JP4192367B2 - 非水電解液およびそれを用いたリチウム二次電池 - Google Patents
非水電解液およびそれを用いたリチウム二次電池 Download PDFInfo
- Publication number
- JP4192367B2 JP4192367B2 JP33970399A JP33970399A JP4192367B2 JP 4192367 B2 JP4192367 B2 JP 4192367B2 JP 33970399 A JP33970399 A JP 33970399A JP 33970399 A JP33970399 A JP 33970399A JP 4192367 B2 JP4192367 B2 JP 4192367B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- battery
- ethyl
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
【発明の属する技術分野】
本発明は、電池のサイクル特性や電気容量、保存特性などの電池特性に優れ、また安全性にも優れたリチウム二次電池を提供することができる新規なリチウム電池用非水電解液、およびそれを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は小型電子機器などの駆動用電源として広く使用されている。リチウム二次電池は、主に正極、非水電解液及び負極から構成されており、特に、LiCoO2などのリチウム複合酸化物を正極とし、炭素材料又はリチウム金属を負極としたリチウム二次電池が好適に使用されている。そして、そのリチウム二次電池用の非水電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などのカーボネート類が好適に使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、リチウム二次電池はエネルギー密度や電池電圧が高いという利点がある反面、過酷な条件下では安全性が十分ではない場合があった。例えば、何らかの異常により内部短絡等が発生した場合、瞬時に流れる大電流により熱暴走が生じ、破裂や発火が起こる危険性がある。また、通常の動作電圧を超えるような過充電が行われた際、正極ではリチウムが過剰に抽出され、また、負極では場合によってはリチウムの析出が生じる。このように電極が熱的に不安定になった場合には、正極表面では電解液の酸化反応、負極表面では析出したリチウムによる電解液の還元反応等により、電解液が分解しガスが発生するとともに熱的暴走が生じ、破裂や発火が起こる危険性がある。また、何らかの原因により、高温環境下におかれた場合や火中に投下された場合にも同様な危険性が生じる。このような安全性の問題は、負極にリチウム金属を使用した場合に特に重大であった。
【0004】
そこで、現在電池の安全性の問題を解決するために、以下のような対策が講じられている。例えば、PTC素子により温度上昇時に内部抵抗を高くして安全性を確保する方法や、安全弁により、電池の内圧が上昇した際に電流を遮断する方法等の電池の構造に安全機構を組み込む方法がある。また、高温時に電流を遮断する方法として、高温で溶融する多孔質高分子セパレータを使用する方法がある。この場合、電池が熱暴走を起こした際に、セパレータが溶融し、電池の内部抵抗が増加して安全性が確保される。しかし、セパレータが溶融しても電解液自体の内部抵抗が低いとセパレータの隙間から電流が流れるので安全性の面では十分とは言えない。
【0005】
そこで、さらに安全性を高めるために電解液の面からの検討も行われており、例えば、特開平7−78635号公報には、100℃を超える温度、あるいは電池の操作電圧ウィンドー以上の電圧において、重合する1,3−ジオキソランを電解液として用いた電池が提案されている。これは、電池が異常な高温、または異常な過充電という過酷な条件の下におかれた場合に電解液が重合することにより電池の内部抵抗が上昇し、その結果、電流の流れが減少し電池内の温度が低下するというものである。しかし、同公報では、電池の操作電圧が2.0〜3.4Vと低く、重合する電解液として開示されている1,3−ジオキソランが4.0V以上の電圧において重合を起こすために、通常のリチウム電池で使用されている4.2Vでは使用できないという問題点があった。また、電解質としてLiAsF6という人体および環境に有害なヒ素を含むリチウム塩が使用されているという問題点があった。
【0006】
本発明は、前記のようなリチウム二次電池用非水電解液に関する課題を解決し、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性、また電池の安全性にも優れたリチウム二次電池を構成することができるリチウム二次電池用の非水電解液、およびそれを用いたリチウム二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、非水溶媒に電解質塩が溶解されている非水電解液において、該非水電解液中にオキセタン誘導体が含有されていることを特徴とする非水電解液に関する。前記オキセタン誘導体は、下記一般式(I)および一般式(II)
【0008】
【化5】
【0009】
(式中、R1は炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数3〜6のシクロアルキル基、アリール基を示す。また、R2は炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数3〜6のシクロアルキル基、アリール基、炭素数2〜10のアシル基、炭素数1〜6のアルカンスルホニル基、炭素数6〜10のアリールスルホニル基、炭素数2〜10のエステル基)
【0010】
【化6】
【0011】
(式中、R3、R4はそれぞれ独立して炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数3〜6のシクロアルキル基、アリール基を示す。)から選ばれる少なくとも1種である。
【0012】
また、本発明は、正極と負極、および非水溶媒に電解質塩が溶解されている非水電解液からなるリチウム二次電池において、該非水電解液中にオキセタン誘導体が含有されていることを特徴とするリチウム二次電池に関する。前記オキセタン誘導体は、下記一般式(I)および一般式(II)
【0013】
【化7】
【0014】
(式中、R1は炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数3〜6のシクロアルキル基、アリール基を示す。また、R2は炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数3〜6のシクロアルキル基、アリール基、炭素数2〜10のアシル基、炭素数1〜6のアルカンスルホニル基、炭素数6〜10のアリールスルホニル基、炭素数2〜10のエステル基)
【0015】
【化8】
【0016】
(式中、R3、R4はそれぞれ独立して炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、炭素数3〜6のシクロアルキル基、アリール基を示す。)から選ばれる少なくとも1種である。
【0017】
本発明におけるオキセタン誘導体は、誘電率が高く、融点が低く、しかも4V程度の電圧において、正極あるいは負極上で分解しないので、近年特に使用量が急増している4V級以上のリチウム電池の電解液溶媒として優れた特性を示す。また、オキセタン誘導体は、高温で重合し電池の内部抵抗を上げるので、電池の内温が急激に上昇した際に電流を遮断し、安全性にも優れた電解液を提供することができる。
【0018】
【発明の実施の形態】
非水溶媒に電解質塩が溶解されている非水電解液に含有される前記一般式(I)で表されるオキセタン誘導体において、R1、R2はメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜6のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基、イソペンチル基のような分枝アルキル基でもよく、シクロプロピル基、シクロヘキシル基のようなシクロアルキル基でもよい。また、ビニル基、1−プロペニル基、アリル基のような炭素数2〜6のアルケニル基でもよく、エチニル基、2−プロピニル基のような炭素数2〜6のアルキニル基でもよい。また、フェニル基、p−トリル基などのアリール基でもよい。さらに、R2はアセチル基、プロピオニル基、アクリロイル基、ベンゾイル基などの炭素数2〜10のアシル基でもよく、メタンスルホニル基、エタンスルホニル基、ベンゼンスルホニル基などのスルホニル基のような炭素数1〜6のアルカンスルホニル基や炭素数6〜10のアリールスルホニル基でもよい。さらに、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基などの炭素数2〜10のエステル基でもよい。
【0019】
また、前記一般式(II)で表されるジオキセタン誘導体において、R3、R4はメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような炭素数1〜6のアルキル基が好ましい。アルキル基はイソプロピル基、イソブチル基、イソペンチル基のような分枝アルキル基でもよく、シクロプロピル基、シクロヘキシル基のようなシクロアルキル基でもよい。また、ビニル基、1−プロペニル基、アリル基のような炭素数2〜6のアルケニル基でもよく、エチニル基、2−プロピニル基のような炭素数2〜6のアルキニル基でもよい。また、フェニル基、p−トリル基などのアリール基でもよい。
【0020】
前記一般式(I)で表されるオキセタン誘導体の具体例としては、例えば、R1がメチル基の場合には、3−メチル−3−メトキシメチルオキセタン〔R1=メチル基、R2=メチル基〕、3−メチル−3−エトキシメチルオキセタン〔R1=メチル基、R2=エチル基〕、3−メチル−3−プロポキシメチルオキセタン〔R1=メチル基、R2=n−プロピル基〕、3−メチル−3−ブトキシメチルオキセタン〔R1=メチル基、R2=n−ブチル基〕、3−メチル−3−イソプロポキシメチルオキセタン〔R1=メチル基、R2=イソプロピル基〕、3−メチル−3−シクロヘキシルオキシメチルオキセタン〔R1=メチル基、R2=シクロヘキシル基〕、3−メチル−3−アリルオキシメチルオキセタン〔R1=メチル基、R2=アリル基〕、3−メチル−3−(2−プロピニル)オキシメチルオキセタン〔R1=メチル基、R2=2−プロピニル基〕、3−メチル−3−フェノキシメチルオキセタン〔R1=メチル基、R2=フェニル基〕、3−メチル−3−アセトキシメチルオキセタン〔R1=メチル基、R2=アセチル基〕、3−メチル−3−プロピオニルオキシメチルオキセタン〔R1=メチル基、R2=プロピオニル基〕、3−メチル−3−ベンゾイルオキシメチルオキセタン〔R1=メチル基、R2=ベンゾイル基〕、3−メチル−3−メタンスルホニルオキシメチルオキセタン〔R1=メチル基、R2=メタンスルホニル基〕、3−メチル−3−ベンゼンスルホニルオキシメチルオキセタン〔R1=メチル基、R2=ベンゼンスルホニル基〕、3−メチル−3−メトキシカルボニルオキシメチルオキセタン〔R1=メチル基、R2=メトキシカルボニル基〕、3−メチル−3−エトキシカルボニルオキシメチルオキセタン〔R1=メチル基、R2=エトキシカルボニル基〕、3−メチル−3−ブトキシカルボニルオキシメチルオキセタン〔R1=メチル基、R2=n−ブトキシカルボニル基〕、3−メチル−3−フェノキシカルボニルオキシメチルオキセタン〔R1=メチル基、R2=フェノキシカルボニル基〕、などが挙げられる。
また、R1がエチル基の場合には、3−エチル−3−メトキシメチルオキセタン〔R1=エチル基、R2=メチル基〕、3−エチル−3−エトキシメチルオキセタン〔R1=エチル基、R2=エチル基〕、3−エチル−3−プロポキシメチルオキセタン〔R1=エチル基、R2=n−プロピル基〕、3−エチル−3−ブトキシメチルオキセタン〔R1=エチル基、R2=n−ブチル基〕、3−エチル−3−イソプロポキシメチルオキセタン〔R1=エチル基、R2=イソプロピル基〕、3−エチル−3−シクロヘキシルオキシメチルオキセタン〔R1=エチル基、R2=シクロヘキシル基〕、3−エチル−3−アリルオキシメチルオキセタン〔R1=エチル基、R2=アリル基〕、3−エチル−3−(2−プロピニル)オキシメチルオキセタン〔R1=エチル基、R2=2−プロピニル基〕、3−エチル−3−フェノキシメチルオキセタン〔R1=エチル基、R2=フェニル基〕、3−エチル−3−アセトキシメチルオキセタン〔R1=エチル基、R2=アセチル基〕、3−エチル−3−プロピオニルオキシメチルオキセタン〔R1=エチル基、R2=プロピオニル基〕、3−エチル−3−ベンゾイルオキシメチルオキセタン〔R1=エチル基、R2=ベンゾイル基〕、3−エチル−3−メタンスルホニルオキシメチルオキセタン〔R1=エチル基、R2=メタンスルホニル基〕、3−エチル−3−ベンゼンスルホニルオキシメチルオキセタン〔R1=エチル基、R2=ベンゼンスルホニル基〕、3−エチル−3−メトキシカルボニルオキシメチルオキセタン〔R1=エチル基、R2=メトキシカルボニル基〕、3−エチル−3−エトキシカルボニルオキシメチルオキセタン〔R1=エチル基、R2=エトキシカルボニル基〕、3−エチル−3−ブトキシカルボニルオキシメチルオキセタン〔R1=エチル基、R2=n−ブトキシカルボニル基〕、3−エチル−3−フェノキシカルボニルオキシメチルオキセタン〔R1=エチル基、R2=フェノキシカルボニル基〕、などが挙げられる。
【0021】
また、前記一般式(II)で表されるジオキセタン誘導体の具体例としては、例えば、3,3’−〔オキシビス(メチレン)〕ビス(3−メチル)オキセタン〔R3=メチル基、R4=メチル基〕、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕、3,3’−〔オキシビス(メチレン)〕ビス(3−ブチル)オキセタン〔R3=n−ブチル基、R4=n−ブチル基〕、3,3’−〔オキシビス(メチレン)〕ビス(3−イソプロピル)オキセタン〔R3=イソプロピル基、R4=イソプロピル基〕、3,3’−〔オキシビス(メチレン)〕ビス(3−アリル)オキセタン〔R3=アリル基、R4=アリル基〕、3,3’−〔オキシビス(メチレン)〕ビス〔3−(2−プロピニル)〕オキセタン〔R3=2−プロピニル基、R4=2−プロピニル基〕、3,3’−〔オキシビス(メチレン)〕ビス(3−シクロプロピル)オキセタン〔R3=シクロプロピル基、R4=シクロプロピル基〕、3,3’−〔オキシビス(メチレン)〕ビス(3−フェニル)オキセタン〔R3=フェニル基、R4=フェニル基〕などが挙げられる。
前記一般式(I)および前記一般式(II)で表されるオキセタン誘導体の含有量は、過度に多いと、十分な電池特性が得られないことがあり、また、過度に少ないと、高温時に重合しても電流を遮断するのに十分な内部抵抗が得られない。したがって、その含有量は非水電解液の重量に対して3〜50重量%程度の範囲が好ましい。
【0022】
また、オキセタン誘導体は電解液中の微量なHF等のプロトン酸、あるいはPF5等のルイス酸により重合するので、重合防止剤として少量のアミン類、アミド類、あるいは尿素類のような窒素化合物を添加することが好ましい。使用する重合防止剤としては、アミン類では例えばトリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−iso−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−オクチルアミン、トリフェニルアミン、トリベンジルアミン、1−メチルピロリジン、1−メチルピロール、1−メチルピペリジン、ピリジン、キノリン、N,N−ジメチルアニリン等が挙げられる。アミド類ではN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルベンズアミド、1−メチル−2−ピロリドン、N−メチル−ε−カプロラクタム等が挙げられる。また、尿素類では、1,1,3,3−テトラメチル尿素、1,1,3,3−テトラエチル尿素、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン等が挙げられる。
重合防止剤の添加量は特に制限はないが、過度に多いと、十分な電池特性が得られないことがあり、また、過度に少ないと、室温においても重合することがある。したがって、その含有量は非水電解液の重量に対して0.05〜10重量%程度の範囲が好ましい。
【0023】
本発明で使用される非水溶媒としては、高誘電率溶媒と低粘度溶媒とからなるものが好ましい。
高誘電率溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類が好適に挙げられる。これらの高誘電率溶媒は、1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。
【0024】
低粘度溶媒としては、例えば、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンなどのエーテル類、γ−ブチロラクトンなどのラクトン類、アセトニトリルなどのニトリル類、プロピオン酸メチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。これらの低粘度溶媒は1種類で使用してもよく、また2種類以上組み合わせて使用してもよい。
高誘電率溶媒と低粘度溶媒とはそれぞれ任意に選択され組み合わせて使用される。なお、前記の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率溶媒:低粘度溶媒)で通常1:9〜4:1、好ましくは1:4〜7:3の割合で使用される。
【0025】
本発明で使用される電解質塩としては、例えば、LiPF6、LiBF4、LiClO4、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiC(SO2CF3)3などのAsを含有しない化合物が挙げられる。これらの電解質は、1種類で使用してもよく、2種類以上組み合わせて使用してもよい。これら電解質は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。
【0026】
本発明の非水電解液は、例えば、前記の高誘電率溶媒や低粘度溶媒を混合し、これに前記の電解質を溶解し、重合防止剤として少量のアミン類を添加したのちに、前記一般式(I)あるいは一般式(II)で表されるオキセタン誘導体を溶解することにより得られる。
【0027】
本発明の非水電解液は、リチウム二次電池の構成部材として使用される。二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0028】
例えば、正極活物質としてはコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも1種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO2、LiMn2O4、LiNiO2、LiNi0.8CO0.2O2などが挙げられる。これらの正極活物質は、1種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。
【0029】
正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの結着剤および溶剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウム箔やステンレス製のラス板に塗布して、乾燥、加圧成型後、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製される。
【0030】
負極活物質としては、リチウム金属やリチウム合金、およびリチウムを吸蔵・放出可能な黒鉛型結晶構造を有する炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕や複合スズ酸化物などの物質が使用される。特に、格子面(002)の面間隔(d002)が0.335〜0.340nmである黒鉛型結晶構造を有する炭素材料を使用することが好ましい。これらの負極活物質は、1種類だけを選択して使用しても良いし、2種類以上を組み合わせて用いても良い。なお、炭素材料のような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの結着剤と混練して負極合剤として使用される。負極の製造方法は、特に限定されず、上記の正極の製造方法と同様な方法により製造することができる。
【0031】
リチウム二次電池の構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。
【0032】
【実施例】
次に、実施例および比較例を挙げて、本発明を具体的に説明する。
実施例1
〔非水電解液の調製〕
EC:DMC(容量比)=1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して非水電解液を調製した後、この非水電解液を80重量%、重合防止剤としてピリジンを0.1重量%、3−エチル−3−ブトキシメチルオキセタン〔R1=エチル基、R2=n−ブチル基〕を20重量%となるように加えた。
【0033】
〔リチウム二次電池の作製と電池特性の測定、および加熱実験〕
LiCoO2(正極活物質)を80重量%、アセチレンブラック(導電剤)を10重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極を調製した。人造黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の非水電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
このコイン電池を用いて、室温(20℃)下、0.8mAの定電流及び定電圧で、終止電圧4.2Vまで5時間充電し、次に0.8mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。20サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は80.2%であった。また、低温特性も良好であった。コイン電池の作製条件および電池特性を表1に示す。
また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。
【0034】
実施例2
オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を使用し、重合防止剤としてピリジンを0.15wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は81.5%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、固体状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0035】
実施例3
オキセタン誘導体として、3,3’-〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して10wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は85.8%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0036】
実施例4
オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して5wt%使用し、重合防止剤としてピリジンを0.07wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は93.2%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0037】
実施例5
オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して5wt%使用し、重合防止剤としてトリエチルアミンを0.07wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は90.1%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0038】
実施例6
EC:MEC(容量比)=1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して非水電解液を調整した後、ピリジンを全電解液に対して0.1wt%になるように加え、さらに3−エチル−3−アセトキシメチルオキセタン〔R1=エチル基、R2=アセチル基〕を全電解液に対して10重量%となるように加えた。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、20サイクル後の放電容量維持率は87.1%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0039】
実施例7
EC:DEC(容量比)=1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して非水電解液を調整した後、ピリジンを全電解液に対して0.1wt%になるように加え、さらに3−エチル−3−メタンスルホニルオキシメチルオキセタン〔R1=エチル基、R2=メタンスルホニル基〕を全電解液に対して10重量%となるように加えた。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、20サイクル後の放電容量維持率は88.7%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0040】
実施例8
オキセタン誘導体として、3−エチル−3−メトキシカルボニルオキシメチルオキセタン〔R1=エチル基、R2=メトキシカルボニル基〕を全電解液に対して10wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は90.3%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0041】
実施例9
EC:PC:DMC(容量比)=1:1:2の非水溶媒を調製し、これにLiPF6を1Mの濃度になるように溶解して非水電解液を調整した後、ピリジンを全電解液に対して0.1wt%になるように加え、さらに3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して10重量%となるように加えた。この非水電解液を使用して実施例1と同様にコイン電池を作製し、電池特性を測定したところ、20サイクル後の放電容量維持率は84.4%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0042】
実施例10
負極活物質として、人造黒鉛に代えて天然黒鉛を使用し、オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して10wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は83.8%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0043】
実施例11
正極活物質として、LiCoO2に代えてLiMn2O4を使用し、オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して10wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は86.0%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0044】
実施例12
負極活物質として、人造黒鉛に代えてリチウム金属を使用し、オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して10wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は89.5%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0045】
実施例13
負極活物質として、人造黒鉛に代えてリチウム-アルミニウム合金を使用し、オキセタン誘導体として、3,3’−〔オキシビス(メチレン)〕ビス(3−エチル)オキセタン〔R3=エチル基、R4=エチル基〕を全電解液に対して10wt%使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は88.9%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色しており、ゲル状になっていた。コイン電池の作製条件および電池特性を表1に示す。
【0046】
比較例1
オキセタン誘導体の代わりに、1,3−ジオキソランを使用したほかは実施例1と同様に電解液を調製してコイン電池を作製し、20サイクルにおける放電容量維持率を測定したところ、放電容量維持率は39.0%であった。また、この電解液を密閉系で130℃まで加熱した。室温まで放冷した後、電解液の状態を観察したところ褐色に変色していたが、液状のままであった。コイン電池の作製条件および電池特性を表1に示す。
【0047】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒形、角柱形の電池にも適用される。
【0048】
【発明の効果】
本発明によれば、酸化還元に安定なオキセタン誘導体を使用しているため、4.0V以上の高電圧においても、電池のサイクル特性、電気容量や充電保存特性などの電池特性に優れたリチウム二次電池を提供することができる。また、過酷な条件での使用時、あるいは過充電等により電池温度が上昇した際に、非水電解液中に含有されるオキセタン誘導体が速やかに重合する。その結果、電流が遮断され、電池内の温度が低下するので、本発明は、安全性に優れたリチウム二次電池を提供することができる。
【0049】
【表1】
Claims (4)
- 非水溶媒に電解質塩が溶解されている非水電解液において、該非水電解液中に、下記一般式(I)および一般式(II)から選ばれる少なくとも1種のオキセタン誘導体が含有されていることを特徴とする非水電解液。
- 前記オキセタン誘導体の含有量が非水電解液の重量に対して3〜50重量%である請求項1記載の非水電解液。
- 正極と負極、および非水溶媒に電解質塩が溶解されている非水電解液からなるリチウム二次電池において、該非水電解液中に、下記一般式(I)および一般式(II)から選ばれる少なくとも1種のオキセタン誘導体が含有されていることを特徴とするリチウム二次電池。
- 前記オキセタン誘導体の含有量が非水電解液の重量に対して3〜50重量%である請求項3記載のリチウム二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33970399A JP4192367B2 (ja) | 1999-11-30 | 1999-11-30 | 非水電解液およびそれを用いたリチウム二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33970399A JP4192367B2 (ja) | 1999-11-30 | 1999-11-30 | 非水電解液およびそれを用いたリチウム二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001155767A JP2001155767A (ja) | 2001-06-08 |
JP4192367B2 true JP4192367B2 (ja) | 2008-12-10 |
Family
ID=18330016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33970399A Expired - Fee Related JP4192367B2 (ja) | 1999-11-30 | 1999-11-30 | 非水電解液およびそれを用いたリチウム二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4192367B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240006661A1 (en) * | 2022-07-04 | 2024-01-04 | Sk On Co., Ltd. | Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100803191B1 (ko) * | 2005-06-24 | 2008-02-14 | 삼성에스디아이 주식회사 | 유기 전해액 및 이를 채용한 리튬 전지 |
JP6447500B2 (ja) * | 2013-08-08 | 2019-01-09 | 日本電気株式会社 | 二次電池用負極、その製造方法、およびそれを用いた二次電池 |
JP6102685B2 (ja) | 2013-11-05 | 2017-03-29 | ソニー株式会社 | 二次電池用非水電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
-
1999
- 1999-11-30 JP JP33970399A patent/JP4192367B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240006661A1 (en) * | 2022-07-04 | 2024-01-04 | Sk On Co., Ltd. | Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same |
US12027669B2 (en) * | 2022-07-04 | 2024-07-02 | Sk On Co., Ltd. | Electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
JP2001155767A (ja) | 2001-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102152365B1 (ko) | 유기전해액 및 상기 전해액을 채용한 리튬 전지 | |
JP3815087B2 (ja) | 非水電解液及びそれを用いたリチウム二次電池 | |
JP5348090B2 (ja) | 非水電解液およびリチウム二次電池 | |
KR101718062B1 (ko) | 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지 | |
JP3951486B2 (ja) | リチウム二次電池用電解液およびそれを用いたリチウム二次電池 | |
KR102332334B1 (ko) | 유기전해액 및 이를 포함하는 리튬 전지 | |
JP2016537769A (ja) | リチウムイオン電池用性能向上剤としてのポリアクリル酸骨格を有するコポリマー | |
KR20170108589A (ko) | 유기전해액 및 상기 전해액을 채용한 리튬 전지 | |
KR20080110404A (ko) | 비수전해액 첨가제 및 이를 이용한 이차 전지 | |
KR102547067B1 (ko) | 리튬 전지 | |
KR20160109664A (ko) | 유기전해액 및 이를 포함하는 리튬 전지 | |
JP2019102451A (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
KR102380511B1 (ko) | 리튬 전지용 전해질 및 이를 포함하는 리튬 전지 | |
KR20080097599A (ko) | 비수전해액 첨가제 및 이를 이용한 이차 전지 | |
KR100371403B1 (ko) | 새로운 전해액과 이를 이용한 리튬이온 전지 | |
JP3823712B2 (ja) | 非水電解液およびそれを用いたリチウム二次電池 | |
KR20110088370A (ko) | 비수계 이차 전지 | |
JP4193295B2 (ja) | 非水電解液およびそれを用いたリチウム二次電池 | |
JP3820748B2 (ja) | リチウム二次電池用電解液およびそれを用いたリチウム二次電池 | |
JP4045644B2 (ja) | リチウム二次電池用電解液およびそれを用いたリチウム二次電池 | |
JP3610948B2 (ja) | 非水電解液およびそれを用いたリチウム二次電池 | |
KR20230067595A (ko) | 리튬 전지 | |
KR20230070191A (ko) | 리튬 전지 | |
JP4192367B2 (ja) | 非水電解液およびそれを用いたリチウム二次電池 | |
KR20190133659A (ko) | 유기전해액 및 상기 전해액을 채용한 리튬 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |