JP4157371B2 - Manufacturing method of crystal oscillator for surface mounting - Google Patents

Manufacturing method of crystal oscillator for surface mounting Download PDF

Info

Publication number
JP4157371B2
JP4157371B2 JP2002343575A JP2002343575A JP4157371B2 JP 4157371 B2 JP4157371 B2 JP 4157371B2 JP 2002343575 A JP2002343575 A JP 2002343575A JP 2002343575 A JP2002343575 A JP 2002343575A JP 4157371 B2 JP4157371 B2 JP 4157371B2
Authority
JP
Japan
Prior art keywords
electrode
mounting substrate
crystal
cover
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343575A
Other languages
Japanese (ja)
Other versions
JP2004179950A (en
Inventor
公三 小野
亜紀雄 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2002343575A priority Critical patent/JP4157371B2/en
Priority to US10/706,517 priority patent/US7034441B2/en
Publication of JP2004179950A publication Critical patent/JP2004179950A/en
Application granted granted Critical
Publication of JP4157371B2 publication Critical patent/JP4157371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は表面実装用の水晶発振器(以下、表面実装発振器とする)を産業上の技術分野とし、特に小型化を促進する表面実装発振器の製造方法に関する。
【0002】
【従来の技術】
(発明の背景)表面実装発振器は小型・軽量であることから、特に携帯型の電子機器に周波数及び時間の基準源として広く採用される。近年では、ますますの小型化指向から、さらに小さな表面実装発振器が求められている。
【0003】
(従来技術の一例)第2図は一従来例を説明する表面実装発振器の図で、同図(a)は断面図、同図(b)は水晶片の平面図である。
【0004】
表面実装発振器は、実装基板1、ICチップ2、水晶片3及びカバー4からなる。実装基板1は内壁に段部を有する凹状とした積層セラミックからなり、底壁5及び第1、第2枠壁6(ab)を積層してなる。そして、凹部底面に図示しないIC接続端子を、段部に水晶接続端子を有し、表面実装用の外部端子7を外表面に有する。外部端子7は積層面を経てIC接続端子に接続する。
【0005】
ICチップ2は発振回路を集積化して一主面に少なくとも電源、出力及びアース端子を含む図示しないIC端子を有する。そして、ICチップ2の一主面を凹部底面のIC接続端子にバンプ8を用いた超音波熱圧着あるいは熱圧着によって固着し、電気的・機械的に接続する。
【0006】
水晶片3は両主面に励振電極9を有し、例えば一端部両側に引出電極10を延出する。そして、引出電極10の延出した一端部両側を凹部段部の水晶接続端子上に導電性接着剤16によって固着し、電気的・機械的に接続する。
【0007】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の表面実装発振器では、構成部品を実装基板1、ICチップ2、水晶片3及びカバー4の4点とするので、これ以上の大幅な小型化を困難とする。そして、上記例ではICチップ2と水晶片3とをその厚み方向に配置するので、特に高さ寸法を大きくする問題があった。
【0008】
また、実装基板1は積層セラミックからなるので、グリーンシートの積層及び焼成の製造工程上、第1枠壁6aの厚みは一定値以上の大きさ例えば幅と同等以上を必要とする。したがって、容器内の内底面面積が損なわれる。
【0009】
一方、水晶片3は板面面積が大きいほど振動特性を良好にするとともに、例えば容量比C0/C1を小さくして設計の自由度を増し、その設計を容易にする。なお、C0は等価並列容量(電極間容量)、C1は等価直列容量である。このことから、実装基板1の平面外形寸法は小さくして、内底面面積は大きい容器が求められる。
【0010】
また、従来技術(水晶振動子)においては、実装基板1を平板状として、凹状としたセラミックからなるカバー4をガラスや樹脂によって封止したものがある(未図示)。このようなものでは、一体成形なのでカバー4の枠幅を小さくできて内底面面積を大きくできる。しかし、ガラス封止の場合には接合材としてのガラスの強度が小さく耐衝撃特性に問題があり、樹脂封止の場合には湿気等の外気が侵入して振動特性を低下させる問題があった。
【0011】
(発明の目的)本発明は第1に小型化を促進して特に高さ寸法を小さくすることを、第2に振動特性を良好にして設計を容易にした表面実装発振器を提供することを目的とする。
【0012】
【非特許文献1】
先端材料辞典、1997年2月25日発行、第4刷、P629〜630.
【非特許文献2】
豊田中央研究所R&Dレビュー、Vol.28、No4(1993.12)P53〜54
【0013】
【課題を解決するための手段】
(着目点及び適用)本発明は上記の非特許文献1及び2で示されるシリコン基板と可動イオンを含むガラスとの陽極接合技術に着目して、シリコン基板を平板状の実装基板とし、ガラスを凹状のカバーとして表面実装発振器の容器に適用するとともに、シリコン基板に発振回路をIC化(集積化)した。
【0014】
(解決手段)本発明は、特許請求の範囲(請求項1)に示したように、水晶片と、発振回路を構成するICと水晶接続端子IC接続端子、導通電極及び導電路を内表面に有し、前記導通電極及び前記導電路を経由して、前記IC接続端子と電気的に接続する外部端子を外表面に有する平板状とした実装基板と、凹状としたカバーとからなり、前記実装基板は発振回路をIC化したシリコン基板として前記カバーは可動イオンを有するガラスとし、前記水晶接続端子、前記IC接続端子、前記導通電極及び前記導電路は前記シリコン基板の表面に設けられたポリシリコン(P+Si)層からなり、前記導通電極と前記外部端子とは前記ポリシリコン層で遮蔽された電極貫通孔によって電気的に接続され、前記シリコン基板と前記カバーを陽極接合して、前記水晶片を封入した水晶発振器の製造方法であって前記実装基板の一主面に前記ポリシリコン層を形成する工程と、前記実装基板 の一主面の全面を覆う第1マスクと、前記実装基板の他主面に設けられて前記導通電極に電気的に接続する電極貫通孔に対応した孔を有する第2マスクとを、前記実装基板の両主面に設ける工程と、前記第1マスク及び前記第2マスクの設けられた前記実装基板をエッチングして、前記導通電極に達する貫通孔を形成する工程と、前記貫通孔に電極を設けて前記電極貫通孔を形成する工程とからなる。
とする。
【0015】
これにより、シリコン基板は従来の実装基板とICチップを兼用するので、部品点数を少なくして小型化特に高さ寸法を格段に小さくできる。また、カバーを凹状としたガラスとするので、枠幅を小さくできる。したがって、平面外形をも小さくして内底面面積を大きくできる。これにより、水晶片の振動特性を良好にする。そして、ガラスや樹脂等の封止材を使用することなく、耐衝撃性を良好にして外気の侵入を防止する。また、シリコン基板の表面にポリシリコン層を設けてその下面に電極貫通孔を設けるので、ポリシリコン層によって密閉を確実に維持できる。
【0016】
【発明の実施形態】
第1図は本発明の実施形態を説明する表面実装発振器の図で、同図(a)は断面図、同図(b)はカバーを除く平面図である。但し、平面図中での枠はカバーの当接部である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
【0017】
表面実装発振器は、平板状とした実装基板1と凹状としたカバー4からなる容器に水晶片3を封入してなる。実装基板1はシリコン基板とし、カバー4はNa+、Li+等の可動イオンを含むガラスとする。シリコン基板は発振回路を内部に集積化し、内表面の一端部両側に水晶接続端子11を、中央領域に電源、出力及びアース端子等のIC接続端子12を露出する。そして、IC接続端子12は内表面の4隅部に設けられた導通端子13に導電路14によって接続する。外表面の4角部には、導通端子13と電気的に接続する外部端子7を有する。
【0018】
水晶接続端子11、IC接続端子12、導電路14及び導通端子13は、シリコン基板の表面に例えば高濃度のボロンが拡散されたポリシリコン層(PSi)からなる。そして、水晶接続端子11となるポリシリコン層上に例えばAu層(未図示)を設けて、バンプ8を用いた超音波熱圧着や熱圧着によって水晶片2の一端部両側を固着する。また、導通端子13の下面には電極貫通孔15が設けられ、外部端子7と電気的にと接続する。
【0019】
これらは、先ず、図示しないシリコンウェハの一主面に、水晶接続端子11、IC接続端子12、導電路14及び導通端子13に対応した多数のポリシリコン層を設け、例えば全面に第1マスクを設ける。また、他主面には電極貫通孔15に対応した孔を有する第2マスクを設ける。そして、例えばKOH(水酸化カリウム)液中にて水晶ウェハをエッチングする。これにより、ポリシリコン層に達する貫通孔が形成される。
【0020】
なお、シリコン基板はKOHに溶けるが、ポリシリコン層は溶けない。また、第1と第2マスクはKOHには溶けない例えばSiO2、SiN等とする。次に、貫通孔及び各実装基板1となる4角部に蒸着やスパッタ等によってCr、Cu及びAu層を形成する。これにより、電極貫通孔15及び実装端子7が形成される。そして、個々の実装基板(シリコン基板)1に分割する。
【0021】
カバー4はここではパイレックス(登録商標)ガラスからなり、Naとした可動イオンを含む。そして、実装基板1の外周面にカバー4の枠壁上面を当接し、加熱(300〜400℃)しながらカバー側に500V程度の負電圧を印加する。なお、実装基板1及びカバー4の当接面は鏡面研磨される。
【0022】
このようなものでは、非特許文献1及び2に示されるように陽極接合が行われる。すなわち、カバー4(パイレックス(登録商標)ガラス)に含まれる可動イオンNaが移動して、実装基板1(シリコン基板)との界面にNaイオン欠乏層ができ、大きな静電引力を生じる。そして、両者の界面は化学結合に至る。したがって、結合強度は格段に上がる。
【0023】
このような構成であれば、発振回路を集積化したシリコン基板を実装基板1に適用するので、従来のICチップ2を不要にする。したがって、部品点数を減らすことができて、小型化を促進する。特に、この例では高さ寸法を各段に小さくできる。また、カバー4をガラスとして凹状とするので枠幅を小さくでき、平面外形を小さくして内底面面積を大きくできる。したがって、水晶片3の外形も大きくできて振動特性を良好にして設計の自由度を増す。
【0024】
そして、実装基板1とは陽極接合とするので、従来のようにガラスや樹脂の封止材を不要として、耐衝撃性を良好にして外気の侵入を防止する。また、IC接続端子12と電気的に接続する電極貫通孔15は、シリコン基板の一主面に設けられたポリシリコン層によって遮蔽されるので、気密を確実にする。
【0025】
【他の事項】
上記実施例ではカバー4はパイレックス(登録商標)ガラスとしたが、例えば特許文献2(p54)で示されるデビトロンガラスでもよく、基本的にはNa+やLi+イオン等の可動イオンが含まれていればよい。
【0026】
【発明の効果】
本発明は、水晶片と、発振回路を構成するICと水晶接続端子IC接続端子、導通電極及び導電路を内表面に有し、前記導通電極及び前記導電路を経由して、前記IC接続端子と電気的に接続する外部端子を外表面に有する平板状とした実装基板と、凹状としたカバーとからなり、前記実装基板は発振回路をIC化したシリコン基板として前記カバーは可動イオンを有するガラスとし、前記水晶接続端子、前記IC接続端子、前記導通電極及び前記導電路は前記シリコン基板の表面に設けられたポリシリコン(PSi)層からなり、前記導通電極と前記外部端子とは前記ポリシリコン層で遮蔽された電極貫通孔によって電気的に接続され、前記シリコン基板と前記カバーを陽極接合して、前記水晶片を封入した水晶発振器の製造方法であって前記実装基板の一主面に前記ポリシリコン層を形成する工程と、前記実装基板の一主面の全面を覆う第1マスクと、前記実装基板の他主面に設けられて前記導通電極に電気的に接続する電極貫通孔に対応した孔を有する第2マスクとを、前記実装基板の両主面に設ける工程と、前記第1マスク及び前記第2マスクの設けられた前記実装基板をエッチングして、前記導通電極に達する貫通孔を形成する工程と、前記貫通孔に電極を設けて前記電極貫通孔を形成する工程とからなる。
【0027】
したがって、本発明は小型化を促進して特に高さ寸法を小さくできる。そして、振動特性を良好にして設計を容易にした表面実装発振器の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する表面実装発振器の図で、同図(a)は断面図、同図(b)はカバー4を除く平面図である。
【図2】従来例を説明する図で、同図(a)は表面実装発振器の断面図、同図(b)は水晶片3の平面図である。
【符号の説明】
1 実装基板、2 ICチップ、3 水晶片、4 カバー、5 底壁、6 枠壁、7 外部端子、8 バンプ、9 励振電極、10 引出電極、11 水晶接続端子、12 IC接続端子、13 導通電極、14 導電路、15 電極貫通孔、16 導電性接着剤.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface mount crystal oscillator (hereinafter referred to as a surface mount oscillator) as an industrial technical field, and more particularly to a method of manufacturing a surface mount oscillator that promotes miniaturization.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION Surface-mounted oscillators are small and light, and are therefore widely used as frequency and time reference sources, especially in portable electronic devices. In recent years, there has been a demand for smaller surface-mount oscillators from the trend toward further miniaturization.
[0003]
(Example of Prior Art) FIG. 2 is a view of a surface-mount oscillator for explaining one conventional example. FIG. 2 (a) is a sectional view and FIG. 2 (b) is a plan view of a crystal piece.
[0004]
The surface mount oscillator includes a mounting substrate 1, an IC chip 2, a crystal piece 3, and a cover 4. The mounting substrate 1 is made of a laminated ceramic having a concave shape with an inner wall, and is formed by laminating a bottom wall 5 and first and second frame walls 6 (ab). An IC connection terminal (not shown) is provided on the bottom of the recess, a crystal connection terminal is provided on the stepped portion, and an external terminal 7 for surface mounting is provided on the outer surface. The external terminal 7 is connected to the IC connection terminal through the laminated surface.
[0005]
The IC chip 2 integrates an oscillation circuit and has an IC terminal (not shown) including at least a power supply, an output, and a ground terminal on one main surface. Then, one main surface of the IC chip 2 is fixed to the IC connection terminal on the bottom surface of the concave portion by ultrasonic thermocompression or thermocompression using the bumps 8 and is electrically and mechanically connected.
[0006]
The crystal piece 3 has excitation electrodes 9 on both main surfaces, and for example, extraction electrodes 10 extend on both sides of one end. Then, both ends of the extended end portion of the extraction electrode 10 are fixed to the crystal connection terminal of the recess step portion by the conductive adhesive 16 and are electrically and mechanically connected.
[0007]
[Problems to be solved by the invention]
(Problem of the prior art) However, in the surface mount oscillator having the above configuration, since the component parts are four points of the mounting substrate 1, the IC chip 2, the crystal piece 3 and the cover 4, it is difficult to further reduce the size significantly. And In the above example, since the IC chip 2 and the crystal piece 3 are arranged in the thickness direction, there is a problem of particularly increasing the height dimension.
[0008]
Further, since the mounting substrate 1 is made of a multilayer ceramic, the thickness of the first frame wall 6a needs to be equal to or greater than a certain value, for example, the width, in the manufacturing process of the lamination and firing of the green sheets. Therefore, the inner bottom surface area in the container is impaired.
[0009]
On the other hand, the larger the plate surface area, the better the vibration characteristics of the crystal piece 3 and, for example, the capacity ratio C0 / C1 is reduced to increase the degree of freedom of design and facilitate the design. C0 is an equivalent parallel capacitance (interelectrode capacitance), and C1 is an equivalent series capacitance. Therefore, a container having a large inner bottom surface area with a small planar outer dimension of the mounting substrate 1 is required.
[0010]
In addition, in the related art (quartz crystal resonator), there is one in which the mounting substrate 1 has a flat plate shape, and a cover 4 made of a concave ceramic is sealed with glass or resin (not shown). In such a thing, since it is integral molding, the frame width of the cover 4 can be reduced and the inner bottom surface area can be increased. However, in the case of glass sealing, the strength of the glass as a bonding material is small and there is a problem in impact resistance characteristics, and in the case of resin sealing, there is a problem that outside air such as moisture enters and lowers vibration characteristics. .
[0011]
The object of the present invention is to provide a surface-mount oscillator that firstly facilitates miniaturization and particularly reduces the height dimension, and secondly provides a surface mount oscillator with good vibration characteristics and easy design. And
[0012]
[Non-Patent Document 1]
Advanced Materials Dictionary, published on February 25, 1997, 4th printing, P629-630.
[Non-Patent Document 2]
Toyota Central R & D Review, Vol. 28, No4 (1993.12) P53-54
[0013]
[Means for Solving the Problems]
(Points of interest and application) The present invention focuses on the anodic bonding technique between the silicon substrate and the glass containing mobile ions shown in Non-Patent Documents 1 and 2 above, and uses a silicon substrate as a flat mounting substrate. As a concave cover, it was applied to a container for a surface mount oscillator, and an oscillation circuit was integrated (integrated) on a silicon substrate.
[0014]
(Solution) The present invention includes a crystal piece, an IC constituting an oscillation circuit , a crystal connection terminal , an IC connection terminal , a conduction electrode, and a conductive path as described in the claims (Claim 1). has a surface, the conductive electrode and via the conductive path, Ri Do from a mounting substrate having a flat plate shape having an external terminal on the outer surface of connecting said IC connection terminals electrically, the cover was a concave The mounting substrate is a silicon substrate in which an oscillation circuit is integrated into an IC , the cover is glass having movable ions, and the crystal connection terminal, the IC connection terminal, the conduction electrode, and the conduction path are provided on the surface of the silicon substrate. The conductive electrode and the external terminal are electrically connected by an electrode through hole shielded by the polysilicon layer, and the silicon substrate and the cover are connected to each other. A method of manufacturing a crystal oscillator in which the crystal piece is encapsulated by anodic bonding, the step of forming the polysilicon layer on one main surface of the mounting substrate , and covering the entire main surface of the mounting substrate . A step of providing, on both main surfaces of the mounting substrate, one mask and a second mask provided on the other main surface of the mounting substrate and having a hole corresponding to an electrode through-hole electrically connected to the conductive electrode; Etching the mounting substrate provided with the first mask and the second mask to form a through hole reaching the conduction electrode; and providing the electrode in the through hole to form the electrode through hole Process.
And
[0015]
As a result, the silicon substrate serves as both a conventional mounting substrate and an IC chip, so that the number of components can be reduced, and the size and particularly the height can be significantly reduced. In addition, since the cover has a concave glass, the frame width can be reduced. Therefore, the planar outer shape can be reduced and the inner bottom surface area can be increased. Thereby, the vibration characteristic of the crystal piece is improved. And without using sealing materials, such as glass and resin, impact resistance is made favorable and intrusion of external air is prevented. In addition, since the polysilicon layer is provided on the surface of the silicon substrate and the electrode through hole is provided on the lower surface thereof, the sealing can be reliably maintained by the polysilicon layer.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a view of a surface mount oscillator for explaining an embodiment of the present invention. FIG. 1 (a) is a sectional view and FIG. 1 (b) is a plan view excluding a cover. However, the frame in the plan view is a contact portion of the cover. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.
[0017]
The surface-mount oscillator is formed by enclosing a crystal piece 3 in a container composed of a flat mounting substrate 1 and a concave cover 4. The mounting substrate 1 is a silicon substrate, and the cover 4 is glass containing movable ions such as Na + and Li +. The silicon substrate has an oscillation circuit integrated therein, and crystal connection terminals 11 are exposed on both sides of one end of the inner surface, and IC connection terminals 12 such as a power supply, an output, and a ground terminal are exposed in the central region. The IC connection terminal 12 is connected to a conduction terminal 13 provided at four corners on the inner surface by a conduction path 14. At the four corners of the outer surface, there are external terminals 7 that are electrically connected to the conductive terminals 13.
[0018]
The crystal connection terminal 11, the IC connection terminal 12, the conductive path 14, and the conductive terminal 13 are made of a polysilicon layer (P + Si) in which, for example, high-concentration boron is diffused on the surface of the silicon substrate. Then, for example, an Au layer (not shown) is provided on the polysilicon layer serving as the crystal connection terminal 11, and both ends of one end of the crystal piece 2 are fixed by ultrasonic thermocompression or thermocompression using the bumps 8. Further, an electrode through hole 15 is provided on the lower surface of the conduction terminal 13 and is electrically connected to the external terminal 7.
[0019]
First, a large number of polysilicon layers corresponding to crystal connection terminals 11, IC connection terminals 12, conductive paths 14, and conduction terminals 13 are provided on one main surface of a silicon wafer (not shown). For example, a first mask is provided on the entire surface. Provide. In addition, a second mask having a hole corresponding to the electrode through hole 15 is provided on the other main surface. Then, for example, the crystal wafer is etched in KOH (potassium hydroxide) solution. Thereby, a through hole reaching the polysilicon layer is formed.
[0020]
Although the silicon substrate is soluble in KOH, the polysilicon layer is not soluble. The first and second masks are made of, for example, SiO2, SiN or the like that does not dissolve in KOH. Next, Cr, Cu, and Au layers are formed by vapor deposition, sputtering, or the like on the through holes and the four corners that will be the respective mounting substrates 1. Thereby, the electrode through hole 15 and the mounting terminal 7 are formed. Then, it is divided into individual mounting substrates (silicon substrates) 1.
[0021]
Here, the cover 4 is made of Pyrex (registered trademark) glass and contains movable ions which are Na + . Then, the upper surface of the frame wall of the cover 4 is brought into contact with the outer peripheral surface of the mounting substrate 1 and a negative voltage of about 500 V is applied to the cover side while heating (300 to 400 ° C.). The contact surfaces of the mounting substrate 1 and the cover 4 are mirror-polished.
[0022]
In such a case, anodic bonding is performed as shown in Non-Patent Documents 1 and 2. That is, the movable ions Na + contained in the cover 4 (Pyrex (registered trademark) glass) move to form a Na + ion deficient layer at the interface with the mounting substrate 1 (silicon substrate), and a large electrostatic attraction is generated. And the interface of both leads to a chemical bond. Accordingly, the bond strength is significantly increased.
[0023]
With such a configuration, the silicon substrate on which the oscillation circuit is integrated is applied to the mounting substrate 1, so that the conventional IC chip 2 is unnecessary. Therefore, the number of parts can be reduced, and miniaturization is promoted. In particular, in this example, the height dimension can be reduced in each step. Further, since the cover 4 is made of glass and has a concave shape, the frame width can be reduced, the planar outer shape can be reduced, and the inner bottom surface area can be increased. Therefore, the outer shape of the crystal piece 3 can be increased, the vibration characteristics are improved, and the degree of freedom in design is increased.
[0024]
Since the mounting substrate 1 is anodic bonded, a glass or resin sealing material is not required as in the prior art, and the impact resistance is improved to prevent the entry of outside air. Moreover, since the electrode through hole 15 electrically connected to the IC connection terminal 12 is shielded by a polysilicon layer provided on one main surface of the silicon substrate, airtightness is ensured.
[0025]
[Other matters]
In the above embodiment, the cover 4 is made of Pyrex (registered trademark) glass, but may be, for example, Devitron glass shown in Patent Document 2 (p54), and basically includes movable ions such as Na + and Li + ions. That's fine.
[0026]
【The invention's effect】
The present invention, via a crystal piece, the IC constituting an oscillation circuit, crystal connection terminals, IC connection terminals, has on the inner surface of the conductive electrode and the conductive path, the conductive electrode and the conductive path, the IC a mounting substrate having a flat plate shape having an external terminal on the outer surface to be connected to the connection terminals electrically, Ri Do a cover which is concave, wherein the mounting board as the silicon substrate having an IC oscillation circuit, wherein the cover is movable The glass includes ions, and the crystal connection terminal, the IC connection terminal, the conduction electrode, and the conduction path are formed of a polysilicon (P + Si) layer provided on the surface of the silicon substrate, and the conduction electrode and the external the terminal is electrically connected by the electrode through-holes is shielded by the polysilicon layer, the silicon substrate and the cover by anodic bonding, producing side of the crystal oscillator enclosing said crystal piece A is a step of forming the polysilicon layer on one main surface of the mounting substrate, a first mask covering the entire surface of one main surface of the mounting substrate, wherein provided on the other major surface of the mounting board A step of providing a second mask having holes corresponding to electrode through-holes electrically connected to the conductive electrodes on both main surfaces of the mounting substrate; and the mounting provided with the first mask and the second mask. The method includes a step of etching a substrate to form a through hole reaching the conduction electrode, and a step of forming an electrode in the through hole to form the electrode through hole.
[0027]
Therefore, the present invention can promote downsizing and particularly reduce the height dimension. In addition, it is possible to provide a method for manufacturing a surface-mount oscillator that has good vibration characteristics and can be easily designed.
[Brief description of the drawings]
FIGS. 1A and 1B are views of a surface-mounted oscillator for explaining an embodiment of the present invention, in which FIG. 1A is a cross-sectional view and FIG. 1B is a plan view excluding a cover.
2A is a cross-sectional view of a surface mount oscillator, and FIG. 2B is a plan view of a crystal piece 3; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mounting board, 2 IC chip, 3 Crystal piece, 4 Cover, 5 Bottom wall, 6 Frame wall, 7 External terminal, 8 Bump, 9 Excitation electrode, 10 Lead electrode, 11 Crystal connection terminal, 12 IC connection terminal, 13 Conduction Electrode, 14 conductive path, 15 electrode through hole, 16 conductive adhesive.

Claims (1)

水晶片と、
発振回路を構成するICと
水晶接続端子IC接続端子、導通電極及び導電路を内表面に有し、前記導通電極及び前記導電路を経由して、前記IC接続端子と電気的に接続する外部端子を外表面に有する平板状とした実装基板と、
凹状としたカバーとからなり、
前記実装基板は発振回路をIC化したシリコン基板として前記カバーは可動イオンを有するガラスとし、
前記水晶接続端子、前記IC接続端子、前記導通電極及び前記導電路は前記シリコン基板の表面に設けられたポリシリコン(PSi)層からなり、
前記導通電極と前記外部端子とは前記ポリシリコン層で遮蔽された電極貫通孔によって電気的に接続され、前記シリコン基板と前記カバーを陽極接合して、前記水晶片を封入した水晶発振器の製造方法であって
前記実装基板の一主面に前記ポリシリコン層を形成する工程と、
前記実装基板の一主面の全面を覆う第1マスクと、前記実装基板の他主面に設けられて前記導通電極に電気的に接続する電極貫通孔に対応した孔を有する第2マスクとを、前記実装基板の両主面に設ける工程と、
前記第1マスク及び前記第2マスクの設けられた前記実装基板をエッチングして、前記導通電極に達する貫通孔を形成する工程と、
前記貫通孔に電極を設けて前記電極貫通孔を形成する工程と、
を有することを特徴とする水晶発振器の製造方法。
A piece of crystal,
An IC constituting an oscillation circuit ;
Crystal connection terminals, IC connection terminals, has on the inner surface of the conductive electrode and conductive path via the conductive electrode and the conductive path, a flat plate having an external terminal on the outer surface of connecting said IC connection terminals electrically and the mounting substrate was Jo,
Ri Do a cover which is concave,
The mounting substrate is a silicon substrate in which an oscillation circuit is integrated into an IC , and the cover is glass having movable ions,
The crystal connection terminal, the IC connection terminal, the conductive electrode, and the conductive path are each composed of a polysilicon (P + Si) layer provided on the surface of the silicon substrate,
A method of manufacturing a crystal oscillator in which the conduction electrode and the external terminal are electrically connected by an electrode through hole shielded by the polysilicon layer, the silicon substrate and the cover are anodically bonded, and the crystal piece is enclosed Because
Forming the polysilicon layer on one principal surface of the mounting substrate;
A first mask that covers the entire surface of one main surface of the mounting substrate; and a second mask that is provided on the other main surface of the mounting substrate and has holes corresponding to electrode through holes that are electrically connected to the conductive electrodes. Providing on both main surfaces of the mounting substrate;
Etching the mounting substrate provided with the first mask and the second mask to form a through hole reaching the conduction electrode;
Providing the electrode in the through hole to form the electrode through hole;
A method for manufacturing a crystal oscillator, comprising:
JP2002343575A 2002-11-13 2002-11-27 Manufacturing method of crystal oscillator for surface mounting Expired - Fee Related JP4157371B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002343575A JP4157371B2 (en) 2002-11-27 2002-11-27 Manufacturing method of crystal oscillator for surface mounting
US10/706,517 US7034441B2 (en) 2002-11-13 2003-11-12 Surface mount crystal unit and surface mount crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343575A JP4157371B2 (en) 2002-11-27 2002-11-27 Manufacturing method of crystal oscillator for surface mounting

Publications (2)

Publication Number Publication Date
JP2004179950A JP2004179950A (en) 2004-06-24
JP4157371B2 true JP4157371B2 (en) 2008-10-01

Family

ID=32705327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343575A Expired - Fee Related JP4157371B2 (en) 2002-11-13 2002-11-27 Manufacturing method of crystal oscillator for surface mounting

Country Status (1)

Country Link
JP (1) JP4157371B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209177B2 (en) * 2005-11-14 2013-06-12 新光電気工業株式会社 Semiconductor device and manufacturing method of semiconductor device
KR100878410B1 (en) * 2007-07-11 2009-01-13 삼성전기주식회사 A crystal device fabrication method
JP2009027477A (en) * 2007-07-19 2009-02-05 Citizen Finetech Miyota Co Ltd Piezoelectric oscillator
JP4750177B2 (en) * 2008-12-23 2011-08-17 日本電波工業株式会社 Crystal oscillator for surface mounting
JP2010171049A (en) * 2009-01-20 2010-08-05 Seiko Instruments Inc Electronic component package and method of manufacturing the same
JP2010171050A (en) * 2009-01-20 2010-08-05 Seiko Instruments Inc Electronic component package
JP2012050057A (en) * 2010-07-27 2012-03-08 Nippon Dempa Kogyo Co Ltd Crystal oscillator and manufacturing method therefor
JP5773027B2 (en) * 2014-04-28 2015-09-02 セイコーエプソン株式会社 Electronic components and electronic equipment

Also Published As

Publication number Publication date
JP2004179950A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US7034441B2 (en) Surface mount crystal unit and surface mount crystal oscillator
JP5034947B2 (en) Piezoelectric vibration device
JP4221756B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP4267527B2 (en) Crystal oscillator for surface mounting
US7449820B2 (en) Surface mount type crystal device
US7746184B2 (en) Bonding-type surface-mount crystal oscillator
JP4157371B2 (en) Manufacturing method of crystal oscillator for surface mounting
JP2012050057A (en) Crystal oscillator and manufacturing method therefor
JP4245908B2 (en) Crystal oscillator for surface mounting
JP5098668B2 (en) Surface mount type piezoelectric oscillator
JP2004166006A (en) Quartz oscillator for surface mount
JP2006303761A (en) Surface mount piezoelectric oscillator
JP2007251601A (en) Small piezoelectric oscillator, and manufacturing method of small piezoelectric oscillator
JP2004193909A (en) Surface mount quartz oscillator
JP2004356687A (en) Manufacturing method for piezoelectric vibration device and piezoelectric vibration device manufactured by the method
JP2005268257A (en) Package for storing electronic component and electronic device
JP2007150394A (en) Piezoelectric device
JP2006041924A (en) Package for housing piezoelectric resonator, and piezoelectric device
JP2001177055A (en) Surface mounting structure of ic, ceramic base and crystal oscillator
TWI822418B (en) Piezoelectric vibration device equipped with thermistor
JP2005244703A (en) Base substrate
JP2010057095A (en) Piezoelectric vibrator and method of manufacturing the same, and oscillator
JP2007142947A (en) Surface-mounting piezoelectric oscillator
JP2004297209A (en) Surface mount piezoelectric vibrator
JP4609287B2 (en) Surface mount type piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees