JP4189166B2 - 熱膨張性マイクロカプセルの製造方法 - Google Patents

熱膨張性マイクロカプセルの製造方法 Download PDF

Info

Publication number
JP4189166B2
JP4189166B2 JP2002109411A JP2002109411A JP4189166B2 JP 4189166 B2 JP4189166 B2 JP 4189166B2 JP 2002109411 A JP2002109411 A JP 2002109411A JP 2002109411 A JP2002109411 A JP 2002109411A JP 4189166 B2 JP4189166 B2 JP 4189166B2
Authority
JP
Japan
Prior art keywords
plate
dispersion
polymerizable mixture
disperser
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002109411A
Other languages
English (en)
Other versions
JP2003305360A (ja
Inventor
泰広 川口
卓也 豊川
雅洋 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Tokuyama Sekisui Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Tokuyama Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Tokuyama Sekisui Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002109411A priority Critical patent/JP4189166B2/ja
Publication of JP2003305360A publication Critical patent/JP2003305360A/ja
Application granted granted Critical
Publication of JP4189166B2 publication Critical patent/JP4189166B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水系分散媒体中で、少なくとも揮発性膨張剤および重合性単量体を含有する重合性混合物を懸濁重合して、重合体の外殻内に揮発性膨張剤が封入された熱膨張性マイクロカプセルを製造する方法に関する。
【0002】
【従来の技術】
熱膨張性マイクロカプセルを製造する方法としては、熱可塑性ポリマーを用いて、該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤をマイクロカプセル化して熱膨張性マイクロカプセルを製造する方法が既に知られている(例えば特公昭42−26524号公報)。
【0003】
当該公報には、低沸点の脂肪族炭化水素などの揮発性膨張剤を単量体に添加し、この単量体混合物に油溶性触媒を混合し、次いで、分散剤を含有する水系分散媒体中に単量体混合物を攪拌しながら添加し、懸濁重合を行う熱膨張性マイクロカプセルの製造方法が記載されている。
【0004】
この製造方法によれば、単量体混合物が水系分散媒体中で油相を形成するので、攪拌混合することにより、水系分散媒体中に微小な単量体混合物からなる液滴を形成させることができる。
【0005】
そして、微小な液滴を形成するために、従来は、後退翼等の攪拌翼や図7に示す回分式高速回転高剪断型分散器を用いて攪拌混合が行われていた(例えば特開平7−96167号、特開2000−191817号)。
【0006】
図7に示す回分式高速回転高剪断型分散器Aを用いて攪拌混合を行うと、水系分散媒体Bと重合性混合物Cは、回分式高速回転高剪断型分散器A内において攪拌されると分散し、重合性混合物Cの微小な液滴が造粒される。そして、次に分散液をポンプDにより重合槽Eに注入して当該重合槽Eにおいて懸濁重合を行うと熱膨張性マイクロカプセルが得られる。
【0007】
【発明が解決しようとする課題】
このような動力を用いて攪拌を行ういわゆる動的な攪拌混合方法を伴う熱膨張性マイクロカプセルの製造方法では、液滴径を制御できる分散液等の安定剤を適切に選択することにより、粒子形状がある程度まで真球状で粒径の揃った熱膨張性マイクロカプセルを得ることができる。
【0008】
しかしながら、熱膨張性マイクロカプセルの用途分野が拡大し、それぞれの用途において高性能化、例えば、均一な粒径であることがさらに求められてきており、従来の粒径分布では対応できなくなっている。
【0009】
特に、熱膨張性マイクロカプセルの持つ軽量性、クッション性などの機能から熱膨張性マイクロカプセルは軽量化材として重要視されており、例えば、同一な形状と大きさの空孔を有する発泡体を得るために用いられている。
【0010】
したがって、熱膨張性マイクロカプセルを軽量化材として利用する場合は、粒子の形状と大きさが非常に均一であれば、形成される空孔が均一となり非常に均質な発泡体が得られる。
【0011】
即ち、熱膨張性マイクロカプセルは、粒子形状が真球状に揃っていることに加えて、粒径分布が極めて狭いことが要求される。
【0012】
ところが、従来からの攪拌翼や回分式高速回転高剪断型分散器を用いた攪拌混合による懸濁重合では、未だにより均一な粒径の熱膨張性マイクロカプセルを提供できないという不具合がある。
【0013】
そこで、さらに粒径分布を狭くするため、従来では、攪拌混合方法による懸濁重合ではなく、静止型の混合器を用いて混合する方法が提案されている。この静止型混合器Fは、図8に示すように、流体が通過可能な円盤状のディスクユニットGを複数併設させた状態で、これらディスクユニットGを両端側が開放されている筒状体Hに内装することにより、筒状体Hの一方の端部から水性分散媒体と重合性混合物とを筒状体H内に供給し、複数のディスクユニットGを通過させることより液を混合しながら筒状体Hの他方側端部から混合された液を排出するようにしている。
【0014】
具体的に従来の静止型混合器Fについて説明すると、ディスクユニットGは、図9に示すように、中心に孔Jの開いた大径ディスクK2枚と、大径ディスクKよりも径が小さく中心に孔が開いていない小径ディスクL2枚により構成されている。
【0015】
そして、大径ディスクKと小径ディスクLの一方の面には、外側に開放された多数のハニカム室Mが形成されており、これらハニカム室Mが対向するように大径ディスクKと小径ディスクLとを重ね合わせ、さらに、小径ディスクLの背面同士を重ね合わせることにより1つのディスクユニットGが形成されるようになっている。
【0016】
なお、大径ディスクKと小径ディスクLは、大径ディスクKと小径ディスクLとを重ねあわせたときにハニカム室Mが互いに半分ずれた状態で対向するようになっており、大径ディスクKの隣合うハニカム室Mが、これらに対向する小径ディスクLのハニカム室Mと連通することにより、液体がそれぞれのハニカム室Mに流入しながら対向するハニカム室Mの間を通過できるようになっている。
【0017】
そして、複数のディスクユニットGを筒状体H内に内装することにより、一方の大径ディスクKの中心の孔Jに流入した水系分散媒体および重合性混合物が、大径ディスクKの中心の孔J側に設けられるそれぞれのハニカム室M内に流入して、対向するハニカム室Mの間を径方向外方に向って通過した後に、一方の小径ディスクLの外周へ向けて流れ出る。一方の小径ディスクLの外周へ向けて流れ出た液体は、他方の小径ディスクLの外周からハニカム室Mを経由して他方の大径ディスクKの孔Jから流出する。従来の静止型混合器Fでは、以上の動作が繰り返されて、水系分散媒体に対する重合性混合物の分散が行われるようになっている。
【0018】
しかしながら、このように半径方向への強制的な流れを起こすことにより液の分散を行っても、依然としてより粒径分布の狭い球状粒子からなる熱膨張性マイクロカプセルを提供できないという不具合がある。
【0019】
本発明は、粒子形状が真球状で粒径分布が極めて狭く、発泡後においても均一な熱膨張済みマイクロカプセルが形成できる熱膨張性マイクロカプセルを提供することにある。
【0020】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、水系分散媒体中で、少なくとも揮発性膨張剤および重合性単量体を含有する重合性混合物を懸濁重合して、重合体の外殻内に揮発性膨張剤が封入された熱膨張性マイクロカプセルを製造する方法において、両端が開口された筒状体内に、多数の孔が形成された複数枚の板状エレメントが装着されており、少なくとも一部の隣り合う複数枚の板状エレメントの間で、隣り合う板状エレメントの孔の中心が互いに合わないが少なくとも互いの開口の一部は対向するように複数枚重ね合わされているエレメント式静止型分散器内に、水系分散媒体および重合性混合物を供給して、水系分散媒体および重合性混合物を各板状エレメントの間を各板状エレメントの孔を通じて順次連続的に通過させることにより水系分散媒体に重合性混合物を分散させる分散工程と、分散工程により得られた分散液を重合器の重合槽内に注入して該重合槽内で懸濁重合を行う懸濁重合工程とを経ることにより、熱膨張性マイクロカプセルを製造することを特徴とする。
【0021】
請求項2に記載の発明は、請求項1記載の熱膨張性マイクロカプセルの製造方法において、水系分散媒体及び重合性混合物を分散する分散工程が、水系分散媒体および重合性混合物を予め一次分散器の分散槽内に注入して、該分散槽内で両者を攪拌して仮分散させる一次分散工程と、一次分散工程により得られた一次分散液をエレメント式静止型分散器内に供給して完全分散させる完全分散工程とを有するようにした。
【0022】
請求項3に記載の発明は、請求項1記載の熱膨張性マイクロカプセルの製造方法において、水系分散媒体及び重合性混合物を分散する分散工程において、水系分散媒体と重合性混合物とを別々に一定の比率で連続的にエレメント式静止型分散器内に供給するようにした。
【0023】
【発明の実施の形態】
本発明にかかる熱膨張性マイクロカプセルの製造方法についての実施形態について図面に基づいて説明する。
【0024】
図1は本実施形態にかかる熱膨張性マイクロカプセルを製造するため製造装置の概略構成説明図であり、図2は、熱膨張性マイクロカプセルの製造装置におけるエレメント式静止型分散器を構成する分散器を示す断面図である。
【0025】
本実施形態にかかる熱膨張性マイクロカプセルの製造装置1は、水系分散媒体中で、少なくとも揮発性膨張剤および重合性単量体を含有する重合性混合物を懸濁重合して、重合体の外殻内に揮発性膨張剤が封入された熱膨張性マイクロカプセルを製造するものであり、平均粒径が5〜100μmの範囲内で、かつ、粒度分布のCV値が20〜40%の範囲内にある熱膨張性マイクロカプセルを製造できるようになっている。
【0026】
なお、CV値は、CV値(%)=(標準偏差/平均粒径)×100によって求められる。
【0027】
本実施形態にかかる熱膨張性マイクロカプセルを製造する製造装置1は、図1に示すように、水系分散媒体と重合性混合物を混合して一次的に分散させる一次分散器2と、一次分散器2で一次的に分散された分散液が供給されるエレメント式静止型分散器3と、水系分散媒体を一次分散器2に供給するための水系分散媒体供給部4と、重合性混合物を一次分散器2に供給するための重合性混合物供給部5と、一次分散器2からエレメント式静止型分散器3に水系分散媒体と重合性混合物との一次分散液を流入させる流入管7と、エレメント式静止型分散器3により水系分散媒体に重合性混合物が分散された分散液を懸濁重合するための重合器6と、エレメント式静止型分散器3から重合器6に分散液を供給する流出管8とを備えている。
【0028】
水系分散媒体供給部4は、例えば脱イオン水に固形分20%のシリカ分散液などの分散安定剤や補助安定剤を加えた液状の水系分散媒体を一次分散器2に供給するようになっている。
【0029】
また、重合性混合物供給部5は、例えば、アクリロニトリル、メタクリロニトリル、メタクリル酸メチルなどの重合性単量体を貯溜する重合性単量体用タンク51と、重合開始剤などの助剤が添加されている揮発性膨張剤を貯溜する揮発性膨張剤用タンク52を備えており、重合性単量体用タンク51と揮発性膨張剤用タンク52から、所定の重量の重合性単量体と揮発性膨張剤を一次分散器2に供給するようになっている。
【0030】
一次分散器2は、水系分散媒体供給部4および重合性混合物供給部5と、エレメント式静止型分散器3との間に設けられている。そして、一次分散器2は、一次分散槽21を備えており、一次分散槽21内に注入された水系分散媒体と重合性混合物を図示していない攪拌翼で攪拌して一次分散させるようにしている。
【0031】
また、一次分散器2には、水系分散媒体と重合性混合物の一次分散が所望の一次分散状態となるように水を供給できるようになっている。なお、この水は、重合器6から回収した水を利用するようにしてもよい。
【0032】
そして、一次分散器2で一次分散された水系分散媒体と重合性混合物の一次分散液をエレメント式静止型分散器3に供給するようにしている。
【0033】
エレメント式静止型分散器3は、図2および図3に示すように、両端が開口された筒状体31と、多数の孔32a,33aが板厚み方向に穿設された複数枚の板状エレメント32,33と、複数枚の板状エレメント32,33が重ね合わされた状態で筒状体31の内部に装着された後に筒状体31の両端の開口部に取り付けらるリング状の接続具34とを備えている。
【0034】
板状エレメント32,33は、円形で同一径を有する2種類の第1板状エレメント32(図4に示す)と第2板状エレメント33(図5に示す)から構成されており、複数枚の第1板状エレメント32と第2板状エレメント33とを、第1板状エレメント32と第2板状エレメント33が交互に位置するように重ね合わした状態で筒状体31の内部に装着するようになっている。
【0035】
第1板状エレメント32と第2板状エレメント33は、例えば厚さ5mmで有効直径は15mmから50mmの円盤に形成されており、それぞれ配列が異なるように孔32a,33aを数個から数十個穿設されている。
【0036】
具体的には、第1板状エレメント32と第2板状エレメント33に形成される孔32a,33aは、板の厚み方向に形成されており、孔32a,33aの軸方向(板の厚み方向)中央部の径が最も小さくなるように両側の開口の径から中央に向けて徐々に径が小さくなるように形成されている。
【0037】
このように開口の径が大きく軸方向中央部の径が小さくなるように形成しているので、孔32a,33aの一方の開口から液体が流入しやすく、中央部の小径部分を通過することにより流速を速められ、再び広がった流路を経て、他方の出口側の開口から液体を流出させるようになっている。
【0038】
さらに、第1板状エレメント32と第2板状エレメント33に形成される孔32a,33aは、第1板状エレメント32と第2板状エレメント33を重ね合わせたときに、第1板状エレメント32の孔32aの中心と第2板状エレメント33の孔33aの中心が合わないが、少なくとも互いの開口の一部が対向するように形成されている。
【0039】
