JP4178663B2 - 圧力センサ回路 - Google Patents

圧力センサ回路 Download PDF

Info

Publication number
JP4178663B2
JP4178663B2 JP14736299A JP14736299A JP4178663B2 JP 4178663 B2 JP4178663 B2 JP 4178663B2 JP 14736299 A JP14736299 A JP 14736299A JP 14736299 A JP14736299 A JP 14736299A JP 4178663 B2 JP4178663 B2 JP 4178663B2
Authority
JP
Japan
Prior art keywords
circuit
conversion circuit
output
pressure sensor
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14736299A
Other languages
English (en)
Other versions
JP2000337982A (ja
Inventor
保司 小西
雅則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14736299A priority Critical patent/JP4178663B2/ja
Publication of JP2000337982A publication Critical patent/JP2000337982A/ja
Application granted granted Critical
Publication of JP4178663B2 publication Critical patent/JP4178663B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧力センサの温度補償を行う圧力センサ回路に関するものである。
【0002】
【従来の技術】
一般に、半導体を用いた圧力センサは環境温度に応じて出力のオフセットおよび感度が変動するから、検出精度を高めるためには環境温度に応じてオフセットおよび感度を補正する温度補償を行う必要がある。そこで、圧力センサの温度補償を行う圧力センサ回路が従来から提供されている。
【0003】
この種の圧力センサ回路として、図8に示す構成が知られている。この圧力センサ回路は、圧力センサ1の出力を増幅回路3により増幅し、A/D変換回路4によりデジタル値に変換した後に、デジタル出力回路5からデジタル値をシリアル出力するように構成されている。この圧力センサ1は環境温度に応じてオフセットや感度が変化するものであるから、環境温度に応じたオフセット補正およびスパン補正(感度に対する補正)が必要になる。
【0004】
そこで、環境温度を検出する感温回路2と、オフセット補正のための補正電圧を発生するオフセット補正用D/A変換回路8と、感度補正のための補正電圧を発生するスパン補正用D/A変換回路9とを設け、感温回路2により検出された環境温度に応じてオフセット補正の補正量およびスパン補正の補正量を与えるように構成してある。具体的にはマイコンよりなる制御回路7を設けるとともに、オフセット補正の補正量およびスパン補正の補正量を環境温度に対応付けて格納したEEPROMよりなるメモリ6とを設け、環境温度が制御回路7に与えられると、各補正量をメモリ6から読み出してオフセット補正用D/A変換回路8およびスパン補正用D/A変換回路9に与えるようにしてある。
【0005】
すなわち、制御回路7はまず感温回路2に指示を与え、感温回路2の出力を増幅回路3で増幅するとともにA/D変換回路4でデジタル値に変換し、環境温度に対応したデジタル値を制御回路7に取り込む。制御回路7は、環境温度を取り込むとメモリ6から環境温度に対応した補正量を読み出し、圧力センサ1およびオフセット補正用D/A変換回路8に指示を与えて、圧力の検出とオフセット補正とを行わせる。ここに、図8では増幅回路3の出力電圧とオフセット補正用D/A変換回路8の出力電圧とを加算するように記載しているが、これは圧力センサ1の出力電圧とオフセット補正用の補正電圧とを増幅回路3により動増幅することと等価である。こうして圧力センサ1の出力にオフセット補正が施され、補正後の電圧がA/D変換回路4に入力されることになる。A/D変換回路4にはスパン補正用D/A変換回路9からの補正電圧も入力されており、この補正電圧によって圧力センサ1の感度が補正される(言い換えると、A/D変換回路4の出力値の1ビットに対応する入力電圧幅が補正される)。
【0006】
上述のように、オフセット補正用D/A変換回路8およびスパン補正用D/A変換回路9はアナログ量である補正電圧を出力するものであるが、補正量は制御回路7からデジタル値として指示されるからD/A変換回路を用いている。
【0007】
ところで、A/D変換回路4は、入力端子Vinと基準入力端子Vrefと基準電圧端子AGNDとを有する。また、オペアンプA3および抵抗RよりなるV/I変換回路10、オペアンプA2およびコンデンサCintよりなる積分回路、オペアンプA1よりなる比較回路などを備えている。入力端子Vinおよび基準入力端子Vrefにそれぞれ入力された電圧は、制御回路7により制御されるアナログスイッチS3〜S6により択一的にV/I変換回路10に入力される。ここに、コンデンサCrefを設けて入力端子Vinからの入力電圧と基準入力端子Vrefからの入力電圧との極性を逆転させている。
【0008】
V/I変換回路10から出力される電流は積分回路により積分され、比較回路により基準電位である接地電位と比較される。ここで、上記積分回路では入力端子Vinからの電圧でコンデンサCintを一定時間充電した後に、基準入力端子Vrefで逆積分して積分回路の出力電圧が接地電位に達するまでの時間を計時することにより、入力端子Vinへの入力電圧をデジタル値に変換するように構成されている。この計時手段は制御回路7に設けられている。しかるに、オフセット補正後の圧力センサ1の出力電圧を入力端子Vinに入力し、スパン補正用D/A変換回路9の出力電圧を基準入力端子Vrefに入力することによって、圧力センサ1の出力値を温度補正したデジタル値が得られるのである。
【0009】
【発明が解決しようとする課題】
しかしながら、図8に示した圧力センサ回路では、A/D変換回路4にV/I変換回路10を設けてあり、V/I変換回路10のオペアンプA3の入力ダイナミックレンジによりA/D変換回路4の入力電圧範囲が制限されるものであるから、圧力センサ1の出力電圧範囲を広くとるには、A/D変換回路4の電源電圧を高くしてA/D変換回路4の入力電圧範囲を広くする必要があり、圧力センサ1の出力電圧範囲や温度特性が変化した場合、A/D変換回路4の仕様を変更することが必要になる。また、A/D変換回路4にコンデンサなどの実装部品が多く設けられているので、A/D変換回路4の部品点数が多くなりコストがかかるという問題がある。
【0010】
本発明は上記事由に鑑みてなされたものであり、その目的は、圧力センサの特性が変化した場合でも大幅な回路変更を必要とせずに温度補償が可能であり、A/D変換回路の低電圧化と低コスト化とを図った圧力センサ回路を提供することにある。
【0011】
【課題を解決するための手段】
請求項1の発明は、アナログ出力が得られ環境温度に応じて出力のオフセットおよび感度が変動する圧力センサと、圧力センサの環境温度を検出する感温回路と、感温回路により検出された環境温度に応じてオフセットと感度との補正量をデジタル値で指示する制御回路と、制御回路から出力されたオフセットと感度との補正量を電流値に変換するR−2Rラダー抵抗網と、R−2Rラダー抵抗網から出力されるオフセットと感度との補正量に対応した電流をそれぞれ電圧に変換する第1のI/V変換回路および第2のI/V変換回路と、上記R−2Rラダー抵抗網に上記第1および第2のI/V変換回路のいずれか一方を選択的に接続する切換手段と、圧力センサの出力に第1のI/V変換回路の出力電圧によるオフセット補正を施した電圧を電流に変換する第1のV/I変換回路と、第2のI/V変換回路の出力電圧を電流に変換する第2のV/I変換回路と、第2のV/I変換回路の出力電流を基準として第1のV/I変換回路の出力電流をデジタル値に変換するA/D変換回路とを具備し、圧力センサによる検出圧力をデジタル値として出力し、第1および第2のV/I変換回路をA/D変換回路と別に設け、第1および第2のV/I変換回路の入力電圧範囲を別々に設定するものであり、この構成によれば、第1および第2のV/I変換回路をA/D変換回路と別に設けることにより、第1および第2のV/I変換回路をオフセット補正用およびスパン補正用にそれぞれ用い、第1および第2のV/I変換回路の入力電圧範囲を別々に設定することができる。その結果、第1のV/I変換回路の入力電圧範囲を広くとることにより圧力センサの出力電圧範囲を広くとることができるので、圧力センサの特性が変化した場合でも大幅な回路変更を必要とせずに温度補償を行うことができる。また、第1および第2のV/I変換回路をA/D変換回路と別に設けることにより、圧力センサの出力電圧範囲を広くとるためにA/D変換回路の電源電圧を高くしてA/D変換回路の入力電圧範囲を広くする必要がなくなるので、A/D変換回路の内部にV/I変換回路を設けた構成よりもA/D変換回路の低電圧化を図ることができ、しかも、A/D変換回路の部品点数を削減することができ、低コスト化を図ることができる。さらにまた、切換手段によって第1および第2のI/V変換回路のいずれか一方がR−2Rラダー抵抗網に接続され、1つのR−2Rラダー抵抗網がオフセット補正用とスパン補正用とに共用されるので、オフセット補正用とスパン補正用とにそれぞれ別々のR−2Rラダー抵抗網を設ける必要がなく、回路構成が簡単になり、低コスト化を図ることができる。
【0014】
請求項の発明は、請求項1の発明において、上記A/D変換回路への入力電流の範囲を決める基準電圧を可変としたものである。この構成によれば、圧力センサの出力電圧範囲に応じた基準電圧を設定することができ、見掛け上A/D変換回路の入力ダイナミックレンジを広げたことになる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0016】
参考例1
参考例の圧力センサ回路は、図1に示すように、図8に示した従来例と同様に圧力センサ1の環境温度を検出する感温回路2を備え、圧力センサ1および感温回路2の出力を選択的に増幅回路3で増幅し、A/D変換回路4でデジタル値に変換した後、デジタル出力回路5を介して出力することにより、圧力センサ1が検出した圧力をデジタル値として出力するものである。
【0017】
また、圧力センサ1および感温回路2の出力のタイミングが制御回路7により切り換えられ、圧力センサ1および感温回路2の出力のいずれか一方が増幅回路3に入力されて電圧増幅されるようになっている。増幅回路3の出力電圧は、図ではオフセット補正用D/A変換回路8(後述する)の出力電圧に加算されてA/D変換回路4の入力端子Iin(後述する)に入力されているが、実際には増幅回路3において圧力センサ1および感温回路2の出力のいずれか一方とオフセット補正用D/A変換回路8の出力電圧とを差動増幅している。
【0018】
参考例では、A/D変換回路4を電流入力型に変更し、A/D変換回路4の外部に2つのV/I変換回路11,12を設け、各V/I変換回路11,12をオフセット補正用およびスパン補正用にそれぞれ用いている。
【0019】
A/D変換回路4は、入力端子Iinと基準入力端子Irefと基準電圧端子AGNDとを有し、オペアンプA2およびコンデンサCintよりなる積分回路と、オペアンプA1よりなる比較回路とを備える。入力端子Iinと基準入力端子IrefとはオペアンプA2の非反転入力端に接続される。オペアンプA2の出力はコンデンサCintを介して反転入力端に帰還されるとともにオペアンプA1の反転入力端に入力される。基準電圧端子AGNDは、各オペアンプA1,A2の非反転入力端にそれぞれ接続されるととともに所定の基準電圧が印加される。
【0020】
V/I変換回路11は、増幅回路3の出力電圧をオフセット補正用D/A変換回路8の出力電圧によりオフセット補正した電圧を電流に変換してA/D変換回路4の入力端子Iinに出力する。一方、V/I変換回路12は、スパン補正用D/A変換回路9の出力電圧を電流に変換してA/D変換回路4の基準入力端子Irefに出力する。また、各V/I変換回路11,12の出力のタイミングが制御回路7により切り換えられ、入力端子Iinおよび基準入力端子Irefのいずれか一方に電流が入力されるようになっている。
【0021】
A/D変換回路4では、図2(a)に実線で示すように、まず、入力端子Iinに入力された電流(以下では入力電流Iinと表す)を上記積分回路により一定時間Tinで積分する。このとき、上記比較回路の出力電圧が基準電圧端子AGNDに印加された基準電圧(この電圧も同符号で示す)から傾きIin/Cintで増加して電圧Vinまで増加し、この電圧Vinは、Vin=Iin×Tin/Cintと表される。
【0022】
その後、基準入力端子Irefに入力された電流(以下では基準電流Irefと表す)を上記積分回路により積分すると、上記比較回路の出力電圧が電圧Vinから一定の傾き−Iref/Cintで減少して再び基準電圧AGNDに戻る。このとき、上記比較回路の出力電圧の減少量Vrefは、Vref=−Iref×Tref/Cintと表される。ここで、基準電流Irefの積分を開始してから上記比較回路の出力電圧が基準電圧AGNDに戻るまでの時間Trefを制御回路7に設けたカウンタによって計数することにより、A/D変換回路4は入力電流Iinをデジタル値に変換してデジタル出力回路5に出力し、上記カウンタにより得られたデジタル値がデジタル出力回路5によりシリアル値に変換されて出力される。しかして、A/D変換回路4により変換されたデジタル値の大きさであるデジタル量は、
(デジタル量)=Iin/Iref×(定数) ・・・・・(1)
と表される。
【0023】
参考例の圧力センサ回路では、従来例と同様に圧力センサ1のオフセットおよびA/D変換回路4のスパンを補正する圧力センサ1の温度補償を行うために、EEPROMよりなるメモリ6に圧力センサ1の環境温度に対応するオフセット補正量およびスパン補正量をあらかじめ記憶させている。
【0024】
圧力センサ1の温度補償を行うには、まず、感温回路2の出力を増幅回路3で増幅してA/D変換回路4でデジタル値に変換することにより、感温回路2が検出した環境温度の情報を制御回路7に入力する。制御回路7は、感温回路2が検出した環境温度に応じてメモリ6からオフセット補正量およびスパン補正量を読み出しデジタル値として出力する。制御回路7から出力されたオフセット補正量およびスパン補正量のデジタル値は、オフセット補正用D/A変換回路8およびスパン補正用D/A変換回路9によってそれぞれ電圧に変換される。
【0025】
次に、圧力センサ1の出力が増幅回路3で増幅された後、オフセット補正用D/A変換回路8の出力電圧によりオフセット補正されてV/I変換回路11に入力され、スパン補正用D/A変換回路9の出力電圧はV/I変換回路12に入力される。これにより、A/D変換回路4の入力端子Iinおよび基準入力端子Irefに入力される電流の大きさが変化し、圧力センサ1のオフセットおよびA/D変換回路4のスパンが補正され、圧力センサ1の温度補償が行われる。
【0026】
ここで、本参考例における圧力センサ1の温度補償について、図2および図3を用いて詳しく説明する。この温度補償では、圧力センサ1のオフセットを補正するオフセット補正を行った後に、A/D変換回路4のスパンを補正するスパン補正を行う。
【0027】
オフセット補正では、圧力センサ1が圧力を検出していないときに(1)式のIin=0となるように、つまりV/I変換回路11に入力される電圧がゼロになるように補正を行う。オフセット補正を行う前には、図2(a)に破線で示すようにIinのオフセット変動分が出力に現れている。そこで、増幅回路3の出力電圧と同じ大きさで逆極性の電圧をオフセット補正用D/A変換回路8から出力することにより、V/I変換回路11に入力される電圧がゼロとなり、図2(b)に示すようにIin=0となって、オフセット補正が行われる。その結果、オフセットにより生じる誤差がオフセット補正用D/A変換回路8の量子化誤差のみになり、高精度に温度補正がなされる。ここに、オフセット補正用D/A変換回路8のビット数を増やせば、量子化誤差をさらに小さくして高精度化を図ることが可能である。
【0028】
一方、スパン補正では、圧力の基準値として設定された定格圧力を圧力センサ1に検出させたときにIin=−Irefとなるように、つまり傾きIin/Cintと傾き−Iref/Cintとが等しくなるように補正を行う。スパン補正を行う前には、オフセットは補正されているので、図3(a)に示すようにIinのスパン変動分のみが出力に現れ、傾きIin/Cintと傾き−Iref/Cintとは異なっている。そこで、Iin=−Irefとなるようにスパン補正用D/A変換回路9の出力電圧を設定し、このときのV/I変換回路12の出力電流をIref’とすると、図3(b)に実線で示すように、Iin=−Iref’、Tin=Tref’となり、傾きIin/Cintと傾き−Iref’/Cintとが等しくなって、スパン補正が行われる。その結果、圧力センサ1の感度の温度変動分が(1)式の除算により相殺され、圧力センサ1の温度補償が行われる。
【0029】
参考例では、2つのV/I変換回路11,12をA/D変換回路4の外部に設け、各V/I変換回路11,12をオフセット補正用およびスパン補正用にそれぞれ用いることにより、各V/I変換回路11,12の入力電圧範囲を別々に設定することができる。その結果、V/I変換回路11の入力電圧範囲を広くとることにより圧力センサ1の出力電圧範囲を広くとることができるので、圧力センサ1の特性が変化した場合でもA/D変換回路4の回路変更を必要とせずに温度補償を行うことができる。
【0030】
また、各V/I変換回路11,12をA/D変換回路4の外部に設けることにより、図8に示した従来例のように圧力センサ1の出力電圧範囲を広くとるためにA/D変換回路4の電源電圧を高くしてA/D変換回路4の入力電圧範囲を広くする必要がなくなるので、従来例よりもA/D変換回路4の低電圧化を図ることができ、しかも、A/D変換回路4の部品点数を削減することができ、低コスト化を図ることができる。
【0031】
さらに、A/D変換回路4の基準電圧AGNDを可変とすることにより、圧力センサ1の出力電圧範囲に応じて基準電圧AGNDを設定することができ、これによりA/D変換回路4の見掛け上の入力ダイナミックレンジを広く設定することになる。
【0032】
参考例2
参考例は、図4に示すように、参考例1のA/D変換回路4において、入力端子Iinに入力されたA/D変換回路4の入力電流に別に電流を重畳する電流源としてのカレントミラー回路15を設けたものである。
【0033】
カレントミラー回路15は、ゲートとドレインとが接続されたMOSFETからなる入力側トランジスタQ3と抵抗R3との直列回路と、MOSFETからなる2個の出力側トランジスタQ1,Q2と、2個のアナログスイッチS1,S2とにより構成される。電源端子VDDには上記直列回路の入力側トランジスタQ3のソースが接続されるとともに外部からの電流が供給される。入力側トランジスタQ3のゲートはアナログスイッチS1を介して出力側トランジスタQ1のゲートに接続され、出力側トランジスタQ1のゲートはアナログスイッチS2を介して出力側トランジスタQ2のゲートに接続される。各出力側トランジスタQ1,Q2のソースは電源端子VDDにそれぞれ接続され、ドレインはオペアンプA2の反転入力端にそれぞれ接続される。
【0034】
上述した構成によって、カレントミラー回路15では、各出力側トランジスタQ1,Q2に流れる電流がA/D変換回路4の入力電流に重畳され、各アナログスイッチS1,S2のオンオフの組み合わせによって各出力側トランジスタQ1,Q2に流れる電流つまりA/D変換回路4の入力電流に重畳される電流の大きさを変化させることができる。したがって、本参考例では、各アナログスイッチS1,S2のオンオフの組み合わせによりカレントミラー回路15でA/D変換回路4の入力電流に重畳される電流の大きさを変化させることによって、A/D変換回路4の入力電流の変動分に対するデジタル値の変動分であるA/D変換回路4の分解能を切り換えることができる。
【0035】
ところで、図5に示すように、図8に示した従来例のA/D変換回路4において、V/I変換回路10のオペアンプA3の出力端とオペアンプA2の反転入力端との間にアナログスイッチS1と抵抗R1との直列回路とアナログスイッチS2と抵抗R2との直列回路とを並列に挿入し、各アナログスイッチS1,S2のオンオフの組み合わせによってオペアンプA2に入力される電流の大きさを変化させることによりA/D変換回路4の分解能を切り換えることが考えられる。しかしながら、図5に示す構成では、抵抗R1,R2などの回路定数のバラツキの影響が大きく、高精度な分解能の切換が困難である。これに対して、本参考例では、カレントミラー回路15を設けることにより、図5に示す構成よりも回路定数のバラツキの影響が小さくなり、高精度な分解能の切換が可能になる。
【0036】
実施形態1
本実施形態は、図6に示すように、参考例1のオフセット補正用D/A変換回路8およびスパン補正用D/A変換回路9に代えて、1つのR−2Rラダー抵抗網30と2つのI/V変換回路21,22とを設け、切換手段35によってR−2Rラダー抵抗網30に各I/V変換回路21,22のいずれか一方を切り換えて接続するようにしたものである。
【0037】
R−2Rラダー抵抗網30は、Rと2Rとの2種類の抵抗を利用した周知のものであり、制御回路7(図1参照)から出力されたオフセット補正用およびスパン補正量のデジタル値を電流に変換する。各I/V変換回路21,22は、R−2Rラダー抵抗網30により電流に変換されたオフセット補正量およびスパン補正量をそれぞれ電圧に変換して出力し、各I/V変換回路21,22の出力がそれぞれオフセット補正用D/A変換回路8の出力およびスパン補正用D/A変換回路9の出力として用いられる。
【0038】
切換手段35は、2個のアナログスイッチS7,S8と反転回路INVとにより構成される。アナログスイッチS7はR−2Rラダー抵抗網30とI/V変換回路21との間に挿入され、アナログスイッチS8はR−2Rラダー抵抗網30とI/V変換回路22との間に挿入される。また、制御回路7からR−2Rラダー抵抗網30に接続するI/V変換回路を切り換えるための切換信号が出力され、この切換信号がアナログスイッチS7に入力されるとともに、反転回路INVにより反転されてアナログスイッチS8に入力される。その結果、切換信号により各アナログスイッチS7,S8が互い違いにオンオフされ、R−2Rラダー抵抗網30に各I/V変換回路21,22のいずれか一方が接続される。
【0039】
オフセット補正量をI/V変換回路21から出力するときには、制御回路7はR−2Rラダー抵抗網30にI/V変換回路21を接続するように切換信号を出力し、オフセット補正量をメモリ6(図1参照)から読み出しデジタル値として出力する。このオフセット補正量のデジタル値がR−2Rラダー抵抗網30で電流に変換された後、I/V変換回路21で電圧に変換されてオフセット補正量が出力される。
【0040】
一方、スパン補正量をI/V変換回路22から出力するときには、制御回路7はR−2Rラダー抵抗網30にI/V変換回路22を接続するように切換信号を出力しスパン補正量をメモリ6から読み出して、オフセット補正量を出力するときと同様にスパン補正量が出力される。なお、参考例1においてオフセット補正用D/A変換回路8およびスパン補正用D/A変換回路9の動作タイミングは異なるので、本実施形態の構成を採用することが可能である。
【0041】
ところで、図7に示すように、参考例1のオフセット補正用D/A変換回路8はR−2Rラダー抵抗網31とI/V変換回路21とにより構成され、スパン補正用D/A変換回路9はR−2Rラダー抵抗網32とI/V変換回路22とにより構成されている。これに対して、本実施形態では、1つのR−2Rラダー抵抗網30をオフセット補正用とスパン補正用とに共用することができるので、図7に示す構成よりも回路構成が簡単になり、低コスト化を図ることができる。
【0042】
【発明の効果】
請求項1の発明は、アナログ出力が得られ環境温度に応じて出力のオフセットおよび感度が変動する圧力センサと、圧力センサの環境温度を検出する感温回路と、感温回路により検出された環境温度に応じてオフセットと感度との補正量をデジタル値で指示する制御回路と、制御回路から出力されたオフセットと感度との補正量を電流値に変換するR−2Rラダー抵抗網と、R−2Rラダー抵抗網から出力されるオフセットと感度との補正量に対応した電流をそれぞれ電圧に変換する第1のI/V変換回路および第2のI/V変換回路と、上記R−2Rラダー抵抗網に上記第1および第2のI/V変換回路のいずれか一方を選択的に接続する切換手段と、圧力センサの出力に第1のI/V変換回路の出力電圧によるオフセット補正を施した電圧を電流に変換する第1のV/I変換回路と、第2のI/V変換回路の出力電圧を電流に変換する第2のV/I変換回路と、第2のV/I変換回路の出力電流を基準として第1のV/I変換回路の出力電流をデジタル値に変換するA/D変換回路とを具備し、圧力センサによる検出圧力をデジタル値として出力し、第1および第2のV/I変換回路をA/D変換回路と別に設け、第1および第2のV/I変換回路の入力電圧範囲を別々に設定するものであり、第1および第2のV/I変換回路をA/D変換回路と別に設けることにより、第1および第2のV/I変換回路をオフセット補正用およびスパン補正用にそれぞれ用い、第1および第2のV/I変換回路の入力電圧範囲を別々に設定することができる。その結果、第1のV/I変換回路の入力電圧範囲を広くとることにより圧力センサの出力電圧範囲を広くとることができるので、圧力センサの特性が変化した場合でも大幅な回路変更を必要とせずに温度補償を行うことができる。また、第1および第2のV/I変換回路をA/D変換回路と別に設けることにより、圧力センサの出力電圧範囲を広くとるためにA/D変換回路の電源電圧を高くしてA/D変換回路の入力電圧範囲を広くする必要がなくなるので、A/D変換回路の内部にV/I変換回路を設けた構成よりもA/D変換回路の低電圧化を図ることができ、しかも、A/D変換回路の部品点数を削減することができ、低コスト化を図ることができる。さらにまた、切換手段によって第1および第2のI/V変換回路のいずれか一方がR−2Rラダー抵抗網に接続され、1つのR−2Rラダー抵抗網がオフセット補正用とスパン補正用とに共用されるので、オフセット補正用とスパン補正用とにそれぞれ別々のR−2Rラダー抵抗網を設ける必要がなく、回路構成が簡単になり、低コスト化を図ることができる。
【0045】
請求項の発明は、請求項1の発明において、A/D変換回路への入力電流の範囲を決める基準電圧を可変としたものであり、圧力センサの出力電圧範囲に応じた基準電圧を設定することができ、見掛け上A/D変換回路の入力ダイナミックレンジを広げたことになる。
【図面の簡単な説明】
【図1】 本発明の参考例1のブロック図である。
【図2】 (a)は同上のオフセット補正前の積分波形図、(b)は同上のオフセット補正後の積分波形図である。
【図3】 (a)は同上のスパン補正前の積分波形図、(b)は同上のスパン補正後の積分波形図である。
【図4】 本発明の参考例2の回路図である。
【図5】 同上の比較例の回路図である。
【図6】 本発明の実施形態1のブロック図である。
【図7】 同上の比較例のブロック図である。
【図8】 従来例のブロック図である。
【符号の説明】
1 圧力センサ
2 感温回路
3 増幅回路
4 A/D変換回路
7 制御回路
8 オフセット補正用D/A変換回路
9 スパン補正用D/A変換回路
11,12 V/I変換回路
15 カレントミラー回路
21,22 I/V変換回路
30 R−2Rラダー抵抗網
35 切換手段
AGND 基準電圧
Q1,Q2 出力側トランジスタ
S1,S2 アナログスイッチ

Claims (2)

  1. アナログ出力が得られ環境温度に応じて出力のオフセットおよび感度が変動する圧力センサと、圧力センサの環境温度を検出する感温回路と、感温回路により検出された環境温度に応じてオフセットと感度との補正量をデジタル値で指示する制御回路と、制御回路から出力されたオフセットと感度との補正量を電流値に変換するR−2Rラダー抵抗網と、R−2Rラダー抵抗網から出力されるオフセットと感度との補正量に対応した電流をそれぞれ電圧に変換する第1のI/V変換回路および第2のI/V変換回路と、上記R−2Rラダー抵抗網に上記第1および第2のI/V変換回路のいずれか一方を選択的に接続する切換手段と、圧力センサの出力に第1のI/V変換回路の出力電圧によるオフセット補正を施した電圧を電流に変換する第1のV/I変換回路と、第2のI/V変換回路の出力電圧を電流に変換する第2のV/I変換回路と、第2のV/I変換回路の出力電流を基準として第1のV/I変換回路の出力電流をデジタル値に変換するA/D変換回路とを具備し、圧力センサによる検出圧力をデジタル値として出力し、第1および第2のV/I変換回路をA/D変換回路と別に設け、第1および第2のV/I変換回路の入力電圧範囲を別々に設定することを特徴とする圧力センサ回路。
  2. 上記A/D変換回路への入力電流の範囲を決める基準電圧を可変としたことを特徴とする請求項1記載の圧力センサ回路。
JP14736299A 1999-05-26 1999-05-26 圧力センサ回路 Expired - Fee Related JP4178663B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736299A JP4178663B2 (ja) 1999-05-26 1999-05-26 圧力センサ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736299A JP4178663B2 (ja) 1999-05-26 1999-05-26 圧力センサ回路

Publications (2)

Publication Number Publication Date
JP2000337982A JP2000337982A (ja) 2000-12-08
JP4178663B2 true JP4178663B2 (ja) 2008-11-12

Family

ID=15428498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736299A Expired - Fee Related JP4178663B2 (ja) 1999-05-26 1999-05-26 圧力センサ回路

Country Status (1)

Country Link
JP (1) JP4178663B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784632B2 (en) 2013-09-30 2017-10-10 Denso Corporation Sensor signal detection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082901B2 (ja) 2001-12-28 2008-04-30 忠弘 大見 圧力センサ、圧力制御装置及び圧力式流量制御装置の温度ドリフト補正装置
KR101059381B1 (ko) 2009-08-19 2011-08-25 김지홍 영점 및 스팬을 조절하는 아날로그신호 보정장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784632B2 (en) 2013-09-30 2017-10-10 Denso Corporation Sensor signal detection device

Also Published As

Publication number Publication date
JP2000337982A (ja) 2000-12-08

Similar Documents

Publication Publication Date Title
US7292499B2 (en) Semiconductor device including duty cycle correction circuit
US9438261B2 (en) Capacitance-to-digital converter and method for providing a digital output signal
JP4671305B2 (ja) 物理量センサ
US6452519B1 (en) Analog to digital converter utilizing a highly stable resistor string
US7554376B2 (en) Offset correcting method, offset correcting circuit, and electronic volume
US7642913B2 (en) Sensor apparatus
JP2007187509A (ja) 容量式物理量センサ
US6727693B2 (en) Circuit configuration and sensor device
JP4140528B2 (ja) A/d変換装置
JP2006292469A (ja) 容量式物理量センサ
JP4178663B2 (ja) 圧力センサ回路
JP3707281B2 (ja) 圧力センサ回路
JP4255632B2 (ja) 電気負荷の断線検出装置
JP5284875B2 (ja) オフセット電圧補正回路
JP3584803B2 (ja) 圧力センサ回路
JP4508001B2 (ja) 温度補正回路
JP2002374131A (ja) 演算増幅器オフセット電圧自動校正回路
JP2000341127A (ja) D/a変換回路およびそれを用いた圧力センサ回路
JP4369094B2 (ja) 演算増幅器のオフセット制御
Dutta et al. Low offset, low noise, variable gain interfacing circuit with a novel scheme for sensor sensitivity and offset compensation for MEMS based, Wheatstone bridge type, resistive smart sensor
US20240097632A1 (en) Integrated circuit and semiconductor device
KR20120066708A (ko) 온도보상기능을 갖는 홀 집적회로
JP2000341126A (ja) D/a変換回路およびそれを用いた圧力センサ回路
JPH11237254A (ja) 抵抗ブリッジ型センサの温度補償回路
JP2000214030A (ja) 圧力センサ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees