber in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1. Table 1
  • Knitting tension from knitted fabric (c N)
  • Example 3 the deknitting tension was high due to fusion, and in the case of the polyurethane elastic fiber using polyetherdiol of Example 1, the deknitting tension was particularly high. Further, in both Examples 1 and 2, even in the heat set at 180 ° C., the viscous fibers in the knitted fabric did not break. In the case of the combination with the high-melting-point polyurethane elastic fiber of Comparative Example 1, fusion hardly occurs. In Comparative Example 2, the knitting tension by the heat setting at 160 ° C is high, but in the knitted fabric by the heat setting at 180 ° C. Polyurethane elastic fiber breaks. (Example 3)
  • Example 2 Using the polyurethane elastic fiber obtained in Example 1, a knitted fabric prepared by the following method was heat-set, and a washing test was performed. Fraying, slip-in, and a knitted ground of the knitted fabric were visually observed. Table 2 shows the results.
  • the weaving magnification was set to 2.5 times.
  • the prepared knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 180 ° C.
  • a 15 x 20 cm cut sample was created from the knitted fabric after setting, and Suga Test Machine Co., Ltd.
  • the washing was repeated 20 times using an LM-160 washing tester.
  • Example 3 Using the same knitting machine as in Example 3, the polyurethane elastic fiber of Example 1 was supplied to the first and third ports, and the viscous fiber of Comparative Example 1 was supplied to the second and fourth ports to form a knitted fabric in the same manner as in Example 3. A test similar to that of Example 3 was performed. Table 2 shows the results.
  • a knitted fabric was made in the same manner as in Example 3 using only the elastic fiber of Comparative Example 1, and a similar test was performed. Table 2 shows the results.
  • Example 2 In the same manner as in Example 1, a polyurethane elastic fiber of 156 dtex was obtained. The physical properties were measured in the same manner as in Example 1. As a result, the melting point of the polyurethane elastic fiber was 170 ° C., and the heat-resistant tenacity retention was 68%. Further, a warp knitted fabric was prepared by using the elastic fiber by the following method, and the pull-out resistance value of the polyurethane elastic fiber was measured from the knitted fabric after the heat setting. Table 3 shows the results.
  • 6-nylon filament yarn 56 decitex 17 filament is used for L 1 a and L 3 c in FIG. 9 and polyurethane elastic fiber is used for L 2 b in FIG. Was used to create a warp knitted fabric.
  • the above knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 190 ° C.
  • test piece having a weft direction (width) of 25 mm and a meridian direction (length) of 10 O mm as shown in FIG. 10 was sampled. At this time, a total of 10 test pieces were collected for each of the five test pieces so that the drawing direction of the polyurethane elastic fiber was the knitting start and knitting end directions.
  • test pieces were prepared as shown in FIG.
  • the test piece was cut at a position ( ⁇ - ⁇ ') 40 mm from the lower end (D-D') of the test piece while leaving one polyurethane elastic fiber 1 inserted in the warp direction.
  • the remaining polyurethane elastic fiber is Then, it was taken out from the test piece by 5 mm (E-F) toward the direction of the upper grip 2.
  • a cut 3 having a width of 3 mm was made in the weft direction on the extension line of the polyurethane elastic fiber and at a position of 3 O mm from the upper end of the test piece.
  • Polyurethane elastic fiber of 156 decitex using PTMG as polymer diol and diamine as chain extender (Mobilon P type yarn, manufactured by Nisshinbo Industries, Ltd., melting point: 21.7 ° C, retention of heat resistance 93% ) was used as a warp knitted fabric in L2b of FIG. 9 to prepare a warp knitted fabric in the same manner as in Example 5.
  • the pull-out resistance value of the L2 b yarn was measured in the same manner as in Example 5. Table 3 shows the results.
  • Example 5 Using the same knitting machine as in Example 5, using 6-nylon filament yarn 56 decitex 17 filament for L 1 a in FIG. 3 and using the polyurethane elastic fiber of Example 5 for L 2 b. A warp knitted fabric was prepared, and the same test as in Example 5 was performed. Table 3 shows the results.
  • Example 7 A knitted fabric was prepared in the same manner as in Example 6, except that the same elastic fiber as that in Comparative Example 5 was used for L2b in FIG. 3, and a similar test was performed. Table 3 shows the results. (Example 7)
  • Example 5 Using the same knitting machine as in Example 5, a 6-nylon filament yarn 56 decitex 17 filament is used for a of L1 and L2 in FIG. 4 and the polyurethane of Example 5 is used for b of L3 and L4. A warp knitted fabric was prepared using elastic fibers, and the same test as in Example 5 was performed. Table 3 shows the results.
  • a warp knitted fabric was prepared in the same manner as in Example 7 except that the elastic fiber of Comparative Example 5 was used for L3 and L4b in FIG. 4, and the same test was performed. Table 3 shows the results.
  • Example 5 the pull-out resistance value was increased due to fusion, and in Example 6, the knitted fabric was fused to such an extent that it was not pulled out, and was less likely to cause misalignment and softness. In the combination with the high-melting-point polyurethane elastic fibers of Comparative Examples 5, 6, and 7, fusion was unlikely to occur, the pull-out resistance was low, and misalignment and softness occurred.
  • a Raschel knitting machine manufactured by Carl Myer, 28 gauge
  • the knitted fabric of the woven diagram was created.
  • 6-nylon filament yarn 56 a decitex 17 filament is used for a of L 1
  • the same elastic fiber as Comparative Example 5 is used for c of L 2
  • the polyurethane elastic fiber of Example 1 is used for c of L 3
  • the warp knitted fabric was knitted into the main knitted fabric.
  • a warp knitted fabric was prepared using nylon filament yarn 110 decitex 24 filaments as a yarn to be removed between the main knitted fabrics.
  • the above knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 190 ° C.
  • the deknitting tension of the drawn nylon yarn was measured.
  • the unpacking speed was 10 O mm / min, the unpacking tension for 1 minute was measured, and the average value at five peak points was calculated.
  • the prepared sample was washed continuously for 300 minutes under the following conditions.
  • Load cloth bare fabric knitted fabric mixed with cotton and polyurethane / raw fiber, 1.0 kg knitted fabric damage evaluation
  • ⁇ and X are damages to the extent that hesitate to wear them as clothing, and ⁇ to ⁇ ⁇ ⁇ ⁇ are preferred in terms of washing durability.
  • a warp knitted fabric was prepared in the same manner as in Example 8, except that the elastic fiber of Comparative Example 1 was used for c of L3 in FIG. After the heat setting, the unknitting tension of the drawn yarn was measured, the state of fusion of the polyurethane elastic fiber was confirmed, and the same test as in Example 8 was performed. Table 4 shows the results.
  • Example 9 Using a knitting machine similar to that of Example 8, 6-nylon filament yarn 56 decitex 17 filament is used for L 1 a in FIG. 6, polyurethane polyurethane fiber of Comparative Example 1 is used for L 2 c and L 3 A warp knitted fabric was prepared using the polyurethane elastic fiber of Example 1 in c, and the same test as in Example 8 was performed. Table 4 shows the results. (Comparative Example 9)
  • a warp knitted fabric was prepared in the same manner as in Example 9 except that the elastic fiber of Comparative Example 1 was used for c of L3 in FIG. 6, and a similar test was performed. Table 4 shows the results.
  • Example 10 Using the same knitting machine as in Example 8, using 6-nylon filament yarn 56 decitex 17 filament for L 1 a in FIG. 7 and using the polyurethane elastic fiber of Example 1 for L 2 b, A warp knitted fabric was prepared without using the thread, and the same test as in Example 8 was performed. Table 4 shows the results. (Comparative Example 10)
  • a warp knitted fabric was prepared in the same manner as in Example 10 except that the elastic fiber of Comparative Example 1 was used for L2b in FIG. 7, and the same test was performed. Table 4 shows the results.
  • Example 8 Using the same knitting machine as in Example 8, using 6-nylon filament yarn 56 decitex 17 filament for L 1 a in FIG. 8 and using the polyurethane elastic fiber of Example 1 for L 2 b, A warp knitted fabric was prepared without using the thread, and the same test as in Example 8 was performed. Table 4 shows the results. .
  • a knitted fabric was prepared in the same manner as in Example 11 except that the elastic fiber of Comparative Example 1 was used for L2b in FIG. 8, and a similar test was performed. Table 4 shows the results. Table 4
  • Example 10 the highly fused polyurethane elastic fibers were completely fused to each other, and the fused portion could not be peeled off.
  • Comparative Examples 10 and 11 the fusion between the high-melting-point polyurethane elastic fibers was weak, and they could be peeled off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A blended woven or knitted fabric which contains both highly fusible polyurethane fibers exhibiting a retention of tenacity of 50% or above after the dry heat treatment at 150°C for 45 s at 100 % elongation and a melting point of 180°C or below and at least one kind of nonelastic yarns and which is produced by fusing the polyurethane fibers to each other or the polyurethane fibers to the nonelastic yarns at the crossover points by dry- or wet-heat setting; and a process for the production thereof.

Description

明 細 書  Specification
ポリウレタン弾' !·生繊維混用織編物及びその製造方法 技術分野 Polyurethane bullet! Woven and knitted fabric mixed with raw fiber and method for producing the same
本発明は、 ポリウレタン弾性繊維と他の繊維とを混合使用した織編物及びその 製造方法に関する。 更に詳述すると、 該織編物から作られた製品が着用中に繰り 返し伸長されることにより生じる生地の 「変形、 目ずれ、 わらい」 、 裁断部より 糸が抜け出す所謂 「ほつれ」 、 組織に発生したはしご状の傷やずれ、 即ち 「ラン 、 デンセン」 、 生地が湾曲した状態になる 「カール」 及ぴ裁断、 縫製した製品の 鏠目部分から弾性繊維のみが抜け出し部分的に生地の伸縮性がなくなる 「スリッ ブイン」 等を起き難くした天竺編み、 ゴム編み、 パール編み等の丸編地やその他 の緯編地、 クサリ編、 デンビ編、 コード編、 アトラス編等の経編地、 織物等のポ リウレタン弾性繊維混用織編物及びその製造方法に関する。 背景技術  The present invention relates to a woven or knitted fabric using a mixture of a polyurethane elastic fiber and another fiber, and a method for producing the same. More specifically, the fabric made from the woven or knitted fabric is repeatedly deformed and stretched while worn, resulting in "deformation, misalignment, and softness" of the fabric, and so-called "fraying" in which the yarn comes off from the cut portion. Ladder-shaped scratches or misalignment, ie, "Run, Densen", the fabric becomes curved "curl" and cutting, sewing Only the elastic fiber comes out from the mesh part of the sewn product and the fabric stretches partially Circular knitted fabric such as jersey knitting, rubber knitting, pearl knitting and other weft knitting, warp knitting such as sari knitting, denbi knitting, cord knitting, atlas knitting, etc. The present invention relates to a woven or knitted fabric mixed with polyurethane elastic fibers and a method for producing the same. Background art
ポリウレタン弹性繊維を混用した緯編地、 経編地、 織物等のストレッチ生地を 使用した製品は、 伸びが大きく、 伸長状態からの回復力やフィッ ト性が良いため 広く利用されている。 しかし、 ポリウレタン弾性繊維を混用した生地を裁断、 縫 製して作られた製品を繰り返し伸張すると、 変形して不均一な生地になり 「変形 、 目ずれ、 わらい」 、 糸が抜け出す 「ほつれ」 、 生地の組織にはしご状の傷やず れが発生した 「ラン、 デンセン」 、 生地が湾曲した 「カール」 等の問題が起き易 レ、。 また、 繰り返し伸長により縫製部分でポリウレタン弾性繊維が縫目から抜け 出す、 いわゆる 「スリ ップイン」 も起き易い。 このスリ ップインが発生して弾性 繊維が抜け出した生地の部分は、 当然のことであるが、 収縮力が無くなるので生 地に密度斑が発生し、 着用できなくなり問題である。  Products using stretch fabrics such as weft knitted fabrics, warp knitted fabrics, and woven fabrics mixed with polyurethane-based fibers are widely used because of their large elongation, good resilience from stretched state, and good fit. However, when the product made by cutting and sewing the fabric mixed with polyurethane elastic fiber is repeatedly stretched, the fabric is deformed and becomes uneven, resulting in "deformation, misalignment, softness", and the thread coming off "fraying". Ladder-like scratches and shifts have occurred in the fabric structure, and "Run, Densen" and problems such as curling of the fabric are easy to occur. In addition, the so-called “slip-in”, in which the polyurethane elastic fiber comes out of the seam at the sewn portion due to repeated elongation, is likely to occur. Naturally, the portion of the fabric from which the elastic fibers have slipped out due to the slip-in has a problem in that the shrinkage force is lost, so that density unevenness occurs in the fabric and the fabric cannot be worn.
これらの現象は、 ポリウレタン弾性繊維以外の弾性繊維を使用した織編物でも 起きるが、 伸縮性の強いポリウレタン弾性繊維の場合は特に顕著である。  These phenomena also occur in woven or knitted fabrics using elastic fibers other than polyurethane elastic fibers, but are particularly remarkable in the case of highly elastic polyurethane elastic fibers.
これらの問題の対策としてこれまでに以下の提案がなされている。  The following proposals have been made to address these problems.
( 1 ) ポリウレタン弾†生繊維の収縮力を抑制する。 (i) ポリウレタン弾性繊維の伸長倍率をあまり高くしない。 (1) Suppress the shrinkage of raw polyurethane fiber. (i) The extension ratio of the polyurethane elastic fiber is not so high.
(i i) 織編物の加工温度を高くしてポリウレタン弾性繊維の収縮力を抑える  (i i) Increase the processing temperature of the woven or knitted fabric to suppress the shrinkage of the polyurethane elastic fiber
(i i i) セット性が高い弾性繊維を選択する。 (iii) Select an elastic fiber having a high setting property.
(2) セット温度を高くすることにより、 ポリウレタン弓単十生繊維同士の交点で相 互に融着させる。  (2) By increasing the setting temperature, the polyurethane bows are fused to each other at the intersections of the single raw fibers.
(3) 低融点のポリウレタン弾性繊維を使用し低温で融着させて防止する。 (3) Use low-melting-point polyurethane elastic fiber to prevent fusion at low temperatures.
( 4 ) 縫製時の鏠目密度を高くしてポリウレタン弾性繊維の滑りを抑え、 スリツ ブインを起き難くする。 (4) The mesh density during sewing is increased to prevent the polyurethane elastic fiber from slipping, and to reduce slip-in.
(5) カバリング糸の形で使用される場合には、 撚数を高くしたり、 ダブルカバ リングの形にする。 また、 カバリング糸とさらに別な糸をエア交絡する方法も提 案されている (特開平 04—11036号公報参照) 。  (5) When used in the form of a covering thread, increase the number of twists or use double covering. A method of air-entanglement of a covering yarn and another yarn has also been proposed (see JP-A-04-11036).
(6) スリップインや目ずれし難い織り方、 編み方にする (特開 2002— 69 804号公報, 特開 2002— 13052号公報参照) 。  (6) Slip-in or weaving or knitting that is difficult to slip (see JP-A-2002-69804 and JP-A-2002-13052).
しかしながら、 (1) ( i ) のようにポリウレタン弾十生繊維の伸長倍率を落と す方法は、 生地の伸縮性が低下し、 ポリウレタン弾性繊維の使用量増加によりコ ストアップとなる。 また、 (1) (i i) のようにセット温度を高くしてポリゥ レタン弾性繊維の収縮力を弱くする方法は、 混用相手繊維の風合い変化、 織編物 の染色堅牢度低下の原因となり、 好ましくない。 更に、 (2) のように緯編地、 経編地で弾性繊維同士の交点のある編地は、 弹性繊維を融着させる方法でカール やスリップイン等の問題を防止できるが、 高温でのセットが必要なので、 やはり 混用相手繊維の風合い変化や堅牢度低下が起きるという問題がある。 また、 (4 ) のように縫製の鏠目密度を上げることは、 縫製部分が分厚くなり、 製品の着心 地が悪くなるため、 市場の要請には合致しない。  However, the method of reducing the elongation ratio of polyurethane elastic fiber as in (1) (i) reduces the elasticity of the fabric and increases the cost due to the increase in the amount of polyurethane elastic fiber used. Also, the method of (1) and (ii) increasing the set temperature to reduce the shrinkage of the polyurethane elastic fiber is not preferable because it causes a change in the texture of the mating fiber and a reduction in the color fastness of the woven or knitted fabric. . Furthermore, in the case of weft knitted fabrics and warp knitted fabrics where there is an intersection between elastic fibers as in (2), problems such as curling and slip-in can be prevented by a method of fusing viscous fibers. Since a set is necessary, there is still a problem that the texture of the mixed partner fiber may change and the robustness may decrease. In addition, increasing the mesh density of sewing as in (4) does not meet the market requirements, because the sewn portion becomes thicker and the product is not well-centered.
一方、 ( 3 ) のように低温で融着する弾性繊維を使うと、 140〜160°Cの 低いセット温度で融着させることができるが、 高融点ポリウレタン弾性繊維と混 合使用する際、 高融点ポリウレタン弾性繊維がセット不充分となり、 生地の寸法 安定性が悪くなり、 高融点ポリウレタン弾性繊維が充分にセットできる高温領域 でセットすると、 一般的に低温で融着する弾性 ¾維は、 強力低下が大きく、 生地 の伸長回復力が弱くなるので好ましくない。 また、 (4 ) 、 ( 5 ) のように特殊 な複合糸を使ったり、 特殊な編み方にする方法は、 製品の性状を制限することに なる。 On the other hand, if an elastic fiber that fuses at a low temperature as in (3) can be used, it can be fused at a low set temperature of 140 to 160 ° C. Insufficient setting of the melting point polyurethane elastic fiber, resulting in poor dimensional stability of the fabric, and setting in a high temperature region where the high melting point polyurethane elastic fiber can be sufficiently set, generally lowers the elasticity of the fiber that fuses at low temperatures. But large, dough This is not preferable because the elongation recovery force of the rubber becomes weak. The use of special composite yarns or special knitting methods as in (4) and (5) limit the properties of the product.
融点の異なる 2つのポリエーテルエステル弾性繊維を使用した編織物を 2 0 0 °Cで熱処理して目ずれを防止する方法も提案されている (特開 2 0 0 1—1 5 9 0 5 2号公報参照) ,ヽ ポリエーテルエステル弾性繊維は、 ポリウレタン弾性繊 維に比較して弾性回復力、 歪の点で性能が不十分であり、 満足できるものではな い。  A method has also been proposed in which a knitted fabric using two polyetherester elastic fibers having different melting points is heat-treated at 200 ° C. to prevent misalignment (Japanese Unexamined Patent Publication No. 2001-159590). However, polyetherester elastic fibers are not satisfactory in terms of elastic recovery and distortion in comparison with polyurethane elastic fibers in terms of elastic recovery force and distortion.
本発明は、 裁断、 縫製部分から使用したポリウレタン弾性繊維や非弾性糸が抜 け出すことがなく、 生地が安定し、 目ずれ、 わらい、 ほつれ、 ラン、 デンセン、 カールゃスリップィンの起こり難い弾性繊維織編物及びその製造方法を提供する ことを目的とする。 発明の開示  The present invention provides an elastic fiber in which the used polyurethane elastic fiber and non-elastic yarn do not come off from the cut or sewn portion, and the fabric is stable, and misalignment, softness, fraying, orchids, densen, and Karl Slipin are unlikely to occur. An object of the present invention is to provide a woven or knitted fabric and a method for producing the same. Disclosure of the invention
本発明者は、 上記目的を達成するため鋭意検討を行った結果、 ポリオールとジ ィソシァネートを反応させて得られるプレボリマーから合成したポリマーを溶融 紡糸する等して得られ、 好ましくは原料ポリオール全量に対してポリエーテルポ リオールを 5 0質量。 /0以上含有する高融着ポリウレタン弹性繊維と、 非弾性繊維 とを含む織編物を熱セットすることにより、 ポリウレタン弾性繊維が非弾性繊維 に接触している部分や、 ポリウレタン弾性繊維相互が接触している部分で熱融着 を生じ、 強度が低下することなく、 目ずれ、 わらレ、、 ほつれ、 ラン、 デンセン、 カール、 スリ ップインや目ずれが生じにくい生地が得られることを発見し、 本発 明をなすに至った。 The present inventors have conducted intensive studies in order to achieve the above-mentioned object, and as a result, obtained by, for example, melt-spinning a polymer synthesized from a prepolymer obtained by reacting a polyol and a disocyanate, and preferably based on the total amount of the raw material polyol. 50 mass of polyether polyol. By heat setting a woven or knitted fabric containing a high-fusible polyurethane fibrous fiber containing at least / 0 and an inelastic fiber, the part where the polyurethane elastic fiber is in contact with the inelastic fiber and the polyurethane elastic fiber are in contact with each other. It was discovered that heat fusion occurred in the part where the material was bent, and that there was no loss in strength, and that a fabric was obtained that was less likely to cause misalignment, ragging, fraying, orchid, densen, curl, slip-in or misalignment It led to the invention.
即ち、 本発明は下記のポリウレタン弾性繊維混用織編物及びその製造方法を提 供する。  That is, the present invention provides the following woven / knitted fabric mixed with polyurethane elastic fibers and a method for producing the same.
[ I ] 1 0 0 %伸長した状態で 1 5 0 °C、 4 5秒間の乾熱処理後の強力保持率が 5 0 %以上であり、 且つ 1 8 0 °C以下の融点を有する高融着ポリウレタン弾性繊 維と、 少なくとも 1種類の非弹性糸とを含み、 乾熱又は湿熱セットにより高融着 ポリウレタン弾性繊維相互又はこれと非弾性糸との交差部、 好ましくは高融着ポ リウレタン弾性繊維と非弾性糸との交差部を熱融着させてなるポリウレタン弾性 繊維混用織編物。 [I] High fusion with a strong retention of 50% or more after dry heat treatment at 150 ° C for 45 seconds with 100% elongation and a melting point of 180 ° C or less It contains a polyurethane elastic fiber and at least one kind of non-conductive yarn, and is highly fused by dry heat or wet heat setting. A woven or knitted fabric with a mixture of polyurethane elastic fibers obtained by heat-sealing the intersections of urethane elastic fibers and inelastic yarns.
[I I] 更に 200°C以上の融点を有する高融点ポリウレタン弾性繊維を含み、 この高融点ポリウレタン弹性繊維と上記髙融着ポリウレタン弾性繊維との交差部 を熱融着させた [ I ] 記載のポリウレタン弾性繊維混用織編物。  [II] The polyurethane according to [I], further comprising a high-melting-point polyurethane elastic fiber having a melting point of 200 ° C. or more, and wherein the intersection of the high-melting-point polyurethane elastic fiber and the above-mentioned fused polyurethane elastic fiber is heat-fused. Woven and knitted fabric with mixed elastic fibers.
[I I I] 100%伸長した状態で 150°C、 45秒間の乾熱処理後の強力保持 率が 50%以上であり、 且つ 180°C以下の融点を有する髙融着ポリウレタン弹 性繊維と、 少なくとも 1種類の非弾性糸を用いて織地又は編地を形成した後、 乾 熱又は湿熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸と の交差部、 好ましくは高融着ポリウレタン弾性繊維と非弾性糸との交差部を熱融 着させてなるポリウレタン弾性繊維混用織編物の製造方法。  [III] At least one fused polyurethane polyurethane fiber having a strong retention of 50% or more after a dry heat treatment at 150 ° C for 45 seconds in a state of being stretched by 100% and a melting point of 180 ° C or less; After forming a woven or knitted fabric using various types of inelastic yarns, dry or hot heat setting is performed to form a high-fusion polyurethane elastic fiber with each other or at the intersection of the non-elastic yarn and the high-fusion polyurethane elastic fiber. A method for producing a woven or knitted fabric mixed with polyurethane elastic fibers, wherein the intersections with non-elastic yarns are heat-sealed.
[I V] 更に 200°C以上の融点を有する高融点ポリウレタン弾性繊維を用いて 、 この高融点ポリウレタン弾性繊維と上記高融着ポリウレタン弾性繊維との交差 部を熱融着させた [1 1 1〕 記載のポリウレタン弾性繊維混用織編物の製造方法  [IV] Further, using a high-melting-point polyurethane elastic fiber having a melting point of 200 ° C. or more, the intersection of the high-melting-point polyurethane elastic fiber and the high-fusion polyurethane elastic fiber was heat-fused. PROCESS FOR PRODUCING WOVEN KNITTED MIXED POLYURETHANE ELASTIC FIBER
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 クサリ編地の組織図の一例である。  Figure 1 is an example of the organization chart of the knitted fabric.
図 2は、 クサリ編地の組織図の一例である。  Figure 2 is an example of the organization chart of the knitted fabric.
図 3は、 経編地の組織図の一例である。  Figure 3 is an example of an organization chart of a warp knitted fabric.
図 4は、 経編地の組織図の一例である。  Figure 4 is an example of an organization chart of a warp knitted fabric.
図 5は、 経編地の組織図の一例である。  FIG. 5 is an example of an organization chart of a warp knitted fabric.
図 6は、 経編地の組織図の一例である。  FIG. 6 is an example of an organization chart of a warp knitted fabric.
図 7は、 経編地の組織図の一例である。  FIG. 7 is an example of an organization chart of a warp knitted fabric.
図 8は、 経編地の組織図の一例である。  FIG. 8 is an example of an organization chart of a warp knitted fabric.
図 9は、 経編地の組織図の一例である。  FIG. 9 is an example of an organization chart of a warp knitted fabric.
図 10は、 経編地の引張り試験用試験片である c 発明を実施するための最良の形態 以下、 本発明につき更に詳しく説明する。 Fig. 10 shows a test specimen for a tensile test of a warp knitted fabric. C Best mode for carrying out the invention Hereinafter, the present invention will be described in more detail.
本発明に用いられるポリウレタン弾性繊維は、 低い温度でも融着しやすく、 且 つ耐熱性を有する高融着ポリウレタン弾性繊維であれば、 その組成、 製造方法等 は特に制限されるものはなく、 例えば、 ポリオールと過剰モル量のジィソシァネ ートを反応させ、 両末端にイソシァネート基を有するポリウレタン中間重合体を 製造し、 該中間重合体のィソシァネート基と容易に反応し得る活性水素を有する 低分子量ジァミンゃ低分子量ジオールを不活性な有機溶剤中で反応させポリゥレ タン溶液 (ポリマー溶液) を製造した後、 溶剤を除去し糸条に成形する方法や、 ポリオールとジィソシァネートと低分子量ジァミン又は低分子量ジオールとを反 応させたポリマーを固化し溶剤に溶解させた後、 溶剤を除去し糸条に成形する方 法、 前記固化したポリマーを溶剤に溶解させることなく加熱により糸条に成形す る方法、 前記ポリオールとジィソシァネートと低分子量ジオールとを反応させて ポリマーを得、 該ポリマーを固化することなく糸条に成形する方法、 更には、 上 記のそれぞれの方法で得られたポリマー又はポリマー溶液を混合した後、 混合ポ リマー溶液から溶剤を除去し糸条に成形する方法等がある。 これらの中で特に、 (A) ポリオールとジィソシァネートとを反応させて得られる両末端ィソシァネ 一ト基プレポリマー (以下 「両末端 N C O基プレボリマー」 とする) と、 (B ) ポリオールとジイソシァネートと低分子量ジオールとを、 反応させて得られる両 末端水酸基プレボリマー (以下 「両末端 O H基プレボリマー」 とする) とを反応 させて得られるポリマーを固化することなく溶融紡糸する方法が、 低温で融着し やすく、 且つ耐熱性を有する高融着ポリウレタン弾性繊維を得る上で好ましく、 また溶剤の回収を含まないため経済的である。  As long as the polyurethane elastic fiber used in the present invention is easily fused even at a low temperature and has high heat resistance and is a highly fused polyurethane elastic fiber, its composition and production method are not particularly limited. Reacting a polyol with an excess molar amount of diisocyanate to produce a polyurethane intermediate polymer having isocyanate groups at both ends, and a low molecular weight diamine having active hydrogen capable of easily reacting with the isocyanate group of the intermediate polymer. After producing a polyurethane solution (polymer solution) by reacting a low molecular weight diol in an inert organic solvent, the solvent is removed to form a yarn, or a polyol and a diisocyanate are mixed with a low molecular weight diamine or a low molecular weight diol. After solidifying the reacted polymer and dissolving it in a solvent, removing the solvent and forming it into yarn A method in which the solidified polymer is formed into a yarn by heating without dissolving in a solvent; a process in which the polyol, diisocyanate, and low-molecular-weight diol are reacted to obtain a polymer, and the polymer is formed into a yarn without solidification. After the polymer or the polymer solution obtained by each of the above methods is mixed, a solvent is removed from the mixed polymer solution to form a yarn. Among them, particularly, (A) a double-ended isocyanate mono-group prepolymer obtained by reacting a polyol and a di-isocyanate (hereinafter referred to as a “double-ended NCO-group prepolymer”), and (B) a polyol, a diisocyanate and a low molecular weight A method in which a polymer obtained by reacting a diol with a hydroxyl group prepolymer obtained at both ends (hereinafter referred to as “OH group prepolymer at both ends”) without solidifying the polymer is easily fused at a low temperature. It is preferable to obtain highly fused polyurethane elastic fiber having heat resistance and is economical because it does not include recovery of a solvent.
この場合、 (A) 、 ( B ) 成分のプレボリマーを構成するポリオールは、 同じ であっても違っていても良いが、 数平均分子量が 8 0 0〜 3 , 0 0 0程度のポリ マージオールを用いることが好ましい。  In this case, the polyols constituting the prepolymers of the components (A) and (B) may be the same or different, but a polymer diol having a number average molecular weight of about 800 to 3,000 Preferably, it is used.
このようなポリマージオールとしては、 ポリエーテルグリコール、 ポリエステ ノレダリコール、 ポリカーボネートダリコール等を用いることができる。  Examples of such a polymer diol include polyether glycol, polyester dalericol, and polycarbonate daricol.
ポリエーテルグリコールとしては、 例えばエチレンオキサイド、 プロピレンォ キサイド、 テトラヒドロフラン等の環状エーテルの開環重合により得られるポリ エーテルジォーノレ ;エチレングリコール、 プロピレングリコール、 1 , 4ーブタ ンジォ一ノレ、 1, 5—ペンタンジオ^"ノレ、 ネオペンチノレグリコーノレ、 1 , 6—へ キサンジオール、 3—メチルー 1 , 5—ペンタンジオール等のグリコールの重縮 合により得られるポリエーテルダリコール等が例示できる。 Polyether glycols include, for example, those obtained by ring-opening polymerization of cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran. Ether diole: ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanedio ^ "nore, neopentinole glycolone, 1,6-hexanediol, 3-methyl-1,5- Examples thereof include polyether daricol obtained by polycondensation of glycols such as pentanediol.
ポリエステルグリコールとしては、 例えばェチレングリコール、 プロピレンク" リコーノレ、 1 , 4ーブタンジォ一ノレ、 1, 5—ペンタンジオール、 ネオペンチノレ グリコーノレ、 1, 6一へキサンジォーノレ、 3—メチノレー 1 , 5—ペンタンジォー ル等のダリコール類から選ばれる少なくとも 1種と、 アジピン酸、 セバシン酸、 ァゼライン酸等の二塩基酸類から選ばれる少なくとも 1種との重縮合によって得 られるポリエステルグリコール; £—力プロラタ トン、 バレロラク トン等のラク トン類の開環重合により得られるポリエステルダリコール等が例示される。  Polyester glycols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentinole glycolone, 1,6-hexanediole, and 3-methylinole 1,5-pentanediol. Polyester glycol obtained by polycondensation of at least one selected from dalicols and at least one selected from dibasic acids such as adipic acid, sebacic acid, and azelaic acid; lactones such as prolactatone and valerolactone; Examples thereof include polyester dalicol obtained by ring-opening polymerization of tons.
ポリカーボネートグリコールとしては、 例えばジメチルカーボネート、 ジェチ ルカーボネート等のジアルキルカーボネート ;エチレンカーボネート、 プロピレ ンカーボネート等のァノレキレンカーボネート ; ジフエ二ノレカーボネート、 ジナフ チルカーボネート等のジァリールカーボネート等から選ばれる少なくとも 1種の 有機カーボネー卜と、 エチレングリコール、 プロピレンダリコール、 1 , 4ーブ タンジオール、 1 , 5—ペンタンジオール、 ネオペンチルグリコール、 1 , 6 _ へキサンジオール、 3—メチノレ一 1 , 5一ペンタンジォ一ノレ等から選ばれる少な くとも 1種の脂肪族ジオールとのエステル交換反応によって得られるカーボネー トグリコール等が例示される。  Examples of the polycarbonate glycol include at least one selected from the group consisting of dialkyl carbonates such as dimethyl carbonate and methyl carbonate; anoalkylene carbonates such as ethylene carbonate and propylene carbonate; and diaryl carbonates such as diphenylenocarbonate and dinaphthyl carbonate. Seeds of organic carbonates, ethylene glycol, propylene dalicol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6_hexanediol, 3-methynole-1,5-pentanediol Examples thereof include carbonate glycol obtained by transesterification with at least one kind of aliphatic diol selected from glue and the like.
上記例示したポリエーテルグリコール、 ポリエステルグリコール、 又はポリ力 ーボネートグリコールは 1種を単独で又は 2種以上を組み合わせて用いることが できるが、 良好な融着性を得るためには使用する合計量のポリマージオールに対 してポリエーテルジオール成分を 5 0質量%以上、 好ましくは 6 0質量%以上使 用することが望ましく、 ポリエーテルジオール成分が 1 0 0質量%であってもよ レ、。 なお、 ポリエーテルジオール成分としては、 特にポリテトラメチレンエーテ ルグリコールが好適に使用される。  The above-mentioned polyether glycol, polyester glycol, or polycarbonate glycol can be used alone or in combination of two or more, but in order to obtain good fusibility, the total amount of It is desirable to use the polyether diol component in an amount of 50% by mass or more, preferably 60% by mass or more, based on the polymer diol, and the polyether diol component may be used in an amount of 100% by mass. As the polyether diol component, polytetramethylene ether glycol is particularly preferably used.
(A) 、 (B ) 成分のプレボリマーを構成するジイソシァネートとしては、 ポ リウレタンの製造に際して通常使用されている脂肪族系、 脂環式系、 芳香族系、 芳香脂肪族系等の任意のジィソシァネートを使用することができる。 The diisocyanates constituting the prepolymers of the components (A) and (B) include aliphatic, alicyclic, aromatic, and the like generally used in the production of polyurethane. Any disocyanate, such as an araliphatic system, can be used.
このようなジイソシァネートとしては、 例えば 4, 4 ' —ジフエニルメタンジ イソシァネート、 2 , 4— トリ レンジイソシァネート、 1 , 5—ナフタレンジィ ソシァネート、 キシリ レンジイソシァネート、 水添キシリ レンジイソシァネート 、 イソホロンジイソシァネート、 1, 6—へキサメチレンジイソシァネート、 ρ —フエ二レンジイソシァネート、 4, 4, 一ジシク口へキシルメタンジイソシァ ネート、 メターテトラメチルキシレンジイソシァネート、 パラーテトラメチノレキ シレンジィソシァネート等が挙げられ、 これらの 1種を単独で又は組み合わせて 用いることができるが、 中でも 4, 4 ' ージフエニルメタンジイソシァネート、 4 , 4 ' ージシクロへキシルメタンジイソシァネートが好ましく用いられる。 鎖長延長剤である低分子量ジオールや低分子量ジァミンは、 反応速度が適当で あり、 適度な耐熱性を与えるものが好ましく、 イソシァネートと反応し得る 2個 の活性水素原子を有し、 一般に分子量が 5 0 0以下の低分子量化合物が使用され る。  Such diisocyanates include, for example, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 1,5-naphthalene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate. , Isophorone diisocyanate, 1,6-hexamethylene diisocyanate, ρ-phenylene diisocyanate, 4,4,1-dicyclohexyl methane diisocyanate, methatetramethyl xylene diisocyanate And paratetramethinolexylene diisocyanate. One of these can be used alone or in combination. Among them, 4,4′-diphenylmethanediisocyanate, 4,4 ′ 'Dicyclohexylmethane diisocyanate is preferably used. The low molecular weight diol or low molecular weight diamine which is a chain extender preferably has an appropriate reaction rate and imparts appropriate heat resistance, has two active hydrogen atoms capable of reacting with isocyanate, and generally has a molecular weight of A low molecular weight compound of 500 or less is used.
このような低分子量ジオールとしては、 例えばエチレングリコール、 プロピレ ングリ コーノレ、 1 , 4一ブタンジォーノレ、 1 , 5—ペンタンジォーノレ、 ネオペン チルダリコーノレ、 1, 6—へキサンジォーノレ、 3ーメチノレー 1 , 5 _ペンタンジ オール等の脂肪族ジオール類を用いることができ、 紡糸性を阻害しない範囲内で グリセリン等 3官能グリコール類も使用することができる。 これらは 1種を単独 で又は 2種以上を組み合わせて用いることができるが、 作業性や得られる繊維に 適度な物性を与える点からエチレングリコール、 1, 4一ブタンジオールが好ま しレ、。  Such low molecular weight diols include, for example, ethylene glycol, propylene glycol cornole, 1,4-butanediole, 1,5-pentanediole, neopentyl dioliconele, 1,6-hexanedioleone, 3-methyldioleone, 5 _ Aliphatic diols such as pentanediol can be used, and trifunctional glycols such as glycerin can also be used as long as spinnability is not impaired. These can be used alone or in combination of two or more. However, ethylene glycol and 1,4-butanediol are preferred from the viewpoint of workability and imparting appropriate physical properties to the obtained fiber.
また、 このような低分子量ジァミンとしては、 例えば、 エチレンジァミン、 ブ タンジァミン、 プロピレンジァミン、 へキサメチレンジァミン、 キシリレンジァ ミン、 4 , 4—ジァミノジフエニルメタン、 ヒドラジン等を用いることができる 低分子量ジオールと低分子量ジァミンを併用することもできるが、 本発明にお いては、 鎖長延長剤として低分子量ジオールをより好ましく使用することができ る。 また、 反応調整剤又は重合度調整剤として、 ブタノール等の 1官能性のモノォ ールゃジェチルァミンゃジブチルァミン等の 1官能性のモノァミンを混合して用 いることもできる。 Further, as such a low molecular weight diamine, for example, ethylenediamine, butanediamine, propylenediamine, hexamethylenediamine, xylylenediamine, 4,4-diaminodiphenylmethane, hydrazine and the like can be used. Although a low molecular weight diol and a low molecular weight diamine can be used in combination, a low molecular weight diol can be more preferably used as a chain extender in the present invention. Further, as a reaction regulator or a polymerization degree regulator, a monofunctional monoamine such as butanol or the like, or monofunctional amine such as getylamine or dibutylamine may be mixed and used.
ポリウレタン重合反応の際、 もしくは紡糸溶液として使用される不活性溶媒と しては、 N, N—ジメチルフオルムアミ ド、 N, N—ジメチルァセトアミ ド、 N , N, N' , N' —テトラメチル尿素、 N—メチルピロリ ドン、 ジメチルスルフ ォキシド等の極性溶媒が挙げられる。  The inert solvent used in the polyurethane polymerization reaction or as the spinning solution includes N, N-dimethylformamide, N, N-dimethylacetamide, N, N, N ', N' — Polar solvents such as tetramethylurea, N-methylpyrrolidone and dimethylsulfoxide.
上記 (A) 、 (B) 成分のプレボリマーには、 耐候性、 耐熱酸化性、 耐黄変性 改善のために、 紫外線吸収剤、 酸化防止剤、 光安定剤等の任意成分を添加するこ とができる。  Optional components such as UV absorbers, antioxidants, and light stabilizers may be added to the prepolymers (A) and (B) to improve weather resistance, thermal oxidation resistance, and yellowing resistance. it can.
紫外線吸収剤としては、 例えば 2— (3, 5—ジー tーァミル一 2—ヒドロキ シフエニル) ベンゾトリァゾール、 2— (3_ t—ブチル _5_メチル _2—ヒ ドロキシフエニル) 一 5—クロ口べンゾトリァゾール、 2— (2—ヒドロキシ一 3, 5—ビスフヱエル) ベンゾトリアゾール等のベンゾトリアゾール系の紫外線 吸収剤が挙げられる。  Examples of UV absorbers include 2- (3,5-di-t-amyl- 12-hydroxyphenyl) benzotriazole, 2- (3_t-butyl_5_methyl_2-hydroxyphenyl) -15-chlorobenzozotriazole, Examples include benzotriazole-based ultraviolet absorbers such as 2- (2-hydroxy-1,3,5-bisphenyl) benzotriazole.
酸化防止剤としては、 例えば 3 , 9 _ビス ( 2 _ (3 - (3 - t一プチルー 4 ーヒ ドロキシ一 5—メチルフエニル) 一プロピオ-ルォキシ) 一 1, 1一ジメチ ルェチル) 一 2, 4, 8, 10—テトラオキサスピロ (5. 5) ゥンデカン、 1 , 3, 5—トリス (4一 t一プチルー 3—ヒ ドロキシー 2, 6一ジメチノレべンジ ノレ) イソシァヌル酸、 ペンタエリスルチルーテトラキス [3— (3, 5—ジー t —プチル一 4—ヒ ドロキシフエニル) プロピオネート]等のヒンダードフエノー ル系酸化防止剤が挙げられる。  Examples of the antioxidant include 3,9_bis (2_ (3- (3-t-butyl-4-hydroxy-15-methylphenyl) -propio-loxy) -1,1,1-dimethylethyl) 1,2,4 , 8,10-Tetraoxaspiro (5.5) pentane, 1,3,5-tris (4-t-butyl-3, hydroxy-2,6-dimethinolevenyl) isocyanuric acid, pentaerythryl-tetrakis [ And hindered phenolic antioxidants such as 3- (3,5-di-t-butyl-1-4-hydroxyphenyl) propionate].
光安定剤としては、 例えばビス (2, 2, 6, 6—テトラメチルー 4ーピペリ ジル) セバケ一ト、 ビス ( 1, 2 , 2, 6 , 6—ペンタメチル一 4一ピぺリジル ) セバケ一ト、 コハク酸ジメチルー 1一(2—ヒドロキシェチノレ) — 4ーヒ ドロキ シ一 2, 2, 6, 6—テトラメチルピペリジン縮合物等ヒンダードアミン系光安 定剤を挙げることができる。  Examples of light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-14-piperidyl) sebacate, Examples include hindered amine photo stabilizers such as dimethyl succinate-11- (2-hydroxyethynole)-4-hydroxy-1,2,2,6,6-tetramethylpiperidine condensate.
次に、 本発明のポリウレタン弾性繊維を得る方法は、 特に制限されるものでは ないが、 例えば、 溶融紡糸法として以下の 3つの方法が知られている。 (1) ポリウレタン弾性体チップを溶融紡糸する方法。 Next, the method for obtaining the polyurethane elastic fiber of the present invention is not particularly limited. For example, the following three methods are known as a melt spinning method. (1) A method of melt-spinning a polyurethane elastic chip.
(2) ポリウレタン弾性体チップを溶融した後、 ポリイソシァネート化合物を混 合して紡糸する方法。  (2) A method in which a polyurethane elastic chip is melted and then mixed with a polyisocyanate compound and spun.
(3) ポリオールとジィソシァネートを反応させたプレボリマーと低分子量ジォ 一ルとを反応させた紡糸用ポリマーを合成した後、 固化させることなく紡糸する 反応紡糸方法。  (3) A reaction spinning method of synthesizing a spinning polymer obtained by reacting a prepolymer obtained by reacting a polyol with a diisocyanate and a low molecular weight diol, and then spinning the solid without solidification.
(3) の方法は、 (1) 、 (2) の方法に比べ、 ポリウレタン弾性体チップを 取り扱う工程が無いため簡略であり、 また、 プレボリマーの反応機への注入割合 を調節して、 紡糸後のポリウレタン弾性繊維中の残留 N CO基の量を調整でき、 この残留 NCO基による鎖延長反応で耐熱性の向上を得ることもできるため、 好 適な方法である。 更に、 (3) の方法では、 特表平 1 1一 839030号公報に 開示されているように、 低分子量ジオールをプレボリマーの一部と事前に反応さ せ、 OH基過剰のプレボリマーとして反応機に注入する方法も行なうことができ る。  The method of (3) is simpler than the methods of (1) and (2) because there is no process for handling the polyurethane elastic chip, and the spinning rate is adjusted by adjusting the injection ratio of the prepolymer to the reactor. This is a preferable method because the amount of residual NCO groups in the polyurethane elastic fiber can be adjusted, and the heat resistance can be improved by a chain extension reaction by the residual NCO groups. Furthermore, in the method (3), as disclosed in Japanese Patent Publication No. 11-8339030, a low-molecular-weight diol is reacted in advance with a part of the prepolymer, and the OH group-excess prepolymer is supplied to the reactor. An injection method can also be used.
本発明のポリウレタン弾性繊維は、 (3) の方法に従い、 (A) 、 (B) 成分 のプレボリマーを反応機に連続して定量的に注入し、 得られた紡糸用ポリマーを 固化することなく溶融紡糸することにより得ることが特に好ましい。  According to the method (3), the polyurethane elastic fiber of the present invention is prepared by continuously and quantitatively injecting the prepolymers of the components (A) and (B) into a reactor and melting the obtained polymer for spinning without solidifying. It is particularly preferred to obtain by spinning.
この場合、 紡糸用ポリマーの合成は、 (I) 両末端 N CO基プレポリマーの合 成と、 (I I) 両末端 OH基プレボリマーの合成と、 (I I I) これら二つのプ レポリマーを反応機に導き、 連続的に反応させる紡糸用ポリマーの合成の 3つの 反応で構成されるが、 原料の組成比は上記 3つの反応を通算して、 全ジイソシァ ネートのモル量と、 全ポリマージオール及ぴ全低分子量ジオールの合計モル量と のモル比が 1. 02〜1. 20であることが好ましい。  In this case, the synthesis of the polymer for spinning is carried out by (I) synthesis of a prepolymer having N-terminal NCO groups, (II) synthesis of prepolymers having OH groups at both ends, and (III) introduction of these two prepolymers into a reactor. It is composed of three reactions, ie, the synthesis of a spinning polymer that is continuously reacted. The composition ratio of the raw materials is the sum of the above three reactions, and the molar amount of all diisocyanates, total polymer diol and total low The molar ratio to the total molar amount of the molecular weight diol is preferably from 1.02 to 1.20.
具体的には、 上記 (I) の両末端 N CO基プレボリマーは、 例えば温水ジャケ ット及び撹拌機を具備したタンクに所定量のジィソシァネートを仕込んだ後、 撹 拌しながら所定量のポリマージオールを注入し、 80 で 1時間窒素パージ下で 撹拌することで得ることができる。 この反応で得られた両末端 N C O基プレボリ マーは、 ジャケット付きギアポンプ (例えば、 KAP— 1 川崎重工業株式会社 製) を用いてポリウレタン弾性繊維用反応機に注入する。 ( I I ) の両末端 O H基プレボリマーは、 温水ジャケット及び撹拌機を具備し たタンクに所定量のジィソシァネートを仕込んだ後、 撹拌しながら所定量のポリ マージオールを注入し、 8 0 °Cで 1時間窒素パージ下で撹拌して前駆体を得、 次 いで、 低分子量ジオールを注入し、 撹拌して前駆体と反応させることで得ること ができる。 得られた両末端〇H基プレボリマーはジャケット付きギアポンプ (例 えば、 K A P— 1 川崎重工業株式会社製) を用いてポリウレタン弾性繊維用反 応機に注入する。 Specifically, the above-mentioned N-terminal NCO-based prepolymer of (I) is prepared, for example, by charging a predetermined amount of diisocyanate into a tank equipped with a hot water jacket and a stirrer, and then stirring the predetermined amount of polymer diol while stirring. It can be obtained by pouring and stirring at 80 for 1 hour under a nitrogen purge. The NCO-based prepolymer at both ends obtained by this reaction is injected into a polyurethane elastic fiber reactor using a jacketed gear pump (for example, KAP-1 manufactured by Kawasaki Heavy Industries, Ltd.). The prepolymer of OH group at both ends of (II) is prepared by charging a predetermined amount of diisocyanate into a tank equipped with a warm water jacket and a stirrer, then injecting a predetermined amount of polymer diol with stirring, and adding the mixture at 80 ° C. It can be obtained by stirring under a nitrogen purge for a period of time to obtain a precursor, and then injecting a low molecular weight diol and stirring to react with the precursor. The obtained prepolymer at both ends is injected into a polyurethane elastic fiber reactor using a jacketed gear pump (for example, KAP-1 manufactured by Kawasaki Heavy Industries, Ltd.).
なお、 この両プレポリマー合成時に、 耐候性、 耐熱酸化性、 耐黄変性等を改善 するための上記各種薬品類を添加することができる。  During the synthesis of both prepolymers, the above-mentioned various chemicals for improving weather resistance, thermal oxidation resistance, yellowing resistance, etc. can be added.
( I I I ) の紡糸用ポリマーの合成は、 一定比率で送り込まれた (A) 、 (B ) のプレボリマーを、 連続反応させて得ることができる。 この場合、 反応機とし ては、 通常のポリウレタン弹性繊維の溶融紡糸法に用いられるものでよく、 紡糸 用ポリマーを加熱、 溶融状態で撹拌、 反応させ、 更に紡糸ヘッドに移送する機構 を備えた反応機が好ましい。 反応条件は、 1 6 0〜 2 2 0 °Cで 1〜 9 0分、 好ま しくは 1 8 0〜 2 1 0 °Cで 3〜8 0分である。  The spinning polymer (III) can be synthesized by continuously reacting the prepolymers (A) and (B) fed at a fixed ratio. In this case, the reactor used may be any of those used in the ordinary melt spinning of polyurethane fiber, and the reaction is provided with a mechanism for heating, stirring and reacting the spinning polymer in a molten state, and further transferring the polymer to the spinning head. Machine is preferred. The reaction conditions are 1 to 90 minutes at 160 to 220 ° C, preferably 3 to 80 minutes at 180 to 210 ° C.
本発明のポリウレタン弾性繊維は、 合成された紡糸用ポリマーを固化させるこ となく紡糸へッドに移送し、 ノズルから吐出、 紡糸して得ることができるが、 紡 糸用ポリマーの反応機内での平均滞留時間は反応機の種類によって異なり、 下式 により計算される。  The polyurethane elastic fiber of the present invention can be obtained by transferring the synthesized polymer for spinning to a spinning head without solidifying, discharging from a nozzle, and spinning. The average residence time depends on the type of reactor and is calculated by the following formula.
反応機内での平均滞留時間 =  Average residence time in reactor =
(反応機容積/紡糸用ポリマー吐出量) X紡糸用ポリマーの比重 一般的に円筒形反応機を用いる場合は約 1時間であり、 2軸押出し機を用いる 場合は 5〜 1 0分である。 紡糸温度は 1 8 0〜 2 3 0 °Cで、 ノズルょり連続的に 押出した後、 冷却し、 紡糸油剤を付着して巻取ることによって得ることができる ここで、 両末端 N C〇基プレポリマーと両末端 O H基プレポリマーとの比率は 紡糸した直後の糸中に N C O基が 0 . 3〜1質量%、 より好ましくは 0 . 3 5〜 0 . 8 5質量%残るように注入ギアポンプの回転比率を適宜調整することが好ま しい。 1^〇0基が0 . 3質量%以上過剰に含まれていると、 紡糸後の鎖延長反応 により強伸度、 耐熱性等の物性を向上させることもできる。 し力 し、 N C O基が 0 . 3質量%より少ないと、 得られるポリウレタン弾性繊維の耐熱強力保持率が 低下するおそれがあり、 また、 1質量%を超えると紡糸用ポリマーの粘度が低く なり、 紡糸が困難になる場合が生じる。 (Reactor volume / amount of polymer discharged for spinning) X Specific gravity of polymer for spinning Generally, it takes about 1 hour when using a cylindrical reactor and 5 to 10 minutes when using a twin-screw extruder. The spinning temperature is 180 to 230 ° C. It can be obtained by continuously extruding through a nozzle, cooling, applying a spinning oil and winding it up. The ratio between the polymer and the OH group prepolymer at both ends is determined by adjusting the injection gear pump so that the NCO group remains in the yarn immediately after spinning in an amount of 0.3 to 1% by mass, more preferably 0.35 to 0.85% by mass. It is preferable to adjust the rotation ratio appropriately. If 1 ^ 〇0 groups are contained in excess of 0.3% by mass, chain extension reaction after spinning Thereby, physical properties such as high elongation and heat resistance can be improved. If the NCO group content is less than 0.3% by mass, the resulting polyurethane elastic fiber may have a reduced heat and strength retention rate. If the NCO group content exceeds 1% by mass, the viscosity of the spinning polymer decreases, In some cases, spinning becomes difficult.
なお、 紡糸した繊維中の N C O基の含有率は以下のように測定する。  The content of NCO groups in the spun fibers is measured as follows.
紡糸した繊維 (約 1 g ) をジブチルァミン /ジメチルフオルムァミ ド /トルェ ン溶液で溶解した後、 過剰のジブチルァミンと試料中の N C O基を反応させ、 残 つたジブチルァミンを塩酸で滴定し、 N C O基の含有量を算出する。  After dissolving the spun fiber (about 1 g) with a dibutylamine / dimethylformamide / toluene solution, excess dibutylamine is reacted with the NCO group in the sample, and the remaining dibutylamine is titrated with hydrochloric acid, and the NCO group is titrated. Is calculated.
本発明で用いられるポリウレタン弾性繊維は、 上述のようにポリエーテルジォ —ルを主原料に用い、 溶融反応紡糸法で製造されたポリウレタン弹性繊維である ことが特に好ましい。  As described above, the polyurethane elastic fiber used in the present invention is particularly preferably a polyurethane elastic fiber produced by melt reaction spinning using polyetherdiol as a main raw material.
本発明で使用するポリウレタン弾性繊維は、 1 0 0 %伸長状態で 1 5 0 °C、 4 5秒間乾熱処理した後の強力保持率が 5 0 %以上、 好ましくは 5 5 %以上である 。 強力保持率が 5 0 %より低いと熱セット後の製品の伸縮性が低下し好ましくな い。  The polyurethane elastic fiber used in the present invention has a tenacity retention of 50% or more, preferably 55% or more after being subjected to dry heat treatment at 150 ° C. for 45 seconds in a 100% stretched state. If the strength retention is lower than 50%, the elasticity of the product after heat setting is undesirably reduced.
なお、 強力保持率の上限は特に制限されないが、 通常 9 0 %以下、 特に 8 0 % 以下である。  The upper limit of the strength retention is not particularly limited, but is usually 90% or less, particularly 80% or less.
また、 ポリウレタン弾性繊維の融点は、 1 8 0 °C以下であり、 好ましくは 1 7 5 °C以下である。 1 8 0 °Cより高いと、 融着させる為の熱処理温度が高くなり過 ぎ製品の風合い、 染色堅牢度等に悪い影響を与え好ましくない。  Further, the melting point of the polyurethane elastic fiber is at most 180 ° C, preferably at most 175 ° C. If the temperature is higher than 180 ° C, the heat treatment temperature for fusing becomes too high, which adversely affects the texture of the product and the color fastness, which is not preferable.
なお、 融点の下限は 1 5 0 °C以上、 特に 1 5 5 °C以上であることが、 高融点ポ リウレタン弾性繊維との混合使用の際の寸法安定性や、 生地の伸長回復力の点か ら好ましい。  The lower limit of the melting point should be 150 ° C or higher, and especially 150 ° C or higher, in terms of dimensional stability when mixed with high-melting polyurethane elastic fiber and elongation recovery of fabric. This is preferred.
なお、 強力保持率の測定方法は後述の通りである。  The method for measuring the strength retention is as described below.
本発明のポリウレタン弾性繊維混用織編物は、 上記高融着ポリウレタン弹性繊 維及ぴ非弾性糸を用い、 更に、 例えば 2 0 0 °C以上の融点を有する高融点ポリゥ レタン弾性繊維も混用した以下の構造を有するものとすることができる。  The woven or knitted fabric mixed with polyurethane elastic fiber of the present invention uses the above-mentioned high-fusing polyurethane fiber and inelastic yarn, and further contains, for example, a high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more. Having the following structure.
( 1 ) 高融着ポリウレタン弾性繊維と少なくとも 1種類の非弾性糸とを含む複合 糸を経糸及ぴ Z又は緯糸に使用した織物。 組織は平織、 綾織、 朱子織等のいずれ でもよく、 織機についてもシャトル式織機、 レビア式織機、 エアージェット式織 機等を使用することができる。 更に、 経糸及び緯糸は全部該複合糸であっても良 いし、 複合糸と非弾"生糸とを 1 : 1、 1 : 2又は 1 : 3等の打ち込み比率で混合 使用しても良い。 (1) A woven fabric using a composite yarn containing a highly fused polyurethane elastic fiber and at least one type of inelastic yarn as a warp and a Z or weft. The organization is plain weave, twill weave, satin weave, etc. However, shuttle looms, levier looms, air jet looms, and the like can be used as looms. Further, the warp and the weft may all be the composite yarn, or the composite yarn and the non-resilient "raw yarn" may be mixed and used at a driving ratio of 1: 1, 1: 2 or 1: 3.
( 2 ) 編機の同じコースに高融着ポリウレタン弾性繊維及び少なくとも 1種類以 上の非弾性糸を混用した緯編地。 高融着ポリウレタン弾性繊維及び非弾性糸を編 み込んだ緯編地の編組織は平編、 ゴム編、 パール編、 両面編、 及びこれらを組み 合わせたり、 変化させたりした組織等のいずれの組織でも編成することができ、 編機についても丸編機、 横編機、 フルファッション編機、 靴下編機等の全ての編 機を使用することができる。 高融着ポリウレタン弾性繊維は揷入又は編み込みの どちらでも良い。 また、 高融着ポリウレタン弾性繊維と非弾性糸のプレーティン グ編でも良いし、 高融着ポリウレタンと非弾性糸の複合糸を使用しても良い。 ( 1 ) と同様に全コースに高融着ポリウレタン弾性繊維を編み込んでも良いし、 1 コース以上おきに編み込んでも良い。 高融着ポリウレタン弾性繊維と非弾性糸を 交互、 又は適当な間隔おきに編み込んでも良い。 更に、 高融点ポリウレタン弾性 繊維を混用してもよい。 以下に例を示すがこれに限定されるものではなレ、。  (2) A weft knitted fabric in which highly fused polyurethane elastic fibers and at least one or more inelastic yarns are mixed in the same course of a knitting machine. The knitting structure of the weft knitted fabric in which the high fusion polyurethane elastic fiber and inelastic yarn are knitted can be any of flat knitting, rubber knitting, pearl knitting, double-sided knitting, or a combination or change of these. Knitting machines can be used, and all knitting machines such as circular knitting machines, flat knitting machines, full fashion knitting machines, and sock knitting machines can be used. The high fusion polyurethane elastic fiber may be either braided or braided. Further, plating knitting of high fusion polyurethane elastic fiber and inelastic yarn may be used, or composite yarn of high fusion polyurethane and inelastic yarn may be used. As in (1), a high fusion polyurethane elastic fiber may be knitted in all courses, or may be knitted in every other course or more. High-fusing polyurethane elastic fibers and inelastic yarns may be alternately or knitted at appropriate intervals. Further, a high melting point polyurethane elastic fiber may be mixed. An example is shown below, but the present invention is not limited to this.
( 2 ) _ 1 全コースの例:  (2) _ 1 Example of all courses:
1口目 高融着糸及び非弾性糸、 又は複合糸  1st high fusion yarn and inelastic yarn, or composite yarn
2口目 高融着糸及び非弾性糸、 又は複合糸  2nd high fusion yarn and inelastic yarn, or composite yarn
3口目 高融着糸及ぴ非弾性糸、 又は複合糸  3rd high fusion and inelastic yarns or composite yarns
4口目 高融着糸及び非弾性糸、 又は複合糸  4th high fusion yarn and inelastic yarn, or composite yarn
( 2 ) - 2 1コースおきの例:  (2)-2 Every other course:
1口目 高融着糸及び非弾性糸、 又は複合糸  1st high fusion yarn and inelastic yarn, or composite yarn
2口目 非弹性糸  2nd non-woven yarn
3口目 高融着糸及ぴ非弹性糸、 又は複合糸  3rd High-fused yarn and non-abrasive yarn or composite yarn
4口目 非弾性糸  4th inelastic yarn
( 2 ) —3 高融着糸と高融点糸を 1コースおきに使用した例:  (2) —3 Example of using high fusion yarn and high melting point yarn every other course:
1ロ自 高融着糸及び非弾性糸、 又は複合糸  (1) High self-fusing yarn and inelastic yarn, or composite yarn
2口目 高融点糸及び非弾性糸、 又は複合糸 3口目 高融着糸及び非弾性糸、 又は複合糸 2nd high melting point yarn and inelastic yarn, or composite yarn 3rd high fusion yarn and inelastic yarn, or composite yarn
4口目 高融点糸及び非弾性糸、 又は複合糸  4th high melting point yarn and inelastic yarn, or composite yarn
( 2 ) - 4 交互の例:  (2)-4 alternating examples:
1口目 髙融着糸  1 st 髙 Fused yarn
2口目 非弹"生糸、 又は高融着糸及び非弾 1~生糸  2nd non- 弹 "raw silk, or high fusion yarn and non-elastic 1 ~ raw silk
3口目 高融着糸  3rd high fusion yarn
4口目 非弾性糸、 又は高融着糸及び非弾性糸  4th inelastic yarn, or high fusion yarn and inelastic yarn
( 3 ) 高融着ポリ.ウレタン弾性繊維及び少なくとも 1種類以上の非弾性糸を混用 した経編地。 高融着ポリウレタン弾性繊維及び非弾性糸を編み込んだ経編地の編 組織はクサリ編、 デンビ編、 コード編、 アトラス編、 及びこれらを組み合わせた り、 変化させたりした組織等のいずれの組織でも編成することができ、 編機につ いてもトリコット編機、 ラッシェル編機、 ミラニーズ編機等の全ての編機を使用 することができる。 ( 1 ) と同様に全面に高融着ポリウレタン弾性繊維を編み込 んでも良いし、 適当な間隔おきに編み込んでも良い。 また、 高融着ポリウレタン 弾性繊維は揷入又は編込みのどちらでもよい。 更に、 高融点ポリウレタン弾性繊 維を混用してもよい。 以下に例を示すがこれに限定されるものではない。  (3) A warp knitted fabric in which highly fused poly-urethane elastic fibers and at least one or more inelastic yarns are mixed. The knitting structure of the warp knitted fabric in which the high-fusing polyurethane elastic fiber and the inelastic yarn are knitted can be any structure such as a knitting knit, a denbi knitting, a cord knitting, an atlas knitting, or a combination of these or a structure changed. Knitting machines can be used, and all knitting machines such as tricot knitting machines, Raschel knitting machines, and Miranese knitting machines can be used. As in (1), a high fusion polyurethane elastic fiber may be woven over the entire surface, or may be woven at appropriate intervals. Further, the high fusion polyurethane elastic fiber may be either imported or knitted. Further, a high melting point polyurethane elastic fiber may be mixed. An example is shown below, but the present invention is not limited to this.
( 3 ) - 1 クサリ組織の編地  (3) -1 knitted fabric
図 1及び図 2はレース地等に多く用いられるクサリ糸且織を示す。 このクサリ組 織は切り口縫製後にラン、 ほどけ等の欠点がおきやすい。 対策としてラン止め組 織が提案されているが、 ラン止め組織の跡が生地に汚く残り、 高級感を阻害する 問題が残る。 そこで、 図 1及び図 2において、 aを非弾"生糸として、 bを本発明 の高融着ポリウレタン弾性繊維、 又は高融着ポリウレタン弾性繊維と高融点ポリ ウレタン弾性繊維の引き揃えとして編み込み熱セットすると、 図 1に示す X部に おいて、 高融着ポリウレタン弾性繊維と非弾性糸、 及び高融着ポリウレタン弾性 繊維と高融点ポリゥレタン弹性繊維とが接触して熱融着し、 伸長回復性が良く、 且つラン ·ほどけ等の欠点を防止し、 また審美性も何等損なうことのない編地を 得ることが可能となる。  FIG. 1 and FIG. 2 show wedge yarns that are often used for lace ground and the like. This sari tissue is liable to have defects such as run and unravel after cut sewing. As a countermeasure, a run-stopping tissue has been proposed, but traces of the run-stopping tissue remain dirty on the fabric, leaving a problem of hindering luxury. Therefore, in FIGS. 1 and 2, a is a non-elastic raw silk, and b is a braided heat set as a high fusion polyurethane elastic fiber of the present invention, or a high melting polyurethane elastic fiber and high melting polyurethane elastic fiber are aligned. Then, in section X shown in Fig. 1, the high fusion polyurethane elastic fiber and the non-elastic yarn, and the high fusion polyurethane elastic fiber and the high melting point polyurethane resin come into contact with each other and thermally fuse, and the elongation recovery property is improved. It is possible to obtain a knitted fabric that is good, prevents defects such as run-out, and does not impair the aesthetics at all.
( 3 ) — 2 クサリ組織以外の編地  (3) — 2 Knitted fabrics other than kari
クサリ組織以外で一般に使用されている組織でも、 本発明の高融着ポリウレタ ン弹性繊維を挿入又は編み込み使用すると、 非弾性糸との融着、 更にはポリウレ タン弾性繊維相互の融着により、 わらい (弾性繊維のずれ、 抜け、 飛び出し) 等 が起こり難くなり、 実質的に生地の耐久性を格段に向上することができる。 また 、 生地がより安定し、 カールが起き難くなり、 縫製時のコストダウンも見込むこ とができる。 Even in the case of a tissue generally used other than the stiff tissue, the highly fused polyurethane of the present invention can be used. When the non-woven fibers are inserted or braided, they become less likely to be soft (displacement, slip-off, pop-out) due to fusion with the inelastic yarn and further fusion between the polyurethane elastic fibers. The durability of the fabric can be significantly improved. Also, the fabric is more stable, curling is less likely to occur, and cost reduction during sewing can be expected.
例えば、 図 3〜 8に示した組織図において、 高融着ポリウレタン弾性繊維を適 宜使用することによって、 目ずれ、 わらい、 ほつれ、 ラン、 デンセン、 カールや スリップィンが生じにくい編地を得ることが可能となる。  For example, in the organization charts shown in Figs. 3 to 8, by appropriately using high-fusing polyurethane elastic fibers, it is possible to obtain a knitted fabric in which misalignment, softness, fraying, orchid, densen, curling, and slipping do not easily occur. It becomes possible.
図 3において、 L 1及ぴ L 2は全面揷入 (A 1 1 - i n ) 、 図 4中の L 1と L 2、 L 3と L 4は 1本おきに揷入 (l i n _ l o u t ) 、 図 5〜8中の L l、 L 2、 L 3は全面揷入 (A l 1— i n ) である。 また、 図 3〜8の aは非弾性糸、 bは本発明の高融着ポリウレタン弾性繊維を単独で又は高融点ポリウレタン弾性 繊維との引き揃えで使用し、 図 5及び図 6の cは本発明の高融着ポリウレタン弾 性繊維を 2本使用する力 本発明の高融着ポリウレタン弾性繊維と高融点ポリゥ レタン弾性繊維とを各 1本ずつ使用することができる。  In FIG. 3, L 1 and L 2 are the entire import (A 11 1 -in), L 1 and L 2, L 3 and L 4 in FIG. 4 are every other insert (lin_lout), L l, L 2, and L 3 in Figs. 5 to 8 are the total import (A l 1-in). In addition, a in FIGS. 3 to 8 is a non-elastic yarn, b is a high fusion polyurethane elastic fiber of the present invention used alone or in alignment with a high melting point polyurethane elastic fiber, and c in FIGS. Force of Using Two High-Fusion Polyurethane Elastic Fibers of the Invention One high-fusion polyurethane elastic fiber and one high-melting polyurethane elastic fiber of the present invention can be used.
更に、 使用用途によっては、 断ち切り口を無縫製でそのまま使用する場合、 従 来は洗濯や着用時等のすれにより、 ほつれ等の耐久性に問題があつたが、 これも 大きく改善することができる。  In addition, depending on the intended use, when the cut end is used without any sewing, there has been a problem with durability such as fraying due to rubbing during washing or wearing, but this can be greatly improved. .
ここで、 高融着ポリウレタン弾†生繊維と混用される非弾性糸としては、 特に制 限は無く、 例えば木綿、 麻、 羊毛、 絹等の天然繊維、 レーヨン、 キュブラ、 ポリ ノジック等の再生繊維、 アセテート等の半再生繊維、 ナイロン、 ポリエステル、 アクリル等の化学合成繊維等の繊維を使用することができるが、 ポリウレタン弾 性繊維の混用割合は、 1〜 4 0 %程度が好ましい。  Here, there is no particular limitation on the inelastic yarn to be mixed with the high-fusible polyurethane elastic fiber, and for example, natural fibers such as cotton, hemp, wool, and silk, and recycled fibers such as rayon, cuvula, and polynosic. Fibers such as semi-regenerated fibers such as acetate and chemically synthetic fibers such as nylon, polyester and acrylic can be used, and the mixing ratio of polyurethane elastic fibers is preferably about 1 to 40%.
また、 本発明のポリウレタン弾性繊維混用織編物においては、 ジァミンで鎖長 反応を行なった乾式紡糸法による耐熱性、 弾性回復性に優れた 2 0 0 °C以上、 好 ましくは 2 1 0 °C以上の融点を有する高融点ポリウレタン弾性繊維を混合使用す ることにより、 融着性を保ちながら良好な弾性性能を有する織編物を得ることも 可能である。 この場合、 この高融点ポリウレタン弹性繊維の使用量は、 2〜4 0 %程度が好ましい。 ここで、 乾熱セットの方法は、 ピンテンターのようなセット機を使い、 熱風に よる熱固定することにより行なうことができる。 この場合、 セット温度は 1 4 0 〜 2 0 0 °C、 特に 1 7 0〜 1 9 0 °Cであり、 セット時間は 1 0秒〜 3分、 特に 3 0秒〜 2分とすることができる。 Further, in the woven or knitted fabric mixed with polyurethane elastic fibers of the present invention, 200 ° C. or more, preferably 210 ° C., which is excellent in heat resistance and elastic recovery by a dry spinning method in which a chain length reaction is performed with diamine, is preferred. By mixing and using a high-melting polyurethane elastic fiber having a melting point of C or higher, it is possible to obtain a woven or knitted fabric having good elasticity while maintaining the fusibility. In this case, the amount of the high-melting polyurethane fiber used is preferably about 2 to 40%. Here, the dry heat setting method can be performed by using a setting machine such as a pin tenter and heat-fixing with hot air. In this case, the set temperature should be 140 to 200 ° C, especially 170 to 190 ° C, and the set time should be 10 seconds to 3 minutes, especially 30 seconds to 2 minutes. it can.
一方、 湿熱セットの方法は、 編地等を型板に入れた状態で所定圧力の飽和蒸気 により熱固定することにより行なうことができる。 この場合、 セット温度は 1 0 0〜 1 3 0 ° (、 特に 1 0 5〜 1 2 5 °Cであり、 セット時間は 2〜 6 0秒、 特に 5 〜3 0秒とすることができる。  On the other hand, the moist heat setting method can be performed by heat setting with saturated steam at a predetermined pressure in a state where a knitted fabric or the like is placed in a template. In this case, the set temperature is 100 to 130 ° (particularly, 105 to 125 ° C.), and the set time can be 2 to 60 seconds, particularly 5 to 30 seconds.
本発明によれば、 低いセット温度で加工でき、 目ずれ、 わらレ、、 ほつれ、 ラン 、 力ール、 スリ ップインや目ずれ現象が生じにくいポリウレタン弾性繊維混用織 編物を得ることができる。  ADVANTAGE OF THE INVENTION According to this invention, it can process at low set temperature, and can obtain the woven-knitted fabric mixed with polyurethane elastic fiber which is hard to generate misalignment, rag, fraying, run, force, slip-in and misalignment.
以下、 実施例と比較例を示し、 本発明を具体的に説明するが、 本発明は下記の 実施例に制限されるものではない。 なお、 以下の例において、 部はいずれも質量 部である。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples, all parts are parts by mass.
〔実施例 1〕 (Example 1)
ポリウレタン弾性繊維合成用の原料として、 以下の両末端 N C〇基プレボリマ 一と両末端〇 H基プレボリマーを合成した。  As raw materials for synthesizing polyurethane elastic fibers, the following prepolymers having a terminal group of N C〇 and a pre-polymer group having a terminal group of H were synthesized.
両末端 O H基プレボリマーの合成 Synthesis of prepolymers with both terminal OH groups
ジイソシァネートとして、 4 , 4 ' ージフエニルメタンジイソシァネート (以 下 MD Iとする) 2 5部を窒素ガスでシールされた 8 0 °Cの温水ジャケット付き 反応釜に仕込み、 ポリマージオールとして、 数平均分子量 2, 0 0 0のポリテト ラメチレンエーテルグリコーノレ (以下 P TMGとする) 1 0 0部を撹拌しながら 注入した。 1時間反応後、 低分子量ジオールとして、 1 , 4—ブタンジオール 2 7 . 6部を更に注入し、 両末端 O H基プレボリマーを合成した。  As a diisocyanate, 4,4'-diphenylmethane diisocyanate (hereinafter referred to as MDI) 25 parts were charged into a reaction vessel equipped with a warm water jacket at 80 ° C sealed with nitrogen gas. 100 parts of polytetramethylene ether glycolone having a number average molecular weight of 2,000 (hereinafter referred to as PTMG) was injected with stirring. After the reaction for 1 hour, 27.6 parts of 1,4-butanediol was further injected as a low-molecular-weight diol to synthesize a prepolymer of both terminal OH groups.
両末端 N C〇基プレボリマーの合成 Synthesis of prepolymers with N C〇 groups at both ends
窒素ガスでシールした 8 0 °Cの反応釜にジィソシァネートとして MD Iを 4 7 . 4部仕込み、 紫外線吸収剤 (2— ( 3 , 5—ジー t一アミルー 2—ヒドロキシ フエニル) ベンゾトリァゾール: 2 0 %) 、 酸化防止剤 (3, 9一ビス (2— ( 3— (3— tーブチノレー 4ーヒドロキシー 5—メチノレフエ二ノレ) 一プロピオ-ノレ ォキシ) 一 1, 1—ジメチルェチル) 一 2, 4, 8, 10—テトラオキサスピロ47.4 parts of MDI was charged as a diisocyanate into a reaction vessel at 80 ° C sealed with nitrogen gas, and an ultraviolet absorber (2- (3,5-di-amyl-2-hydroxyphenyl) benzotriazole: 2 0%), antioxidant (3,9-bis (2- 3- (3-t-butynole 4-hydroxy-5-methinolephenone) 1-propio-noleoxy) 1,1,1-dimethylethyl) 1,2,4,8,10-tetraoxaspiro
(5. 5) ゥンデカン: 50%) 、 光安定剤 (ビス (2, 2, 6, 6—テトラメ チルー 4ーピペリジル) セバケート : 30%) の混合物 2. 2部を添加し、 撹拌 しながらポリマージオールとして数平均分子量 2, 000の PTMGを 100部 注入し、 1時間撹拌を継続して、 両末端 NC〇基プレボリマーを得た。 A mixture of (5.5) dendecane: 50%) and a light stabilizer (bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate: 30%) 2. Add 2 parts of polymer diol with stirring. As a result, 100 parts of PTMG having a number average molecular weight of 2,000 was injected, and stirring was continued for 1 hour to obtain a prepolymer of NC〇 group at both ends.
得られた両末端 N CO基プレボリマーと両末端 OH基プレボリマーを 1 : 0. The obtained two-terminal NCO group prepolymer and the two-terminal OH group prepolymer were mixed in a ratio of 1: 0.
475の質量比で撹拌翼を有する容量 2, 200 m 1のポリウレタン弾性繊維用 円筒形反応機に連続的に供給した。 供給速度は両末端 N CO基プレボリマー 28 . 93 gZ分、 両末端 OH基プレボリマー 1 3. 74 g/分であった。 反応機内 での平均滞留時間は約 1時間、 反応温度は約 190°Cであった。 At a mass ratio of 475, it was continuously supplied to a cylindrical reactor for polyurethane elastic fibers with a capacity of 2,200 m1 and a stirring blade. The feed rate was 28.93 gZ for the N pre-polymer at both ends and 13.74 g / min for the OH pre-polymer at both ends. The average residence time in the reactor was about 1 hour, and the reaction temperature was about 190 ° C.
得られたポリマーを固化することなく、 192 °Cの温度に保った 8ノズルの紡 糸へッド 2台に導入した。 紡糸用ポリマーをへッドに設置したギアポンプにより 計量、 加圧し、 フィルターでろ過後、 径 0. 6mm、 1ホールのノズルから 2. 67 g/分の速度で、 長さ 6 mの紡糸筒内に吐出させ (ノズルからの吐出総量: Without solidification, the obtained polymer was introduced into two 8-nozzle spinning heads maintained at a temperature of 192 ° C. The spinning polymer is weighed and pressurized by a gear pump installed on the head, filtered through a filter, and then through a 0.6 mm diameter, 1 hole nozzle at a speed of 2.67 g / min into a 6 m long spinning cylinder. (Total amount discharged from the nozzle:
42. 67 gZ分) 、 油剤を付与しながら 600m/分の速度で卷き取り、 44 デシテックスのポリウレタン弾性繊維を得た。 42. 67 gZ) While applying the oil, the film was wound at a speed of 600 m / min to obtain a polyurethane elastic fiber of 44 decitex.
吐出直後のポリウレタン弾性繊維の N C O基含有率は 0. 42質量%であった The NCO group content of the polyurethane elastic fiber immediately after ejection was 0.42% by mass.
。 このポリウレタン弾性繊維の物性を下記方法により測定した結果、 融点は 16 8 °C、 耐熱強力保持率は 65 %であった。 更に、 この弾性繊維を使用して下記方 法にて編地を作成し、 熱セット後の編地の解編張力を測定した。 結果を表 1に示 す。 . The physical properties of this polyurethane elastic fiber were measured by the methods described below. As a result, the melting point was 168 ° C. and the heat retention strength was 65%. Further, a knitted fabric was prepared using the elastic fiber by the following method, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1.
融点の測定方法 Melting point measurement method
測定装置: TMA (熱機器測定装置)  Measuring device: TMA (thermal equipment measuring device)
石英プローブ使用  Uses quartz probe
把握長: 20 mm  Grasp length: 20 mm
伸長: 0. 5 %  Elongation: 0.5%
温度範囲:室温〜 250 °C  Temperature range: room temperature to 250 ° C
昇温速度: 20 °C/m i n 評価:熱応力が 0 m g f になったときの温度を融点と定義した。 Heating rate: 20 ° C / min Evaluation: The temperature when the thermal stress became 0 mgf was defined as the melting point.
耐熱強力保持率の測定方法 How to measure heat retention
ポリウレタン弾性繊維を 1 0 c mの把握長で保持し、 2 0 c mに伸長する。 伸 長した状態で 1 5 0 °Cに保った熱風乾燥機中に 4 5秒間入れ、 熱処理を行なった 。 熱処理後のポリウレタン弾性繊維の強力を、 定伸長速度の引つ張り試験機を使 用し、 把握長 5 c m、 伸長速度 5 0 O mmZ分で測定した。 測定時の環境は温度 2 0 °C、 相対湿度 6 5 %であった。 熱処理前の繊維に対する耐熱強力保持率を表 示する。  The polyurethane elastic fiber is held at a grip length of 10 cm and stretched to 20 cm. In the stretched state, it was placed in a hot air drier maintained at 150 ° C. for 45 seconds to perform heat treatment. The tenacity of the polyurethane elastic fiber after the heat treatment was measured using a tensile tester with a constant elongation speed at a grip length of 5 cm and an elongation speed of 50 O mmZ. The environment at the time of measurement was a temperature of 20 ° C and a relative humidity of 65%. Shows the heat and strength retention of the fiber before heat treatment.
編地の作成 Creating knitted fabric
パンスト編機 (ロナティ社製、 針数 4 0 0本) の給糸口 2、 4口にそれぞれ 6 一ナイロンフィラメント糸 1 3デシテックス 7フィラメント、 1、 3口にポリゥ レタン弾性繊維を給糸し交編を行なった。  Yarn feeder 2 and 4 of the pantyhose knitting machine (manufactured by Ronati Co., Ltd., number of stitches: 400), 6 nylon filaments, 13 decitex, 7 filaments, and 1 and 3 polyester yarns Was performed.
熱セット Heat set
作成した編地を 1 6 0 °C及び 1 8 0 °Cに保った乾燥機中にて 1分間乾熱処理し た。  The prepared knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 160 ° C. and 180 ° C.
解編張力の測定 Measurement of the unwinding tension
ナイ口ン糸及びポリウレタン弾性繊維の編地からの解編張力を測定した。 解編 速度は 1 0 0 mmZ分とし、 1分間の平均張力を計算した。 〔実施例 2〕  The knitting tension of the knitted yarn and polyurethane elastic fiber from the knitted fabric was measured. The disassembly speed was set to 100 mmZ minutes, and the average tension for one minute was calculated. (Example 2)
P TMGの代わりに数平均分子量 2, 0 0 0のポリエチレングリコールアジぺ ートを使う以外は実施例 1と同様な方法でポリエステルジオールを用いたポリゥ レタン弾性繊維を製造した。 吐出直後のポリウレタン弾性繊維の N C O基含有率 は 0 . 4 5質量%であった。 実施例 1と同様に物性を測定した結果、 この 4 4デ シテックスポリウレタン弾性繊維の融点は 1 7 0 °C、 耐熱強力保持率は 6 2 %で あった。  A polyurethane elastic fiber using polyester diol was produced in the same manner as in Example 1 except that polyethylene glycol adiate having a number average molecular weight of 2,000 was used instead of PTMG. The NCO group content of the polyurethane elastic fiber immediately after the ejection was 0.45% by mass. The physical properties were measured in the same manner as in Example 1. As a result, the melting point of the 44 decitex polyurethane elastic fiber was 170 ° C., and the retention of heat and strength was 62%.
この弾性繊維を使用して実施例 1と同様に編地を作成し、 熱セット後の編地の 解編張力を測定した。 結果を表 1に示す。 〔比較例 1〕 Using this elastic fiber, a knitted fabric was prepared in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. Table 1 shows the results. (Comparative Example 1)
ポリマージオールとして P TMGを、 鎖長延長剤としてジァミンを用いた 4 4 デシテックスのポリウレタン弾性繊維 (モビロン Pタイプ糸 日清紡績 (株) 製 ) を使用した。 実施例 1と同様に物性を測定した結果、 このポリウレタン弾性繊 維の融点は 2 2 1 °C、 耐熱強力保持率は 9 5 %であった。  44 decitex polyurethane elastic fiber (Mobilon P-type yarn manufactured by Nisshinbo Industries Inc.) using PTMG as the polymer diol and diamine as the chain extender was used. The physical properties were measured in the same manner as in Example 1. As a result, the polyurethane elastic fiber had a melting point of 22 ° C. and a heat retention strength of 95%.
この弾性繊維を使用して実施例 1と同様に編地を作成し、 熱セット後の編地の 解編張力を測定した。 結果を表 1に示す。  Using this elastic fiber, a knitted fabric was prepared in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. Table 1 shows the results.
〔比較例 2〕 (Comparative Example 2)
実施例 1と同じ方法で紡糸用ポリマーを合成し、 反応機から径 4 mmのオリフ イスを通してストランド状に押出し、 冷却後、 カットしてポリウレタン弾 ^fe体ぺ レットを得た。 このペレットを真空乾燥機で乾燥後、 単軸押出機で再溶融し、 実 施例 1と同様に紡糸ヘッドに設置したギアポンプにより計量、 加圧し、 フィルタ 一でろ過後、 径 0 . 6 mm、 1ホールのノズルから毎分 2 . 6 7 gの速度で長さ 6 mの紡糸筒内に吐出させ (ノズルからの吐出総量: 4 2 . 6 7 g Z分) 、 油剤 を付与しながら 6 0 0 m/分の速度で卷き取り、 4 4デシテックスのポリウレタ ン弾性繊維を得た。 吐出直後のポリウレタン弾性繊維の N C O基含有率は 0 . 1 3質量%であった。  A spinning polymer was synthesized in the same manner as in Example 1, extruded from an reactor into a strand through an orifice having a diameter of 4 mm, cooled, and cut to obtain a polyurethane bullet-fe body pellet. The pellets were dried in a vacuum drier, melted again in a single screw extruder, weighed and pressurized by a gear pump installed in the spinning head in the same manner as in Example 1, filtered through a filter, and filtered to a diameter of 0.6 mm. Discharge from a 1-hole nozzle at a rate of 2.67 g per minute into a 6 m long spinning cylinder (total discharge from the nozzle: 42.67 g Z minute), and apply 60 g while applying oil. Winding was performed at a speed of 0 m / min to obtain a polyurethane elastic fiber of 44 dtex. The NCO group content of the polyurethane elastic fiber immediately after ejection was 0.13% by mass.
実施例 1と同様に物性を測定した結果、 このポリウレタン弾性繊維の融点は 1 5 2 °C、 耐熱強力保持率は 3 8 %であった。 この弹性繊維を使用して実施例 1と 同様に編地を作成し、 熱セット後の編地の解編張力を測定した。 結果を表 1に示 す。 表 1 The physical properties were measured in the same manner as in Example 1. As a result, the polyurethane elastic fiber had a melting point of 152 ° C. and a heat-resistant tenacity retention of 38%. A knitted fabric was prepared using this fusible fiber in the same manner as in Example 1, and the knitting tension of the knitted fabric after heat setting was measured. The results are shown in Table 1. table 1
編地からの解編張力 (c N)  Knitting tension from knitted fabric (c N)
Figure imgf000020_0001
実施例 1、 2では融着のため解編張力が高く、 実施例 1のポリエーテルジォー ルを用いたポリウレタン弾性繊維の場合は特に解編張力が高かった。 また、 実施 例 1、 2共に 1 8 0 °C熱セットでも編地中の弹性繊維は糸切れしなかつた。 比較 例 1の高融点ポリウレタン弾性繊維との組み合わせでは融着が生じ難く、 比較例 2では 1 6 0 °C熱セットによる解編張力は高いが、 1 8 0 °C熱セットにより編地 中でポリウレタン弾†生繊維の糸切れが発生した。 〔実施例 3〕
Figure imgf000020_0001
In Examples 1 and 2, the deknitting tension was high due to fusion, and in the case of the polyurethane elastic fiber using polyetherdiol of Example 1, the deknitting tension was particularly high. Further, in both Examples 1 and 2, even in the heat set at 180 ° C., the viscous fibers in the knitted fabric did not break. In the case of the combination with the high-melting-point polyurethane elastic fiber of Comparative Example 1, fusion hardly occurs.In Comparative Example 2, the knitting tension by the heat setting at 160 ° C is high, but in the knitted fabric by the heat setting at 180 ° C. Polyurethane elastic fiber breaks. (Example 3)
実施例 1で得られたポリウレタン弾性繊維を用いて、 下記方法にて作成した編 地を熱セット後、 洗濯試験を行ない、 編地のほつれ、 スリップイン、 編地面を目 視観察した。 結果を表 2に示す。  Using the polyurethane elastic fiber obtained in Example 1, a knitted fabric prepared by the following method was heat-set, and a washing test was performed. Fraying, slip-in, and a knitted ground of the knitted fabric were visually observed. Table 2 shows the results.
編地の作成 Creating knitted fabric
パンスト編機 (ロナティ社製、 針数 4 0 0本) の給糸口 1、 3口に 6—ナイ口 ン仮燃加工糸 Z撚 3 3デシテックス 1 0フィラメント、 2、 4口に 6—ナイロン 仮撚加工糸 S撚 3 3デシテックス 1 0フィラメント、 更に全 4口にポリウレタン 弹性繊維を給糸し、 プレーティング編で編地を作成した。 編み込み倍率は 2 . 5 倍に設定した。  6-Nye-opening flammable yarn Z twisted 3 3 decitex 10 filaments in the yarn feeder 1 and 3 of the pantyhose knitting machine (manufactured by Lonati, 400 stitches), 6-nylon temporary in 2 and 4 holes Twisted yarn S-twisted 33 decitex 10 filaments, and furthermore polyurethane-fibers were supplied to all 4 ports, and a knitted fabric was formed by plating knitting. The weaving magnification was set to 2.5 times.
熱セット Heat set
作成した編地を 1 8 0 °Cに保った乾燥機中にて 1分間乾熱処理した。 セット後の編地から 1 5 X 2 0 c mのカツト試科を作成し、 スガ試験機 (株) LM- 1 6 0洗濯試験機を使用して繰り返し 2 0回の洗濯を行なった。 The prepared knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 180 ° C. A 15 x 20 cm cut sample was created from the knitted fabric after setting, and Suga Test Machine Co., Ltd. The washing was repeated 20 times using an LM-160 washing tester.
液量: 1 5 0 m l  Liquid volume: 150 ml
鋼球 1 0個使用  Use 10 steel balls
温度: 5 0 °C  Temperature: 50 ° C
時間: 1サイクノレ 3 0分  Time: 1 cycle 30 minutes
評価方法 Evaluation method
ほつれ:編地のコース方向に平行に力ットした編地端を観察した。  Fraying: The end of the knitted fabric pressed in parallel with the course direction of the knitted fabric was observed.
スリップイン:編地ゥヱル方向に力ットした編地端を観察し、 弾性繊維が編 地端から 5 mm以上スリップインしている本数の比率 (%) で評価した。  Slip-in: The end of the knitted fabric pressed in the direction of the knitted fabric was observed, and evaluated by the ratio (%) of the number of elastic fibers slipping in by 5 mm or more from the knitted fabric edge.
目ずれ:編地の平滑度合いを観察した。  Misalignment: The degree of smoothness of the knitted fabric was observed.
カール:編地端を観察した。  Curl: The edge of the knitted fabric was observed.
〔実施例 4〕 (Example 4)
実施例 3と同様の編機を使用し、 1、 3口に実施例 1のポリウレタン弾性繊維 、 2、 4口に比較例 1の弹性繊維を給糸して実施例 3と同様に編地を作成し、 実 施例 3と同様の試験を行なった。 結果を表 2に示す。  Using the same knitting machine as in Example 3, the polyurethane elastic fiber of Example 1 was supplied to the first and third ports, and the viscous fiber of Comparative Example 1 was supplied to the second and fourth ports to form a knitted fabric in the same manner as in Example 3. A test similar to that of Example 3 was performed. Table 2 shows the results.
〔比較例 3〕 (Comparative Example 3)
比較例 1の弾性繊維のみを使って、 実施例 3と同様に編地を作り、 同様の試験 を行なった。 結果を表 2に示す。  A knitted fabric was made in the same manner as in Example 3 using only the elastic fiber of Comparative Example 1, and a similar test was performed. Table 2 shows the results.
〔比較例 4〕 (Comparative Example 4)
比較例 2の弾性繊維のみを使って、 実施例 3と同様に編地を作り、 同様の試験 を行なった。 結果を表 2に示す。 表 2 A knitted fabric was made in the same manner as in Example 3 using only the elastic fiber of Comparative Example 2, and a similar test was performed. Table 2 shows the results. Table 2
Figure imgf000022_0001
比較例 4では、 編地中でポリ 弾性繊維の糸切れが発生した。 〔実施例 5〕
Figure imgf000022_0001
In Comparative Example 4, yarn breakage of the polyelastic fiber occurred in the knitted fabric. (Example 5)
実施例 1と同じ方法にて 1 5 6デシテックスのポリウレタン弾性繊維を得た。 実施例 1と同様に物性を測定した結果、 このポリウレタン弾性繊維の融点は 1 7 0 °C、 耐熱強力保持率は 6 8 %であった。 更に、 この弾性繊維を使用して下記方 法にて経編地を作成し、 熱セット後の編地よりポリウレタン弾性繊維の引き抜き 抵抗値を測定した。 結果を表 3に示す。  In the same manner as in Example 1, a polyurethane elastic fiber of 156 dtex was obtained. The physical properties were measured in the same manner as in Example 1. As a result, the melting point of the polyurethane elastic fiber was 170 ° C., and the heat-resistant tenacity retention was 68%. Further, a warp knitted fabric was prepared by using the elastic fiber by the following method, and the pull-out resistance value of the polyurethane elastic fiber was measured from the knitted fabric after the heat setting. Table 3 shows the results.
編地の作成 Creating knitted fabric
ラッシェル編機 (カールマイャ社製、 2 8ゲージ) を使用し、 図 9の L 1の a 及び L 3の cに 6—ナイロンフィラメント糸 5 6デシテックス 1 7フィラメント を、 L 2の bにポリウレタン弾性繊維を使用し、 経編地を作成した。  Using a Raschel knitting machine (manufactured by Carl Mya, 28 gauge), 6-nylon filament yarn 56 decitex 17 filament is used for L 1 a and L 3 c in FIG. 9 and polyurethane elastic fiber is used for L 2 b in FIG. Was used to create a warp knitted fabric.
熱セッ卜 Heat set
上記編地を 1 9 0 °Cに保った乾燥機にて 1分間、 乾熱処理した。  The above knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 190 ° C.
引き抜き抵抗値の測定 Measurement of pull-out resistance
上記編地から、 図 1 0に示した通り緯方向 (幅) 2 5 mm X経方向 (長さ) 1 0 O mmの試験片を採取した。 この時、 ポリウレタン弾性繊維の引き抜き方向が 編み始め及び編み終わり方向となるように、 試験片は各 5枚ずつ合計 1 0枚採取 した。  From the knitted fabric, a test piece having a weft direction (width) of 25 mm and a meridian direction (length) of 10 O mm as shown in FIG. 10 was sampled. At this time, a total of 10 test pieces were collected for each of the five test pieces so that the drawing direction of the polyurethane elastic fiber was the knitting start and knitting end directions.
続いて、 試験片を図 1 0の通り作成した。 当該試験片下端 (D— D ' ) より 4 0 mmの位置 (Β— Β ' ) で、 経方向に挿入したポリウレタン弾性繊維 1を 1本 残した状態で試験片を切り取った。 次いで、 残した当該ポリウレタン弾性繊維を 、 上部つかみ 2の方向に向かって 5 mm分 (E— F ) 試験片から取り出した。 更 に、 当該ポリウレタン弾性繊維の延長線上で、 且つ試験片上端より 3 O mmの位 置で緯方向に幅 3 mmの切り込み 3を入れた。 Subsequently, test pieces were prepared as shown in FIG. The test piece was cut at a position (Β-Β ') 40 mm from the lower end (D-D') of the test piece while leaving one polyurethane elastic fiber 1 inserted in the warp direction. Next, the remaining polyurethane elastic fiber is Then, it was taken out from the test piece by 5 mm (E-F) toward the direction of the upper grip 2. Further, a cut 3 having a width of 3 mm was made in the weft direction on the extension line of the polyurethane elastic fiber and at a position of 3 O mm from the upper end of the test piece.
引き抜き抵抗値を引張試験機で測定する場合、 引張試験機のつかみ間隔を 4 0 mmに調整し、 次いで、 当該試験片の 2の上部つかみ代 2 5 mm (Α _ Α ' より 上部) で試験片上部を把握し、 当該ポリウレタン弾性繊維に 0 . 1 c N初荷重を かけ、 4の下部つかみ代 3 5 mm ( C— C ' より下部) で当該ポリウレタン弾性 繊維を把握し、 引張速度 1 0 0 mm/m i nで引張り、 当該ポリウレタン弾性繊 維が引き抜かれるまでの最大引き抜き荷重を測定した。 これを編み始め及び編み 終わり方向とも各 5回、 合計 1 0回実施して、 その平均値を計算し引き抜き抵抗 値を求めた。  When measuring the pull-out resistance with a tensile tester, adjust the gripping distance of the tensile tester to 40 mm, and then test using the upper gripping margin of 25 mm (above Α _ Α ') of the test piece. Grasp the upper part, apply an initial load of 0.1 cN to the polyurethane elastic fiber, grasp the polyurethane elastic fiber with a lower gripping margin of 35 mm (below C-C '), and determine the tensile speed. It was pulled at 0 mm / min, and the maximum pulling load until the polyurethane elastic fiber was pulled out was measured. The procedure was repeated 10 times in each of the knitting start and end directions, a total of 10 times, and the average value was calculated to determine the pull-out resistance value.
〔比較例 5〕 (Comparative Example 5)
ポリマージオールとして P TMGを、 鎖長延長剤としてジァミンを用いた 1 5 6デシテックスのポリウレタン弾性繊維 (モビロン Pタイプ糸 日清紡績 (株) 製、 融点 2 1 7 °C、 耐熱強力保持率 9 3 %) を図 9の L 2の bに揷入糸として使 用した以外は実施例 5と同様に経編地を作成した。 熱セット後、 実施例 5と同様 に L 2の b糸の引き抜き抵抗値を測定した。 結果を表 3に示す。  Polyurethane elastic fiber of 156 decitex using PTMG as polymer diol and diamine as chain extender (Mobilon P type yarn, manufactured by Nisshinbo Industries, Ltd., melting point: 21.7 ° C, retention of heat resistance 93% ) Was used as a warp knitted fabric in L2b of FIG. 9 to prepare a warp knitted fabric in the same manner as in Example 5. After the heat setting, the pull-out resistance value of the L2 b yarn was measured in the same manner as in Example 5. Table 3 shows the results.
〔実施例 6〕 (Example 6)
実施例 5と同様の編機を使用し、 図 3の L 1の aに 6—ナイロンフィラメント 糸 5 6デシテックス 1 7フィラメントを、 L 2の bに実施例 5のポリウレタン弾 性繊維を使用して経編地を作成し、 実施例 5と同様の試験を行った。 結果を表 3 に示す。  Using the same knitting machine as in Example 5, using 6-nylon filament yarn 56 decitex 17 filament for L 1 a in FIG. 3 and using the polyurethane elastic fiber of Example 5 for L 2 b. A warp knitted fabric was prepared, and the same test as in Example 5 was performed. Table 3 shows the results.
〔比較例 6〕 (Comparative Example 6)
比較例 5と同様の弾性繊維を図 3の L 2の bに使用した以外は実施例 6と同様 に編地を作成し、 同様の試験を行った。 結果を表 3に示す。 〔実施例 7〕 A knitted fabric was prepared in the same manner as in Example 6, except that the same elastic fiber as that in Comparative Example 5 was used for L2b in FIG. 3, and a similar test was performed. Table 3 shows the results. (Example 7)
実施例 5と同様の編機を使用し、 図 4の L 1及び L 2の aに 6—ナイロンフィ ラメント糸 5 6デシテックス 1 7フィラメントを、 L 3及び L 4の bに実施例 5 のポリウレタン弾性繊維を使用して経編地を作成し、 実施例 5と同様の試験を行 つた。 結果を表 3に示す。  Using the same knitting machine as in Example 5, a 6-nylon filament yarn 56 decitex 17 filament is used for a of L1 and L2 in FIG. 4 and the polyurethane of Example 5 is used for b of L3 and L4. A warp knitted fabric was prepared using elastic fibers, and the same test as in Example 5 was performed. Table 3 shows the results.
〔比較例 7〕 (Comparative Example 7)
比較例 5の弾性繊維を図 4の L 3及ぴ L 4の bに使用した以外は実施例 7と同 様に経編地を作成し、 同様の試験を行った。 結果を表 3に示す。  A warp knitted fabric was prepared in the same manner as in Example 7 except that the elastic fiber of Comparative Example 5 was used for L3 and L4b in FIG. 4, and the same test was performed. Table 3 shows the results.
表 3 Table 3
引き抜き抵抗値測定結果  Pullout resistance measurement result
Figure imgf000024_0001
実施例 5、 7では融着のため引き抜き抵抗値が高くなつており、 実施例 6では 、 引き抜けない程度に融着しており、 目ずれ、 わらいの生じにくい編地が得られ た。 比較例 5、 6、 7の高融点ポリウレタン弾性繊維との組み合わせでは融着が 生じ難く、 引き抜き抵抗値も低く、 目ずれ、 わらいが発生した。
Figure imgf000024_0001
In Examples 5 and 7, the pull-out resistance value was increased due to fusion, and in Example 6, the knitted fabric was fused to such an extent that it was not pulled out, and was less likely to cause misalignment and softness. In the combination with the high-melting-point polyurethane elastic fibers of Comparative Examples 5, 6, and 7, fusion was unlikely to occur, the pull-out resistance was low, and misalignment and softness occurred.
〔実施例 8〕 (Example 8)
下記の方法にて編地を作成し、 熱セット後、 編地の解編張力の測定とポリウレ タン弾性繊維相互の融着状況の確認、 並びに洗濯試験により編地の傷み (洗濯耐 久性) を目視評価した。 結果を表 4に示す。  Create a knitted fabric by the following method, heat set, measure the knitting tension of the knitted fabric, check the fusion state between the polyurethane elastic fibers, and damage the knitted fabric by washing test (washing durability) Was visually evaluated. Table 4 shows the results.
編地の作成 Creating knitted fabric
ラッシェル編機 (カールマイヤ社製、 2 8ゲージ) を使用し、 図 5に示した組 織図の編地を作成した。 図 5において、 L 1の aに 6—ナイロンフィラメント糸 5 6デシテックス 1 7フィラメントを、 L 2の cに比較例 5と同じ弾性繊維を、 L 3の cに実施例 1のポリウレタン弾性繊維を使用して経編地を編成し主編地と した。 更に、 主編地の間に抜き糸として、 ナイロンフィラメント糸 1 1 0デシテ ックス 2 4フィラメントを使用して経編地を作成した。 Using a Raschel knitting machine (manufactured by Carl Myer, 28 gauge), the set shown in Fig. 5 was used. The knitted fabric of the woven diagram was created. In FIG. 5, 6-nylon filament yarn 56 a decitex 17 filament is used for a of L 1, the same elastic fiber as Comparative Example 5 is used for c of L 2, and the polyurethane elastic fiber of Example 1 is used for c of L 3 Then, the warp knitted fabric was knitted into the main knitted fabric. Further, a warp knitted fabric was prepared using nylon filament yarn 110 decitex 24 filaments as a yarn to be removed between the main knitted fabrics.
熱セット Heat set
上記編地を 1 9 0 °Cに保った乾燥機にて 1分間、 乾熱処理した。  The above knitted fabric was subjected to dry heat treatment for 1 minute in a dryer maintained at 190 ° C.
解編張力の測定 Measurement of the unwinding tension
抜き糸のナイロン糸の解編張力を測定した。 解編速度は 1 0 O mm/分とし、 1分間の解編張力を測定し、 ピーク点 5箇所の平均値を計算した。  The deknitting tension of the drawn nylon yarn was measured. The unpacking speed was 10 O mm / min, the unpacking tension for 1 minute was measured, and the average value at five peak points was calculated.
融着状況の確認 Check fusion status
主編地のナイロン糸を 2 0 %希塩酸にて溶解し、 ポリウレタン弾性繊維相互の 接触部の融着状況を観察した。 編地の傷み評価における試料の作成  The nylon yarn of the main knitted fabric was dissolved with 20% dilute hydrochloric acid, and the state of fusion at the contact portion between the polyurethane elastic fibers was observed. Preparation of Samples for Knitted Fabric Damage Evaluation
熱セットした編地の編方向に対してタテ 3 . 3 c m、 ョコ 2 4 . 0 c mの短冊 状試料を切り取り、 ョコ方向の裁断面より編方向に対して 4 0度の角度に切れ目 を入れ、 「編み始め側」 と 「編み終わり側」 に分け、 タテ方向の裁断部を合わせ てオーバー口ックミシンで縫製し環状の試料を作成した。 編地の傷み評価における試料の洗濯  Cut a strip sample of 3.3 cm in length and 24.0 cm in width with respect to the knitting direction of the heat-set knitted fabric, and cut it at an angle of 40 degrees with respect to the knitting direction from the cut surface in the weft direction. Then, it was divided into the “knitting start side” and the “knitting end side”, and the cut portions in the vertical direction were aligned and sewed with an over-open sewing machine to create a ring-shaped sample. Washing of samples in the evaluation of knitted fabric damage
作成した試料を、 下記の条件にて連続 3 0 0分の洗濯を行った。  The prepared sample was washed continuously for 300 minutes under the following conditions.
家庭用二槽式洗濯機  Household two-tub washing machine
1 . 3 g / Lに調整 (弱アル力リ洗剤使用)  Adjust to 1.3 g / L (weak detergent)
水量 : 3 0 L  Water volume: 30 L
負荷布:綿、 ポリウレタン弹†生繊維混用ベア天竺編地、 1 . 0 k g 編地の傷み評価  Load cloth: bare fabric knitted fabric mixed with cotton and polyurethane / raw fiber, 1.0 kg knitted fabric damage evaluation
「編み始め側」 、 「編み終わり側」 の裁断部の傷みの程度を観察し、 下記の 4 段階で評価した。 Observe the degree of damage to the cut part of the “knitting start side” and “knitting end side”, and It was evaluated on a scale.
◎:傷みが認められない  ◎: No damage is observed
〇:やや傷みが認められる  〇: Some damage is observed
△:傷みが認められる  Δ: Scratch is observed
X :傷みが激しい  X: severe damage
このうち、 △と Xは衣料として着用をためらう程度の傷みであり、 ◎ないし〇 が洗濯耐久性の点で好ましい。  Of these, Δ and X are damages to the extent that hesitate to wear them as clothing, and ◎ to 好 ま し い are preferred in terms of washing durability.
〔比較例 8〕 (Comparative Example 8)
比較例 1の弾性繊維を図 5の L 3の cに使用した以外は実施例 8と同様に経編 地を作成した。 熱セット後、 抜き糸の解編張力を測定し、 ポリウレタン弾性繊維 の融着状況を確認し、 実施例 8と同様の試験を行った。 結果を表 4に示す。  A warp knitted fabric was prepared in the same manner as in Example 8, except that the elastic fiber of Comparative Example 1 was used for c of L3 in FIG. After the heat setting, the unknitting tension of the drawn yarn was measured, the state of fusion of the polyurethane elastic fiber was confirmed, and the same test as in Example 8 was performed. Table 4 shows the results.
〔実施例 9〕 (Example 9)
実施例 8と同様の編機を使用し、 図 6の L 1の aに 6—ナイロンフィラメント 糸 5 6デシテックス 1 7フィラメントを、 L 2の cに比較例 1のポリウレタン弹 性繊維を、 L 3の cに実施例 1のポリゥレタン弾性繊維を使用して経編地を作成 し、 実施例 8と同様の試験を行った。 結果を表 4に示す。 〔比較例 9〕  Using a knitting machine similar to that of Example 8, 6-nylon filament yarn 56 decitex 17 filament is used for L 1 a in FIG. 6, polyurethane polyurethane fiber of Comparative Example 1 is used for L 2 c and L 3 A warp knitted fabric was prepared using the polyurethane elastic fiber of Example 1 in c, and the same test as in Example 8 was performed. Table 4 shows the results. (Comparative Example 9)
比較例 1の弾性繊維を図 6の L 3の cに使用した以外は実施例 9と同様に経編 地を作成し、 同様の試験を行った。 結果を表 4に示す。  A warp knitted fabric was prepared in the same manner as in Example 9 except that the elastic fiber of Comparative Example 1 was used for c of L3 in FIG. 6, and a similar test was performed. Table 4 shows the results.
〔実施例 1 0〕 (Example 10)
実施例 8と同様の編機を使用し、 図 7の L 1の aに 6—ナイロンフィラメント 糸 5 6デシテックス 1 7フィラメントを、 L 2の bに実施例 1のポリウレタン弾 性繊維を使用し、 抜き糸は使用せず経編地を作成し、 実施例 8と同様の試験を行 つた。 結果を表 4に示す。 〔比較例 1 0〕 Using the same knitting machine as in Example 8, using 6-nylon filament yarn 56 decitex 17 filament for L 1 a in FIG. 7 and using the polyurethane elastic fiber of Example 1 for L 2 b, A warp knitted fabric was prepared without using the thread, and the same test as in Example 8 was performed. Table 4 shows the results. (Comparative Example 10)
比較例 1の弾性繊維を図 7の L 2の bに使用した以外は実施例 1 0と同様に経 編地を作成し、 同様の試験を行った。 結果を表 4に示す。  A warp knitted fabric was prepared in the same manner as in Example 10 except that the elastic fiber of Comparative Example 1 was used for L2b in FIG. 7, and the same test was performed. Table 4 shows the results.
〔実施例 1 1〕 (Example 11)
実施例 8と同様の編機を使用し、 図 8の L 1の aに 6—ナイロンフィラメント 糸 5 6デシテックス 1 7フィラメントを、 L 2の bに実施例 1のポリウレタン弾 性繊維を使用し、 抜き糸は使用せず経編地を作成し、 実施例 8と同様の試験を行 つた。 結果を表 4に示す。 。  Using the same knitting machine as in Example 8, using 6-nylon filament yarn 56 decitex 17 filament for L 1 a in FIG. 8 and using the polyurethane elastic fiber of Example 1 for L 2 b, A warp knitted fabric was prepared without using the thread, and the same test as in Example 8 was performed. Table 4 shows the results. .
〔比較例 1 1〕 (Comparative Example 11)
比較例 1の弾性繊維を図 8の L 2の bに使用した以外は実施例 1 1と同様に経 編地を作成し、 同様の試験を行った。 結果を表 4に示す。 表 4  A knitted fabric was prepared in the same manner as in Example 11 except that the elastic fiber of Comparative Example 1 was used for L2b in FIG. 8, and a similar test was performed. Table 4 shows the results. Table 4
解編張力と弾性繊維相互の融着状態評価、 並びに裁断部の傷み評価結果 解編張力 翻猶師 籠部の傷み .ほつれ讓  Evaluation of the unsealing tension and the fusion state between the elastic fibers, and the evaluation result of the damage of the cut part.
( c N) 編み始 編み終わり側  (cN) Knitting start Knitting end side
剥離不能  Non-peelable
雄例 8 8 . 6 〇 〇  Male 8 8 .6 〇 〇
剥離できた  Peeled off
比較ィ列 8 7 . 2 X X  Comparison row 8 7.2 X X
藤生小  Fujio small
剥離不能  Non-peelable
細列 9 1 2 . 0 〇 〇  Narrow row 9 1 2 .0 〇 〇
剥離できた  Peeled off
比翻 9 4 . 8  9 4.8
隱生小 △ △  Oki small △ △
剥離不能  Non-peelable
雄例 1 0 〇 〇  Male example 1 0 〇 〇
 Rise
剥離できた  Peeled off
比較例 1 0 X X  Comparative Example 10 X X
騰 I1生小 Rise I 1
剥離不能  Non-peelable
雄例 1 1 ◎ 〇  Male example 1 1 ◎ 〇
剥離できた  Peeled off
比翻 1 1 Δ Δ  Ratio 1 1 Δ Δ
醒生小 実施例 8、 9では抜き糸の解編張力が高くなり、 抜き糸と高融着ポリウレタ ン弾性繊維が強く融着していることを示している。 比較例 8、 9では抜き糸の解 編張力が低く、 高融点ポリウレタン弹性繊維との融着が生じにくいことを示して いる。 また、 ポリウレタン弾性繊維相互の融着状況についても、 実施例 8、 9で は高融着ポリウレタン弾性繊維と高融点ポリウレタン弾性繊維が完全に融着して おり、 接触部を引っ張っても剥離することが出来なかった。 比較例 8、 9の高融 点ポリウレタン弾性繊維相互では融着は弱く、 接触部を引っ張ると接触部が分離 した。 また、 実施例 1 0、 1 1では高融着ポリウレタン弾性繊維相互が完全に融 着しており、 融着部を剥離することは出来なかつた。 比較例 1 0、 1 1では高融 点ポリウレタン弾性繊維相互の融着は弱く、 剥離可能であった。 Awake small In Examples 8 and 9, the unraveling tension of the drawn yarn was increased, indicating that the drawn yarn and the highly fused polyurethane elastic fiber were strongly fused. Comparative Examples 8 and 9 show that the unraveling tension of the drawn yarn was low, and that fusion with the high-melting polyurethane fiber was unlikely to occur. Regarding the state of fusion between the polyurethane elastic fibers, in Examples 8 and 9, the high-fusion polyurethane elastic fibers and the high-melting-point polyurethane elastic fibers were completely fused, and they were peeled even when the contact portion was pulled. Could not be done. The fusion was weak between the high melting point polyurethane elastic fibers of Comparative Examples 8 and 9, and the contact portion was separated when the contact portion was pulled. In Examples 10 and 11, the highly fused polyurethane elastic fibers were completely fused to each other, and the fused portion could not be peeled off. In Comparative Examples 10 and 11, the fusion between the high-melting-point polyurethane elastic fibers was weak, and they could be peeled off.
洗濯による編地の傷み具合について、 高融着ポリウレタン弾性繊維を使用し熱 融着が進んだ実施例 8、 9、 1 0、 1 1については 「編み始め側」 、 「編み終わ り側」 の裁断部共に◎又は〇となり、 洗濯耐久性の点で好ましい結果となった。 高融点ポリウレタン弾性繊維を使用し熱融着の弱い比較例 8、 9、 1 0、 1 1に ついては 「編み始め側」 、 「編み終わり側」 の裁断部共に△又は Xとなり、 洗濯 により衣料として着用をためらう程度の傷みが発生しており、 好ましくない結果 となった  Regarding the degree of damage to the knitted fabric due to washing, in Examples 8, 9, 10, and 11 where heat fusion was advanced using highly fused polyurethane elastic fiber, the "knitting start side" and "knitting end side" Both the cut portions were ◎ or 〇, which was a favorable result in terms of washing durability. Comparative examples 8, 9, 10, and 11 using high-melting polyurethane elastic fiber and weak heat fusion Both of the cut sections at the “knitting start side” and “knitting end side” become “△” or “X”. Severe damage that hesitated to wear occurred, which was unfavorable
クサリ組織又はクサリ組織以外で一般に使用されている組織 (弾性繊維の挿入 又は編みこみ) でも、 本発明の高融着ポリウレタン弾性繊維を使用すると、 非弾 性糸との融着、 更にポリウレタン弾性繊維相互の融着により、 目ずれ、 わらい、 ほつれ、 ラン、 デンセン、 カールやスリップインが生じ難くなり、 実質的に生地 の耐久性が格段に向上した。 また、 断ち切り口は洗濯によってもほつれ難いある いは傷み難いものであった。  Even with a stiff tissue or a tissue generally used other than a stiff tissue (insertion or braiding of elastic fibers), if the highly fused polyurethane elastic fiber of the present invention is used, fusion with a non-elastic yarn, and furthermore, polyurethane elastic fiber Due to the mutual fusion, misalignment, softness, fraying, orchid, densen, curling and slip-in hardly occur, and the durability of the fabric has been substantially improved. Also, the cut end was difficult to be frayed or damaged by washing.

Claims

請求 の 範 囲 The scope of the claims
1 . 1 0 0。/。伸長した状態で 1 5 0 °C、 4 5秒間の乾熱処理後の強力保持率が 5 0 %以上であり、 且つ 1 8 0 °C以下の融点を有する高融着ポリウレタン弹性繊維 と、 少なくとも 1種類の非弾性糸とを含み、 乾熱又は湿熱セットにより高融着ポ リウレタン弾性繊維相互又はこれと非弾性糸との交差部を熱融着させてなるポリ ウレタン弾性繊維混用織編物。  1.100. /. A high-fusible polyurethane fiber having a strong retention of 50% or more after a dry heat treatment at 150 ° C. for 45 seconds in an extended state and a melting point of 180 ° C. or less; A woven or knitted fabric comprising a mixture of polyurethane elastic fibers, wherein the fusion-bonded polyurethane elastic fibers or the intersections between the elastic fibers and the non-elastic yarns are heat-sealed by dry heat or wet heat setting.
2 . 更に 2 0 0 °C以上の融点を有する高融点ポリウレタン弾†生繊維を含み、 この 高融点ポリウレタン弾性繊維と上記高融着ポリウレタン弾性繊維との交差部を熱 融着させた請求項 1記载のポリウレタン弾性繊維混用織編物。  2. The method according to claim 1, further comprising a high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more, wherein an intersection of the high-melting polyurethane elastic fiber and the high-fusion polyurethane elastic fiber is heat-sealed. The woven or knitted fabric mixed with polyurethane elastic fibers described in the above.
3 . 高融着ポリウレタン弾性繊維が、 ( A) ポリオールとジィソシァネートとを 反応させて得られる両末端イソシァネート基プレボリマーと、 (B ) ポリオール とジイソシァネートと低分子量ジオールとを反応させて得られる両末端水酸基プ レポリマーとを反応させて得られるポリマーを溶融紡糸してなり、 且つ原料ポリ オール中にポリエーテルポリオールを 5 0質量%以上含むことを特徴とする請求 項 1又は 2記載のポリウレタン弾性繊維混用織編物。 3. Highly fused polyurethane elastic fiber is obtained by reacting (A) a polyol with diisocyanate at both ends of a prepolymer, and (B) a hydroxyl group at both ends obtained by reacting a polyol, diisocyanate and a low molecular weight diol. The polyurethane elastic fiber mixed woven fabric according to claim 1 or 2, wherein the polymer obtained by reacting with the prepolymer is melt-spun, and the raw material polyol contains 50% by mass or more of a polyether polyol. knitting.
4 . 1 0 0 %伸長した状態で 1 5 0 °C、 4 5秒間の乾熱処理後の強力保持率が 5 0 %以上であり、 且つ 1 8 0 °C以下の融点を有する高融着ポリウレタン弾性繊維 と、 少なくとも 1種類の非弾性糸を用いて織地又は編地を形成した後、 乾熱又は 湿熱セットにより高融着ポリウレタン弾性繊維相互又はこれと非弾性糸との交差 部を熱融着させてなるポリウレタン弹性繊維混用織編物の製造方法。  4. A high-fusion polyurethane having a strong retention of 50% or more after dry heat treatment at 150 ° C for 45 seconds in a state of being stretched by 100% and a melting point of 180 ° C or less. After forming a woven or knitted fabric using elastic fibers and at least one type of non-elastic yarn, heat-sealing the highly fused polyurethane elastic fibers or the intersections between them and the non-elastic yarn by dry heat or wet heat setting A method for producing a woven or knitted fabric mixed with polyurethane-based fibers.
5 . 更に 2 0 0 °C以上の融点を有する高融点ポリウレタン弾性繊維を用いて、 こ の高融点ポリウレタン弾性繊維と上記高融着ポリウレタン弾性繊維との交差部を 熱融着させた請求項 4記載のポリウレタン弾性繊維混用織編物の製造方法。  5. An intersection of the high-melting polyurethane elastic fiber and the high-fusing polyurethane elastic fiber is heat-sealed using a high-melting polyurethane elastic fiber having a melting point of 200 ° C. or more. A method for producing a woven or knitted fabric mixed with polyurethane elastic fibers as described above.
PCT/JP2003/015778 2002-12-12 2003-12-10 Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof WO2004053218A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003289006A AU2003289006A1 (en) 2002-12-12 2003-12-10 Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof
EP20030778770 EP1595987B1 (en) 2002-12-12 2003-12-10 Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof
KR1020057010007A KR101165244B1 (en) 2002-12-12 2003-12-10 Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof
US10/538,075 US20060030229A1 (en) 2002-12-12 2003-12-10 Blended woven or knitted fabrics containing polyerethane elastic fibers and process for the production thereof
JP2004558453A JP4193064B2 (en) 2002-12-12 2003-12-10 Polyurethane elastic fiber mixed knitted fabric and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-360811 2002-12-12
JP2002360811 2002-12-12

Publications (1)

Publication Number Publication Date
WO2004053218A1 true WO2004053218A1 (en) 2004-06-24

Family

ID=32501007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015778 WO2004053218A1 (en) 2002-12-12 2003-12-10 Blended woven or knitted fabrics containing polyurethane elastic fibers and process for the production thereof

Country Status (8)

Country Link
US (1) US20060030229A1 (en)
EP (1) EP1595987B1 (en)
JP (1) JP4193064B2 (en)
KR (1) KR101165244B1 (en)
CN (1) CN100567604C (en)
AU (1) AU2003289006A1 (en)
TW (1) TW200427884A (en)
WO (1) WO2004053218A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113349A (en) * 2003-10-10 2005-04-28 Gunze Ltd Clothing having cut off-opening part
JP2005350800A (en) * 2004-06-09 2005-12-22 Nisshinbo Ind Inc Weft knitted fabric for polyurethane elastic fiber blend and method for producing the same
JP2006307409A (en) * 2005-03-31 2006-11-09 Nisshinbo Ind Inc Heat-weldable polyurethane elastomer fiber, method for producing the same and woven or knit fabric produced by using the polyurethane elastomer fiber
WO2007060786A1 (en) * 2005-11-24 2007-05-31 Kuroda Tex Co., Ltd Knitted lace fabric and knitted lace
JP2007154321A (en) * 2005-11-30 2007-06-21 Nisshinbo Ind Inc Heat-fusible polyurethane elastic fiber, method for producing the same and woven or knitted fabric using the polyurethane elastic fiber
WO2008004549A1 (en) * 2006-07-04 2008-01-10 Asahi Kasei Fibers Corporation Polyurethane urea elastic fiber
JP2008095240A (en) * 2006-10-12 2008-04-24 Nisshinbo Ind Inc Hot melt-bondable elastic fiber, method for producing the same, woven and knitted fabric using the elastic fiber
JP2008179925A (en) * 2007-01-26 2008-08-07 Asahi Kasei Fibers Corp Pantyhose
WO2008120407A1 (en) * 2007-03-28 2008-10-09 Kuroda Tex Co., Ltd. Process for producing knitted lace and knitted lace
JP2009024321A (en) * 2007-06-20 2009-02-05 Nisshinbo Ind Inc Knitted fabric product for underbody which has run-preventing function
AU2006255284B2 (en) * 2005-06-03 2009-10-29 The Procter & Gamble Company Fibrous structures comprising a polymer structure
WO2011078316A1 (en) 2009-12-25 2011-06-30 日清紡テキスタイル株式会社 Woven or knitted fabric
JP2014173211A (en) * 2013-03-12 2014-09-22 New Knit:Kk Knitted fabric
CN104342843A (en) * 2013-07-24 2015-02-11 克劳斯工业株式会社 Warp knitting fabric
JP2018111890A (en) * 2017-01-06 2018-07-19 旭化成株式会社 Stretchable knitted fabric
US11060215B2 (en) 2017-01-26 2021-07-13 Bright Cheers International Limited Reinforced composite fabric and method for preparing the same
WO2022034868A1 (en) 2020-08-12 2022-02-17 旭化成株式会社 Polyurethane elastic fiber, winding body therefor, gather member, and sanitary material
CN114717734A (en) * 2022-05-05 2022-07-08 青岛全季服饰有限公司 Sun-proof knitted fabric and preparation method thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146461A (en) * 2005-04-01 2008-03-19 郡是株式会社 Clothing capable of being cut freely
CN101374991B (en) * 2006-01-26 2013-04-03 旭化成纤维株式会社 Cellulose fiber blended fabric
TWI473916B (en) * 2007-07-13 2015-02-21 Seiren Co Ltd A double weft knit fabric having superior run and curl resistant characteristic and a method for treating a double weft knit fabric
KR100897362B1 (en) * 2008-07-10 2009-05-15 이중석 Run proof knit fabric with polyurethan yarn and manufacturing method for the same
EP2337884B1 (en) 2008-10-17 2015-07-29 Invista Technologies S.à.r.l. Fusible bicomponent spandex
JP5394875B2 (en) * 2009-09-30 2014-01-22 日清紡テキスタイル株式会社 Woven knitting
DE102009048720B4 (en) * 2009-10-09 2014-01-16 Medi Gmbh & Co. Kg Process for producing a flat knitted fabric with a secured end edge, in particular a bandage, and flat knit fabric
JP5835869B2 (en) * 2009-12-15 2015-12-24 旭化成せんい株式会社 Cylindrical circular knitted fabric
WO2011158978A1 (en) * 2010-06-16 2011-12-22 (주)효성 Polyurethane mono-elastic yarn
JP6173299B2 (en) * 2011-04-15 2017-08-02 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Elastomer fibers and methods for making and using the same
KR101588148B1 (en) * 2011-09-29 2016-01-22 아사히 가세이 셍이 가부시키가이샤 Stretch knitted fabric and clothes
JP6086872B2 (en) * 2012-01-20 2017-03-01 株式会社島精機製作所 Footwear and knitting method
US8499587B1 (en) * 2012-07-21 2013-08-06 Eclat Textile Co., Ltd. Method for knitting a windproof fabric
CN103572493A (en) * 2012-07-27 2014-02-12 东莞超盈纺织有限公司 Method for producing ultrastrong anti-fatigue elastic fabric
ES2628862T3 (en) * 2013-03-29 2017-08-04 Asahi Kasei Kabushiki Kaisha Stretch knitwear and garment fabric
CN103173890A (en) * 2013-04-11 2013-06-26 浙江华峰氨纶股份有限公司 Preparation method of high monofilament cohesive force polyurethane elastic fiber
ES2719823T3 (en) 2013-05-29 2019-07-16 Invista Tech Sarl Bicomponent spandex fusion
CN104552934A (en) * 2013-10-22 2015-04-29 谢贤晓 Fabric forming method
CN105133162A (en) * 2014-05-30 2015-12-09 江苏新雪竹国际服饰有限公司 Low-temperature Lycra free-cut double-sided knitting fabric
CN105274718A (en) * 2014-05-30 2016-01-27 江苏新雪竹国际服饰有限公司 Nylon free-cutting knitted fabric
CN104088109A (en) * 2014-07-15 2014-10-08 浙江理工大学 Machining shaping method capable of arbitrarily clipping shell fabrics
JP6877344B2 (en) * 2014-12-24 2021-05-26 インヴィスタ テキスタイルズ(ユー.ケー.)リミテッド Easy-to-set stretch fabric containing low melting point fibers
CN104562402A (en) * 2015-01-08 2015-04-29 互太纺织有限公司 High-elasticity sticky weft knitted fabric, preparation method and application thereof
CN105239187A (en) * 2015-11-13 2016-01-13 淄博正大聚氨酯有限公司 Ultraviolet-proof polyurethane compound fabric and preparation method thereof
CN107523920B (en) * 2016-06-21 2021-03-23 顺益材料股份有限公司 Composite reinforced fabric and method for making same
TWI684686B (en) * 2017-11-01 2020-02-11 三芳化學工業股份有限公司 Fabric and method for manufacturing the same
CN109957869A (en) * 2019-05-06 2019-07-02 三六一度(中国)有限公司 A kind of cloth and clothes
IL287664B2 (en) * 2019-05-08 2024-02-01 Delta Galil Ind Ltd Garment and Clothes that are Unravel-Free and Roll-Free
KR20210046436A (en) * 2019-10-18 2021-04-28 현대자동차주식회사 Interior Material of the Vehicle
TWI757684B (en) * 2020-01-31 2022-03-11 三芳化學工業股份有限公司 Bristle fabric and method of making the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101016A (en) * 1980-12-17 1982-06-23 Nisshinbo Ind Inc Preparation of elastic polyurethane
JPH03287844A (en) * 1990-04-03 1991-12-18 Asahi Chem Ind Co Ltd Highly durable stretchable knit fabric
JPH07138469A (en) * 1993-11-15 1995-05-30 Dai Ichi Kogyo Seiyaku Co Ltd Water-based polyurethane composition
JPH07149883A (en) * 1993-11-30 1995-06-13 Dainippon Ink & Chem Inc Production of lactone-based polyester polyether polyol and polyurethane resin produced by using the polymer
EP0799843A1 (en) * 1996-04-02 1997-10-08 Nisshinbo Industries, Inc. Polyurethane resins containing carbodiimide bonds
JP2000303326A (en) 1999-04-23 2000-10-31 Kanegafuchi Chem Ind Co Ltd Elastic fabric and elastic yarn
JP2001159052A (en) 1999-11-29 2001-06-12 Toyobo Co Ltd Elastic woven or knitted fabric and cushioning material excellent in cushioning property and resistance to permanent set in fatigue
JP2002013044A (en) * 2000-06-30 2002-01-18 Unitica Fibers Ltd Fabric having anisotropy on hardness
JP2002115119A (en) * 2000-10-10 2002-04-19 Nisshinbo Ind Inc Polyurethane elastic yarn, stocking, and method for producing the stocking
JP2002327353A (en) * 2001-02-20 2002-11-15 Hiraoka & Co Ltd Multilayered yarn mesh sheet for printing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906091C3 (en) * 1979-02-17 1982-04-08 Fa. Carl Freudenberg, 6940 Weinheim Use of polyurethanes for the heat sealing of textile fabrics
JPS60224847A (en) * 1983-12-21 1985-11-09 東洋紡績株式会社 Elastic warp knitted fabric and its production
DE69228606T2 (en) * 1991-07-03 1999-06-24 Kanebo Ltd METHOD AND DEVICE FOR PRODUCING A THERMOPLASTIC POLYURETHANE ELASTOMER
US5795835A (en) * 1995-08-28 1998-08-18 The Tensar Corporation Bonded composite knitted structural textiles
AU7450700A (en) * 1999-09-30 2001-04-30 Asahi Kasei Kabushiki Kaisha Weft knitted fabric
US7015299B2 (en) * 2001-04-30 2006-03-21 Wilkinson W Kenneth Melt spun thermoplastic polyurethanes useful as textile fibers
ATE356235T1 (en) * 2001-10-05 2007-03-15 Toyo Boseki ELASTIC WOVEN OR KNITTED MATERIAL, AND UPHOLSTERY MATERIAL AND SEATS USING THE SAME
US6776014B1 (en) * 2003-06-02 2004-08-17 Invista North America S.A.R.L. Method to make circular-knit elastic fabric comprising spandex and hard yarns

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101016A (en) * 1980-12-17 1982-06-23 Nisshinbo Ind Inc Preparation of elastic polyurethane
JPH03287844A (en) * 1990-04-03 1991-12-18 Asahi Chem Ind Co Ltd Highly durable stretchable knit fabric
JPH07138469A (en) * 1993-11-15 1995-05-30 Dai Ichi Kogyo Seiyaku Co Ltd Water-based polyurethane composition
JPH07149883A (en) * 1993-11-30 1995-06-13 Dainippon Ink & Chem Inc Production of lactone-based polyester polyether polyol and polyurethane resin produced by using the polymer
EP0799843A1 (en) * 1996-04-02 1997-10-08 Nisshinbo Industries, Inc. Polyurethane resins containing carbodiimide bonds
JP2000303326A (en) 1999-04-23 2000-10-31 Kanegafuchi Chem Ind Co Ltd Elastic fabric and elastic yarn
JP2001159052A (en) 1999-11-29 2001-06-12 Toyobo Co Ltd Elastic woven or knitted fabric and cushioning material excellent in cushioning property and resistance to permanent set in fatigue
JP2002013044A (en) * 2000-06-30 2002-01-18 Unitica Fibers Ltd Fabric having anisotropy on hardness
JP2002115119A (en) * 2000-10-10 2002-04-19 Nisshinbo Ind Inc Polyurethane elastic yarn, stocking, and method for producing the stocking
JP2002327353A (en) * 2001-02-20 2002-11-15 Hiraoka & Co Ltd Multilayered yarn mesh sheet for printing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1595987A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113349A (en) * 2003-10-10 2005-04-28 Gunze Ltd Clothing having cut off-opening part
JP2005350800A (en) * 2004-06-09 2005-12-22 Nisshinbo Ind Inc Weft knitted fabric for polyurethane elastic fiber blend and method for producing the same
EP1754814A1 (en) * 2004-06-09 2007-02-21 Nisshinbo Industries, Inc. Weft knitted fabric including polyurethane elastomer fiber and process for producing the same
EP1754814A4 (en) * 2004-06-09 2012-08-22 Nisshinbo Textile Inc Weft knitted fabric including polyurethane elastomer fiber and process for producing the same
US8173558B2 (en) 2004-06-09 2012-05-08 Nisshinbo Textile Inc. Weft knitted fabric including polyurethane elastomer fiber and process for producing the same
JP2006307409A (en) * 2005-03-31 2006-11-09 Nisshinbo Ind Inc Heat-weldable polyurethane elastomer fiber, method for producing the same and woven or knit fabric produced by using the polyurethane elastomer fiber
AU2006255284B2 (en) * 2005-06-03 2009-10-29 The Procter & Gamble Company Fibrous structures comprising a polymer structure
WO2007060786A1 (en) * 2005-11-24 2007-05-31 Kuroda Tex Co., Ltd Knitted lace fabric and knitted lace
JP2007154321A (en) * 2005-11-30 2007-06-21 Nisshinbo Ind Inc Heat-fusible polyurethane elastic fiber, method for producing the same and woven or knitted fabric using the polyurethane elastic fiber
WO2008004549A1 (en) * 2006-07-04 2008-01-10 Asahi Kasei Fibers Corporation Polyurethane urea elastic fiber
JP5067974B2 (en) * 2006-07-04 2012-11-07 旭化成せんい株式会社 Polyurethane urea elastic fiber
JPWO2008004549A1 (en) * 2006-07-04 2009-12-03 旭化成せんい株式会社 Polyurethane urea elastic fiber
US8920922B2 (en) 2006-07-04 2014-12-30 Asahi Kasei Fibers Corporation Polyurethane urea elastic fiber
JP2008095240A (en) * 2006-10-12 2008-04-24 Nisshinbo Ind Inc Hot melt-bondable elastic fiber, method for producing the same, woven and knitted fabric using the elastic fiber
JP2008179925A (en) * 2007-01-26 2008-08-07 Asahi Kasei Fibers Corp Pantyhose
WO2008120407A1 (en) * 2007-03-28 2008-10-09 Kuroda Tex Co., Ltd. Process for producing knitted lace and knitted lace
JP2009013554A (en) * 2007-03-28 2009-01-22 Kuroda Tex Co Ltd Process for producing knitted lace and knitted lace
JP2009024321A (en) * 2007-06-20 2009-02-05 Nisshinbo Ind Inc Knitted fabric product for underbody which has run-preventing function
WO2011078316A1 (en) 2009-12-25 2011-06-30 日清紡テキスタイル株式会社 Woven or knitted fabric
JP2011132644A (en) * 2009-12-25 2011-07-07 Nisshinbo Textile Inc Woven or knitted fabric
JP2014173211A (en) * 2013-03-12 2014-09-22 New Knit:Kk Knitted fabric
CN104342843A (en) * 2013-07-24 2015-02-11 克劳斯工业株式会社 Warp knitting fabric
JP2018111890A (en) * 2017-01-06 2018-07-19 旭化成株式会社 Stretchable knitted fabric
US11060215B2 (en) 2017-01-26 2021-07-13 Bright Cheers International Limited Reinforced composite fabric and method for preparing the same
WO2022034868A1 (en) 2020-08-12 2022-02-17 旭化成株式会社 Polyurethane elastic fiber, winding body therefor, gather member, and sanitary material
CN114717734A (en) * 2022-05-05 2022-07-08 青岛全季服饰有限公司 Sun-proof knitted fabric and preparation method thereof
CN114717734B (en) * 2022-05-05 2024-04-19 青岛全季服饰有限公司 Sun-proof knitted fabric and preparation method thereof

Also Published As

Publication number Publication date
JP4193064B2 (en) 2008-12-10
KR20050085304A (en) 2005-08-29
EP1595987A1 (en) 2005-11-16
KR101165244B1 (en) 2012-07-17
JPWO2004053218A1 (en) 2006-04-13
CN1723307A (en) 2006-01-18
TWI334892B (en) 2010-12-21
AU2003289006A1 (en) 2004-06-30
EP1595987A4 (en) 2009-06-24
US20060030229A1 (en) 2006-02-09
CN100567604C (en) 2009-12-09
EP1595987B1 (en) 2012-09-05
TW200427884A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4193064B2 (en) Polyurethane elastic fiber mixed knitted fabric and method for producing the same
KR101160513B1 (en) Weft knitted fabric including polyurethane elastomer fiber and process for producing the same
KR101626407B1 (en) Fusible bicomponent spandex
KR102381663B1 (en) Fusible bicomponent spandex
TWI625436B (en) Bi-component spandex with separable reduced friction filaments and method for preparing the same
CN102177285B (en) Core-sheath conjugate thread, fabric, clothing article, and method for producing core-sheath conjugate thread
WO2008004549A1 (en) Polyurethane urea elastic fiber
KR101861227B1 (en) Elastomer resins, fibers and fabrics thereof, and uses thereof
JP5105039B2 (en) Heat-sealable polyurethane elastic fiber, method for producing the same, and woven / knitted fabric using the polyurethane elastic fiber
WO2012166504A2 (en) Elastic fabric
KR20120102578A (en) High strength fabrics consisting of thin gauge constant compression elastic fibers
KR20220146651A (en) Elastic fibers, composite yarns and fabrics with anti-slip performance
JP4114084B2 (en) Suspension knitted fabric product with wire prevention function
CN107849746A (en) Polyurethane fiber including copolymer polyols

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057010007

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004558453

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006030229

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538075

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A56979

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003778770

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057010007

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003778770

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538075

Country of ref document: US