即ち、図6に示すように、例えば、第1板状エレメント32と第2板状エレメント33を重ね合わせたとき、第1板状エレメント32の一つの孔32aの開口が第2板状エレメント33の4つの孔33aの開口の一部に対向し、かつ、第2板状エレメント33の一つの孔33aの開口が第1板状エレメント32の4つの孔32aの開口の一部に対向するように、第1板状エレメント32と第2板状エレメント33に孔32a,33aが形成されている。
【0040】
そして、第1板状エレメント32と第2板状エレメント33とを筒状体31の内部に組付けるには、例えば、交互に重ね合わせた複数の第1板状エレメント32と第2板状エレメント33を薄肉の筒状スペーサー35内に装填しておいて、筒状スペーサー35と共に第1板状エレメント32と第2板状エレメント33を筒状体31の内部に装着する。
【0041】
筒状スペーサー35の軸方向長さは、重ね合わされた第1板状エレメント32と第2板状エレメント33が筒状スペーサー35からはみ出さず、かつ、筒状体31の内筒の軸方向長さより短くなるように設定している。
【0042】
接続具34は、筒状体31の両側の開口部にそれぞれ固定されるようになっており、フランジ部34aを有するリング状の板状部材から構成され、中心部に筒状体31の開口部と対向する接続用孔34bが形成されている。
【0043】
接続具34は、筒状体31の開口部と接続具34との間にリング状のガスケット36を介在させておいて、筒状体31に固定されるようになっている。接続具34のフランジ部34aには、ボルト挿通用孔34cが形成されており、このボルト挿通用孔34cにボルト37を挿通させて筒状体31に形成するネジ穴31aにボルト37をネジ締めすることにより接続具34が筒状体31に固定されるようになっている。
【0044】
そして、2つの接続具34のうち、一方の接続具34の接続用孔34bには、図1に示すように、一次分散器2からの一次分散液を取り入れるための流入管7が接続され、他方の接続具34の接続用孔34bには、重合器6に分散液を送るための流出管8が接続されるようになっている。
【0045】
エレメント式静止型分散器3は、流入管7を介して一次分散器2で一次分散された一次分散液が一方の接続具34の接続用孔34bから筒状体31の内部に流入されると、筒状体31内に装着される第1板状エレメント32の孔32aと第2板状エレメント33の孔33aに、交互に水系分散媒体および重合性混合物の一次分散液を順次連続的に通過させることにより、水系分散媒体に重合性混合物を細かく分散させるようにしている。
【0046】
エレメント式静止型分散器3による重合性混合物の分散は、第1板状エレメント32と第2板状エレメント33を2枚1組(ユニット)としてそれぞれの板状エレメント32,33の孔32a,33aを流体が高速で通過することにより混合・分散がおこるようになっている。分散原理は各板状エレメント32,33の一つの孔32a,33aを通過する毎に流体が多数に分割(例えば4分割)され、多数に分割された流体は、それぞれ次の板状エレメント32,33の別々の孔32a,33aに流入していく。従って最初に流入した一つの孔32a,33aからは、5組の板状エレメント32,33により例えば約100万分割、15組で例えば1018分割されることになる。
【0047】
さらに、第1板状エレメント32と第2板状エレメント33とは孔32a,33aの穿設個数が異なるため、穿設個数の少ない第1板状エレメント32を通過する際には、流体が収束され、次の第2板状エレメント33を通過する際には、流体の流れが拡大されるという機能を板状エレメント32,33が備えることになる。
【0048】
その結果、5組の板状エレメント32,33では流体が板状エレメント32,33を10回通過することになり、15組の板状エレメント32,33では流体が板状エレメント32,33を30回通過することになるので、その通過回数分だけ流体の離散・統合が繰り返される。
【0049】
さらに、重合性混合物の分散として最も有効に働いているのは板状エレメント32,33に形成される孔32a,33aの最も通路面積の狭い細孔を通過するときに生じる剪断力(流体間速度差)と、細孔を通過した主流が慣性力で下流側の板状エレメント32,33の壁に衝突・反転することより主流脇で生ずる渦によるキャビテーション効果(流体間の急激な圧力差)であると考えられる。
【0050】
また、一枚の板状エレメント32,33に形成する孔32a,33aの数を多くすると、板状エレメント32,33一枚あたりの流体分割数を大きくすることができる。孔32a,33aの数を多くすることにより、少ない板状エレメント32,33の使用数でもって大きな流体分割数が得られ、混合攪拌性能を高めるために必須な剪断力およびキャビテーションとの相乗効果をより高めることができる。
【0051】
ただし、板状エレメント32,33は、すべて第1板状エレメント32に第2板状エレメント33が隣接していなくてもよい。すなわち、少なくとも一部の板状エレメントが第1板状エレメント32と第2板状エレメント33を2枚一組で組み合わせたユニットを構成していればよく、一部において第1板状エレメント32を重ね合わせたり、第2板状エレメント33を重ね合わせたりしてもよい。
【0052】
このように板状エレメント32,33の組合せ方によって分散器の分散能力を調整することができる。なお、必要に応じて分散能力のないダミーエレメントを組付けるようにしてもよいし、また、2種類の板状エレメントに限らず、3種類以上の板状エレメントを組み合わせてユニットを構成するようにしてもよい。
【0053】
次に、重合器6は、エレメント式静止型分散器3で完全に分散された完全分散液が貯溜される重合槽61を備え、該重合槽61内で完全分散液の懸濁重合を行うことができる。
【0054】
重合器6は、加圧重合器であることが好ましく、重合槽61に完全分散液を注入した後、例えば0.2MPa、60℃で20時間反応させると熱膨張性マイクロカプセルとなる反応生成物が生成できるようになっている。
【0055】
図1には示していないが、本実施形態にかかる熱膨張性マイクロカプセルの製造方法においては、重合器6で生成された反応生成物はろ過乾燥器に送られ、ろ過乾燥器において、反応生成物のろ過および水洗が繰り返された後、反応生成物を乾燥させて最終的に乾燥された熱膨張性マイクロカプセルを製造している。
【0056】
以上説明した熱膨張性マイクロカプセルの製造装置により、本実施形態では、懸濁重合により外殻が重合体で形成され、外殻内に揮発性膨張剤が封入されている熱膨張性マイクロカプセルを製造できる。
【0057】
なお、熱膨張性マイクロカプセルの平均粒径、及びその発泡後の平均粒径の設定は、エレメント式静止型分散器3の板状エレメント32,33の孔32a,33aの穿設個数や枚数の設定、用いる重合性単量体や揮発性膨張剤、助剤などの材料の種類により、いずれも広い範囲で用途に応じて適宜、変えることができる。
【0058】
本発明は、水系分散媒体中で、少なくとも揮発性膨張剤および重合性単量体を含有する重合性混合物を懸濁重合して、重合体の外殻内に揮発性膨張剤が封入された熱膨張性マイクロカプセルを製造するものである。
【0059】
本発明の熱膨張性マイクロカプセルを構成する重合体の外殻は(メタ)アクリロニトリル、塩化ビニリデン、スチレンなどの種々の重合性単量体を使用して形成することができる。
【0060】
重合性単量体としては、例えば、ニトリル系モノマー、非ニトリル系モノマーがありニトリル系モノマーとしては、アクリロニトリル、メタクリロニトリル、α・クロルアクリロニトリル、α・エトキシアクリロニトリル、フマロニトリルまたはこれらの任意の混合物等が挙げられるが、アクリロニトリルおよびメタクリロニトリルが特に好ましい。ニトリル系モノマーの使用量は70〜95重量%であることが好ましく、70重量%以上であると、耐溶剤性や高温での発泡性に優れた熱膨張性マイクロカプセルを得ることができる。
【0061】
非ニトリル系モノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、ジシクロペンテニルアクリレート等のアクリル酸エステルや、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、イソボルニルメタクリレート等のメタクリル酸エステル類からなる群から選択される。これらのなかでメタクリル酸メチル、メタクリル酸エチル、アクリル酸メチルが特に好ましい。非ニトリル系モノマーの使用量は30重量%以下、好ましくは10〜30重量%である。
【0062】
これらの中でも(メタ)アクリロニトリル共重合体により外殻を形成することが、ガスバリアー性、耐溶剤性、耐熱性の点で好ましい。
【0063】
さらに、発泡特性および耐熱性を改良するために、架橋性単量体を併用することができる。架橋性単量体としては、通常、2以上の炭素一炭素二重結合を有する化合物が使用される。例えば、ジビニルベンゼン、ジ(メタ)アクリル酸エチレングリコール、トリアクリルホルマール、トリ(メタ)アクリル酸トリメチロールプロパン等が挙げられるが、好ましくは四官能性以上の架橋性単量体が使用される。
【0064】
四官能性以上の架橋剤としては、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート等が挙げられる。
【0065】
側鎖の長い架橋剤としては数平均粒径が200〜600のポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1.6−ヘキサンジオールジアクリレート、1.9−ノナンジオールジアクリレート、ジメチロール・トリシクロデカンジアクリレート、EO変性トリメチロールプロパントリアクリレート、数平均粒径が200〜600のポリエチレングリコールジメタクリレート等が挙げられる。
【0066】
本発明に係る熱膨張マイクロカプセルの外殻を形成するにあたっては、上記の成分に更に所望により重合開始剤を適宜配合することによって調整される。
【0067】
重合開始剤としては、特に限定されず、この分野で一般に使用されているものを使用することができるが、使用する重合性単量体に可溶の油溶性重合開始剤が好ましい。
【0068】
例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、及びアゾ化合物が挙げられる。
【0069】
より具体的には、過酸化ジアルキルとしては、メチルエチルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイドなどが挙げられる。
【0070】
過酸化ジアシルとしては、イソブチルパーオキサイド、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイドなどが挙げられる。
【0071】
パーオキシエステルとしては、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエ一ト、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、(α,α−ビス−ネオデカノイルパーオキシ)ジイソプロピルベンゼンなどが挙げられる。
【0072】
パーオキシジカーボネートとしては、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−n−プロピル−オキシジカーボネート、ジ−イソプロピルパーオキシジカーボネート、ジ(2−エチルエチルパーオキシ)ジカーボネート、ジ−メトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネートなどが挙げられる。
【0073】
アゾ化合物としては、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、1,1'−アゾビス(1−シクロヘキサンカルボニトリル)などが挙げられる。
【0074】
また、熱膨張マイクロカプセル内に包含される揮発性膨張剤の包含量は約10〜20重量%である。揮発性膨張剤は、上記の配合成分から調整されるポリマーの軟化点以下の温度でガス状になる物質であり、低沸点有機溶剤、加熱により分解してガスを発生する化合物などがある。これらの中でも、低沸点有機溶剤が好ましい。
【0075】
低沸点有機溶剤としては、例えば、低分子量炭化水素、クロロフルオロカーボン、テトラアルキルシランが挙げられる。
【0076】
低分子量炭化水素としては、エタン、エチレン、プロパン、プロペン、n−ブタン、イソブタン、ブテン、イソブテン、n−ペンタン、イソペンタン、ネオペンタン、n−ヘキサン、ヘプタン、石油エーテルなどが挙げられる。
【0077】
クロロフルオロカーボンとしては、CCl3F、CCl22、CClF3、CClF2−CCl22等が挙げられる。
【0078】
テトラアルキルシランとしては、テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル−n−プロピルシランなどのテトラアルキルシランなどが挙げられる。
【0079】
これらは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの中でも、イソブタン、n−ブタン、n−ペンタン、イソペンタン、n−ヘキサン、石油エーテル、およびこれらの2種以上の混合物が好ましい。また、所望により、加熱により熱分解してガス状になる化合物を使用してもよい。
【0080】
そして、本実施形態では、上記外殻を形成する材料を用いて揮発性膨張剤をマイクロカプセル化するには、重合性単量体および架橋剤を揮発性膨張剤および重合開始剤と混合した混合物を適宜の分散安定剤等を含む水性媒体中で懸濁重合させて行う。
【0081】
懸濁重合は、本実施形態では、分散安定剤を含有する水性分散媒体中で行う。分散安定剤としては、例えば、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、蓚酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウムなどが挙げられる。分散安定剤は、重合性単量体100重量部に対して、0.1〜20重量部の割合で使用される。
【0082】
この他に補助安定剤、例えば、ジエタノールアミンと脂肪族ジカルボン酸の縮合生成物、尿素とホルムアルデヒドとの縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンイミン、テトラメチルアンモニウムヒドロキシド、ゼラチン、メチルセルロース、ポリビニルアルコール、ジオクチルスルホサクシネート、ソルビタンエステル、各種乳化剤等を使用することができる。
【0083】
分散安定剤を含有する水性分散媒体は、分散安定剤や補助安定剤を脱イオン水に配合して調整する。重合時の水相のpHは、使用する分散安定剤や補助安定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカなどのシリカを使用する場合は、酸性環境で重合がおこなわれる。
【0084】
水性媒体を酸性にするには、塩酸等必要に応じて酸を加えて、系のpHを3〜4に調整する。水酸化マグネシウムまたはリン酸カルシウムを使用する場合は、アルカリ性環境の中で重合させる。
【0085】
好ましい組み合わせの一つとして、コロイダルシリカと縮合生成物の組み合わせがある。縮合生成物は、ジエタノールアミンと脂肪族ジカルボン酸の縮合生成物が好ましく、特にジエタノールアミンとアジピン酸の縮合物やジエタノールアミンとイタコン酸の縮合生成物が好ましい。
【0086】
さらに塩化ナトリウム、硫酸ナトリウム等の無機塩を添加すると、より均一な粒子形状を有する熱膨張性マイクロカプセルが得られやすくなる。
【0087】
コロイダルシリカの使用量は、その粒子径によって調整されるが、重合性単量体100重量部に対して、1〜20重量部、好ましくは2〜10重量部の割合で使用される。縮合生成物は、重合性単量体100重量部に対して、0.05〜2重量部の割合で使用される。無機塩は、重合性単量体100重量部に対して、0〜100重量部の割合で使用する。
【0088】
他の好ましい組み合わせは、コロイダルシリカと水溶性窒素含有化合物の組み合わせが挙げられる。水溶性窒素含有化合物の例としては、ポリビニルピロリドン、ポリエチレンイミン、ポリオキシエチレンアルキルアミン、ポリジメチルアミノエチルメタクリレートやポリジメチルアミノエチルアクリレートに代表されるポリジアルキルアミノアルキル(メタ)アクリレート、ポリジメチルアミノプロピルアクリルアミドやポリジメチルアミノプロピルメタクリルアミドに代表されるポリジアルキルアミノアルキル(メタ)アクリルアミド、ポリアクリルアミド、ポリカチオン性アクリルアミド、ポリアミンサルフォン、ポリアリルアミンが挙げられる。これらのなかでもコロイダルシリカとポリビニルピロリドンが好適に用いられる。他の好ましい組み合わせには、水酸化マグネシウム及び/またはリン酸カルシウムと乳化剤との組み合わせがある。
【0089】
粒子径を調整するには、上記部数ほど添加されたコロイダルシリカの量は固定し、ポリビニルピロリドンの添加量で調整することが好ましい。
【0090】
水性分散媒体に各成分を添加する順序は、任意であるが、通常は重合器に、水と分散安定剤、必要に応じて安定助剤を加えて、分散安定剤を含有する水性分散媒体を調整する。また、必要に応じて亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、重クロム酸カリウム等の化合物を加える。
【0091】
一方、本発明では、通常、重合性単量体、重合開始剤、および揮発性膨張剤を予め混合して重合性混合物を調整しておく。
【0092】
次に、本実施形態にかかる熱膨張性マイクロカプセルの製造装置を用いて熱膨張性マイクロカプセルを製造する方法について説明する。
【0093】
所定の量に配合された水系分散媒体を水系分散媒体供給部4から一次分散器2の一次分散槽21内に供給するとともに、重合性混合物供給部5である重合性単量体用タンク51および揮発性膨張剤用タンク52から所定量の重合性単量体およひ揮発性膨張剤を一次分散器2の一次分散槽21内に供給する。
【0094】
そして、一次分散槽21内の水系分散媒体と重合性混合物を図示していない攪拌翼により一次分散した後(一次分散工程)、一次分散液をエレメント式静止型分散器3に供給する。
【0095】
エレメント式静止型分散器3では、流入管7を介して一次分散器2で一次分散された一次分散液が一方の接続具34の接続用孔34bから筒状体31の内部に流入すると、筒状体31内に装着される第1板状エレメント32の孔32aと第2板状エレメント33の孔33aに、水系分散媒体および重合性混合物の一次分散液が第1板状エレメント32の孔32aと第2板状エレメント33の孔33aを交互に順次連続的に通過していき、孔32a,33aを流体が通過するごとに流体が多数に分割されていく(完全分散工程)。この流体の分割が板状エレメント32,33の枚数分だけ繰り返されることにより、水系分散媒体に重合性混合物が細かく分散されていく。
【0096】
エレメント式静止型分散器3による重合性混合物の分散は、第1板状エレメント32と第2板状エレメント33を2枚1組としてそれぞれの板状エレメント32,33の孔32a,33aを流体が高速で通過するので、孔32a,33aの細孔を通過するときに生じる剪断力(流体間速度差)と、細孔を通過した主流が慣性力で下流側の板状エレメント32,33の壁に衝突・反転することより主流脇で生ずる渦によるキャビテーション効果(流体間の急激な圧力差)とによりより効果的に分散が行われる。
【0097】
そして、エレメント式静止型分散器3により水系分散媒体中に重合性混合物が完全に分散された完全分散液がエレメント式静止型分散器3に接続される流出管8から重合器6に供給される。
【0098】
重合器6では、分散工程により得られた完全分散液が重合器6の重合槽61内に注入され、該重合槽61内で懸濁重合が行われる(懸濁重合工程)。
【0099】
本実施形態では、重合性混合物を水系分散媒体に対して所定の粒径に分散する方法としては、図1に示す製造装置で製造する場合のように、水系分散媒体および重合性混合物を一次分散器2の一次分散槽21内に投入し、該一次分散槽21内で両者を攪拌して一次分散させた後、得られた一次分散液をエレメント式静止型分散器3内に供給して完全分散を行うようにしたが、水系分散媒体および重合性混合物をそれぞれ別の流れとして、一次分散器2を介さず、一定の比率で連続的にエレメント式静止型分散器3内に直接供給し、両者を連続的に分散させることにより重合性混合物を水系分散媒体に対して所定の粒径に分散するようにしてもよい。
【0100】
水系分散媒体および重合性混合物をそれぞれ別の流れとして、一定の比率で連続的にエレメント式静止型分散器3内に直接供する場合には、水系分散媒体供給部4および重合性混合物供給部5に、水系分散媒体供給部4からエレメント式静止型分散器3に供給される水系分散媒体と、重合性混合物供給部5からエレメント式静止型分散器3に供給される重合性混合物とを、別々に一定の比率で連続的にエレメント式静止型分散器3内に供給する供給調整部を備えることが好ましい。また、供給調整部は、コンピュータなどの制御装置により流量調整弁を調整することにより構築することが好ましい。
【0101】
さらに、本発明では、使用する重合性単量体の組み合わせや量比の制御と揮発性膨張剤の選択により、様々な発泡挙動を示す熱膨張性マイクロカプセルを得ることができる。
【0102】
【実施例】
以下、本発明を実施例によって説明する。
(測定方法および定義)
(1)発泡前および発泡後の平均粒子径は、HORIBA社製の粒度分布径測定器LA−910を用いて測定した。なお、CV値は以下の式に基づいて計算した。
【0103】
CV値(%)=(標準偏差/平均粒径)×100
(2)発泡条件は、熱膨張性マイクロカプセルを1g測りとり、アルミカップにのせ、内部温度を170℃に設定したオーブン内に入れ、1分間保持した。
<比較例1>
図10に示す表1の配合処方によって調整した重合性混合物および水系分散媒体を図7に示す従来の回分式高速回転高剪断型分散器で攪拌混合した後、窒素置換した加圧重合器(20L)内へ仕込み加圧して(0.2MPa)60℃20時間反応させた。
【0104】
得られた反応生成物をろ過と水洗を繰り返し、乾燥して平均粒径が22μm、CV値59%の熱膨張性マイクロカプセルを得た。
【0105】
得られたマイクロカプセルの上記所定の加熱条件下における発泡後の粒径を測定した結果、平均粒径が91.5μm、CV値が59.0%であった。
<実施例1>
図10に示す表1の配合処方によって調整した重合性混合物と水系分散媒体を、回分式高速回転高剪断型分散器を用いずに図1に示す本発明の熱膨張性マイクロカプセルの製造装置のように、重合性混合物と水系分散媒体を一次分散器により一次分散させてから、エレメント式静止型分散器を通過させた後、懸濁重合を行った。
【0106】
エレメント式静止型分散器は、図11の表2示すように、図2に示す構造のエレメント式静止型分散器を用いており、板状エレメントは、厚さが5mm、有効直径が15mm、板状エレメントに形成した孔の径が2mmでその形状が杵状をしており、隣り合う異なる種類の板状エレメントの間で少なくとも一部が対向することができる孔数が4つのものを使用した。そして、第1板状エレメントと第2板状エレメントの組合せで構成されるユニットの数は5組で各板状エレメントの孔を通過する流体の流速が10m/sとなるようにした。
【0107】
実施例1では、懸濁重合およびそれ以降の工程は、比較例1と同様の工程を行って、熱膨張性マイクロカプセルを得た。
【0108】
得られた熱膨張性マイクロカプセルの平均粒径は21μm、CV値32%であり、上記所定の加熱条件下における発泡後の粒径は95.9μmでCV値は48.5%であった。
<実施例2>
図10に示す表1の配合処方によって調整した重合性混合物と水系分散媒体を、回分式高速回転高剪断型分散器を用いずに図1に示す本発明の熱膨張性マイクロカプセルの製造装置のように、重合性混合物と水系分散媒体を一次分散器により一次分散してから、エレメント式静止型分散器を通過させた後、懸濁重合を行った。
【0109】
エレメント式静止型分散器は、図11の表2示すように、図2に示す構造のエレメント式静止型分散器を用いており、板状エレメントは、実施例1と同じものを使用した。そして、第1板状エレメントと第2板状エレメントの組合せで構成されるユニットの数は10組で各板状エレメントの孔を通過する流体の流速が10m/sとなるようにした。
【0110】
実施例2も、懸濁重合およびそれ以降の工程は、比較例1と同様の工程を行って、熱膨張性マイクロカプセルを得た。
【0111】
得られた熱膨張性マイクロカプセルの平均粒径は15.7μm、CV値26%であり、上記所定の加熱条件下における発泡後の粒径は68.9μmでCV値は43%であった。
<実施例3>
図10に示す表1の配合処方によって調整した重合性混合物と水系分散媒体を、回分式高速回転高剪断型分散器を用いずに図1に示す本発明の熱膨張性マイクロカプセルの製造装置のように、重合性混合物と水系分散媒体を一次分散器により一次分散してから、エレメント式静止型分散器を通過させた後、懸濁重合を行った。
【0112】
エレメント式静止型分散器は、図11の表2示すように、図2に示す構造のエレメント式静止型分散器を用いており、板状エレメントは、実施例1と同じものを使用した。そして、第1板状エレメントと第2板状エレメントの組合せで構成されるユニットの数は5組で各板状エレメントの孔を通過する流体の流速が20m/sとなるようにした。
【0113】
実施例3も、懸濁重合およびそれ以降の工程は、比較例1と同様の工程を行って、熱膨張性マイクロカプセルを得た。
【0114】
得られた熱膨張性マイクロカプセルの平均粒径は18μm、CV値30%であり、上記所定の加熱条件下における発泡後の粒径は90.5μmでCV値は46.2%であった。
<実施例4>
図10に示す表1の配合処方によって調整した重合性混合物と水系分散媒体を、回分式高速回転高剪断型分散器を用いずに図1に示す本発明の熱膨張性マイクロカプセルの製造装置のように、重合性混合物と水系分散媒体を一次分散器により一次分散してから、エレメント式静止型分散器を通過させた後、懸濁重合を行った。
【0115】
エレメント式静止型分散器は、図11の表2示すように、図2に示す構造のエレメント式静止型分散器を用いており、板状エレメントは、実施例1と同じものを使用した。そして、第1板状エレメントと第2板状エレメントの組合せで構成されるユニットの数は10組で各板状エレメントの孔を通過する流体の流速が20m/sとなるようにした。
【0116】
実施例4も、懸濁重合およびそれ以降の工程は、比較例1と同様の工程を行って、熱膨張性マイクロカプセルを得た。
【0117】
得られた熱膨張性マイクロカプセルの平均粒径は13μm、CV値24%であり、上記所定の加熱条件下における発泡後の粒径は58.9μmでCV値は43.5%であった。
<比較例2>
図10に示す表1の配合処方によって調整した重合性混合物および水性混合物を図8に示す従来の静止型分散器を通過させた後、窒素置換した加圧重合器(20L)内へ仕込み加圧して(0.2MPa)60℃20時間反応させた。
【0118】
従来の静止型分散器は、2種類の大径ディスクと小径ディスクで構成されるディスクユニットの数は5組でユニット内を通過する流体の流速が10m/sとなるようにした。
【0119】
得られた反応生成物をろ過と水洗を繰り返し、乾燥して平均粒径が24μm、CV値52%の熱膨張性マイクロカプセルを得た。
【0120】
得られたマイクロカプセルの上記所定の加熱条件下における発泡後の粒径を測定した結果、平均粒径が95.6μm、CV値が57.9%であった。
<比較例3>
図10に示す表1の配合処方によって調整した重合性混合物および水性混合物を図8に示す従来の静止型分散器を通過させた後、窒素置換した加圧重合器(20L)内へ仕込み加圧して(0.2MPa)60℃20時間反応させた。
【0121】
従来の静止型分散器は、2種類の大径ディスクと小径ディスクで構成されるディスクユニットの数は10組でユニット内を通過する流体の流速が10m/sとなるようにした。
【0122】
得られた反応生成物をろ過と水洗を繰り返し、乾燥して平均粒径が19μm、CV値56%の熱膨張性マイクロカプセルを得た。
【0123】
得られたマイクロカプセルの上記所定の加熱条件下における発泡後の粒径を測定した結果、平均粒径が89.5μm、CV値が52.5%であった。
<比較例4>
図10に示す表1の配合処方によって調整した重合性混合物および水性混合物を図8に示され従来の静止型分散器を通過させた後、窒素置換した加圧重合器(20L)内へ仕込み加圧して(0.2MPa)60℃20時間反応させた。
【0124】
従来の静止型分散器は、2種類の大径ディスクと小径ディスクで構成されるディスクユニットの数は5組でユニット内を通過する流体の流速が20m/sとなるようにした。
【0125】
得られた反応生成物をろ過と水洗を繰り返し、乾燥して平均粒径が20μm、CV値51%の熱膨張性マイクロカプセルを得た。
【0126】
得られたマイクロカプセルの上記所定の加熱条件下における発泡後の粒径を測定した結果、平均粒径が93.9μm、CV値が56.7%であった。
<比較例5>
図10に示す表1の配合処方によって調整した重合性混合物および水性混合物を図8に示され従来の静止型分散器を通過させた後、窒素置換した加圧重合器(20L)内へ仕込み加圧して(0.2MPa)60℃20時間反応させた。
【0127】
従来の静止型分散器は、2種類の大径ディスクと小径ディスクで構成されるディスクユニットの数は10組でユニット内を通過する流体の流速が20m/sとなるようにした。
【0128】
得られた反応生成物をろ過と水洗を繰り返し、乾燥して平均粒径が17.2μm、CV値48%の熱膨張性マイクロカプセルを得た。
【0129】
得られたマイクロカプセルの上記所定の加熱条件下における発泡後の粒径を測定した結果、平均粒径が56.0μm、CV値が55.4%であった。
【0130】
【発明の効果】
本発明の熱膨張性マイクロカプセルの製造方法によれば、粒子径分布が狭く、均一な形状のマイクロカプセルが得られる熱膨張性マイクロカプセルを製造することができる。
【図面の簡単な説明】
【図1】 本発明の熱膨張性マイクロカプセルを製造するための製造装置を示す概略構成図。
【図2】 本発明の熱膨張性マイクロカプセルを製造するための製造装置におけるエレメント式静止型分散器の断面図。
【図3】 図2示すエレメント式静止型分散器の軸方向端部から見た側面図。
【図4】 図2示すエレメント式静止型分散器に用いる第1板状エレメントの平面図。
【図5】 図2示すエレメント式静止型分散器に用いる第2板状エレメントの平面図。
【図6】 第1板状エレメントと第2板状エレメントを重ねた状態を示す平面図。
【図7】 従来の分散器を示す説明図。
【図8】 従来の静止型分散器を示す説明図。
【図9】 図8の静止型分散器に使用するディスクの説明図。
【図10】 実施例の配合比を示す表(表1)。
【図11】 実施例と比較例のデータを示す表(表2)。
【符号の説明】
2 一次分散器
3 エレメント式静止型分散器
31 筒状体
32 第1板状エレメント
32a 孔
33 第2板状エレメント
33a 孔
4 水系分散媒体供給部
5 重合性混合物供給部
6 重合器

Claims (3)

  1. 水系分散媒体中で、少なくとも揮発性膨張剤および重合性単量体を含有する重合性混合物を懸濁重合して、重合体の外殻内に揮発性膨張剤が封入された熱膨張性マイクロカプセルを製造する方法において、
    両端が開口された筒状体内に、多数の孔が形成された複数枚の板状エレメントが装着されており、少なくとも一部の隣り合う複数枚の板状エレメントの間で、隣り合う板状エレメントの孔の中心が互いに合わないが少なくとも互いの開口の一部は対向するように複数枚重ね合わされているエレメント式静止型分散器内に、水系分散媒体および重合性混合物を供給して、水系分散媒体および重合性混合物を各板状エレメントの間を各板状エレメントの孔を通じて順次連続的に通過させることにより水系分散媒体に重合性混合物を分散させる分散工程と、分散工程により得られた分散液を重合器の重合槽内に注入して該重合槽内で懸濁重合を行う懸濁重合工程とを経ることにより、熱膨張性マイクロカプセルを製造することを特徴とする熱膨張性マイクロカプセルの製造方法。
  2. 水系分散媒体及び重合性混合物を分散する分散工程は、水系分散媒体および重合性混合物を予め一次分散器の分散槽内に注入して、該分散槽内で両者を攪拌して仮分散させる一次分散工程と、一次分散工程により得られた一次分散液をエレメント式静止型分散器内に供給して完全分散させる完全分散工程とを有する請求項1記載の熱膨張性マイクロカプセルの製造方法。
  3. 水系分散媒体及び重合性混合物を分散する分散工程において、水系分散媒体と重合性混合物とを別々に一定の比率で連続的にエレメント式静止型分散器内に供給することを特徴とする請求項1記載の熱膨張性マイクロカプセルの製造方法。
JP2002109411A 2002-04-11 2002-04-11 熱膨張性マイクロカプセルの製造方法 Expired - Fee Related JP4189166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109411A JP4189166B2 (ja) 2002-04-11 2002-04-11 熱膨張性マイクロカプセルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109411A JP4189166B2 (ja) 2002-04-11 2002-04-11 熱膨張性マイクロカプセルの製造方法

Publications (2)

Publication Number Publication Date
JP2003305360A JP2003305360A (ja) 2003-10-28
JP4189166B2 true JP4189166B2 (ja) 2008-12-03

Family

ID=29392888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109411A Expired - Fee Related JP4189166B2 (ja) 2002-04-11 2002-04-11 熱膨張性マイクロカプセルの製造方法

Country Status (1)

Country Link
JP (1) JP4189166B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833001B2 (ja) * 2006-09-06 2011-12-07 花王株式会社 親水性ポリマー粒子の製造法
JP2008110282A (ja) * 2006-10-30 2008-05-15 Nichiraku Kikai Kk ラインミキサー
JP5500575B2 (ja) * 2008-06-16 2014-05-21 アイセル株式会社 混合要素、混合装置、混合方法、攪拌翼、攪拌装置及び攪拌方法
KR101853241B1 (ko) * 2008-06-16 2018-06-04 아이세루 가부시키가이샤 혼합 요소, 혼합 장치, 교반날개, 혼합기, 혼합 시스템 및 반응 장치
US9656223B2 (en) 2008-06-16 2017-05-23 Isel Co., Ltd. Mixing unit and device, fluid mixing method and fluid
KR20110058095A (ko) 2009-11-25 2011-06-01 제일모직주식회사 발포특성이 우수하고 입경이 균일한 열팽창성 미립자 및 그 제조방법
WO2012103432A2 (en) * 2011-01-28 2012-08-02 Catacel Corp. Improved stackable structural reactors

Also Published As

Publication number Publication date
JP2003305360A (ja) 2003-10-28

Similar Documents

Publication Publication Date Title
JP4916483B2 (ja) 真球状の発泡性マイクロスフェアー及びその製造方法
US6576023B2 (en) Method and apparatus for manufacturing microspheres
EP1508604B1 (en) Heat-expandable microcapsule and use thereof
JPH0515499B2 (ja)
EP2204428B1 (en) Heat-expandable microspheres, process for producing the same, and application thereof
JP4189166B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP5898954B2 (ja) 熱膨張性マイクロカプセル、熱膨張性マイクロカプセルの製造方法、発泡性マスターバッチ及び発泡成形体
JPH0919635A (ja) 耐熱性と耐溶剤性に優れた熱膨張性マイクロカプセル
KR20080059205A (ko) 열팽창한 미소구 및 그 제조방법
JP4620812B2 (ja) 発泡性マイクロスフェアーの製造方法
JP7296946B2 (ja) 熱膨張性マイクロカプセル及び発泡成形用組成物
JP4903924B2 (ja) 発泡性マイクロスフェアー及びその製造方法
US6617363B2 (en) Method of producing thermally expansive microcapsule
JP2005254213A (ja) 熱膨張済みマイクロカプセルの製造方法、および熱膨張済みマイクロカプセルの製造装置
EP0569234B1 (en) Thermoexpandable microcapsules having small particle size and production thereof
JP2009067898A (ja) 熱膨張性マイクロスフェアー及びその製造方法
JP2003001098A (ja) 熱膨張性マイクロカプセルの製造方法
JP2004323854A (ja) 熱膨張性マイクロカプセル及びその製造方法
JP2004168790A (ja) 熱膨張性マイクロカプセル
JP2005162996A (ja) 熱膨張性マイクロカプセル
JP5839789B2 (ja) 熱膨張性マイクロカプセルの製造方法
JP2011168749A (ja) 熱膨張性マイクロカプセルの製造方法
JP2005325264A (ja) 熱膨張性マイクロカプセル及びその製造方法
JP2004168789A (ja) 熱膨張性マイクロカプセル及び発泡性樹脂組成物
JP2013212432A (ja) 熱膨張性マイクロカプセルの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080912

R151 Written notification of patent or utility model registration

Ref document number: 4189166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees