JP4191600B2 - 眼光学特性測定装置 - Google Patents

眼光学特性測定装置 Download PDF

Info

Publication number
JP4191600B2
JP4191600B2 JP2003526271A JP2003526271A JP4191600B2 JP 4191600 B2 JP4191600 B2 JP 4191600B2 JP 2003526271 A JP2003526271 A JP 2003526271A JP 2003526271 A JP2003526271 A JP 2003526271A JP 4191600 B2 JP4191600 B2 JP 4191600B2
Authority
JP
Japan
Prior art keywords
light beam
eye
light
characteristic measuring
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003526271A
Other languages
English (en)
Other versions
JPWO2003022138A1 (ja
Inventor
俊文 三橋
陽子 広原
尚 不二門
直之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Publication of JPWO2003022138A1 publication Critical patent/JPWO2003022138A1/ja
Application granted granted Critical
Publication of JP4191600B2 publication Critical patent/JP4191600B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Description

【技術分野】
【0001】
本発明は、眼光学の特性を測定する眼光学特性測定装置に関する。
【背景技術】
【0002】
ハルトマンシャック波面センサーは、眼球の波面収差を正確に測定できるため最近非常に注目されている。この波面センサーは、特に角膜屈折矯正手術のプランニングやフォローアップの目的で近い将来眼科手術の所要な装置となりうる。
【0003】
ところで、波面センサーによる眼球波面収差の測定は、角膜形状測定による角膜波面収差の測定と比較して、水晶体などの眼球内部光学系の波面収差への影響が測定結果に含まれていることが大きく異なる。この機能によると、核白内障などで水晶体に屈折率異常がある場合や、円錐水晶体により水晶体の屈折面の形状が大きく歪んでいる場合などの検査が可能になる。
【0004】
眼球光学系波面収差測定の目的としては、視機能の他覚的評価があげられる。視機能の評価としては、従来より自覚検査が他覚検査と比較して信頼できる測定法として認められてきた。特に波面センサーの前身と言えるオートレフラクトメーターに対して、自覚検査法であるレンズ交換法はゴールドスタンダードと言われているほどである。
【0005】
波面センサーで測定した眼球波面収差と矯正視力やコントラストを比較すると、よく一致する場合と、例えば、高齢者を中心に一致しない場合がある。一致しない場合は、視力へ散乱が大きく影響を与えていることがある。
【発明の開示】
【発明が解決しようとする課題】
視機能に影響を及ぼす光学的要因として、波面収差と共に眼球光学系の散乱が考えられる。
眼光学特性の測定では、加齢や白内障等の場合、眼球光学系からの散乱が大きく、視機能の他覚的評価のために収差に加えて散乱の測定が必要である。波面収差の測定で定評のあるハルトマンシャック波面センサーの光学系による散乱の同時測定を可能にする装置が望まれている。一方、ハルトマンシャック波面センサーによる波面収差測定は、既に実用段階である。
【0007】
本発明は、以上の点に鑑み、波面収差測定が主目的であるハルトマンシャック波面センサーで散乱測定を可能とし、散乱測定をすることで、視機能を正確に評価できる眼光学特性測定装置を提供することを目的とする。
また、本発明は、新たに、ハルトマンシャック波面センサーによる散乱測定法としてハルトマンイメージの背景光の散乱強度比(SIR、Scatter Intensity Ratio)から散乱量を推定する散乱解析法を開発し、ハルトマンシャック波面センサーの光学系による散乱の同時測定を可能にする眼光学特性測定装置を提供することを目的とする。
【0008】
また、本発明は、受光光学系に入射する光束の波面収差と、受光光の点像強度分布(PSF)の関係の分布から、受光光学系に入射する光束の波面収差と、受光光束の散乱度合を測定することができる眼光学特性測定装置を提供することを目的とする。
また、本発明は、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いと、受光光束のスポット径との関係の分布から、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いが強いほど、又は受光光束のスポット径が大きいほど、白内障などの影響があるものと判断することができる眼光学特性測定装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明の第1の解決手段によると、所定の波長の光束を発する光源部と、上記光源部からの光束で被検眼網膜上の微小な領域を照明するための照明光学系と、上記光源部からの光束が被検眼網膜から反射された反射光束の一部を、少なくとも実質的に17本のビームに変換する変換部材を介して受光するための受光光学系と、上記受光光学系により導かれた受光光束を受光し、信号を形成する受光部と、上記受光部からの信号に基づき、上記受光光学系に入射する光束の波面収差と受光光束の散乱度合いを求める演算部を備えた眼光学特性測定装置が提供される。
【0010】
また、本発明の第2の解決手段によると、所定の波長の光束を発する光源部と、上記光源部からの光束で被検眼網膜上の微小な領域を照明するための照明光学系と、上記光源部からの光束が被検眼網膜から反射された反射光束の一部を、少なくとも実質的に17本のビームに変換する変換部材を介して受光するための受光光学系と、上記受光光学系により導かれた受光光束を受光し、信号を形成する受光部と、上記受光部からの信号に基づき、上記受光光学系に入射する光束の波面収差と受光光束のスポット径を求める演算部とを備えた眼光学特性測定装置が提供される。
【0011】
また、本発明は、第1の解決手段の眼光学特性測定装置において、上記演算部は、上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いの関係の分布を求めることができる。さらに、本発明は、このような眼光学特性測定装置において、上記演算部は、求められた上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いが強いほど、白内障などの影響があるものと判断するように構成することができる。
【0012】
また、本発明は、第2の解決手段の眼光学特性測定装置において、上記演算部は、上記受光光学系に入射する光束の波面収差と、受光光束のスポット径との関係の分布を求めることができる。さらに、本発明は、このような眼光学特性測定装置において、上記演算部は、求められた上記受光光学系に入射する光束の波面収差と、受光光束のスポット径が大きいほど、白内障などの影響があるものと判断するように構成することができる。
【0013】
また、本発明は、第1の解決手段の眼光学特性測定装置において、上記演算部は、上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いと、受光光束のスポット径との関係の分布を求めることができる。さらに、本発明は、このような眼光学特性測定装置において、上記演算部は、求められた上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いが強いほど、又は受光光束のスポット径が大きいほど、白内障などの影響があるものと判断するように構成することができる。
さらに、本発明は、演算部により求められた分布、判断結果等を表示する表示部又はそれらを外部に出力する出力部をさらに備えるようにしてもよい。
さらに、本発明の第3の解決手段によると、所定の波長の光束を発する光源部と、
上記光源部からの光束で 被検眼網膜上の微小な領域を照明するための照明光学系と、
上記光源部からの光束が被検眼網膜から反射された反射光束の一部を、少なくとも実質的に17本のビームに変換する変換部材を介して受光するための受光光学系と、
上記受光光学系により導かれた受光光束を受光し、信号を形成する受光部と、
上記受光部からの信号に基づき、上記受光光学系に入射する光束の波面収差から求められた点像強度分布と受光光束の実測されたスポット径を求める演算部とを備えた眼光学特性測定装置が提供される。
【発明を実施するための最良の形態】
【0014】
以下、図面を用いて本発明の実施の形態を詳細に説明する。
1. 眼光学特性測定の原理説明
図1は、本発明に関する眼光学特性測定装置の概略光学系100を示す図である。
【0015】
眼光学特性測定装置の光学系100は、例えば、対象物である被測定眼60の光学特性を測定する装置であって、第1照明光学系10と、第1受光光学系20と、第2受光光学系30と、共通光学系40と、調整用光学系50と、第2照明光学系70と、第2送光光学系80とを備える。なお、被測定眼60については、図中、網膜61、角膜62が示されている。
【0016】
第1照明光学系10は、例えば、第1波長の光束を発するための第1光源部11と、集光レンズ12とを備え、第1光源部11からの光束で被測定眼60の網膜(眼底)61上の微小な領域を、その照明条件を適宜設定できるように照明するためのものである。なお、ここでは、一例として、第1光源部11から発せられる照明用の光束の第1波長は、赤外域の波長(例えば、780nm)である。これに限定されず、所定の波長の照明光束でよい。
【0017】
また、第1光源部11は、空間コヒーレンスが大きく、時間コヒーレンスが小さいものが望ましい。ここでは、第1光源部11は、例えば、スーパールミネッセンスダイオード(SLD)であって、輝度の高い点光源を得ることができる。
なお、第1光源部11は、SLDに限られるものではなく、例えば、空間コヒーレンス、時間コヒーレンスが大きいレーザー等であっても、以下に述べるロータリープリズムとの組合せることにより利用することができる。さらに、空間コヒーレンス、時間コヒーレンスが小さいLEDであっても、光量さえ十分であれば、例えば、光路の光源の位置にピンホール等を挿入することで、利用することができる。
また、網膜からの反射光の不均一な特性を均一にするために、楔形のロータリープリズム(Dプリズム)16を照明光学系に挿入する。ロータリープリズムの回転により、眼底上の照明部分が操作されるため、眼底からの反射光が均一になり、受光部の受光光束(点像)が均一になるようにすることができる。
【0018】
第1受光光学系20は、例えば、コリメートレンズ21と、被測定眼60の網膜61から反射して戻ってくる光束(第1光束)の一部を、少なくとも、17本のビームに変換する変換部材であるハルトマン板22と、このハルトマン板22で変換された複数のビームを受光するための第1受光部23とを備え、第1光束を第1受光部23に導くためのものである。また、ここでは、第1受光部23は、リードアウトノイズの少ないCCDが採用されているが、CCDとしては、例えば、一般的な低ノイズタイプ、測定用の1000*1000素子の冷却CCD等、適宜のタイプのものを適用することができる。
【0019】
第2照明光学系70は、第2光源72と、プラチドリング71を備える。なお、第2光源72を省略することもできる。図2に、プラチドリングの構成図の一例を示す。プラチドリング(PLACIDO’S DISC)71は、図示のように、複数の同心輪帯からなるパターンの指標を投影するためのものである。なお、複数の同心輪帯からなるパターンの指標は、所定のパターンの指標の一例であり、他の適宜のパターンを用いることができる。そして、後述するアライメント調整が完了した後、複数の同心輪帯からなるパターンの指標を投影することができる。
【0020】
第2送光光学系80は、例えば、後述するアライメント調整及び座標原点、座標軸の測定・調整を主に行うものであって、第2波長の光束を発するための第2光源部31と、集光レンズ32と、ビームスプリッター33を備える。
【0021】
第2受光光学系30は、集光レンズ34、第2受光部35を備える。第2受光光学系30は、第2照明光学系70から照明されたプラチドリング71のパターンが、被測定眼60の前眼部又は角膜62から反射して戻ってくる光束(第2光束)を、第2受光部35に導く。また、第2光源部31から発せられ被測定眼60の角膜62から反射し、戻ってくる光束を第2受光部35に導くこともできる。なお、第2光源部31から発せられる光束の第2波長は、例えば、第1波長(ここでは、780nm)と異なると共に、長い波長を選択できる(例えば、940nm)。
【0022】
共通光学系40は、第1照明光学系10から発せられる光束の光軸上に配され、第1及び第2照明光学系10及び70、第1及び第2受光光学系20及び30、第2送光光学系80等に共通に含まれ得るものであり、例えば、アフォーカルレンズ42と、ビームスプリッター43、45と、集光レンズ44とを備える。また、ビームスプリッター43は、第2光源部31の波長を被測定眼60に送光(反射)し、被測定眼60の網膜61から反射して戻ってくる第2光束を反射し、一方、第1光源部11の光束を透過するようなミラー(例えば、偏光ビームスプリッター)で形成される。ビームスプリッター45は、第1光源部11の波長を被測定眼60に送光(反射)し、被測定眼60の網膜61から反射して戻ってくる第1光束を、透過するようなミラー(例えば、ダイクロミックミラー)で形成される。このビームスプリッター43、45によって、第1及び2光束が、互いに他方の光学系に入りノイズとなることがない。
【0023】
調整用光学系50は、例えば、後述する作動距離調整を主に行うものであって、第3光源部51と、第4光源部55と、集光レンズ52、53と、第3受光部54を備え、主に作動距離調整を行うものである。
【0024】
つぎに、アライメント調整について説明する。アライメント調整は、主に、第2受光光学系30及び第2送光光学系80により実施される。
【0025】
まず、第2光源部31からの光束は、集光レンズ32、ビームスプリッター33、43、アフォーカルレンズ42を介して、対象物である被測定眼60を略平行な光束で照明する。被測定眼60の角膜62で反射した反射光束は、あたかも角膜62の曲率半径の1/2の点から射出したような発散光束として射出される。この発散光束は、アフォーカルレンズ42、ビームスプリッター43、33及び集光レンズ34を介して、第2受光部35にスポット像として受光される。
【0026】
ここで、この第2受光部35上のスポット像を光軸上から外れている場合、眼光学特性測定装置本体を、上下左右に移動調整し、スポット像が光軸上と一致させる。このように、スポット像が光軸上と一致すると、アライメント調整は完了する。なお、アライメント調整は、被測定眼60の角膜62を第3光源部51により照明し、この照明により得られた被測定眼60の像が第2受光部35上に形成されるので、この像を利用して瞳中心が光軸と一致するようにしてもよい。
【0027】
つぎに、作動距離調整について説明する。作動距離調整は、主に、調整用光学系50により実施される。
まず、作動距離調整は、例えば、第4光源部55から射出された光軸付近の平行な光束を、被測定眼60に向けて照射すると共に、この被測定眼60から反射された光を、集光レンズ52、53を介して第3受光部54で受光することにより行われる。また、被測定眼60が適正な作動距離にある場合、第3受光部54の光軸上に、第4光源部55からのスポット像が形成される。一方、被測定眼60が適正な作動距離から前後に外れた場合、第4光源部55からのスポット像は、第3受光部54の光軸より上又は下に形成される。なお、第3受光部54は、第4光源部55、光軸、第3受光部54を含む面内での光束位置の変化を検出できればいいので、例えば、この面内に配された1次元CCD、ポジションセンシングデバイス(PSD)等を適用できる。
【0028】
つぎに、第1照明光学系10と第1受光光学系20との位置関係を概略的に説明する。
第1受光光学系20には、ビームスプリッター45が挿入されており、このビームスプリッター45によって、第1照明光学系10からの光は、被測定眼60に送光されると共に、被測定眼60からの反射光は、透過される。第1受光光学系20に含まれる第1受光部23は、変換部材であるハルトマン板22を通過した光を受光し、受光信号を生成する。
【0029】
また、第1光源部11と被測定眼60の網膜61とは、共役な関係を形成している。被測定眼60の網膜61と第1受光部23とは、共役である。また、ハルトマン板22と被測定眼60の瞳孔とは、共役な関係を形成している。さらに、第1受光光学系20は、被測定眼60の前眼部である角膜62、及び瞳孔と、ハルトマン板22と略共役な関係を形成している。すなわち、アフォーカルレンズ42の前側焦点は、被測定眼60の前眼部である角膜62及び瞳孔と略一致している。また、光軸に対し傾斜しているロータリープリズム16の面は、瞳孔と略共役位置に配置されている。
【0030】
また、第1照明光学系10と第1受光光学系20は、第1光源部11からの光束が、集光する点で反射されたとして、第1受光部23での反射光による信号ピークが最大となるように、連動して移動する。具体的には、第1照明光学系10と第1受光光学系20は、第1受光部23での信号ピークが大きくなる方向に移動し、信号ピークが最大となる位置で停止する。これにより、第1光源部11からの光束は、被測定眼60上で集光する。
【0031】
また、レンズ12は、光源11の拡散光を平行光に変換する。絞り14は、眼の瞳、あるいはハルトマンプレート21と光学的に共役の位置にある。絞り14は、径がハルトマンプレート21の有効範囲より小さく、いわゆるシングルパスの収差計測(受光側だけに目の収差が影響する方法)が成り立つ様になっている。レンズ13は、上記を満たすために、実光線の眼底共役点を前側焦点位置に、さらに、眼の瞳との共役関係を満たすために、後側焦点位置が絞り14と一致するように配置されている。
【0032】
また、光線15は、光線24とビームスプリッター45で共通光路になった後は、近軸的には、光線24と同じ進み方をする。但し、シングルパス測定のときは、それぞれの光線の径は違い、光線15のビーム径は、光線24に比べ、かなり細く設定される。具体的には、光線15のビーム径は、例えば、眼の瞳位置で1mm程度、光線24のビーム径は、7mm程度になることもある(なお、図中、光線15のビームスプリッター45から眼底61までは省略している)。
【0033】
つぎに、変換部材であるハルトマン板22について説明する。
第1受光光学系20に含まれるハルトマン板22は、反射光束を複数のビームに変換する波面変換部材である。ここでは、ハルトマン板22には、光軸と直交する面内に配された複数のマイクロフレネルレンズが適用されている。また、一般に、測定対象部(被測定眼60)について、被測定眼60の球面成分、3次の非点収差、その他の高次収差までも測定するには、被測定眼60を介した少なくとも17本のビームで測定する必要がある。
【0034】
また、マイクロフレネルレンズは、光学素子であって、例えば、波長ごとの高さピッチの輪帯と、集光点と平行な出射に最適化されたブレーズとを備える。ここでのマイクロフレネルレンズは、例えば、半導体微細加工技術を応用した8レベルの光路長差を施したもので、高い集光率(例えば、98%)を達成している。
【0035】
また、被測定眼60の網膜61からの反射光は、アフォーカルレンズ42、コリメートレンズ21を通過し、ハルトマン板22を介して、第1受光部23上に集光する。したがって、ハルトマン板22は、反射光束を少なくとも、17本以上のビームに変換する波面変換部材を備える。
【0036】
図3は、本発明に関する眼光学特性測定装置の概略電気系200を示すブロック図である。眼光学特性測定装置に関する電気系200は、例えば、演算部210と、制御部220と、表示部230と、メモリ240と、第1駆動部250及び第2駆動部とを備える。
【0037】
演算部210は、第1受光部23から得られる受光信号(4)、第2受光部35から得られる受光信号(7)、第3受光部54から得られる受光信号(10)を入力すると共に、座標原点、座標軸、座標の移動、回転、全波面収差、角膜は面収差、ゼルニケ係数、収差係数、Strehl比、白色光MTF、ランドルト環パターン等を演算する。また、このような演算結果に応じた信号を、電気駆動系の全体の制御を行う制御部220と、表示部230と、メモリ240とにそれぞれ出力する。なお、演算210の詳細は後述する。
【0038】
制御部220は、演算部210からの制御信号に基づいて、第1光源部11の点灯、消灯を制御したり、第1駆動部250及び第2駆動部260を制御するものであり、例えば、演算部210での演算結果に応じた信号に基づいて、第1光源部11に対して信号(1)を出力し、プラチドリング71に対して信号(5)を出力し、第2光源部31に対して信号(6)を出力し、第3光源部51に対して信号(8)を出力し、第4駆動部に対して信号(9)を出力し、さらに、第1駆動部250及び第2駆動部260に対して信号を出力する。
【0039】
第1駆動部250は、例えば、演算部210に入力された第1受光部23からの受光信号(4)に基づいて、第1照明光学系10全体を光軸方向に移動させるものであり、図示しない適宜のレンズ移動手段に対して信号(2)を出力すると共に、このレンズ移動手段を駆動する。これにより、第1駆動手段250は、第1照明光学系10の移動、調節を行うことができる。
【0040】
第2駆動手段260は、例えば、演算部210に入力された第1受光部23からの受光信号(4)に基づいて、第1受光光学系20全体を光軸方向に移動させるものであり、図示しない適宜のレンズ移動手段に対して信号(3)を出力すると共に、このレンズ移動手段を駆動する。これにより、第2駆動手段260は、第1受光光学系20の移動、調節を行うことができる。
【0041】
図4に、本発明の眼特性測定装置の演算部に関する詳細構成図を示す。演算部210は、測定部111、解析部111’、座標設定部112、アライメント制御部113、マーカー設置部114、入出力部115、変換部116を備える。
【0042】
第1受光部23は、被検眼眼底から反射して戻ってくる受光光束から第1受光信号を形成し、測定部111に導く。第2受光部35は、被検眼前眼部の特徴部分及び/又は被検眼前眼部に形成されたマーカーに関する情報を含む受光光束から前眼部の情報を含む第2受光信号を形成し、測定部111及び座標設定部112に導く。
【0043】
測定部111は、第1受光部からの第1受光信号に基づき、被検眼の屈折力又は角膜形成を含む光学特性を求める。また、測定部111は、受光光束のスポット径および受光光束の散乱度合いを求めるための解析部111’に第1受光信号を送る。なお、解析部111’は、第1受光部23から直接第1受光信号を入力するように構成されてもよい。解析部111’の詳細については後述する。測定部111は、特に、第1受光部23からの第1受光信号に基づき、眼光学特性測定を行う。また、測定部111は、特に、第2受光部35からの第2受光信号に基づき、角膜トポグラフィー測定を行う。また、測定部111は、収差結果の演算、また必要に応じてアブレーション量を演算し、その演算結果を入出力部115を介して手術装置に出力する。
【0044】
図5は、第1受光部23により受光された画像の一部を拡大した図である。図(A)が円錐角膜眼、図(B)が白内障眼の場合のハルトマン像の一例である。第1受光部23により受光されたハルトマン像は、例えば、被測定眼からの反射光に基づいた画像であって、この反射光がハルトマン板22を介して概ね外側に拡散した光束として第1受光部23上に受光された場合での複数の領域点(図中、円状、楕円状等)を含む。この例のハルトマン像の光信号は、電気信号に変換され、上述の第1信号として解析部111’に入力される(又は、取り込まれる)。
【0045】
このように、ハルトマンシャック波面センサーからの情報としては、次のようなものが含まれる。
・点像の重心から波面(古典的な収差計測)
・点像のボケ具合から局所的な情報(局所的な散乱計測)
また、散乱の多い眼については、ハルトマン像に波面収差のみからでは説明することのできない像のボケが観察される。また、測定で得られたハルトマン像と波面収差から復元されたハルトマン像とを比較することにより、散乱量を推定することが考えられる。
【0046】
解析部111’では、この複数の領域点は受光光束の一つと捉え、受光光束のスポット径乃至受光光束の光量の最大値と最小値との比、すなわち受光光束の散乱度合いを求める。解析部111’は、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いの関係を示す分布を求める。また、受光光学系に入射する光束の波面収差と、受光光束のスポット径との関係を示す分布を求める。なお、解析部111’は受光光学系に入射する光束の波面収差と、受光光束の散乱度合いと、受光光束のスポット径との相関関係について分布を求めるものであるので、上述した分布に限定されない。
【0047】
解析部111’は、受光光学系に入射する光束の波面収差から、波動光学的計算による点像強度分布(PSF)をもとめ、これと、受光光束の径、つまり画像からの強度を実測して求めた、点像強度分布(PSF)を比較する計算機能を有する。たとえば、点像を含む四角形領域(その辺の長さはおおよそ点像の間隔に等しく、この領域には点像一つが通常含まれる)内での、最大値、最小値の中間値での面積、あるいは、幅などを比較できるようになっていることもある。
なお、解析部111’のいままで述べた解析は、ハルトマン像の特定の複数個の点像に対応していてもよく、この条件では、一回の測定の結果として、計算は、それぞれの点像を解析したり、実測して得られた値の平均値を利用することもある。
解析部111’は、求められた上記第1受光部である受光光学系に入射する光束の受光光束の散乱度合いが強いほど、白内障などの影響があるものと判断し、その旨表示部240に出力することができる。また、解析部111’は、求められた上記第1受光部である受光光学系に受光光束のスポット径が大きいほど、白内障などの影響があるものと判断し、その旨表示部240に出力することができる。
【0048】
なお、解析部111’による判断結果、解析結果等は、表示部240にデータ、表、グラフ、3次元表示、グラフィック表示等の各種様式で表示されたり、出力部によりCD−ROM、FD、MO等の記録媒体又は他の装置に出力されるようにしてもよい。
図6に、波面から点像強度分布を求める説明図を示す。
被検眼眼底から反射した光束の波面がハルトマン板を通過し、そのときの光束の傾斜からレンズレット内の波面収差RMSが求め、さらに点像強度分布PSFの半値部分の面積などのファクターを求める。
なお、解析部111’は、散乱係数を次式のように求めることができる。
【0049】
【数1】
Figure 0004191600
【0050】
・Index:散乱係数(散乱指標ともいう)
・A:PSFの半値部分の面積(平均)
・RMSSL:レンズレット部分での波面収差(平均)
・a:非白内障眼測定により求める定数
・c:測定装置の散乱校正定数
なお、a、cは図7で、円錐角膜眼と正常眼を使ってもとめた、回帰直線の係数である。この場合は、a:1次の係数は28.894、c:定数項は8.6623である。
実際の解析では、ハルトマン像の複数の点像について、面積Aをもとめ、これを、上記の式で処理したものを、平均して一回の測定の結果とすることもある。
この散乱係数は、各レンズレットの各種ファクターを用いて、各レンズレット毎に求められる。
点像の画像と点像強度との関係は、図9に示す関係にある。この際、光量と出力の関係を示すガンマ値は1になるようなCCDを採用しておれば、PSFの強度分布はCCDのデジタルカウント(コンピュータカウント)に比例するので、測定が簡単である。ここで、点像を中心とした0.6mm角の四角形ないで、最低、最高強度をもとめ、これからマイケルソンコントラスト比をもとめることも可能であるし、最低と最高強度の中間点の面積を求めることも可能である。
また、波面収差RMSSLの代わりに、図6の点像強度分布(PSF)を波面収差から計算して求め、これを、上記の実測のPSFと比較する方法も考えられる。
この方法を使った場合は、正常眼と円錐角膜など、散乱が少ない眼を使った、校正の必要がなくなり、結果の信頼性が増す。一方、波面収差とPSFを比較する前の方法では、計算によりPSFを計算する手間がないので、全体の処理時間をかなり短くすることができる。
【0051】
座標設定部112は、第1又は第2受光信号に含まれる被検眼瞳に対応する第1及び第2座標系の信号を、それぞれ基準座標系の信号に変換する。座標設定部112は、第1及び第2座標系の各信号に基づき、瞳エッジと瞳中心を求める。
【0052】
また、座標設定部112は、被検眼前眼部の特徴信号を含む第2受光信号に基づき、座標原点及び座標軸の向きを決定する。また、座標設定部112は、第2受光信号中の被検眼前眼部の特徴信号の少なくともいずれか1つに基づき、座標原点、座標軸の回転や移動を求め、測定データと座標軸の関係付けを行う。なお、特徴部分は、瞳位置、瞳中心、角膜中心、虹彩位置、虹彩の模様、瞳の形状、リンバス形状の少なくとも一つを含むものである。例えば、座標設定部112は、瞳中心、角膜中心等の座標原点を設定する。座標設定部112は、第2受光信号に含まれる被検眼前眼部の特徴部分の像に対応する特徴信号に基づき座標系を形成する。また、座標設定部112は、第2受光信号に含まれる被検眼に設けられたマーカーについてのマーカー信号及び被検眼前眼部についての信号に基づき座標系を形成する。座標設定部112は、マーカー信号を含む第2受光信号に基づき、座標原点及び座標軸の向きを決定することができる。座標設定部112は、第2受光信号中のマーカー信号に基づいて、座標原点を求め、第2受光信号中の被検眼前眼部の特徴信号の少なくともいずれか1つに基づき、座標軸の回転や移動を求め、測定データと座標間の関係付けを行うことができる。または、座標設定部112は、第2受光信号中の前眼部についての特徴信号の少なくともいずれか1つに基づき座標原点を求め、第2受光信号中のマーカー信号に基づいて座標軸の回転や移動を求め、測定データと座標軸の関係付けを行うようにしてもよい。または、座標設定部112は、第2受光信号中の被検眼前眼部の特徴信号の少なくともいずれか1つに基づき、座標原点、座標軸の回転や移動を求め、測定データと座標軸の関係付けを行うようにしてもよい。
【0053】
変換部116は、測定部111により求められた被検眼の第1及び第2光学特性を、前記座標設定部により形成された各基準座標系により関係つけて合成する。また、変換部116は、座標設定部112が求めた瞳中心を原点とすることにより基準座標系に変換する。
【0054】
第1照明光学系と、第1受光光学系20と、第2受光光学系30と、共通光学系40と、調整用光学系50と、第2照明光学系70と、第2送光光学系80等のいずれかひとつ又は複数又は全ては、適宜光学系100のアライメント部に掲載される。アライメント制御部113は、第2受光部により得られた第2受光信号に基づく座標設定部112の演算結果に従い、被検眼の動きに応じてこのアライメント部を移動可能とする。マーカー設置部114は、座標設定部112により設定された座標系に基づき被検眼前眼部にこの座標系に関連付けられたマーカーを形成する。入出力部115は、測定部又は座標設定部からの、収差量、座標原点、座標軸の回転、移動、アブレーション量等のデータや演算結果を手術装置に出力するためのインタフェースである。表示部240は、測定部111により求められた被検眼の光学特性を、上記座標設定部により形成された座標系との関係で表示を行う。
【0055】
手術装置300は、手術制御部121、加工部122、メモリ部123を含む。手術制御部121は、加工部122を制御し、角膜切削等の手術の制御を行う。加工部122は、角膜切削等の手術のためのレーザを含む。手術メモリ部123は、切削に関するデータ、モノグラム、手術計画等の手術のためのデータが記憶されている。
【0056】
次に、図7に、本実施の形態に係る眼光学特性測定装置による実験結果の図(1)を示す。本発明の実施の形態には、眼光学特性の測定についての確認のため、正常眼9眼、円錐角膜眼24眼、白内障眼17眼の測定を行ない半値幅を求めた。なお、図中、正常眼(normal)はひし形(◆)、円錐角膜眼(keratoconus)は四角(■)、白内障眼(cataract)は三角(▲)で示している。
【0057】
測定部111又は解析部111’は、第1受光信号(4)からの出力結果を所定の解析方法で解析する。すなわち、受光したレーザ光のぼけを散乱光と考え、受光光束のスポット径の大きさを基にした半値幅(square root of area for apots)、または受光光束の最大受光量に対する最小受光量の比、すなわち散乱強度比(minimum intensity/maximum intensity、散乱係数)を求める。また、測定部111又は解析部111’は、受光光学系で求められた第1受光部23に入射する波面収差の位相(標準偏差)に対する、受光光束のスポット径の分布(図6)または受光光束の散乱強度比の分布を作成する。
【0058】
なお、白内障眼については、この近似した直線から外れることにより、円錐角膜眼と区別して識別することができる。すなわち、求められた直線近似を基にして白内障眼の疑いのある被検者とを判別し、手術・治療の判断材料に用いることができる。
【0059】
図8に、本実施の形態に係る眼光学特性測定装置による実験結果の図(2)を示す。
この図は、図7の半値幅から[数1]による補正を加えたものである。縦軸は半値幅から[数1]にレンズレットの波面収差を代入して求めた値を減算することによって得られた量である。非白内障眼では求めた値がほぼ横並びになる。白内障眼、または散乱の大きい目ではこの値が大きくなる。また、散乱を無視できる模型眼を測定し、この測定値でさらに校正をかけて、散乱量の予測をより正確にすることも考えられる。ここで、用いた方法は、水晶体散乱の測定に向いているが、網膜散乱などの測定に応用することも考えられる。
【0060】
解析の結果、一例として、正常眼でSIR(散乱強度比)=0.460±0.067、円錐角膜眼でSIR=0.495±0.098、白内障眼でSIR=0.667±0.148となった(ANOVA(分散分析)、P<0.01)。また、散乱係数は、正常眼で2.61±0.70、円錐角膜眼で3.38±2.73、白内障眼で10.13±7.25であった。また、正常眼と円錐角膜眼の間には有意差がなかったが(P<0.122)、正常眼と白内障眼、円錐角膜眼と白内障眼間には有意差があった(P<0.01)。なお、解析法の有効性を確認するために散乱の少ない正常眼9眼と円錐角膜眼24眼、散乱の大きい白内障眼17眼を測定した。
【0061】
これにより、ハルトマンシャック波面センサーによる散乱量の測定の可能性が示唆された。今後、視機能と比較可能な評価基準を検討すると共に臨床上の有効性を確認する。
【産業上の利用可能性】
【0062】
本発明によると、波面収差測定が主目的であるハルトマンシャック波面センサーで散乱測定を可能とし、散乱測定をすることで、視機能を正確に評価できる眼光学特性測定装置を提供することができる。
【0063】
また、本発明によると、新たに、ハルトマンシャック波面センサーによる散乱測定法としてハルトマンイメージの背景光の散乱強度比(SIR、Scatter Intensity Ratio)から散乱量を推定する散乱解析法を開発し、ハルトマンシャック波面センサーの光学系による散乱の同時測定を可能にする眼光学特性測定装置を提供することができる。
【0064】
また、本発明によると、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いの関係の分布から、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いが強いほど、白内障の影響があるものと判断することができる眼光学特性測定装置を提供することができる。
また、本発明によると、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いと、受光光束のスポット径との関係の分布から、受光光学系に入射する光束の波面収差と、受光光束の散乱度合いが強いほど、又は受光光束のスポット径が大きいほど、白内障の影響があるものと判断することができる眼光学特性測定装置を提供することができる。
【図面の簡単な説明】
【0065】
【図1】本発明に関する眼光学特性測定装置の概略光学系100を示す図。
【図2】プラチドリングの構成図。
【図3】本発明に関する眼光学特性測定装置の概略電気系200を示すブロック図。
【図4】本発明の眼特性測定装置の演算部に関する詳細構成図。
【図5】第1受光部23により受光された画像の一部を拡大した図。
【図6】波面から点像強度分布を求める説明図。
【図7】本実施の形態に係る眼光学特性測定装置による実験結果の図(1)。
【図8】本実施の形態に係る眼光学特性測定装置による実験結果の図(2)。
【図9】点像の画像と点像強度を示す説明図。

Claims (20)

  1. 所定の波長の光束を発する光源部と、
    上記光源部からの光束で被検眼網膜上の微小な領域を照明するための照明光学系と、
    上記光源部からの光束が被検眼網膜から反射された反射光束の一部を、少なくとも実質的に17本のビームに変換する変換部材を介して受光するための受光光学系と、
    上記受光光学系により導かれた受光光束を受光し、信号を形成する受光部と、
    上記受光部からの信号に基づき、上記受光光学系に入射する光束の波面収差と受光光束の散乱度合いを求める演算部と
    を備えた眼光学特定測定装置。
  2. 所定の波長の光束を発する光源部と、
    上記光源部からの光束で被検眼網膜上の微小な領域を照明するための照明光学系と、
    上記光源部からの光束が被検眼網膜から反射された反射光束の一部を、少なくとも実質的に17本のビームに変換する変換部材を介して受光するための受光光学系と、
    上記受光光学系により導かれた受光光束を受光し、信号を形成する受光部と、
    上記受光部からの信号に基づき、上記受光光学系に入射する光束の波面収差と受光光束のスポット径を求める演算部と
    を備えた眼光学特定測定装置。
  3. 請求項1記載の眼光学特性測定装置において、
    上記演算部は、上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いの関係の分布を求めることを特徴とする眼光学特性測定装置。
  4. 請求項3記載の眼光学特性測定装置において、
    上記演算部は、受光光束の散乱度合いが強いほど、白内障などの影響があるものと判断するように構成されたことを特徴とする眼光学特性測定装置。
  5. 請求項2記載の眼光学特性測定装置において、
    上記演算部は、上記受光光学系に入射する光束の波面収差と、受光光束のスポット径との関係の分布を求めることを特徴とする眼光学特性測定装置。
  6. 請求項2記載の眼光学特性測定装置において、
    上記求められた受光光束のスポット径から波面収差の影響を引くことにより、水晶体散乱と網膜散乱を予測することを特徴とする眼光学特性測定装置。
  7. 請求項2記載の眼光学特性測定装置において、
    上記求められた受光光束のスポット径から波面収差の影響を引くために、正常眼や円錐角膜眼などの非白内障眼の受光光束のスポット径と波面収差の測定値を基にした近似直線を利用して、水晶体散乱と網膜散乱を予測することを特徴とする眼光学特性測定装置。
  8. 請求項2記載の眼光学特性測定装置において、
    上記求められた受光光束のスポット径から波面収差の影響を引くために、正常眼や円錐角膜眼などの非白内障眼の受光光束のスポット径と波面収差の測定値を基にした近似直線を、さらに装置自身の散乱量を構成するために模型眼測定値を基に修正して、水晶体散乱と網膜散乱を予測することを特徴とする眼光学特性測定装置。
  9. 請求項5記載の眼光学特性測定装置において、
    上記演算部は、受光光束のスポット径が大きいほど、白内障などの影響があるものと判断するように構成されたことを特徴とする眼光学特性測定装置。
  10. 請求項1記載の眼光学特性測定装置において、
    上記演算部は、上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いと、受光光束のスポット径との関係の分布を求めることを特徴とする眼光学特性測定装置。
  11. 請求項10記載の眼光学特性測定装置において、
    上記演算部は、求められた上記受光光学系に入射する光束の波面収差と、受光光束の散乱度合いが強いほど、又は受光光束のスポット径が大きいほど、白内障などの影響があるものと判断するように構成されたことを特徴とする眼光学特性測定装置。
  12. 請求項3乃至11に記載の眼光学特性測定装置において、
    上記演算部により求められた分布を表示する表示部をさらに備えた眼光学特性測定装置。
  13. 請求項4、9又は11に記載の眼光学特性測定装置において、
    上記演算部による判断結果を表示又は出力する表示部又は出力部をさらに備えた眼光学特性測定装置。
  14. 所定の波長の光束を発する光源部と、
    上記光源部からの光束で 被検眼網膜上の微小な領域を照明するための照明光学系と、
    上記光源部からの光束が被検眼網膜から反射された反射光束の一部を、少なくとも実質的に17本のビームに変換する変換部材を介して受光するための受光光学系と、
    上記受光光学系により導かれた受光光束を受光し、信号を形成する受光部と、
    上記受光部からの信号に基づき、上記受光光学系に入射する光束の波面収差から求められた点像強度分布と受光光束の実測されたスポット径を求める演算部とを備えた眼光学特性測定装置。
  15. 請求項14記載の眼光学特性測定装置において、
    上記演算部は、上記受光光学系に入射する光束の波面収差から求められた点像強度分布と、受光光束の散乱度合いの関係の分布を求めること特徴とする眼光学特性測定装置。
  16. 請求項14記載の眼光学特性測定装置において、
    上記演算部は、求められた点像強度分布の径、及び/又は、受光光束のスポット径が大きいほど、白内障などの影響があるものと判断するように構成されたことを特徴とする眼光学特性測定装置。
  17. 請求項14記載の眼光学特性測定装置において、
    上記演算部は、上記受光光学系に入射する光束の波面収差から求められた点像強度分布の径と、受光光束のスポット径との関係の分布を求めることを特徴とする眼光学特性測定装置。
  18. 請求項14記載の眼光学特性測定装置において、
    上記求められた受光光束のスポット径から点像強度分布の径を引くことにより、水晶体散乱と網膜散乱を予測することを特徴とする眼光学特性測定装置。
  19. 請求項2記載の眼光学特性測定装置において、
    上記演算部は、受光部からの信号に基づき得られる点像強度分布(PSF)を求め、求められた点像強度分布と、受光部からの信号に基づく被検眼の波面収差から求められた点像強度分布とを比較することにより、水晶体散乱と網膜散乱を予測することを特徴と眼光学特性測定装置。
  20. 請求項2記載の眼光学特性測定装置において、
    上記演算部は、点像を中心とした所定範囲での最低及び最高強度を求め、これに基づきマイケルソンコントラスト比又は最低と最高の強度の中間点の面積を求め、水晶体散乱と網膜散乱を予測することを特徴とする眼光学特性測定装置。
JP2003526271A 2001-09-07 2002-08-09 眼光学特性測定装置 Expired - Fee Related JP4191600B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001271679 2001-09-07
JP2001271679 2001-09-07
PCT/JP2002/008197 WO2003022138A1 (en) 2001-09-07 2002-08-09 Eye optical characteristic measuring instrument

Publications (2)

Publication Number Publication Date
JPWO2003022138A1 JPWO2003022138A1 (ja) 2004-12-24
JP4191600B2 true JP4191600B2 (ja) 2008-12-03

Family

ID=19097158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003526271A Expired - Fee Related JP4191600B2 (ja) 2001-09-07 2002-08-09 眼光学特性測定装置

Country Status (6)

Country Link
US (2) US7311402B2 (ja)
EP (1) EP1437084B1 (ja)
JP (1) JP4191600B2 (ja)
AT (1) ATE499039T1 (ja)
DE (1) DE60239278D1 (ja)
WO (1) WO2003022138A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241012B2 (en) * 2003-01-21 2007-07-10 Kabushiki Kaisha Topcon Ophthalmologic apparatus
US7458683B2 (en) * 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
DE10344781A1 (de) * 2003-09-23 2005-04-14 Carl Zeiss Meditec Ag Verfahren zur Bestimmung einer Intraokularlinse
JP4528049B2 (ja) * 2004-07-29 2010-08-18 株式会社トプコン 眼科装置
JP4679945B2 (ja) * 2005-03-30 2011-05-11 株式会社トプコン 光学特性測定装置
JP4630107B2 (ja) * 2005-03-31 2011-02-09 株式会社トプコン 眼光学特性測定装置
US20080170205A1 (en) * 2007-01-11 2008-07-17 Munger Rejean J Method and apparatus for correlated ophthalmic measurements
US8092021B1 (en) * 2007-01-26 2012-01-10 Aoptix Technologies, Inc. On-axis illumination for iris imaging
US8025399B2 (en) * 2007-01-26 2011-09-27 Aoptix Technologies, Inc. Combined iris imager and wavefront sensor
US7832864B2 (en) * 2007-06-15 2010-11-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Inverse optical design
JP5301908B2 (ja) * 2007-09-03 2013-09-25 株式会社ニデック 眼屈折力測定装置
US8331712B2 (en) * 2008-06-25 2012-12-11 Industrial Technology Research Institute Method for designing computational optical imaging system
US7896498B2 (en) 2009-03-30 2011-03-01 Ottawa Hospital Research Institute Apparatus and method for optical measurements
JP5539089B2 (ja) 2010-07-23 2014-07-02 キヤノン株式会社 眼科装置、眼科装置の制御方法及びプログラム
DE102011102355A1 (de) * 2011-05-24 2012-11-29 Carl Zeiss Meditec Ag System zur Bestimmung der Topographie der Kornea eines Auges
US9122926B2 (en) 2012-07-19 2015-09-01 Honeywell International Inc. Iris recognition using localized Zernike moments
CN104905763B (zh) * 2015-06-18 2017-12-19 苏州四海通仪器有限公司 可测量旁中心离焦的验光装置
JP6736356B2 (ja) * 2016-05-31 2020-08-05 株式会社トプコン 眼科装置
JP6898712B2 (ja) * 2016-05-31 2021-07-07 株式会社トプコン 眼科装置
JP6775337B2 (ja) * 2016-06-28 2020-10-28 株式会社トプコン 眼科装置
JP2018117842A (ja) * 2017-01-25 2018-08-02 株式会社トプコン 眼科測定装置
CN111743510B (zh) * 2020-06-24 2023-09-19 中国科学院光电技术研究所 一种基于聚类的人眼哈特曼光斑图像去噪方法
EP4238482A1 (en) 2020-10-27 2023-09-06 Topcon Corporation Ophthalmological observation device, method for controlling same, program, and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630753B2 (ja) * 1995-02-02 2005-03-23 株式会社ニデック 眼科測定装置
JP3706940B2 (ja) 1997-05-09 2005-10-19 株式会社トプコン 眼特性測定装置
US6234978B1 (en) * 1997-02-12 2001-05-22 Kabushiki Kaisha Topcon Optical characteristic measuring apparatus
CA2684415A1 (en) * 1999-07-28 2001-02-08 Visx, Incorporated Hydration and topography tissue measurements for laser sculpting
JP2001095760A (ja) * 1999-09-28 2001-04-10 Topcon Corp 眼の光学特性測定装置
JP4692939B2 (ja) 1999-11-15 2011-06-01 株式会社トプコン 眼特性測定装置
US6525883B2 (en) * 1999-12-27 2003-02-25 Kabushiki Kaisha Topcon Optical characteristic measuring instrument
US6659613B2 (en) * 2000-03-27 2003-12-09 Board Of Regents, The University Of Texas System Methods and systems for measuring local scattering and aberration properties of optical media

Also Published As

Publication number Publication date
EP1437084B1 (en) 2011-02-23
US20080123053A1 (en) 2008-05-29
JPWO2003022138A1 (ja) 2004-12-24
DE60239278D1 (de) 2011-04-07
US7311402B2 (en) 2007-12-25
US20050073647A1 (en) 2005-04-07
EP1437084A1 (en) 2004-07-14
WO2003022138A1 (en) 2003-03-20
US7677731B2 (en) 2010-03-16
ATE499039T1 (de) 2011-03-15

Similar Documents

Publication Publication Date Title
JP4191600B2 (ja) 眼光学特性測定装置
US6685320B2 (en) Opthalmic characteristic measuring apparatus
JP4649035B2 (ja) 眼特性測定装置
JP3740546B2 (ja) 眼科測定装置
US7241012B2 (en) Ophthalmologic apparatus
US7216980B2 (en) Eye characteristic measuring apparatus
JP2004507306A (ja) 眼の光学的結像品質についての非接触測定システム
JP4471680B2 (ja) 眼科装置
JP4663147B2 (ja) 眼特性測定装置
US7249851B2 (en) Eye characteristic measuring apparatus
JP4392006B2 (ja) 眼科測定装置
JP3870150B2 (ja) 眼科測定装置
JP4663148B2 (ja) 眼特性測定装置
JP4237537B2 (ja) 眼科装置
JP4846938B2 (ja) 眼特性測定装置
JP4237533B2 (ja) 眼科装置
Dinc et al. Assessment and comparison of anterior chamber dimensions using various imaging techniques
EP3052000B1 (en) Apparatus and method for measuring aberrations of the optical system of a living being
US20040080713A1 (en) Ophthalmic measuring apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees