JP4471680B2 - 眼科装置 - Google Patents

眼科装置 Download PDF

Info

Publication number
JP4471680B2
JP4471680B2 JP2004044463A JP2004044463A JP4471680B2 JP 4471680 B2 JP4471680 B2 JP 4471680B2 JP 2004044463 A JP2004044463 A JP 2004044463A JP 2004044463 A JP2004044463 A JP 2004044463A JP 4471680 B2 JP4471680 B2 JP 4471680B2
Authority
JP
Japan
Prior art keywords
measurement
unit
eye
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004044463A
Other languages
English (en)
Other versions
JP2005230328A (ja
Inventor
俊文 三橋
陽子 広原
さゆり 二宮
直之 前田
尚 不二門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2004044463A priority Critical patent/JP4471680B2/ja
Publication of JP2005230328A publication Critical patent/JP2005230328A/ja
Application granted granted Critical
Publication of JP4471680B2 publication Critical patent/JP4471680B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、眼科装置に係り、特に、被検眼の光学特性を波面センサを用いて測定した結果により、ドライアイの状態を判別するための眼科装置に関する。
従来、ドライアイに関連する眼科測定装置としては、次のような技術が挙げられる。
特許文献1には、所定の蛍光剤を点眼した被検眼の角膜及び涙液からの蛍光強度を定量的に測定する眼科測定装置が記載されている。特許文献2には、脂質層の表面と裏面の反射光の干渉による干渉模様のカラー画像を観察することにより、被検眼の脂質層の状態、涙液の流れの様子などを知ることができ、非接触で局所的なドライアイの簡易的診断を容易に行うことができる眼科装置が記載されている。また、特許文献3には、被検眼の涙液層から反射される信号光のみをCCDに入射することで、観察視野にケラレを生じることなく、広い観察視野で妨害光のない鮮明な涙液干渉パターンを観察できる眼科涙液観察装置が記載されている。
特開平6−277179号公報 特開平7−136120号公報 特開平8−52112号公報
しかしながら、従来のドライアイの臨床に用いられる眼科測定装置としては、必ずしも十分にドライアイの状態の判別に関する要求を満たしているとはいえなかった。
本発明は、以上の点に鑑み、被検者がより自然な状態のまま、所定期間毎に瞬きを促して、一定の条件のもとでの測定結果を得るようにし、各個人ごとの経時変化や、異なる人同士での測定結果の比較をより有意義にできる測定を実現するための眼科測定装置を提供することを目的とする。
本発明の第1の解決手段によると、
被検眼角膜に所定形状の測定光束を入射する第1照明光学系と、
被検眼角膜から反射光を受光する第1受光光学系と、
上記第1受光光学系からの受光反射光を電気信号に変換する第1受光部と、
測定期間内において、所定期間毎に被検者に瞬きを促すための合図信号を形成する合図信号形成部と、
上記合図信号形成部が形成した複数の合図信号を含む測定期間中であって、かつ合図信号により促される被検者の瞬き間において、複数回上記第1受光部の受光信号から被検眼の角膜形状を求める測定部と、
上記測定部の測定結果から角膜形状の時間的変化を比較可能に表示する表示部と、
を備えた眼科装置が提供される。
本発明の第2の解決手段によると、
被検眼眼底に測定光束を入射する照明光学系と、
被検眼眼底からの反射光を受光する受光光学系と、
受光部で受光した受光反射光を電気信号に変換する受光部と、
測定期間内において、所定期間毎に被検者に瞬きを促すための合図信号を形成する合図信号形成部と、
上記合図信号形成部が形成した複数の合図信号を含む測定期間中であって、かつ合図信号により促される被検者の瞬き間において、複数回の被検眼の波面収差の測定を行う波面測定部と、
複数回の被検眼の波面収差の測定結果の時間的変化を比較可能に表示する表示部と、
を備えた眼科装置が提供される。
1.光学系構成
図1に、眼科装置の光学系の構成図を示す。
眼科装置は、第1照明光学系10と、第1光源部11と、第1測定部25と、前眼部照明部30と、前眼部観察部40と、第1調整光学部50と、第2調整光学部70と、視標光学部90を備える。また、第1測定部25は、第1受光光学系20と、第1受光部21を含む。なお、被検眼100については、網膜(眼底)、角膜(前眼部)が示されている。また、座標(x,y)及び座標(x,y)、距離Z等の関係については後述する。
以下、各部について詳細に説明する。
第1照明光学系10は、第1光源部11からの光束で被検眼100の眼底上で微小な領域を照明するためのものである。第1照明光学系10は、例えば、集光レンズと、バリアブルシリンダーレンズと、リレーレンズとを備える。
第1光源部11は、第1波長の光束を発する。第1光源部11は、空間コヒーレンスが高く、時間コヒーレンスは高くないものが望ましい。ここでは、一例として、第1光源部11には、SLD(スーパールミネセンスダイオード)が採用されており、輝度が高い点光源を得ることができる。なお、第1光源部11は、SLDに限られるものではなく、レーザーの様に空間、時間ともコヒーレンスが高いものでも、回転拡散板や偏角プリズム(Dプリズム)などを挿入することにより、適度に時間コヒーレンスを下げることで利用できる。そして、LEDの様に、空間、時間ともコヒーレンスが高くないものでも、光量さえ充分であれば、ピンホール等を光路の光源の位置に挿入することで、使用可能になる。また、照明用の第1光源部11の波長は、例えば、赤外域の波長(例、780nm)を使用することができる。
第1受光光学系20は、例えば、被検眼100の網膜から反射して戻ってきた光束を受光し第1受光部21に導くためのものである。第1受光光学系20は、例えば、第1変換部材22(例、ハルトマン板)と、アフォーカルレンズと、バリアブルシリンダーレンズと、リレーレンズを備える。第1変換部材22は、反射光束を、4次以上であれば少なくとも17本の複数のビームに変換するためのレンズ部を有する波面変換部材である。第1変換部材22には、光軸と直交する面内に配置された複数のマイクロフレネルレンズを用いることができる。第1変換部材22は、長焦点又は高感度のものの他にも、短焦点及び/又は高密度のレンズ部を有するようにしてもよい。眼底からの反射光は、第1変換部材22を介して第1受光部21上に集光する。第1受光部21は、第1変換部材22を通過した第1受光光学系20からの光を受光し、第1信号を生成するためのものである。なお、アフォーカルレンズ42の前側焦点は、被検眼100の瞳孔と略一致している。
移動部15は、第1照明光学系10と第1受光光学系20を含む図1の点線で囲まれた部分を一体に移動させる。例えば、第1光源部11からの光束が集光する点で反射されたとして、その反射光による第1受光部21での信号ピークが最大となる関係を維持して、第1受光部21での信号ピークが強くなる方向に移動し、強度が最大となる位置で停止することができる。また、第1照明光学系10と第1受光光学系20は別々に移動させ、例えば、第1光源部11からの光束が集光する点で反射されたとして、その反射光による第1受光部21での信号ピークが最大となる関係を維持して、第1受光部21での信号ピークが強くなる方向に移動し、強度が最大となる位置で停止することもできる。
第1光源部11から被検眼100への入射光は絞り12を偏心させることで光束の入射位置を光軸に直交する方向に変更し、レンズや角膜の頂点反射を防いでノイズを押さえられる。絞り12は、径がハルトマン板22の有効範囲より小さく、受光側だけに眼の収差が影響する、いわゆるシングルパスの収差計測が成り立つことができる様になっている。
なお、第1光源部11から出た入射光線は、眼底から拡散反射された測定光線と共通光路になった後は、近軸的には、眼底から拡散反射された測定光線と同じ進み方をする。但し、シングルパス測定のときは、それぞれの光線の径は違い、入射光線のビーム径は、測定光線に比べ、かなり細く設定される。具体的には、入射光線のビーム径は、例えば、被検眼100の瞳位置で1mm程度、測定光線のビーム径は、7mm程度になることもある。なお、光学系を適宜配置することで、ダブルパス測定を行うこともできる。
前眼部照明部30は、第2波長の光束を発する第2光源部31を備え、第2光源部31からの光束で、例えば、プラチドリング又はケラトリング等を用いて前眼部を所定パターンで照射する。ケラトリングの場合、ケラト像により角膜の曲率中心付近だけのパターンを得ることができる。なお、第2光源部31から発せられる光束の第2波長は、例えば、第1波長(ここでは、780nm)と異なると共に、長い波長を選択できる(例えば、940nm)。
前眼部観察部40は、例えば、リレーレンズ、テレセン絞りとCCDで構成される第3受光部41を備え、例えば、プラチドリング、ケラトリング等の前眼部照明部30のパターンが、被測定眼100の前眼部から反射して戻ってくる光束を観察する。なお、テレセン絞りは、前眼部像がぼけないようにするための絞りである。
第1調整光学部50は、例えば、作動距離調整を主に行うものであって、光源部と、集光レンズと、受光部とを備える。ここで、作動距離調整は、例えば、光源部から射出された光軸付近の平行な光束を、被測定眼100に向けて照射すると共に、この被測定眼100から反射された光を、集光レンズを介して受光部で受光することにより行われる。また、被測定眼100が適正な作動距離にある場合、受光部の光軸上に、光源部からのスポット像が形成される。一方、被測定眼100が適正な作動距離から前後に外れた場合、光源部からのスポット像は、受光部の光軸より上又は下に形成される。なお、受光部は、光源部、光軸、受光部を含む面内での光束位置の変化を検出できればいいので、例えば、この面内に配された1次元CCD、ポジションセンシングデバイス(PSD)等を適用できる。
ビームスプリッタ61は、例えば、第1波長の光束を反射し、第2波長の光束を透過するダイクロイックミラーで構成されている。また、眼底からの反射むら等による光を均一化するためのロータリープリズム62が配置されている。ビームスプリッタ63は、第1光源部11からの光束を反射し、被検眼100の網膜で反射して戻ってくる光束を透過するミラー(例えば、偏光ビームスプリッタ)で構成されている。
第2調整光学部70は、例えば、XY方向のアライメント調整を行うものであって、アライメント用光源部と、レンズと、ビームスプリッタとを備える。
視標光学部90は、例えば、被検眼100の風景チャート、固視や雲霧をさせる為の視標を投影する光路を含むものであって、光源部(例えば、ランプ)、固視標92、リレーレンズを備える。光源部からの光束で固視標92を眼底に照射することができ、被検眼100にその像を観察させる。
上述の光学系は、主に、入射光線が細いシングルパスとして説明したが、本発明は、入射光線が太いダブルパスとしての眼特定測定装置に適用することも可能である。その際、光学系がダブルパス用構成で配置されるが、演算部による測定・計算処理は同様である。
(共役関係)
被測定眼100の眼底、視標光学部90の固視標92、第1光源部11、第1受光部21が共役である。また、被測定眼100の眼の瞳(虹彩)、ロータリープリズム62、第1受光光学系の変換部材(ハルトマン板)22、第1照明光学系10の測定光入射側の絞り12が共役である。
2.電気系構成
図2は、眼科装置の電気系の構成図である。
眼科装置の電気系の構成は、演算部600と、制御部610と、入力部650と、表示部700と、メモリ800と、第1駆動部910と、第2駆動部911と、第3駆動部912と、第4駆動部913と、合図発生部620を備える。入力部650は、表示部700に表示された適宜のボタン、アイコン、位置、領域等を指示するためのポインティングデバイス、各種データを入力するためのキーボード等を備える。
演算部600は、測定部601及び判定部602及び合図信号形成部603を備える。
ひとつの実施の形態では、測定部601は、測定開始時点と、その後の所定期間、複数回、上記第1受光部の受光信号から被検眼の角膜形状または角膜波面収差(涙液層表面形状、涙液層波面収差も含まれる)を求める。判定部602は、測定部601の測定結果から角膜形状の時間的変化を比較することにより、ドライアイの状態を判断する。
また、他の実施の形態では、測定部601は、さらに、被検眼が瞬きした後の開始時点から所定期間の間、第1受光部21の受光信号から第1変換部材22による分割光束に基づき被検眼の波面収差を測定するように構成されることができる。この場合、判定部602は、主に被検眼の瞬きの有無を判定するように構成される。
さらに他の実施の形態では、測定部(波面測定部)601は、所定期間、複数回の被検眼の波面収差の測定を行う。
判定部602は、主に被検眼の瞬きの有無を判定する。判定部602が最初の瞬きを検出すると、その信号を合図信号形成部603に送る。合図信号形成部603は、その信号に基づき、所定時間毎に合図を発生するための指示を合図発生部620に与える。合図発生部620は、合図信号形成部603からの指示に従い、所定の期間(例えば10秒)毎に被検者に瞬きを促すように合図を発生させる。その合図は、被検者が認識できるものであれば足り、例えば視覚的に光を発生させたり、ブザーを鳴らす聴覚に訴えるものなどが考えられる。一例としては、聴覚のタイプにおいては、タイミングを取りやすくするため、例えば、メトロノームのようにタイミングを刻んだりすることや、電話やテレビの時報のようにピピピピーとタイミングを知らせたり、1秒ごとにタイミングを刻む信号を出し、10秒ごとに瞬き合図の音色を出すように構成することもできる。
演算部600には、第1受光部21からの第1信号(4)と、前眼部観察部40からの信号(7)と、第1調整光学部50からの信号(10)とが入力される。演算部600は、第1受光部21からの第1信号(4)、前眼部観察部40からの信号(7)を入力し、例えば、光束の傾き角に基づき被測定眼100の光学特性を求める。演算部600は、これら演算結果に応じた信号又は他の信号・データを、電気駆動系の制御を行う制御部610と、表示部700と、メモリ800とにそれぞれ適宜出力する。
制御部610は、演算部600からの制御信号に基づいて、第1光源部11及び第2光源部31の点灯、消灯を制御したり、第1駆動部910〜第4駆動部913を制御するためのものである。制御部610は、例えば、演算部600での演算結果に応じた信号に基づいて、第1光源部11に対して信号(1)を出力し、第2調整光学部70に対して信号(5)を出力し、前眼部照明部30に対して信号(6)を出力し、第1調整光学部50に対して信号(8)及び(9)を出力し、視標光学部90に対して信号(11)を出力し、さらに、第1駆動部910〜第4駆動部913に対して信号を出力する。
第1駆動部910は、演算部600に入力された第1受光部21からの信号(4)に基づいて、信号(2)を出力して、第1照明光学系10のバリアブルシリンダーレンズと、第1受光光学系20のバリアブルシリンダーレンズとを、適宜のレンズ移動手段を駆動させて回動させるためのものである。このバリアブルシリンダーレンズはなくてもよい。
第2駆動部911は、例えば、演算部600に入力された第1受光部21からの受光信号(4)に基づいて、第1照明光学系10及び第1受光光学系20を光軸方向に移動させるものであり、移動部15に対して信号(3)を出力すると共に、移動部15のレンズ移動手段を駆動する。これら第1受光光学系20を光軸方向に移動させることにより、低次収差の補償を行うことができる。
第3駆動部912は、例えば、視標光学部90を移動させるものであり、図示しない適宜の移動手段に対して信号(12)を出力すると共に、この移動手段を駆動する。第4駆動部913は、ロータリープリズム62を回動させるものであり、図示しない適宜のレンズ移動手段に対して信号(13)を出力すると共に、このレンズ移動手段を駆動する。
3.測定フローチャート
3−1.測定フローチャート(第1の実施の形態)
図3に、第1の実施の形態の測定フローチャートを示す。
被検者が測定位置に来て測定が開始されると、目を測定できる位置に眼科測定装置をアライメントする(S101)。このアライメントは、手動でも自動でもよい。角膜形状測定のためには、角膜と眼科測定装置との位置を所定範囲で固定する必要がある。眼科測定装置は、前後、左右、上下の位置を固定するように、手動又は自動で制御される。例えば、プラチドリング(ケラトリング)、無限遠からの光点、平行投影の点、角膜の輪郭等のいずれか又は複数に基づき、操作者が手動でアライメントを維持したり、装置自体のオートアライメント機能により自動でアライメントを維持することができる。
つぎに、演算部600は、測定部601により装置の初期設定を行う(S103)。測定部601は、例えば、測定間隔を1秒、測定時間を70秒、瞬き合図信号は、10秒毎等に設定する。判定部が瞬きを検出すると、測定開始のためトリガーがなされる(S105)。トリガーとしては、例えば、操作者又は測定者による測定開始ボタンの操作による測定開始や演算部600等の装置自体が、自動的に測定開始等によって行ってもよい。また、入力部650から、これら測定開始のタイミングを選択して予め設定できるように構成してもよい。トリガーに従い、測定部601は、角膜形状及び角膜波面収差を測定する角膜形状測定処理を実行し、測定結果を演算部600によりメモリ800に記憶する(S107)。次に合図間隔となったかどうかが判断される(S108a)。ここで合図間隔である場合には、合図信号形成部603の指示により合図発生部620が合図(ブザーや、固視標の点滅など)を発生する。まだ合図信号を発生しないタイミングであれば、測定終了時間に達したかどうかが判断され、これに達しない場合には、測定タイミングかどうかがS108cで判断され、測定タイミングであれば、S107へ戻り角膜形状及び角膜波面収差測定が行われる。そして、測定タイミングでない場合には、角膜形状及び角膜波面収差の測定は行われずに、S108へ進む。角膜形状、より詳細には、角膜表面の涙液層表面形状の波面収差の測定処理の詳細は後述する。ここで、演算部600は、測定部601により測定終了時間に達するまで角膜形状測定処理を繰り返し、角膜形状及び角膜波面収差を求める(S109)。演算部600は、測定終了時間に達すると測定を終了し、メモリ800から測定結果を読み返し、表示部700に表示及び/又は出力部から出力する(S111)。
測定の結果を表示部700の表示態様に関して、以下に説明する。
図4には、測定期間70秒、合図間隔10秒、測定間隔10秒に設定された条件の下で得られた4名の被測定者の測定結果の全収差の表示例を示している。この測定結果は、瞳径をφ4mmで、高次(本例では3次から6次)の収差を測定したものを示している。図4のグラフa,b,c,dはそれぞれ、縦軸が波面収差(本例では3次から6次)をとり、横軸に測定時間をとっている。そして、瞬きのタイミングを縦線で示してある。この場合、第1回目の瞬きは、各個人の自然な状態に任せてあり、2回目以降に、所定期間毎(例えば10秒)に瞬きを促すように合図信号が形成され、測定期間70秒において、7回の測定が行われ、波面収差測定又は角膜形状若しくは、収差の測定は、1秒ごとに行われ、略70回の測定が行われる。
図5には、図4と同様の測定条件、被検者の測定結果を示しているが、瞳径を6mmとして測定を行った結果が示されている。ここで、被測定者が図4より1名少ないのは、瞳径が6mm開かないためデータが取得できなかったためである。この測定結果中、左下の被測定者は、ドライアイの被検者であり、他の被検者の測定結果と比較して、収差の平均値が大きく現れるなど、識別が容易かつ可能である。
(角膜形状測定:S107)
図6に、角膜形状測定のフローチャートを示す。これは、図3のステップS107に対応する。
まず、測定部601は、前眼部画像(プラチドリング入り)を取得する(S401)。取得した画像は、適宜メモリ800等に記憶される。測定部601は、前眼部画像に対して画像処理を実行して、プラチドリングと瞳エッジのディテクトする(S403)。測定部601は、ディテクトしたデータに基づき、角膜形状を計算する(S405)。測定部601は、計算された角膜形状から角膜波面収差の計算する(S407)。ここで、計算結果はゼルニケ係数で得られる。
以下に各ステップの詳細について説明する。
(前眼部画像:S401)
ステップS401では、次のような前眼部画像が取得される。
図7に、角膜形状の時間変化の説明図を示す。
図(A)は、測定開始直後であり、解析すると角膜波面収差は比較的小さい。一方、図(B)は、測定開始から30秒経過し、プラチドリングの像がぼやけており、解析すると角膜波面収差は比較的大きい。
なお、図8に、プラチドリング像のぼけの時間変化の説明図を示す。
図(A)は、測定開始直後であり、矢印で示すように、反射像がはっきりしており、プラチドリングの反射像の幅が狭い。一方、図(B)は、測定開始から所定時間経過したものであり、矢印で示すように、反射像がぼけており、プラチドリングの反射像の幅が広い。
(画像処理:S403)
図9に、プラチドリングと瞳エッジのディテクトの画像処理のフローチャートを示す。これは、ステップS403に対応する。
また、図10に、画像処理の説明図を示す。
まず、図10のように、測定部601は、取得した前眼部画像に基づき、角膜頂点の輝点を通る直線を選ぶ(S501)。つぎに、図8に示されるように、測定部601は、直線上の強度プロファイルを得る(S503)。プロファイルに基づき、測定部601は、角膜頂点から、両方の方向のピークを検知する(S505)(プラチドリング像に対応)。また、測定部601は、ピークの周りの強度の広がり方として、ピークの属する山の半値幅を求める(S507)。さらに、測定部601は、エッジに向かって次のピークを検知する(S509)(プラチドリング像に対応)。測定部601は、次のエッジが検出できたか判断し(S511)、エッジが検出されなくなるまで、ステップS507及びS509を繰り返す。
つぎに、測定部601は、次の角膜頂点を通る直線を選ぶ(S513)(例えば、最初の直線を0度、10度おきに170度まで)。測定部601は、一周終わったか判断し(S515)、一周終わるまでステップとS503以降の処理を繰り返す。その後、測定部601は、各評価ポイントのデータを時系列比較のためにメモリ800に保存する(S517)。こうして求められた角膜形状のデータは、例えば、リング及び角度毎にピーク値若しくは重心の座標値(リング位置)及び強度及び/又は半値幅等が時系列に記憶される。
(角膜形状の計算法:S405)
以下に、ステップS405について説明する。一例として、角膜形状の測定法を、Rand RH, Howland
HC, Applegate RA “Mathematical model of a placido disk karatometer and its
implications for recovery of corneal topography”, Optometry and Vision Science
74 (1997) p926-930に沿って説明する。
角膜形状を次の関数で表わされるとする。
=f(x,y)
ここで、x,yは角膜上の座標とする。
図1に示されるように、あるプラチドリングからの光線が撮像素子のある点に像を形成する。プラチドリングの位置を(x,y)、第3受光部41の撮像素子上の対応する点と共役の角膜上の点を(x,y)とする。プラチドリングから角膜の関数の基準面(ゼロ位置)までの距離をZとすると、これらの関係は次の2つの組の式で表される。
ここで、Zは図の作動距離調整部50で、制御または正確な距離値を知ることができる。なお、fは、関数fのxについての偏微分で、fは、yについての偏微分を表す。
ここで、プラチドリングは円形のものを採用しているので、図の軸に回転対称で
であり、このConstant(一定値)をr(これは装置の値であるから既知であることに注意する)で表わすとする。そうすると、測定される撮像素子上の点の位置がどのリングに属するかは、演算部600による画像処理の段階でわかるので、(画像素子上の点の座標の組)対(リングの半径)の関係が、たとえばリング11本、それぞれのリング上で360点デジタイズすれば、これに対応するだけの関係のデータ対ができる。
ここで、関数としてゼルニケの多項式での展開を採用する。通常の角膜では、とても高次の形状変化は無いと見なしてよいので、6ミリ程度の解析径であれば6次程度で展開を打ち切り、
で、表わすことが可能である。ここで、rは解析する半径で、規格化のために使われている。
このゼルニケ展開を、先の2つの関係式にいれ、プラチドリングが回転対称であることを利用すると、非線形の最小二乗法を利用することにより、係数c を決めることが可能である。これによって決まった係数を再度ゼルニケ展開に代入すれば、関数f(x,y)が決まったことになり、角膜形状が求まる。
(角膜波面の計算法:S407)
以下にステップS407について説明する。角膜形状が得られたので、光学設計の知られるところの非球面の光線追跡から、幾何光学的に厳密な角膜波面収差をもとめることが可能であることはよく知られている。ここでは、一例として、ごく簡単に角膜波面収差を求める方法を紹介する。
例えば、角膜上6ミリ直径の角膜波面収差であれば、角膜形状を球面度近似し(参照球面と呼ぶ)、この実際の角膜形状から参照球面の形状の差をとり、これに、空気と角膜の屈折率(n−1)をかけることで、角膜形状から角膜波面収差を求めることができる。ただし、もともとの参照球面からも、球面収差が発生するので、これを足しておく。これで近似精度5%以内で、角膜波面収差を求めることが可能である。
3−2.瞬きをトリガーにした眼科測定
つぎに、瞬きをトリガーにした眼科測定について説明する。
ステップS101及びS103は上述した通りである。ステップS105では、被検者は楽な状態で、瞬きも自然にするようにインストラクションされ、入力部650の測定開始ボタンが押される。つぎに、ステップS107及びS109では、演算部600は、測定部601によりハルトマンの連続測定(1秒間隔)を開始する。さらに、ここで、測定部601は、前眼部の連続測定(1秒間隔)を開始し、毎回その明暗に関するヒストグラムをもとめ、これから瞬きを判断する。
図11に、瞬きの判定フローチャートを示す。また、図12及び図13に、瞬きしていないとき及び瞬き中のヒストグラムについての説明図をそれぞれ示す。図12及び図13で、(a)は前眼部像、(b)はヒストグラムである。
瞬きの判定フローチャートが開始されると、演算部600の判定部602は、取得した前眼部像のヒストグラムを計算する(S301)。判定部602は、ヒストグラムのピークが所定数(例、150)と比較する(S303)。ここで、ピークが所定数より大きい場合、瞬き中と判断し(図13参照)、一方、小さい場合、瞬きしていないと判断することができる(図12参照)。
つぎに、メインフローに戻り、例えば、被験者に対しては、一回瞬きをしたあと、所定のタイミングで瞬きをするように指示がでる。判定部602は、最後の瞬きの終了時間をtとしたとき、tから所定の時間が経過したら、ハルトマン及び前眼部の測定を終了する。この場合に前眼部像をリアルタイムで取り込み続け、上記の瞬きの判定により正確な瞬きの間隔を得ることもできる。なお測定中のアラインメントとしては、例えば70秒程度の測定をするのであれば、被検眼の動きに追従して光軸を移動させ測定が継続可能とするオートアライメントが好ましい。なお、測定者がマニュアルでアラインメントを併せる機能を備えて追従させることもできる。
3−3.測定フローチャート(第2の実施の形態)
図14に、第2の実施の形態のフローチャートを示す。これは第1の実施の形態のフローチャートにステップS108の被検眼の波面収差測定の処理が加えられたものである。したがって、出力として、表示部700に両方の結果を比較表示することができる。
3−4.両眼同時測定例
図15に、両眼同時測定のための眼科システム構成図を示す。この眼科システムは、図1の光学系1a及び1bを両眼100a及び100bに対して備え、それらが独立に調節可能とされ被検者の両眼に対してアライメントが可能となる。そして、上記までは片眼のみの測定であったが、同装置を2台用いる形で両眼同時に測定を行うこともできる。片眼測定であっても両眼開いていなければならず片眼測定後しばらくはもう片眼の測定を行うことができなかったが、この場合、両眼共確実に測定できるという利点がある。
3−5.測定フローチャート(第3の実施の形態)
図17に、第3の実施の形態のフローチャートを示す。これは第1の実施の形態のフローチャートのステップS107の代わりに、ステップS107’の波面収差測定の処理を実行するものであり、他のステップS101〜S105,S109〜117は第1の実施の形態と同様の処理が実行される。ステップS107’では、トリガーに従い、測定部(波面測定部)601は、被検眼の波面収差を測定する。ここで、ステップS109により、演算部600は、測定部(波面測定部)601により測定終了時間に達するまで波面収差の測定を繰り返す。
4.ゼルニケ解析とRMS
つぎに、ゼルニケ解析について説明する。一般に知られているゼルニケ多項式からゼルニケ係数c 2j−iを算出する方法について説明する。ゼルニケ係数c 2j−iは、例えば、ハルトマン板22を介して第1受光部21で得られた光束の傾き角に基づいて被検眼100の光学特性を把握するための重要なパラメータである。
被検眼100の波面収差W(X,Y)は、ゼルニケ係数c 2j−i、ゼルニケ多項式Z 2j−iを用いて次式で表される。
ただし、(X,Y)はハルトマン板22の縦横の座標である。
また、波面収差W(X,Y)は、第1受光部21の縦横の座標を(x、y)、ハルトマン板22と第1受光部21の距離をf、第1受光部21で受光される点像の移動距離を(△x、△y)とすると、次式の関係が成り立つ。
ここで、ゼルニケ多項式Z 2j−iは、以下の数式で表される。具体的には、図16に、(r,t)座標のゼルニケ多項式の図、及び、図17に、(x,y)座標のゼルニケ多項式の図をそれぞれ示す。
なお、ゼルニケ係数c 2j−iは、以下の数式で表される自乗誤差を最小にすることにより具体的な値を得ることができる。
ただし、W(X、Y):波面収差、(X、Y):ハルトマン板座標、(△x、△y):第1受光部21で受光される点像の移動距離、f:ハルトマン板22と第1受光部21との距離。
演算部600は、ゼルニケ係数c 2j−iを算出し、これを用いて球面収差、コマ収差、非点収差等の眼光学特性を求める。また、演算部600は、ゼルニケ係数c 2j−iを用いて次式により収差量RMS 2j−iを算出する。
なお、被検眼の波面収差の時間的変化が、4次以下の収差よりも、5次以上の高次収差に顕著に影響される場合があるので、5次以上の高次収差の変化を示すことが望ましい。また、本実施例では3次以上の高次収差の結果を表示したが、5次以上の高次収差のみの結果を示すこともできる。
以上のように、所定のタイミングで瞬きをした際の、角膜形状(角膜の波面収差)や、被検眼の波面収差の時間的変化を容易、かつ確実に得ることができる。
眼科装置の光学系の構成図。 眼科装置の電気系の構成図。 第1の実施の形態の測定フローチャート。 測定結果の表示例(瞳径4mm)。 測定結果の表示例(瞳径6mm)。 角膜形状測定のフローチャート。 角膜形状の時間変化の説明図。 プラチドリング像のぼけの時間変化の説明図。 プラチドリングと瞳エッジのディテクトの画像処理のフローチャート。 画像処理の説明図。 瞬きの判定フローチャート。 瞬きしていないときのヒストグラムについての説明図。 瞬き中のヒストグラムについての説明図。 第2の実施の形態の測定フローチャート。 両眼同時測定のための眼科システム構成図。 (r,t)座標のゼルニケ多項式の図。 (x,y)座標のゼルニケ多項式の図。 第3の実施の形態のドライアイのフローチャート。

Claims (16)

  1. 被検眼角膜に所定形状の測定光束を入射する第1照明光学系と、
    被検眼角膜から反射光を受光する第1受光光学系と、
    上記第1受光光学系からの受光反射光を電気信号に変換する第1受光部と、
    測定期間内において、所定期間毎に被検者に瞬きを促すための合図信号を形成する合図信号形成部と、
    上記合図信号形成部が形成した複数の合図信号を含む測定期間中であって、かつ合図信号により促される被検者の瞬き間において、複数回上記第1受光部の受光信号から被検眼の角膜形状を求める測定部と、
    上記測定部の測定結果から角膜形状の時間的変化を比較可能に表示する表示部と、
    を備えた眼科装置。
  2. 請求項1に記載の眼科装置において、さらに、
    被検眼眼底に測定光束を入射する第2照明光学系と、
    測定光束が入射された被検眼眼底からの反射光を多数の光束に分割する変換部材を介して受光する第2受光光学系と、
    上記第2受光光学系で受光した受光反射光を電気信号に変換する第2受光部と
    を備え、
    上記測定部は、被検眼が瞬きした後の開始時点から所定期間の間、上記受光部の受光信号から上記変換部材による分割光束に基づき被検眼の波面収差を測定するように構成され、
    上記表示部は、上記測定部で求められた角膜形状に基づく測定結果と、波面収差に基づく測定結果の時間的変化を比較可能に表示するように構成されている眼科装置。
  3. 請求項1に記載の眼科装置において、
    さらに瞬きを検出する判定部を有し、
    上記測定部は、上記判定部が検出した瞬きから所定時間後に波面収差の測定を行うことを特徴とする眼科装置。
  4. 請求項3に記載の眼科装置において、上記判定部は、前眼部像に基づき瞬きを検出することを特徴とする眼科装置。
  5. 請求項1に記載の眼科装置において、
    上記測定部は、測定者又は操作者による測定開始指示、又は、眼科装置の自動設定による測定開始指示から所定時間後に波面収差の測定を行うことを特徴とする眼科装置。
  6. 請求項1に記載の眼科装置において、両眼同時に測定を行うことを特徴とする眼科装置。
  7. 請求項1に記載の眼科装置において、
    上記測定部は、被検眼が瞬きした後の開始時点と、その後の所定期間、複数回の上記第1受光部の受光信号から少なくとも5次以上の高次収差を含む被検眼の収差成分を求め、
    上記表示部は、上記測定部の測定結果から5次以上の高次収差の時間的変化を比較可能に表示することにより、ドライアイの状態を判断可能とする眼科装置。
  8. 請求項2に記載の眼科装置において、
    前記変換部材は、少なくとも実質的に21本のビームに変換することを特徴とする眼科装置。
  9. 被検眼眼底に測定光束を入射する照明光学系と、
    被検眼眼底からの反射光を受光する受光光学系と、
    受光部で受光した受光反射光を電気信号に変換する受光部と、
    測定期間内において、所定期間毎に被検者に瞬きを促すための合図信号を形成する合図信号形成部と、
    上記合図信号形成部が形成した複数の合図信号を含む測定期間中であって、かつ合図信号により促される被検者の瞬き間において、複数回の被検眼の波面収差の測定を行う波面測定部と、
    複数回の被検眼の波面収差の測定結果の時間的変化を比較可能に表示する表示部と、
    を備えた眼科装置。
  10. 請求項9に記載の眼科装置において、
    さらに、瞬きを検出する判定部を有し、
    上記波面測定部は、上記判定部が検出した瞬きから所定時間後に波面収差の測定を行うこと
    を特徴とする眼科装置。
  11. 請求項10に記載の眼科装置において、上記判定部は、前眼部像に基づき瞬きを検出することを特徴とする眼科装置。
  12. 請求項9に記載の眼科装置において、
    上記測定部は、測定者又は操作者による測定開始指示、又は、眼科装置の自動設定による測定開始指示から所定時間後に波面収差の測定を行うことを特徴とする眼科装置。
  13. 請求項12に記載の眼科装置において、両眼同時に波面収差測定を行うことを特徴とする眼科装置。
  14. 請求項9に記載の眼科装置において、
    上記受光光学系は、
    被検眼眼底からの反射光を多数の光束に分割する変換部材を介して受光するように構成され、
    上記波面測定部は、被検眼が瞬きした後の開始時点と、その後の所定期間、複数回の上記受光部の受光信号から少なくとも5次以上の高次収差を含む被検眼の収差成分を求めるように形成され、
    上記表示部は、上記波面測定部の測定結果から5次以上の高次収差の時間的変化を比較可能に表示することにより、ドライアイの状態を判断容易とするように構成されていることを特徴とする眼科装置。
  15. 請求項9に記載の眼科装置において、
    前記変換部材は、少なくとも実質的に21本のビームに変換することを特徴とする眼科装置。
  16. 請求項9に記載の眼科装置において、
    上記照明光学系は、第1波長の光束を発する光源部からの光束で被検眼網膜上で微小な領域を照明し、
    上記受光光学系は、被検眼網膜から反射して戻ってくる反射光束の一部を、該反射光束を少なくとも実質的に17本のビームに変換する、瞳上での空間分解能が高いレンズ部を有する第1変換部材を介して受光部で受光することを特徴とする眼科装置。
JP2004044463A 2004-02-20 2004-02-20 眼科装置 Expired - Fee Related JP4471680B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004044463A JP4471680B2 (ja) 2004-02-20 2004-02-20 眼科装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044463A JP4471680B2 (ja) 2004-02-20 2004-02-20 眼科装置

Publications (2)

Publication Number Publication Date
JP2005230328A JP2005230328A (ja) 2005-09-02
JP4471680B2 true JP4471680B2 (ja) 2010-06-02

Family

ID=35013867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044463A Expired - Fee Related JP4471680B2 (ja) 2004-02-20 2004-02-20 眼科装置

Country Status (1)

Country Link
JP (1) JP4471680B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891640B2 (ja) * 2006-03-30 2012-03-07 株式会社トプコン 眼科測定装置
US8192026B2 (en) 2007-06-20 2012-06-05 Tearscience, Inc. Tear film measurement
US7758190B2 (en) * 2007-06-20 2010-07-20 Tearscience, Inc. Tear film measurement
US8915592B2 (en) 2009-04-01 2014-12-23 Tearscience, Inc. Apparatuses and methods of ocular surface interferometry (OSI) employing polarization and subtraction for imaging, processing, and/or displaying an ocular tear film
EP2413699B1 (en) 2009-04-01 2019-11-20 Tearscience, Inc. Ocular surface interferometry (osi) apparatus for imaging an ocular tear film
US8888286B2 (en) 2009-04-01 2014-11-18 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
US9642520B2 (en) 2009-04-01 2017-05-09 Tearscience, Inc. Background reduction apparatuses and methods of ocular surface interferometry (OSI) employing polarization for imaging, processing, and/or displaying an ocular tear film
US9888839B2 (en) 2009-04-01 2018-02-13 Tearscience, Inc. Methods and apparatuses for determining contact lens intolerance in contact lens wearer patients based on dry eye tear film characteristic analysis and dry eye symptoms
JP5562621B2 (ja) * 2009-12-03 2014-07-30 株式会社トプコン 眼科装置
US9339177B2 (en) 2012-12-21 2016-05-17 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
CN108670190A (zh) 2013-05-03 2018-10-19 眼泪科学公司 用于对睑板腺进行成像以供睑板腺分析的眼睑照明系统和方法
US9795290B2 (en) 2013-11-15 2017-10-24 Tearscience, Inc. Ocular tear film peak detection and stabilization detection systems and methods for determining tear film layer characteristics
JP6325684B2 (ja) * 2014-10-21 2018-05-16 パイオニア株式会社 観察装置
JP6968561B2 (ja) * 2017-03-29 2021-11-17 株式会社トプコン 眼科装置
JP7294624B2 (ja) * 2018-07-31 2023-06-20 株式会社レクザム 眼科装置

Also Published As

Publication number Publication date
JP2005230328A (ja) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4891640B2 (ja) 眼科測定装置
US7241012B2 (en) Ophthalmologic apparatus
JP4649035B2 (ja) 眼特性測定装置
US6685320B2 (en) Opthalmic characteristic measuring apparatus
JP4464726B2 (ja) 眼科装置
US7216980B2 (en) Eye characteristic measuring apparatus
US7677731B2 (en) Eye optical characteristic measuring apparatus
JP4471680B2 (ja) 眼科装置
JP4663147B2 (ja) 眼特性測定装置
US7249851B2 (en) Eye characteristic measuring apparatus
JP4237537B2 (ja) 眼科装置
JP3870150B2 (ja) 眼科測定装置
JP4663148B2 (ja) 眼特性測定装置
JP2006272005A (ja) 眼科測定装置
JP2003144389A (ja) 眼の光学特性測定装置
JP2020151099A (ja) 眼科装置、その制御方法、眼科情報処理装置、その制御方法、プログラム、及び記録媒体
JP4237533B2 (ja) 眼科装置
JP7009273B2 (ja) 眼科装置及びその角膜形状測定方法
JP6430770B2 (ja) 眼科装置
WO2023145638A1 (ja) 眼科装置及び眼科プログラム
JP7033975B2 (ja) 眼科装置及びその角膜形状測定方法
JP6735963B2 (ja) 眼科装置
JP5562621B2 (ja) 眼科装置
JP2020162914A (ja) 眼科装置、その制御方法、眼科情報処理装置、その制御方法、プログラム、及び記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees