JP4184739B2 - 高周波電力増幅器 - Google Patents
高周波電力増幅器 Download PDFInfo
- Publication number
- JP4184739B2 JP4184739B2 JP2002269840A JP2002269840A JP4184739B2 JP 4184739 B2 JP4184739 B2 JP 4184739B2 JP 2002269840 A JP2002269840 A JP 2002269840A JP 2002269840 A JP2002269840 A JP 2002269840A JP 4184739 B2 JP4184739 B2 JP 4184739B2
- Authority
- JP
- Japan
- Prior art keywords
- power amplifier
- transistor
- frequency power
- harmonic
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims description 13
- 239000003990 capacitor Substances 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000010754 BS 2869 Class F Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/191—Tuned amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microwave Amplifiers (AREA)
- Amplifiers (AREA)
Description
【発明の属する技術分野】
本発明はトランジスタなどの増幅用半導体増幅器、特に移動通信用機器、その他マイクロ波帯通信機器一般に用いる高効率高周波電力増幅器に関するものである。
【0002】
【従来の技術】
従来この種の高効率高周波電力増幅器としてはF級増幅器が知られており、トランジスタTにHBT(Heterojuction Bipolar Transistor)を用いた回路で説明する。トランジスタ自身の出力インピーダンスと、そこに接続される負荷(一般にはアンテナ)のインピーダンスの整合を図るために出力整合回路が設けられ、同様に、トランジスタのベースの(入力)インピーダンスと、そこに接続される駆動回路(不図示)のインピーダンスとの整合を図るために入力整合回路が設けられる。
【0003】
このような整合回路に信号が入射するとき、信号の一部がそれらの整合回路で反射する。このときの反射波と入射波との比を“反射係数”という。入射波と反射波との間で位相差があり、その位相差を、“反射係数の角度”という。(反射係数自体がベクトル値であるため角度を持つ)
【0004】
さて、トランジスタから出力側の反射係数を見た時、インピーダンスが偶数次(2次)高調波でショート、奇数次(3次)高調波でオープンとなるようにすれば高い動作効率が得られるため、そのための“高調波制御回路”(一般に所定長の伝送線路とコンデンサとの直列回路)が上記出力整合回路に備えられる。
【0005】
ここでトランジスタのコレクタ効率に大きく関係しているのが、コレクタ電流に含まれる2次高調波である。この2次高調波の上側ピークとコレクタ電流の基本波の上側ピークが一致する位相で、且つ2次高調波の基本波に対する電流の振幅比が0.3〜0.5の場合に効率が最も高くなる。従って発生する高調波はある程度大きいことが望ましい。
【0006】
尚、本発明と同一分野の出願を以下に列挙する。
上述した“高調波制御回路”を出力側だけでなく入力側にも設け、入力側の2次高調波に対してもインピーダンスを所定の範囲に設定している(例えば、特許文献1参照)。
【0007】
“高調波制御回路”を出力側に備えると、小型化に不利となるため、出力整合回自体を所定のインピーダンスに設定することで、動作効率を低下させることなく、“高調波制御回路”の設置を省略している(例えば、特許文献2参照)。
【0008】
入力整合回路での偶数次高調波に対するインピーダンスを開放状態とし、奇数次高調波に対するインピーダンスを短絡状態にしている(例えば、特許文献3参照)。
【0009】
これらの文献はいずれも、増幅素子にFETを使用したものであり、そのゲート電流は、上記トランジスタのベース電流に比較すると極めて小さいため、そのゲート電流に含まれる高調波に起因するような問題点は発生しない。
【0010】
【特許文献1】
特許第2695395号「高周波電力増幅器」(請求項1、図2)
【特許文献2】
特開2000−165162号「高周波用電力増幅器」(請求項1、図1)
【特許文献3】
特開2000-164753号「高周波電力増幅器」(請求項1,2、図1)
【0011】
【発明が解決しようとする課題】
電力増幅器は上記のような動作をするが、以下に述べる問題点がある。先に述べた2次高調波電流は、コレクタ側の非線形性による発生のみを考慮したものであったが、実際にはベース側も非線形性を持つために、ベース電流にも2次高調波が発生する。上述したような特性を持つ入力整合回路においては、ベース2次高調波電流の上側のピークは、図2に示されるように、ベース電流の基本波の上側ピークより位相が遅れている。
【0012】
バイポーラトランジスタではベース電流のβ倍がコレクタ電流であるため、ベース電流の基本波と2次高調波との間の位相差が、コレクタ電流の基本波と2次高調波との間に位相差を発生させる。先に述べたとおり、コレクタ効率の向上には基本波と2次高調波の上側ピークを一致させる必要があるため、ベース側の基本波と2次高調波との間の位相差は効率低下の原因となっていた。
【0013】
本発明は以上のような状況でなされたもので、ベース側で発生する2次高調波に対しても、位相調整(基本波との間でピークの位相を揃える)を行うことで、増幅器の効率を向上させた高周波電力増幅器を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、トランジスタの入力側にインピーダンス整合用の入力整合回路側を備えた高周波電力増幅器において、前記入力側に流れる基本波および2次高調波における上側ピーク間の位相差を少なくする手段を備えたことを特徴とするものであり、その手段としては、トランジスタの入力端から入力整合回路側を見たときの2次高調波(周波数:2fo)の反射係数Γs2fo(基本波の実数成分で規格化したもの)の角度を、ポーラチャート上で170°〜270°の範囲にするものである。
【0015】
【発明の実施の形態】
本発明の高周波電力増幅器のブロック図を図1に示す。トランジスタTの出力側に設けた出力整合回路1は、従来のものと同様に、インピーダンスが2次高調波でショート、3次高調波でオープン(∞)となっている。トランジスタTのベース側のに設けた入力整合回路2においては、トランジスタTから入力側を見た2次高調波の反射係数Γs2foの角度∠Γs2foを170°〜270°にしている。ただしこのときのΓs2foは、基本波の反射係数ΓsFoの実数成分で規格化された値を用いる。例えば基本波のインピーダンスが(3−j1.5Ω)である場合は、3Ωで規格化を行う。このときのコレクタ電流(Ic)、コレクタ電圧(Vc)、ベース電流(Ib)、ベース電圧(Vb)波形を図2に示す。コレクタ電圧は矩形波・コレクタ電流は半波整流された正弦波形となる。この場合、コレクタ電圧が0V以外の時に電流が流れないためにコレクタ効率は100%となる。
【0016】
図2に示されるように、基本波より位相が遅れていた2次高調波ベース電流Ib2foは、入力整合回路2によって位相が進められ、そのため、ベース電流の基本波Ibfoの上側ピークと2次高調波Ib2foの上側ピークとの位相差が小さくなる。この状態のベース電流をトランジスタで増幅した結果がコレクタ電流となるため、コレクタ電流Icfoの2次高調波Ic2foの振幅は従来のものと比較して大きくなって、Ic2fo振幅のIcfo振幅に対する比が0.3〜0.5に近づくため、且つ基本波と2次高調波の上側ピークの位相も一致しやすくなるためコレクタ効率が高くなることが予想される。尚、ベース電流とはベース・エミッタ間の寄生容量に流れる寄生電流を除いた電流である。
【0017】
図3は反射係数Γs2foの絶対値|Γs2fo|を0.2、0.4、0.6、0.8、0.95に対し、それぞれ角度∠Γs2foを変えた場合のコレクタ効率の変化(シミュレーション結果)を示す。実際に角度∠Γs2foが170°〜270°の範囲でコレクタ効率が高くなっている結果が得られた。
【0018】
また、多段アンプでは終段トランジスタの入力整合回路は、前段トランジスタの出力整合回路と接続、もしくは一体化しているために反射係数Γs2foの絶対値|Γs2fo|を充分に大きくすることが出来ない場合があるが、この発明では絶対値|Γs2fo|が、0.2や0.4といった低い値であってもコレクタ効率改善の効果が得られることが図3より分かった。
【0019】
ここでスミスチャートおよびポーラチャートについて簡単に述べる。図11のスミスチャートにおけるインピーダンス平面の定抵抗線Rと定リアクタンス線Xを、半径方向を反射係数とした平面上でベクトル(R+jX)の表示にして描き直したものが図12のポーラーチャートであり、スミスチャートと同様のインピーダンスチャートであり、スミスチャートにおけるインピーダンスをベクトルとして|Γ|∠θ(Γは反射係数、θは位相)で表現したものである。
【0020】
図12のポーラチャートにおける斜線領域が本発明で推奨する反射係数Γs2foの角度∠Γs2fo(170°〜270°)であり、反射係数Γs2foの絶対値|Γs2fo|は、1以下であればよく(但し0は除く)、絶対値|Γs2fo|が狭い範囲に限定されないので製作の自由度が高く、それゆえ製作も容易となる。
【0021】
尚、角度∠Γs2foを180°(2次高調波では1周期)付近にすると、入射波と反射波とが同位相になって、2次高調波ベース電流Ib2foが最大になるという利点が得られるものの、そのような角度では、2次高調波ベース電流に対する位相変化量が少ないため(つまり基本波と2次高調波との間のピーク位相差が残る)、全体としては、図3からわかるように最高の効率とはなっていない。
【0022】
実施の形態1.
本発明の実施の形態1を図4に示す。同図に示すように、トランジスタTのベースとGND間に、伝送線路5とコンデンサ6との直列接続からなる共振回路7を接続している。この共振回路7は、一般的に基本波の周波数でインピーダンスを高くなるように、伝送線路5は1/4波長に設定されるが、本実施形態では、その線路長を1/4波長よりも短く(好ましくは1/4波長の1/3〜1/4)し、コンデンサ6は、数pF〜10pF程度(動作周波数が1GHz〜5GHzの場合)の値としている。その場合の共振回路7の入力−出力におけるインピーダンスZの特性を図5に示す。
【0023】
同図に示されるように、共振回路7の共振周波数Qは2次高調波周波数2foよりも大きくなっている。このような共振回路7をトランジスタTの入力側に接続することで、2次高調波ベース電流における反射係数の角度∠Γs2foを170°〜270°にすることが可能となる。図4中の伝送電路5の替りにインダクタを用いることも可能である。この実施形態では線路長が短いため、共振回路7を小型化できる。
【0024】
実施の形態2.
本発明に係わる実施の形態2を図6に示す。この実施形態では、基本波の周波数でインピーダンスが高くなるように、伝送線路5の線路長を1/4波長にし、一方、コンデンサ6は大容量(100pF以上)とし、動作周波数に対してコンデンサ6は完全にショートした状態になる。このような伝送線路5を用いることにより、2次高調波ベース電流における反射係数の角度∠Γs2foを170°〜270°にしている。
【0025】
ところで、図4の回路においては、トランジスタTのベースに対してバイアス電を供給するためのバイアス回路が実際に必要となる。しかし、ベースにバイアス回路を接続しても、そのベースの入力インピーダンスが変化しないように、バイアス回路側のインピーダンスが基本波に対してオープン(∞)となるような素子(1/4波長の伝送線路)が必要となる。この実施の形態2では、その伝送線路を流用して共振回路7を形成することができ、部品点数を減らすことができる。
【0026】
実施の形態3.
本発明の形態3を図7に示す。増幅器の段数が2以上の場合、終段トランジスタTの入力整合回路2は、前段トランジスタ(不図示)の出力整合回路11と接続(若しくは一体化)されている。前段トランジスタの効率を改善するためには前段トランジスタから出力側を見た2次高調波の反射係数を最適化する必要がある。
【0027】
しかし終段トランジスタTのベース側から見た2次高調波の反射係数(Γs2fo)の角度∠Γs2foを前述のごとく、170°〜270°の最適値に維持する一方で、前段トランジスタから出力側を見た2次高調波の反射係数を最適化することは一般的に困難である。
【0028】
そこで図7に示したように終段トランジスタTのベース側に設けた共振回路7と入力整合回路2との間に2次高調波でオープンとなるフィルタ8を設ける。これにより、終段トランジスタTのベース側に対しては共振回路7により、∠Γs2foを170°〜270°の最適値に維持する一方で、前段トランジスタから出力側を見た2次高調波の反射係数をフィルタ8によって随意に設定できる。
【0029】
本実施形態を用いることによって前段トランジスタの効率を劣化させることなく終段トランジスタTのコレクタ効率を改善することが可能となる。フィルタ8の構成としては図8に示すようなインダクタとコンデンサを直列に接続したものを例示できる。そのフイルタ8は、共振周波数が基本波となるよう回路定数を設定する。
【0030】
実施の形態4.
本発明の実施の形態4を図9に示す。HBTではトランジスタの温度が上昇した場合に電流が増加する特性があり、そのため正帰還となって電流暴走が生じ、トランジスタが破壊に至るという問題がある。これを防ぐ方法の1つとしてベース側に直列に抵抗(バラスト抵抗)を挿入する方法がある。バラスト抵抗はトランジスタの近くに配置する必要があるため、図9のごとく共振回路7を備える場合には、入力整合回路2と共振回路7との接続点とベースとの間にバラスト抵抗9を挿入する。
【0031】
しかし、その場合、共振回路7を含む入力整合回路2自身のΓs2foがショート付近であってもトランジスタから見たΓs2foは、バラスト抵抗の分だけオープン側にシフトする。オープン側へのシフト量が大きいとベース側の2次高調波振幅が小さくなりその結果、コレクタ効率が低下する。
【0032】
そこで本実施の形態4では、この効率低下を防ぐためにバラスト抵抗9を信号源側基本波反射係数Γsfoが66%であるときのインピーダンスの抵抗値(特性インピーダンスが50Ωである場合にΓs2foが66%であるときのインピーダンスの抵抗値は33Ω)以上にしている。これによってΓs2foの絶対値を0.2以上にすることが可能となり、コレクタ効率の低下を抑えることができる。なおここでのバラスト抵抗9の値は終段トランジスタを1つのトランジスタと考えて計算した値である。
【0033】
また、ここでのΓs2foの値はバラスト抵抗8を挿入していない場合の値である。バラスト抵抗8(抵抗値=Rb)を挿入した場合、バラスト抵抗8から入力整合回路2側を見た場合の反射係数Γs2fo')と、Rbと、Γsfoとの関係は、Γsfo=Rb+Γsfo'となる。
【0034】
実施の形態5.
本発明の実施の形態5を図10に示す。実施の形態4(図9)で述べたようにトランジスタT1にバラスト抵抗を設けることによって安定性は向上するが、トランジスタから見たΓs2foの絶対値は小さくなり、その結果、コレクタ効率は低下する。これを回避するためにバラスト抵抗8と並列に、2次高調波でインピーダンスが0となる共振回路10を設けた。2次高調波以外では、トランジスタTからみた場合、バラスト抵抗9のみを設けた場合と同じであるが、2次高調波では直列共振回路10ではインピーダンスが0となるため、Γs2foの絶対値を大きくすることが可能となる。本実施形態によればHBTの安定性とコレクタ効率の向上を同時に行うことが可能となる。
【0035】
【発明の効果】
この発明は、トランジスタの入力側に流れる基本波および2次高調波における上側ピーク間の位相差を少なくする手段を備えたので、トランジスタの出力側に流れる基本波と2次高調波における上側ピーク間の位相差がより少なくなり、その結果、トランジスタの動作効率を高めることが可能となる。その手段としては、L、Cからなる簡単な共振回路で実現することができる。
【図面の簡単な説明】
【図1】 本発明の高周波増幅回路の構成を示す図である。
【図2】 図1の回路におけるトランジスタのコレクタおよびベースの電流電圧波形を示す図である。
【図3】 図1の回路におけるコレクタ効率(シミュレーション結果)を示す図である。
【図4】 本発明の実施の形態1による高周波増幅回路の構成を示す図である。
【図5】 図4の回路で用いた共振回路の特性を示す図である。
【図6】 本発明の実施の形態2による高周波増幅回路の構成を示す図である。
【図7】 本発明の実施の形態3による高周波増幅回路の構成を示す図である。
【図8】 図7の回路に用いたフィルタ回路の構成を示す図である。
【図9】 本発明の実施の形態4による高周波増幅回路の構成を示す図である。
【図10】 本発明の実施の形態5による高周波増幅回路の構成を示す図である。
【図11】 スミスチャートを示した図である。
【図12】 ポーラチャートを示した図である。
【符号の説明】
1 出力整合回路、2 入力整合回路、5 伝送回路、6 コンデンサ、7 共振回路、8 フィルタ、9 バラスト抵抗、10 共振回路
Claims (9)
- トランジスタの入力側にインピーダンス整合用の入力整合回路側を備えた高周波電力増幅器において、
前記入力側に流れる基本波および2次高調波における上側ピーク間の位相差を少なくする手段を備え、
上記手段は、トランジスタの入力側に接続した共振回路であり、その共振周波数を2次高調波の周波数 2fo よりも高くした高周波電力増幅器。 - 上記手段は、トランジスタの入力端から入力整合回路側を見たときの2次高調波(周波数:2fo)の反射係数Γs2fo(基本波の実数成分で規格化したもの)の角度を、ポーラチャート上で170°〜270°の範囲にするものである請求項1記載の高周波電力増幅器。
- 上記共振回路を構成する伝送線路(もしくはインダクタ)の線路長を1/4波長より短くした請求項1記載の高周波電力増幅器。
- 上記伝送線路(もしくはインダクタ)の線路長を1/4波長とし、この伝送線路(もしくはインダクタ)をトランジスタの入力側に接続した時、伝送線路(もしくはインダクタ)と、コンデンサとの接続点にバイアス供給回路を接続する請求項1記載の高周波電力増幅器。
- 入力整合回路の出力端に、2次高調波でオープンになるフィルタを挿入した請求項1〜4のいずれかに記載の高周波電力増幅器。
- 上記フィルタは、インダクタおよびコンデンサの直列接続による共振回路であり、その共振周波数を基本波(周波数:fo)とした請求項5記載の高周波電力増幅器。
- トランジスタのベース入力端にバラスト抵抗を挿入し、そのバラスト抵抗は、信号源側基本波反射係数(Γsfo)が66%であるときのインピーダンスの抵抗値以上にした請求項1〜6のいずれかに記載の高周波電力増幅器。
- バラスト抵抗と並列に2次高調波でショートする共振回路を接続した請求項7記載の高周波電力増幅器。
- トランジスタがバイポーラトランジスタである請求項1〜8のいずれかに記載の高周波電力増幅器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002269840A JP4184739B2 (ja) | 2002-09-17 | 2002-09-17 | 高周波電力増幅器 |
US10/379,557 US6778020B2 (en) | 2002-09-17 | 2003-03-06 | High-frequency power amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002269840A JP4184739B2 (ja) | 2002-09-17 | 2002-09-17 | 高周波電力増幅器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004112158A JP2004112158A (ja) | 2004-04-08 |
JP4184739B2 true JP4184739B2 (ja) | 2008-11-19 |
Family
ID=31986826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002269840A Expired - Lifetime JP4184739B2 (ja) | 2002-09-17 | 2002-09-17 | 高周波電力増幅器 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6778020B2 (ja) |
JP (1) | JP4184739B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3874241B2 (ja) * | 2001-07-27 | 2007-01-31 | 株式会社ルネサステクノロジ | 電子部品および設計方法 |
WO2006016299A1 (en) * | 2004-08-09 | 2006-02-16 | Koninklijke Philips Electronics N.V. | Integrated f-class amplifier with output parasitic capacitance compensation |
KR100633019B1 (ko) * | 2004-12-24 | 2006-10-12 | 한국기계연구원 | 미세 임프린트 리소그래피 공정에서 스탬프와 기판의이격공정 및 그 장치 |
US8076994B2 (en) * | 2007-06-22 | 2011-12-13 | Cree, Inc. | RF power transistor packages with internal harmonic frequency reduction and methods of forming RF power transistor packages with internal harmonic frequency reduction |
CN102427338B (zh) * | 2011-09-26 | 2015-05-20 | 无锡易芯微电子有限公司 | 自动变换输入阻抗的信号放大器及其实现方法 |
KR102126754B1 (ko) * | 2012-12-26 | 2020-06-25 | 현대모비스(주) | 레이더 장치 및 이에 적용되는 위상편차 보상방법 |
CN103986428A (zh) * | 2014-05-30 | 2014-08-13 | 无锡中普微电子有限公司 | 超频宽放大器及其设计方法 |
CN106253866A (zh) * | 2016-08-03 | 2016-12-21 | 苏州能讯高能半导体有限公司 | 一种功率放大器 |
CN108736839A (zh) * | 2017-04-16 | 2018-11-02 | 天津大学(青岛)海洋工程研究院有限公司 | 一种提高高效e逆f类功率放大器载波频率的匹配电路 |
US10666207B1 (en) * | 2018-11-16 | 2020-05-26 | Cree, Inc. | Broadband harmonic matching network using low-pass type broadband matching |
CN112928999A (zh) | 2019-12-05 | 2021-06-08 | 恩智浦美国有限公司 | 一种放大器及其制造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3136348A1 (de) * | 1981-09-14 | 1983-03-24 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Mikrowellen-oszillator in gegentaktschaltung |
US5105167A (en) * | 1991-03-28 | 1992-04-14 | Honeywell Inc. | Harmonic injection amplifier |
JPH05275924A (ja) * | 1992-03-26 | 1993-10-22 | Alps Electric Co Ltd | 高周波発振回路 |
JP2695395B2 (ja) | 1994-05-19 | 1997-12-24 | 松下電器産業株式会社 | 高周波電力増幅器 |
US5592122A (en) | 1994-05-19 | 1997-01-07 | Matsushita Electric Industrial Co., Ltd. | Radio-frequency power amplifier with input impedance matching circuit based on harmonic wave |
CA2244507A1 (en) * | 1998-09-04 | 2000-03-04 | Masahiro Kiyokawa | Method and apparatus for cascading frequency doublers |
JP2000165162A (ja) | 1998-11-27 | 2000-06-16 | Kyocera Corp | 高周波用電力増幅器 |
JP4601807B2 (ja) | 2000-11-29 | 2010-12-22 | 三菱電機株式会社 | 高周波電力増幅器 |
-
2002
- 2002-09-17 JP JP2002269840A patent/JP4184739B2/ja not_active Expired - Lifetime
-
2003
- 2003-03-06 US US10/379,557 patent/US6778020B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US6778020B2 (en) | 2004-08-17 |
US20040051589A1 (en) | 2004-03-18 |
JP2004112158A (ja) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6577199B2 (en) | Harmonic matching network for a saturated amplifier | |
US5146178A (en) | Impedance-matched, class F high-frequency amplifier | |
US7199658B2 (en) | Circuits and methods for implementing power amplifiers for millimeter wave applications | |
JP5711354B2 (ja) | クラス特性可変増幅器 | |
US8704601B2 (en) | Class E power amplifier | |
US8717102B2 (en) | RF device with compensatory resonator matching topology | |
JP4485487B2 (ja) | 電力増幅器 | |
JP5958834B2 (ja) | 高周波電力増幅器 | |
US20070205828A1 (en) | Switched mode power amplifier using lumped element impedance inverter for parallel combining | |
Park et al. | A 1.9-GHz CMOS power amplifier using three-port asymmetric transmission line transformer for a polar transmitter | |
JP4184739B2 (ja) | 高周波電力増幅器 | |
US6759908B2 (en) | High frequency power amplifier | |
CN210405231U (zh) | 功率放大电路 | |
JP4335633B2 (ja) | F級増幅回路,及びf級増幅器用負荷回路 | |
US7135931B2 (en) | Negative conductance power amplifier | |
JP5504465B2 (ja) | 電力増幅回路 | |
JP2005341447A (ja) | 高周波電力増幅器 | |
US8723601B2 (en) | Amplifier | |
JP6581477B2 (ja) | 増幅器 | |
JP2006093857A (ja) | 歪補償回路 | |
US11309842B2 (en) | Power amplifier circuit | |
CN110113015B (zh) | 栅极偏置电路及功率放大器 | |
US20230092413A1 (en) | Radiofrequency amplifier | |
JP2024064526A (ja) | 電力増幅器 | |
JP2001237658A (ja) | 高周波増幅器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080904 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4184739 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130912 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |