JP4221756B2 - Piezoelectric oscillator and manufacturing method thereof - Google Patents

Piezoelectric oscillator and manufacturing method thereof Download PDF

Info

Publication number
JP4221756B2
JP4221756B2 JP2002379589A JP2002379589A JP4221756B2 JP 4221756 B2 JP4221756 B2 JP 4221756B2 JP 2002379589 A JP2002379589 A JP 2002379589A JP 2002379589 A JP2002379589 A JP 2002379589A JP 4221756 B2 JP4221756 B2 JP 4221756B2
Authority
JP
Japan
Prior art keywords
cavity
piezoelectric oscillator
piezoelectric
hole
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002379589A
Other languages
Japanese (ja)
Other versions
JP2004214787A (en
Inventor
裕吾 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002379589A priority Critical patent/JP4221756B2/en
Publication of JP2004214787A publication Critical patent/JP2004214787A/en
Application granted granted Critical
Publication of JP4221756B2 publication Critical patent/JP4221756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電発振器に関するものである。
【0002】
【従来の技術】
電気回路において一定の周波数信号を得るため、圧電発振器が広く利用されている。図6に、特許文献1に記載された圧電発振器と同様の構成を有する圧電発振器の説明図を示す。なお、図6(1)は図6(2)のH−H線における平面断面図であり、図6(2)は図6(1)のG−G線における側面断面図である。圧電発振器101は、升状に形成したパッケージベース121に、発振回路を構成する集積回路素子(IC)110、および圧電振動片105を実装して、上面の開口部にリッド130を装着したものである。
【0003】
パッケージベース121は、セラミックシート121a,121b,121c,121dを順次積層して構成されている。また、パッケージベース121の中央部には、IC110および圧電振動片105を実装するキャビティ120が形成されている。そして、IC110はシート121aの上面に実装されている。なお、IC110の電極114は、シート121bの上面に形成された電極パッド127に対して、ワイヤボンディングにより接続されている。一方、圧電振動片105は、シート121cに形成したマウント電極126の上面に、片持ち状態で実装されている。なお、圧電振動片105は、水晶等の圧電材料平板の両面に励振電極を形成したものである。そして、パッケージベース121の外底面に形成された外部端子138から、電極パッド136を介してIC110に通電可能とされ、さらにマウント電極126を介して圧電振動片105の励振電極に通電可能とされている。一方、パッケージベース121の開口部に金属材料等からなるリッド130が装着され、キャビティ120の内部が窒素雰囲気等で気密に保持されている。
【0004】
【特許文献1】
特開平11−163670号公報
【0005】
【発明が解決しようとする課題】
近時、圧電発振器の利用される通信機器等においては、小型化の要請が強くなっている。これにともなって、圧電発振器の小型化が強く求められている。ところが、図6に示す従来の圧電発振器101では、キャビティ120の内部にIC110を実装する必要があるので、圧電発振器101は必然的にIC110より大きなものとなり、平面サイズの小型化に限界があった。また、圧電発振器101の厚さ方向に、セラミックシート121a、IC110、圧電振動片105およびリッド128が順次配置されるので、薄型化に限界があった。
【0006】
また、圧電発振器におけるコストダウンの要請は厳しさを増しており、構造の簡素化や製造工程の簡略化によるコスト低減が急務となっている。
そこで本発明は、小型化が可能であり、またコスト低減が可能な、圧電発振器およびその製造方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る圧電発振器は、一方面側に回路パターンが形成され、他方面側に凹状のキャビティが形成された電気絶縁性材料からなる単層の平板である集積回路素子と、前記キャビティの内部に実装された圧電振動片と、前記キャビティの開口部に装着されたリッドと、を備え、前記キャビティの内底面から前記回路パターンに貫通するスルーホールが前記集積回路素子に形成され、前記スルーホールは封止部材により充填されており、前記内底面にマウント電極が形成され、前記スルーホール内に配置された導電部材により、前記マウント電極と前記回路パターンとが電気的に接続され、前記マウント電極に前記圧電振動片が実装されている構成とした。
【0008】
これまで、圧電発振器における集積回路素子の小型化は、他の技術分野における集積回路素子の小型化にならって、急速な進歩を遂げてきた。しかし、圧電振動片の小型化は、集積回路素子の小型化に比べて遅れていた。そのため、小さい集積回路素子の内部に大きい圧電振動片を実装するという発想に至ることはなかった。近時になり、圧電振動片は集積回路素子と同等の大きさまで小型化できるようになった。これにより、集積回路素子の内部に圧電振動片を実装するという本発明が生まれたのである。
【0009】
集積回路素子の内部に圧電振動片を実装することによって、圧電振動片や集積回路素子を実装するパッケージが不要となる。したがって、集積回路素子と同じ平面サイズで圧電発振器を形成することが可能となり、圧電発振器の平面サイズを小型化することができる。また、パッケージを集積回路素子で兼用することで、圧電発振器を厚さ方向にも小型化することができる。一方、部品点数が削減されるので、製品コストを低減することができる。また、従来のような製品外形の小型化に伴う集積回路素子サイズの小型化が要求されないため、集積回路素子の小型化に伴う微細配線加工を施すための設備投資等が不要となり、製造コストを低減することができる。
【0010】
また、前記キャビティの内底面から前記回路パターンに貫通するスルーホールを形成し、前記スルーホールの前記キャビティ側開口部の周辺にマウント電極を形成するとともに、前記スルーホールの内周面に前記マウント電極と繋がった導電膜を形成し、前記スルーホールの内周面における前記導電膜の内側に封止部材を充填した上で、前記マウント電極に前記圧電振動片を実装するようにしている。これにより、マウント電極と回路パターンとの導通を簡単に確保することが可能となり、製造コストを低減することができる。また、封止部材を充填することにより、スルーホールを通じたキャビティの気密を確保することができる。
前記導電部材は、前記スルーホールの内周面に形成された導電膜であり、
前記封止部材は、前記スルーホールの前記内周面における前記導電膜の内側に充填されているように構成できる。
【0011】
また、前記キャビティの前記開口部の周縁部に配置された接着剤により前記キャビティの前記開口部に前記リッドが装着されて、前記キャビティの内部が気密封止されている構成としてもよい。前記リッドは、ガラス製リッドであり、前記接着剤は、低融点ガラスである構成とすることができる。この場合、集積回路素子、低融点ガラスおよびガラス製リッドの熱膨張率および熱収縮率がそれぞれ同等となるので、リッドの装着部における破壊を防止することができる。
【0012】
また、前記回路パターン上に外部導出電極パッドが設けられ、前記外部導出電極パッドの表面に基板との接続端子であるはんだボールが形成されていてもよい。これにより、本発明に係る圧電発振器とユーザー基板との電気的接続を簡単に行うことができる。
【0013】
一方、本発明に係る圧電発振器の製造方法は、電気絶縁性材料からなる単層のウエハの一方面側における複数の圧電発振器の形成領域のそれぞれに、回路パターンを形成する工程と、前記ウエハの他方面側における前記各圧電発振器の形成領域に、凹状のキャビティを形成する工程と、前記各キャビティの内底面から前記各回路パターンにスルーホールを形成する工程と、前記各キャビティの前記内底面にマウント電極を形成するとともに、前記各スルーホールに前記各回路パターンと前記各マウント電極とを電気的に接続する導電部材を形成する工程と、前記各スルーホールに封止部材を充填する工程と、前記各キャビティの前記内底部に形成された前記マウント電極に圧電振動片を実装する工程と、前記各キャビティの開口部にリッドを装着して、前記各キャビティの内部を気密封止する工程と、前記ウエハを複数の前記圧電発振器の個片に分離する工程と、を有する構成とした。
【0014】
このように、ウエハにおいて圧電発振器を製造することができるので、製造工程において微小な圧電発振器の個片を取り扱う必要がなくなり、製造工程を簡略化することができる。また、ウエハにおいて同時に複数の圧電発振器を製造するので、圧電発振器の製造時間が短縮され、製造コストを低減することができる。
【0015】
なお前記圧電振動片を実装する工程は、前記キャビティの内底面から前記回路パターンにスルーホールを形成する工程と、前記スルーホールの前記キャビティ側開口部の周辺にマウント電極を形成するとともに、前記スルーホールの内周面に前記マウント電極に繋がった導電膜を形成する工程と、前記スルーホールの内周面における前記導電膜の内側に封止部材を充填する工程と、前記マウント電極に前記圧電振動片を実装する工程と、を有する構成とした。これにより、マウント電極と回路パターンとの導通を簡単に確保することが可能となり、製造コストを低減することができる。また、スルーホールを通じたキャビティの気密を確保することができる。
【0016】
【発明の実施の形態】
本発明に係る圧電発振器およびその製造方法の好ましい実施の形態を、添付図面に従って詳細に説明する。なお以下に記載するのは本発明の実施形態の一態様にすぎず、本発明はこれらに限定されるものではない。
【0017】
図1に、実施形態に係る圧電発振器の説明図を示す。なお、図1(1)は図1(2)のB−B線における平面断面図であり、図1(2)は図1(1)のA−A線における側面断面図である。本実施形態に係る圧電発振器は、電気絶縁性材料からなる平板11の下面に集積回路素子10の回路パターン12を形成し、前記平板11の上面に圧電振動片5を実装するキャビティ20を形成して、キャビティ20の内部に圧電振動片5を実装したものである。
【0018】
集積回路素子(IC)10は、シリコン等の電気絶縁性材料からなる平板11の下面に、回路パターン12を形成したものである。従来の圧電発振器に使用するIC10は、厚さ625μm程度の平板を150μm程度まで研削して形成していたが、本実施形態では厚さ625μm程度の平板をほとんど研削しないで使用すればよい。これにより、製造工程が簡略化されて製造コストを低減することができる。
【0019】
回路パターン12として、圧電振動片を動作させる帰還増幅回路のパターンを形成する。なお必要に応じて、周辺温度の変化による周波数変化を低減させるための温度補償回路のパターンを付加してもよい。また、外部からの制御電圧によって出力周波数を変化させるための電圧制御回路のパターンを付加してもよい。一方、アルミ等の導電性材料からなる電極パッド14を回路パターン12の表面に形成し、回路パターン12と外部との電気的な入出力を可能とする。また、電極パッド14の形成部分を除く回路パターン12の表面に、ポリイミド被膜16を形成してもよい。これにより、回路パターン12が外部から保護される。
【0020】
本実施形態では、平板11の上面に、圧電振動片5を実装するキャビティ20を形成する。キャビティ20は、圧電振動片5を封入できる大きさに形成する。一例をあげれば、厚さ100μm程度の圧電振動片を封入するため、深さ250μm程度のキャビティ20を形成する。キャビティ20の形成は、ハーフエッチング等によって行う。ハーフエッチングは、キャビティ20の形成部分以外の部分をマスクした平板11を、フッ酸等の薬液に所定時間浸漬することによって行う。
【0021】
また、圧電振動片5と回路パターン12との導通を確保するため、キャビティ20の内底面から回路パターンにかけてスルーホール24を形成する。スルーホール24は、後述するマウント電極26の形成位置に穿設する。なお、回路パターン12におけるスルーホール24の形成位置には、圧電振動片5と導通すべき端子(不図示)を形成しておく。スルーホール24の形成は、エッチング等の化学的方法や、ドリル穿孔等の機械的方法などによって行うことができる。
【0022】
次に、キャビティ20の内底面にマウント電極26を形成する。マウント電極26は、圧電振動片5の端部に形成された接続電極7を接続する部分であり、キャビティ20の内底面の端部寄りに形成する。なお、マウント電極26は、スルーホール24のキャビティ側開口部の周辺に形成する。図2に、スルーホール形成部分の拡大図を示す。マウント電極26は、AuやAl等によって構成する。マウント電極26の形成は、マウント電極形成部分以外の部分をマスクした状態で、スパッタやメッキ等を施すことによって行う。このマウント電極26の形成と同時に、スルーホール24の内周面に導電膜27を形成する。この導電膜27により、回路パターン12とマウント電極26との導通を確保することができる。さらに、導電膜27の内側に封止部材28を充填する。封止部材28は、導電性または電気絶縁性のいずれの材料で構成してもよい。封止部材28の充填は、スルーホール24の内部に接着剤等を注入し、その接着剤等を硬化させることによって行う。この封止部材28により、スルーホール24を通じたキャビティ20の気密を確保することができる。
【0023】
このようなIC10を形成する一方で、圧電振動片5を形成する。図1に示すように、圧電振動片5は、水晶等の圧電材料からなる平板の両面に、励振電極を形成したものである。ATカット水晶平板の場合には、その両面中央部に励振電極6を配置するとともに、その端部に2個の接続電極7を並べて配置して、それぞれ各励振電極6との導通を確保する。なお各電極は、Au/CrまたはAg/Crの2層で構成する。
【0024】
そして、キャビティ20の内部に圧電振動片5を実装する。具体的には、キャビティ20のマウント電極26の上面にAgペースト等の導電性接着剤8を塗布し、圧電振動片5の接続電極7をマウント電極26に接着する。このように、圧電振動片5は片持ち状態で実装する。これにより、回路パターン12から圧電振動片5の励振電極6に対して通電可能となる。なお、キャビティ20の内部に実装する圧電振動片は、音叉型圧電振動片やSAWチップなどであってもよい。SAWチップの場合には、マウント電極の代わりに電極パッドを形成し、SAWチップのIDT電極と電極パッドとをワイヤボンディング等により接続する。
【0025】
さらに、キャビティ20の開口部にリッド30を装着する。リッド30は、コバール等の金属材料やガラス材料によって構成する。リッド30の装着は、キャビティ20の開口周縁部の全周に接着剤32を塗布し、リッド30を接着することによって行う。なお、リッド30の装着を窒素雰囲気または真空雰囲気で行うことにより、キャビティ20の内部を窒素雰囲気または真空雰囲気に気密封止する。これにより、圧電振動片5の励振電極6に対する不純物の付着がなくなり、共振周波数のシフトを防止することができる。
【0026】
なお、シリコン材料からなる平板11におけるキャビティ20の開口周縁部に低融点ガラスを塗布し、キャビティ20の開口部にガラス製リッド30を装着して、キャビティ20の内部を気密封止してもよい。この場合、平板11、低融点ガラスおよびガラス製リッド30の熱膨張率および熱収縮率が同等となるので、リッド装着部におけるせん断破壊を防止することができる。
【0027】
次に、本実施形態に係る圧電発振器の製造方法について説明する。図3に、本実施形態に係る圧電発振器の製造方法のフローチャートを示す。図4に、実施形態に係る圧電発振器の製造方法の説明図を示す。なお、図4(1)はウエハの平面図であり、図4(2)は図4(1)のD−D線における側面断面図である。本実施形態に係る圧電発振器は、シリコン等の電気絶縁性材料からなるウエハ40において複数個を同時に製造する。
【0028】
まず、ウエハ40における各圧電発振器の形成領域41に、回路パターン12を形成する(ステップ80)。なお、各回路パターン12はウエハ40の一方の面に形成する。また、ウエハ40における各圧電発振器の形成領域41であって、回路パターン12形成面の他方の面に、キャビティ20を形成する(ステップ82)。次に、キャビティ20の内部と回路パターンとの導通を確保する(ステップ84)。具体的には、まず各キャビティ20の内底面から各回路パターン12にスルーホール24を形成する。さらに、各スルーホール24のキャビティ20側開口部の周辺にマウント電極26を形成するとともに、各スルーホール24の内周面に導電膜を形成して、マウント電極26と回路パターン12との導通を確保する。次に、各スルーホール24の導電膜の内側には封止部材を配置する(ステップ85)。そして、各マウント電極26に導電性接着剤8を塗布して、各圧電振動片5の接続電極を実装する(ステップ86)。次に、各キャビティ20の開口部に、それぞれリッド30を装着する(ステップ88)。なお、リッドをウエハと同形状の平板として装着してもよい。これにより、製造工程において微小なリッドの個片を取り扱う必要がなくなり、製造工程を簡略化することができる。
【0029】
以上により、ウエハ40における各圧電発振器の形成領域41に、それぞれ圧電発振器1が形成される。そこで、ウエハ40から各圧電発振器1を分離する(ステップ90)。具体的には、各圧電発振器の形成領域41の境界線42に沿ってダイシング等を行うことにより、ウエハ40から各圧電発振器を分離する。以上のように、ウエハにおいて圧電発振器を製造することができるので、製造工程において微小な圧電発振器の個片を取り扱う必要がなくなり、製造工程が簡略化される。また、ウエハにおいて同時に複数の圧電発振器を製造するので、圧電発振器の製造時間が短縮され、製造コストを低減することができる。
【0030】
次に、実施形態に係る圧電発振器の使用方法について説明する。図5に、本実施形態に係る圧電発振器の使用方法の説明図を示す。なお、図5(1)および図5(2)は、図1(1)のA−A線に相当する部分における側面断面図である。本実施形態に係る圧電発振器1は、以下に示す方法により、ユーザー基板2に実装して使用する。
【0031】
圧電発振器1をユーザー基板2に実装するには、図5(1)に示すように、回路パターン12上に形成した電極パッド14の表面に、ユーザー基板2との接続端子としてのはんだボール52を形成する。なお、はんだボール52に代えてはんだペーストを塗布してもよい。そして、ユーザー基板2における電極パッド3の上面に、圧電発振器1におけるはんだボール52を載置する。次に、はんだボール52を加熱して溶解させ、圧電発振器1の電極パッド14とユーザー基板2の電極パッド3とを接続する。これにより、圧電発振器1がユーザー基板2に実装され、ユーザー基板2の電極パッド3から圧電発振器1に対して通電可能となる。以上により、本実施形態に係る圧電発振器1とユーザー基板2との電気的接続を簡単に行うことができる。
【0032】
さらに、図5(2)に示すように、圧電発振器1の底面とユーザー基板2の表面とのすき間に、アンダーフィル4を充填してもよい。アンダーフィル4は、熱硬化タイプのエポキシ樹脂等に流動性を持たせたものである。圧電発振器1とユーザー基板2とのすき間にアンダーフィル4を注入し、そのアンダーフィル4を加熱して硬化させる。これにより、圧電発振器1の回路パターン12の表面がアンダーフィル4に覆われて保護される。なお、回路パターン12の表面にポリイミド被膜を形成しない場合には、アンダーフィル4が特に有効である。
【0033】
以上に詳述したように、本実施形態に係る圧電発振器は、電気絶縁性材料からなる平板の一方面側にICの回路パターンを形成し、前記平板の他方面側に圧電振動片を実装するキャビティを形成して、キャビティの内部に圧電振動片を実装した。
【0034】
なお、圧電発振器におけるICの小型化は、他の技術分野におけるICの小型化にならって、急速な進歩を遂げてきた。しかし、圧電振動片の小型化は、ICの小型化に比べて遅れていた。そのため、小さいICの内部に大きい圧電振動片を実装するという発想に至ることはなかった。近時になり、圧電振動片はICと同等の大きさまで小型化できるようになった。これにより、ICの内部に圧電振動片を実装するという本発明が生まれたのである。
【0035】
ICの内部に圧電振動片を実装することによって、圧電振動片やICを実装するパッケージが不要となる。したがって、ICと同じ平面サイズで圧電発振器を形成することが可能となり、圧電発振器の平面サイズを小型化することができる。また、パッケージを集積回路素子で兼用することで、圧電発振器を厚さ方向にも小型化することができる。一方、部品点数が削減されるので、製品コストを低減することができる。また、従来のような製品外形の小型化に伴うICサイズの小型化が要求されないため、ICの小型化に伴う微細配線加工を施すための設備投資等が不要となり、製造コストを低減することができる。
【図面の簡単な説明】
【図1】 実施形態に係る圧電発振器の説明図である。
【図2】 スルーホール部分の拡大図である。
【図3】 実施形態に係る圧電発振器の製造方法のフローチャートである。
【図4】 実施形態に係る圧電発振器の製造方法の説明図である。
【図5】 実施形態に係る圧電発振器の使用方法の説明図である。
【図6】 従来技術に係る圧電発振器の説明図である。
【符号の説明】
1………圧電発振器、5………圧電振動片、6………励振電極、7………接続電極、8………導電性接着剤、10………IC、11………平板、12………回路パターン、14………電極パッド、16………ポリイミド被膜、20………キャビティ、24………スルーホール、26………マウント電極、30………リッド、32………接着剤。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric oscillator.
[0002]
[Prior art]
Piezoelectric oscillators are widely used to obtain a constant frequency signal in an electric circuit. FIG. 6 is an explanatory diagram of a piezoelectric oscillator having the same configuration as the piezoelectric oscillator described in Patent Document 1. 6A is a plan sectional view taken along line HH in FIG. 6B, and FIG. 6B is a side sectional view taken along line GG in FIG. The piezoelectric oscillator 101 has an integrated circuit element (IC) 110 and a piezoelectric vibrating piece 105 constituting an oscillation circuit mounted on a package base 121 formed in a bowl shape, and a lid 130 is mounted on an opening on the upper surface. is there.
[0003]
The package base 121 is configured by sequentially laminating ceramic sheets 121a, 121b, 121c, and 121d. A cavity 120 for mounting the IC 110 and the piezoelectric vibrating piece 105 is formed at the center of the package base 121. The IC 110 is mounted on the upper surface of the sheet 121a. The electrode 114 of the IC 110 is connected to an electrode pad 127 formed on the upper surface of the sheet 121b by wire bonding. On the other hand, the piezoelectric vibrating piece 105 is mounted in a cantilevered manner on the upper surface of the mount electrode 126 formed on the sheet 121c. The piezoelectric vibrating piece 105 has excitation electrodes formed on both sides of a piezoelectric material flat plate such as quartz. The IC 110 can be energized through the electrode pad 136 from the external terminal 138 formed on the outer bottom surface of the package base 121, and the excitation electrode of the piezoelectric vibrating piece 105 can be energized through the mount electrode 126. Yes. On the other hand, a lid 130 made of a metal material or the like is attached to the opening of the package base 121, and the inside of the cavity 120 is kept airtight in a nitrogen atmosphere or the like.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-163670
[Problems to be solved by the invention]
Recently, there is a strong demand for miniaturization in communication devices using piezoelectric oscillators. Along with this, miniaturization of the piezoelectric oscillator is strongly demanded. However, in the conventional piezoelectric oscillator 101 shown in FIG. 6, since the IC 110 needs to be mounted inside the cavity 120, the piezoelectric oscillator 101 is necessarily larger than the IC 110, and there is a limit to downsizing the planar size. . Further, since the ceramic sheet 121a, the IC 110, the piezoelectric vibrating piece 105, and the lid 128 are sequentially arranged in the thickness direction of the piezoelectric oscillator 101, there is a limit to the reduction in thickness.
[0006]
Further, the demand for cost reduction in piezoelectric oscillators is becoming stricter, and there is an urgent need to reduce costs by simplifying the structure and simplifying the manufacturing process.
Accordingly, an object of the present invention is to provide a piezoelectric oscillator and a method for manufacturing the same that can be reduced in size and cost.
[0007]
[Means for Solving the Problems]
To achieve the above object, a piezoelectric oscillator according to the present invention is an integrated circuit that is a single-layer flat plate made of an electrically insulating material having a circuit pattern formed on one side and a concave cavity formed on the other side. An integrated circuit element, and a through hole penetrating from the inner bottom surface of the cavity to the circuit pattern. The through hole is filled with a sealing member, a mount electrode is formed on the inner bottom surface, and the mount electrode and the circuit pattern are electrically connected by a conductive member disposed in the through hole. The piezoelectric vibrating piece is mounted on the mount electrode.
[0008]
So far, miniaturization of integrated circuit elements in piezoelectric oscillators has made rapid progress in line with miniaturization of integrated circuit elements in other technical fields. However, the size reduction of the piezoelectric vibrating piece has been delayed compared to the size reduction of the integrated circuit element. Therefore, the idea of mounting a large piezoelectric vibrating piece inside a small integrated circuit element has not been reached. Recently, the piezoelectric resonator element can be downsized to the same size as the integrated circuit element. As a result, the present invention was born in which the piezoelectric vibrating piece was mounted inside the integrated circuit element.
[0009]
By mounting the piezoelectric vibrating piece inside the integrated circuit element, a package for mounting the piezoelectric vibrating piece or the integrated circuit element becomes unnecessary. Therefore, the piezoelectric oscillator can be formed with the same plane size as the integrated circuit element, and the plane size of the piezoelectric oscillator can be reduced. Further, by using the package also as an integrated circuit element, the piezoelectric oscillator can be reduced in the thickness direction. On the other hand, since the number of parts is reduced, the product cost can be reduced. In addition, since there is no need to reduce the size of the integrated circuit element that accompanies the downsizing of the outer shape of the product as in the past, there is no need for capital investment for performing fine wiring processing accompanying the downsizing of the integrated circuit element, and the manufacturing cost is reduced. Can be reduced.
[0010]
In addition, a through hole penetrating the circuit pattern from the inner bottom surface of the cavity is formed, a mount electrode is formed around the cavity side opening of the through hole, and the mount electrode is formed on an inner peripheral surface of the through hole. The conductive film connected to the inner surface of the through hole is filled with a sealing member inside the conductive film, and the piezoelectric vibrating piece is mounted on the mount electrode . As a result, it is possible to easily ensure the conduction between the mount electrode and the circuit pattern, and the manufacturing cost can be reduced. Further, by filling the sealing member, the airtightness of the cavity through the through hole can be ensured.
The conductive member is a conductive film formed on the inner peripheral surface of the through hole,
The sealing member can be configured to be filled inside the conductive film on the inner peripheral surface of the through hole.
[0011]
Further, the lid is attached to the opening of the cavity by adhesive disposed on the periphery of the opening of the cavity, the interior of the cavity may be a configuration in which is hermetically sealed. The lid may be a glass lid, and the adhesive may be a low melting point glass. In this case, the thermal expansion coefficient and the thermal contraction coefficient of the integrated circuit element, the low melting point glass, and the glass lid are equal to each other, so that breakage at the lid mounting portion can be prevented.
[0012]
Further, an external lead electrode pad may be provided on the circuit pattern, and a solder ball as a connection terminal with a substrate may be formed on the surface of the external lead electrode pad . Thereby, the electrical connection between the piezoelectric oscillator according to the present invention and the user board can be easily performed.
[0013]
On the other hand, a method of manufacturing a piezoelectric oscillator according to the present invention includes a step of forming a circuit pattern in each of a plurality of piezoelectric oscillator formation regions on one side of a single-layer wafer made of an electrically insulating material, Forming a concave cavity in the formation region of each piezoelectric oscillator on the other surface side, forming a through hole from the inner bottom surface of each cavity to each circuit pattern, and forming an inner bottom surface of each cavity Forming a mount electrode, forming a conductive member electrically connecting each circuit pattern and each mount electrode to each through-hole, filling each through-hole with a sealing member, a step of mounting the piezoelectric vibrating piece to the mount electrodes formed on the inner bottom of each cavity, the lid the the opening of each cavity And wear, and the a step of hermetically sealing the interior of each cavity, and separating the wafer into individual pieces of a plurality of the piezoelectric oscillator, configured to have.
[0014]
Thus, since the piezoelectric oscillator can be manufactured on the wafer, it is not necessary to handle a small piece of the piezoelectric oscillator in the manufacturing process, and the manufacturing process can be simplified. In addition, since a plurality of piezoelectric oscillators are manufactured simultaneously on the wafer, the manufacturing time of the piezoelectric oscillator can be shortened, and the manufacturing cost can be reduced.
[0015]
The step of mounting the piezoelectric vibrating piece includes a step of forming a through hole in the circuit pattern from the inner bottom surface of the cavity, a mount electrode around the cavity side opening of the through hole, and the through hole. Forming a conductive film connected to the mount electrode on the inner peripheral surface of the hole, filling a sealing member inside the conductive film on the inner peripheral surface of the through hole, and applying the piezoelectric vibration to the mount electrode And a step of mounting the piece. As a result, it is possible to easily ensure the conduction between the mount electrode and the circuit pattern, and the manufacturing cost can be reduced. In addition, airtightness of the cavity through the through hole can be ensured.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a piezoelectric oscillator and a method for manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings. Note that what is described below is only one aspect of the embodiment of the present invention, and the present invention is not limited thereto.
[0017]
FIG. 1 is an explanatory diagram of the piezoelectric oscillator according to the embodiment. 1 (1) is a plan sectional view taken along line BB in FIG. 1 (2), and FIG. 1 (2) is a side sectional view taken along line AA in FIG. 1 (1). In the piezoelectric oscillator according to this embodiment, the circuit pattern 12 of the integrated circuit element 10 is formed on the lower surface of the flat plate 11 made of an electrically insulating material, and the cavity 20 for mounting the piezoelectric vibrating piece 5 is formed on the upper surface of the flat plate 11. Thus, the piezoelectric vibrating reed 5 is mounted inside the cavity 20.
[0018]
The integrated circuit element (IC) 10 is obtained by forming a circuit pattern 12 on the lower surface of a flat plate 11 made of an electrically insulating material such as silicon. The IC 10 used in the conventional piezoelectric oscillator is formed by grinding a flat plate having a thickness of about 625 μm to about 150 μm. However, in this embodiment, the flat plate having a thickness of about 625 μm may be used with little grinding. Thereby, a manufacturing process can be simplified and manufacturing cost can be reduced.
[0019]
As the circuit pattern 12, a pattern of a feedback amplification circuit for operating the piezoelectric vibrating piece is formed. If necessary, a temperature compensation circuit pattern for reducing frequency changes due to changes in ambient temperature may be added. Further, a voltage control circuit pattern for changing the output frequency by an external control voltage may be added. On the other hand, an electrode pad 14 made of a conductive material such as aluminum is formed on the surface of the circuit pattern 12 to allow electrical input / output between the circuit pattern 12 and the outside. Further, a polyimide film 16 may be formed on the surface of the circuit pattern 12 excluding the portion where the electrode pad 14 is formed. Thereby, the circuit pattern 12 is protected from the outside.
[0020]
In the present embodiment, the cavity 20 for mounting the piezoelectric vibrating piece 5 is formed on the upper surface of the flat plate 11. The cavity 20 is formed in a size that can enclose the piezoelectric vibrating piece 5. For example, a cavity 20 having a depth of about 250 μm is formed to enclose a piezoelectric vibrating piece having a thickness of about 100 μm. The cavity 20 is formed by half etching or the like. Half-etching is performed by immersing the flat plate 11 masking portions other than the portion where the cavity 20 is formed in a chemical solution such as hydrofluoric acid for a predetermined time.
[0021]
Further, in order to ensure electrical connection between the piezoelectric vibrating reed 5 and the circuit pattern 12, a through hole 24 is formed from the inner bottom surface of the cavity 20 to the circuit pattern. The through hole 24 is formed at a position where a mount electrode 26 described later is formed. A terminal (not shown) that is to be electrically connected to the piezoelectric vibrating piece 5 is formed at the position where the through hole 24 is formed in the circuit pattern 12. The through holes 24 can be formed by a chemical method such as etching or a mechanical method such as drilling.
[0022]
Next, the mount electrode 26 is formed on the inner bottom surface of the cavity 20. The mount electrode 26 is a portion for connecting the connection electrode 7 formed at the end portion of the piezoelectric vibrating piece 5, and is formed near the end portion of the inner bottom surface of the cavity 20. The mount electrode 26 is formed around the cavity side opening of the through hole 24. FIG. 2 shows an enlarged view of a through hole forming portion. The mount electrode 26 is made of Au, Al, or the like. The mount electrode 26 is formed by performing sputtering, plating, or the like while masking portions other than the mount electrode forming portion. Simultaneously with the formation of the mount electrode 26, a conductive film 27 is formed on the inner peripheral surface of the through hole 24. The conductive film 27 can ensure electrical connection between the circuit pattern 12 and the mount electrode 26. Further, the sealing member 28 is filled inside the conductive film 27. The sealing member 28 may be made of any conductive or electrically insulating material. The sealing member 28 is filled by injecting an adhesive or the like into the through hole 24 and curing the adhesive or the like. The sealing member 28 can ensure airtightness of the cavity 20 through the through hole 24.
[0023]
While the IC 10 is formed, the piezoelectric vibrating piece 5 is formed. As shown in FIG. 1, the piezoelectric vibrating reed 5 has excitation electrodes formed on both sides of a flat plate made of a piezoelectric material such as quartz. In the case of an AT-cut quartz plate, the excitation electrode 6 is arranged at the center of both surfaces, and two connection electrodes 7 are arranged side by side at the end thereof to ensure electrical continuity with each excitation electrode 6. Each electrode is composed of two layers of Au / Cr or Ag / Cr.
[0024]
Then, the piezoelectric vibrating piece 5 is mounted inside the cavity 20. Specifically, a conductive adhesive 8 such as an Ag paste is applied to the upper surface of the mount electrode 26 of the cavity 20, and the connection electrode 7 of the piezoelectric vibrating piece 5 is bonded to the mount electrode 26. Thus, the piezoelectric vibrating piece 5 is mounted in a cantilever state. As a result, the circuit pattern 12 can be energized to the excitation electrode 6 of the piezoelectric vibrating piece 5. The piezoelectric vibrating piece to be mounted inside the cavity 20 may be a tuning fork type piezoelectric vibrating piece or a SAW chip. In the case of the SAW chip, an electrode pad is formed instead of the mount electrode, and the IDT electrode of the SAW chip and the electrode pad are connected by wire bonding or the like.
[0025]
Further, the lid 30 is attached to the opening of the cavity 20. The lid 30 is made of a metal material such as Kovar or a glass material. The mounting of the lid 30 is performed by applying the adhesive 32 to the entire periphery of the opening peripheral edge of the cavity 20 and bonding the lid 30. The lid 30 is attached in a nitrogen atmosphere or a vacuum atmosphere, so that the inside of the cavity 20 is hermetically sealed in a nitrogen atmosphere or a vacuum atmosphere. Thereby, the adhesion of impurities to the excitation electrode 6 of the piezoelectric vibrating piece 5 is eliminated, and the shift of the resonance frequency can be prevented.
[0026]
Note that the inside of the cavity 20 may be hermetically sealed by applying low-melting-point glass to the peripheral edge of the opening of the cavity 20 in the flat plate 11 made of silicon material, and attaching the glass lid 30 to the opening of the cavity 20. . In this case, since the thermal expansion coefficient and the thermal contraction coefficient of the flat plate 11, the low melting glass, and the glass lid 30 are equal, it is possible to prevent the shear fracture at the lid mounting portion.
[0027]
Next, a method for manufacturing the piezoelectric oscillator according to this embodiment will be described. FIG. 3 shows a flowchart of the method for manufacturing the piezoelectric oscillator according to the present embodiment. FIG. 4 is an explanatory view of the method for manufacturing the piezoelectric oscillator according to the embodiment. 4A is a plan view of the wafer, and FIG. 4B is a side cross-sectional view taken along the line DD in FIG. A plurality of piezoelectric oscillators according to this embodiment are manufactured simultaneously on a wafer 40 made of an electrically insulating material such as silicon.
[0028]
First, the circuit pattern 12 is formed in the formation area 41 of each piezoelectric oscillator on the wafer 40 (step 80). Each circuit pattern 12 is formed on one surface of the wafer 40. Further, the cavity 20 is formed in the formation area 41 of each piezoelectric oscillator on the wafer 40 and on the other surface of the circuit pattern 12 formation surface (step 82). Next, electrical connection between the inside of the cavity 20 and the circuit pattern is ensured (step 84). Specifically, first, through holes 24 are formed in each circuit pattern 12 from the inner bottom surface of each cavity 20. Further, a mount electrode 26 is formed around the cavity 20 side opening of each through hole 24, and a conductive film is formed on the inner peripheral surface of each through hole 24, thereby electrically connecting the mount electrode 26 and the circuit pattern 12. Secure. Next, a sealing member is disposed inside the conductive film of each through hole 24 (step 85). Then, the conductive adhesive 8 is applied to each mount electrode 26, and the connection electrode of each piezoelectric vibrating piece 5 is mounted (step 86). Next, the lid 30 is attached to the opening of each cavity 20 (step 88). The lid may be mounted as a flat plate having the same shape as the wafer. This eliminates the need to handle small lid pieces in the manufacturing process, thereby simplifying the manufacturing process.
[0029]
As described above, the piezoelectric oscillator 1 is formed in each piezoelectric oscillator forming region 41 of the wafer 40. Therefore, each piezoelectric oscillator 1 is separated from the wafer 40 (step 90). Specifically, each piezoelectric oscillator is separated from the wafer 40 by performing dicing or the like along the boundary line 42 of the formation area 41 of each piezoelectric oscillator. As described above, since the piezoelectric oscillator can be manufactured on the wafer, it is not necessary to handle a small piece of the piezoelectric oscillator in the manufacturing process, and the manufacturing process is simplified. In addition, since a plurality of piezoelectric oscillators are manufactured simultaneously on the wafer, the manufacturing time of the piezoelectric oscillator can be shortened, and the manufacturing cost can be reduced.
[0030]
Next, a method for using the piezoelectric oscillator according to the embodiment will be described. FIG. 5 is an explanatory diagram of a method of using the piezoelectric oscillator according to the present embodiment. 5 (1) and 5 (2) are side cross-sectional views of the portion corresponding to the line AA in FIG. 1 (1). The piezoelectric oscillator 1 according to the present embodiment is used by being mounted on the user board 2 by the following method.
[0031]
In order to mount the piezoelectric oscillator 1 on the user board 2, as shown in FIG. 5 (1), solder balls 52 as connection terminals to the user board 2 are formed on the surface of the electrode pads 14 formed on the circuit pattern 12. Form. Note that solder paste may be applied instead of the solder balls 52. Then, the solder ball 52 in the piezoelectric oscillator 1 is placed on the upper surface of the electrode pad 3 in the user substrate 2. Next, the solder ball 52 is heated and melted to connect the electrode pad 14 of the piezoelectric oscillator 1 and the electrode pad 3 of the user board 2. Thereby, the piezoelectric oscillator 1 is mounted on the user board 2, and the piezoelectric oscillator 1 can be energized from the electrode pad 3 of the user board 2. As described above, the electrical connection between the piezoelectric oscillator 1 according to the present embodiment and the user board 2 can be easily performed.
[0032]
Further, as shown in FIG. 5 (2), an underfill 4 may be filled between the bottom surface of the piezoelectric oscillator 1 and the surface of the user substrate 2. The underfill 4 is obtained by imparting fluidity to a thermosetting epoxy resin or the like. An underfill 4 is injected between the piezoelectric oscillator 1 and the user substrate 2, and the underfill 4 is heated and cured. Thereby, the surface of the circuit pattern 12 of the piezoelectric oscillator 1 is covered and protected by the underfill 4. The underfill 4 is particularly effective when a polyimide coating is not formed on the surface of the circuit pattern 12.
[0033]
As described in detail above, in the piezoelectric oscillator according to the present embodiment, an IC circuit pattern is formed on one side of a flat plate made of an electrically insulating material, and a piezoelectric vibrating piece is mounted on the other side of the flat plate. A cavity was formed, and a piezoelectric vibrating piece was mounted inside the cavity.
[0034]
Note that miniaturization of ICs in piezoelectric oscillators has made rapid progress following miniaturization of ICs in other technical fields. However, downsizing of the piezoelectric vibrating piece has been delayed compared with downsizing of the IC. Therefore, the idea of mounting a large piezoelectric vibrating piece inside a small IC has not been reached. Recently, the piezoelectric vibrating piece can be downsized to the same size as an IC. As a result, the present invention was born in which the piezoelectric vibrating piece was mounted inside the IC.
[0035]
By mounting the piezoelectric vibrating piece inside the IC, the piezoelectric vibrating piece and the package for mounting the IC become unnecessary. Therefore, the piezoelectric oscillator can be formed with the same planar size as the IC, and the planar size of the piezoelectric oscillator can be reduced. Further, by using the package also as an integrated circuit element, the piezoelectric oscillator can be reduced in the thickness direction. On the other hand, since the number of parts is reduced, the product cost can be reduced. In addition, since there is no need to reduce the size of the IC that accompanies the downsizing of the outer shape of the product as in the prior art, there is no need for capital investment for performing fine wiring processing accompanying the downsizing of the IC, and the manufacturing cost can be reduced. it can.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a piezoelectric oscillator according to an embodiment.
FIG. 2 is an enlarged view of a through hole portion.
FIG. 3 is a flowchart of a method for manufacturing a piezoelectric oscillator according to an embodiment.
FIG. 4 is an explanatory diagram of a method for manufacturing a piezoelectric oscillator according to an embodiment.
FIG. 5 is an explanatory diagram of a method of using the piezoelectric oscillator according to the embodiment.
FIG. 6 is an explanatory diagram of a piezoelectric oscillator according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...... Piezoelectric oscillator, 5 ...... Piezoelectric vibration piece, 6 ... Excitation electrode, 7 ... Connection electrode, 8 ... Conductive adhesive, 10 ... IC, 11 ... Flat plate, 12 ......... Circuit pattern, 14 ......... Electrode pad, 16 ......... Polyimide coating, 20 ......... Cavity, 24 ......... Through hole, 26 ......... Mount electrode, 30 ......... Lid, 32 ... …adhesive.

Claims (6)

一方面側に回路パターンが形成され、他方面側に凹状のキャビティが形成された電気絶縁性材料からなる単層の平板である集積回路素子と、
前記キャビティの内部に実装された圧電振動片と、
前記キャビティの開口部に装着されたリッドと、
を備え、
前記キャビティの内底面から前記回路パターンに貫通するスルーホールが前記集積回路素子に形成され、前記スルーホールは封止部材により充填されており、
前記内底面にマウント電極が形成され、
前記スルーホール内に配置された導電部材により、前記マウント電極と前記回路パターンとが電気的に接続され、
前記マウント電極に前記圧電振動片が実装されていることを特徴とする圧電発振器。
An integrated circuit element that is a single-layer flat plate made of an electrically insulating material having a circuit pattern formed on one side and a concave cavity formed on the other side;
A piezoelectric vibrating piece mounted inside the cavity;
A lid attached to the opening of the cavity;
With
A through hole penetrating from the inner bottom surface of the cavity to the circuit pattern is formed in the integrated circuit element, and the through hole is filled with a sealing member,
A mount electrode is formed on the inner bottom surface,
By the conductive member arranged in the through hole, the mount electrode and the circuit pattern are electrically connected,
The piezoelectric oscillator, wherein the piezoelectric vibrating piece is mounted on the mount electrode .
請求項1に記載の圧電発振器において、
前記導電部材は、前記スルーホールの内周面に形成された導電膜であり、
前記封止部材は、前記スルーホールの前記内周面における前記導電膜の内側に充填されていることを特徴とする圧電発振器。
The piezoelectric oscillator according to claim 1,
The conductive member is a conductive film formed on the inner peripheral surface of the through hole,
The piezoelectric oscillator , wherein the sealing member is filled inside the conductive film on the inner peripheral surface of the through hole .
請求項1または2に記載の圧電発振器において、
前記キャビティの前記開口部の周縁部に配置された接着剤により前記キャビティの前記開口部に前記リッドが装着されて、前記キャビティの内部が気密封止されていることを特徴とする圧電発振器。
The piezoelectric oscillator according to claim 1 or 2,
A piezoelectric oscillator , wherein the lid is attached to the opening of the cavity by an adhesive disposed at a peripheral edge of the opening of the cavity, and the inside of the cavity is hermetically sealed.
請求項3に記載の圧電発振器において、
前記リッドは、ガラス製リッドであり、
前記接着剤は、低融点ガラスであることを特徴とする圧電発振器。
The piezoelectric oscillator according to claim 3, wherein
The lid is a glass lid,
The piezoelectric oscillator , wherein the adhesive is low-melting glass .
請求項1ないし4のいずれかに記載の圧電発振器において、
前記回路パターン上に外部導出電極パッドが設けられ、前記外部導出電極パッドの表面に基板との接続端子であるはんだボールが形成されていることを特徴とする圧電発振器。
The piezoelectric oscillator according to any one of claims 1 to 4 ,
An external oscillator electrode pad is provided on the circuit pattern, and a solder ball as a connection terminal with a substrate is formed on the surface of the external electrode pad .
電気絶縁性材料からなる単層のウエハの一方面側における複数の圧電発振器の形成領域のそれぞれに、回路パターンを形成する工程と、
前記ウエハの他方面側における前記各圧電発振器の形成領域に、凹状のキャビティを形成する工程と、
前記各キャビティの内底面から前記各回路パターンにスルーホールを形成する工程と、
前記各キャビティの前記内底面にマウント電極を形成するとともに、前記各スルーホールに前記各回路パターンと前記各マウント電極とを電気的に接続する導電部材を形成する工程と、
前記各スルーホールに封止部材を充填する工程と、
前記各キャビティの前記内底部に形成された前記マウント電極に圧電振動片を実装する工程と、
前記各キャビティの開口部にリッドを装着して、前記各キャビティの内部を気密封止する工程と、
前記ウエハを複数の前記圧電発振器の個片に分離する工程と、
を有することを特徴とする圧電発振器の製造方法。
Forming a circuit pattern on each of a plurality of piezoelectric oscillator formation regions on one side of a single-layer wafer made of an electrically insulating material;
Forming a concave cavity in the formation region of each piezoelectric oscillator on the other surface side of the wafer;
Forming a through hole in each circuit pattern from the inner bottom surface of each cavity;
Forming a mount electrode on the inner bottom surface of each cavity, and forming a conductive member that electrically connects each circuit pattern and each mount electrode to each through hole;
Filling each through hole with a sealing member;
Mounting a piezoelectric vibrating piece on the mount electrode formed on the inner bottom of each cavity;
Attaching a lid to the opening of each cavity and hermetically sealing the inside of each cavity;
Separating said wafer into individual pieces of a plurality of the piezoelectric oscillator,
A method for manufacturing a piezoelectric oscillator, comprising:
JP2002379589A 2002-12-27 2002-12-27 Piezoelectric oscillator and manufacturing method thereof Expired - Lifetime JP4221756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379589A JP4221756B2 (en) 2002-12-27 2002-12-27 Piezoelectric oscillator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379589A JP4221756B2 (en) 2002-12-27 2002-12-27 Piezoelectric oscillator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004214787A JP2004214787A (en) 2004-07-29
JP4221756B2 true JP4221756B2 (en) 2009-02-12

Family

ID=32816048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379589A Expired - Lifetime JP4221756B2 (en) 2002-12-27 2002-12-27 Piezoelectric oscillator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4221756B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109400A (en) 2004-09-13 2006-04-20 Seiko Epson Corp Electronic component, circuit board, electronic apparatus, and method for manufacturing the electronic component
CN100525097C (en) * 2004-09-13 2009-08-05 精工爱普生株式会社 Electronic component and method for manufacturing the same
JP4578231B2 (en) * 2004-11-25 2010-11-10 京セラ株式会社 Piezoelectric oscillator and manufacturing method thereof
JP2006211571A (en) * 2005-01-31 2006-08-10 Kyocera Kinseki Corp Method of manufacturing piezoelectric component
JP4311376B2 (en) 2005-06-08 2009-08-12 セイコーエプソン株式会社 Semiconductor device, semiconductor device manufacturing method, electronic component, circuit board, and electronic apparatus
JP5034947B2 (en) * 2005-09-30 2012-09-26 株式会社大真空 Piezoelectric vibration device
JP2007324852A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Crystal resonator and its manufacturing method
JP2008109636A (en) * 2006-09-28 2008-05-08 Nippon Dempa Kogyo Co Ltd Semiconductor ic and its manufacturing method
JP5143439B2 (en) * 2007-01-31 2013-02-13 シチズンファインテックミヨタ株式会社 Piezoelectric device
JP2009027477A (en) * 2007-07-19 2009-02-05 Citizen Finetech Miyota Co Ltd Piezoelectric oscillator
JP2009055545A (en) * 2007-08-29 2009-03-12 Citizen Finetech Miyota Co Ltd Piezoelectric device and manufacturing method thereof
JP2008211806A (en) * 2008-03-06 2008-09-11 Seiko Epson Corp Semiconductor device, method of manufacturing same, electronic component, circuit board, and electronic device
JP5230330B2 (en) * 2008-09-30 2013-07-10 シチズンファインテックミヨタ株式会社 Piezoelectric device
JP5449739B2 (en) 2008-10-17 2014-03-19 日本ゴア株式会社 Method for producing breathable composite sheet
JP4843012B2 (en) * 2008-11-17 2011-12-21 日本電波工業株式会社 Piezoelectric device and manufacturing method thereof
JP2010171050A (en) * 2009-01-20 2010-08-05 Seiko Instruments Inc Electronic component package
JP5281144B2 (en) * 2009-02-25 2013-09-04 セイコーインスツル株式会社 Piezoelectric vibrator and piezoelectric vibrator mounting body
JPWO2011108715A1 (en) * 2010-03-04 2013-06-27 株式会社大真空 Electronic component package sealing member, electronic component package, and method of manufacturing electronic component package sealing member
JP6155551B2 (en) 2012-04-10 2017-07-05 セイコーエプソン株式会社 Electronic device, electronic apparatus, and method for manufacturing electronic device
JP5773027B2 (en) * 2014-04-28 2015-09-02 セイコーエプソン株式会社 Electronic components and electronic equipment
JP6699856B2 (en) * 2016-04-14 2020-05-27 新日本無線株式会社 Electronic component manufacturing method
WO2020137830A1 (en) * 2018-12-27 2020-07-02 株式会社大真空 Piezoelectric vibration device
JP7211082B2 (en) * 2018-12-28 2023-01-24 セイコーエプソン株式会社 Vibration device and vibration module
JP7230541B2 (en) 2019-01-31 2023-03-01 セイコーエプソン株式会社 Vibration device and vibration module
JP2020123926A (en) 2019-01-31 2020-08-13 セイコーエプソン株式会社 Vibration device, vibration module, electronic device, moving body, and manufacturing method of vibration device
JP2021150699A (en) 2020-03-17 2021-09-27 セイコーエプソン株式会社 Vibration device, electronic apparatus, and mobile body

Also Published As

Publication number Publication date
JP2004214787A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4221756B2 (en) Piezoelectric oscillator and manufacturing method thereof
US7042056B2 (en) Chip-size package piezoelectric component
US7564177B2 (en) Crystal unit having stacked structure
JP5538974B2 (en) Electronic device package manufacturing method and electronic device package
JP2002261582A (en) Surface acoustic wave device, its manufacturing method, and circuit module using the same
JP2006339943A (en) Piezoelectric device
US7436106B2 (en) Piezoelectric device
JP2008131549A (en) Quartz oscillation device
JP2007096945A (en) Crystal oscillating device and manufacturing method thereof
JP2010103950A (en) Vibrator and method of manufacturing the same
JP2000068780A (en) Quartz oscillator and its production
US7876168B2 (en) Piezoelectric oscillator and method for manufacturing the same
JP2012090202A (en) Piezoelectric device and piezoelectric oscillator
US20130285754A1 (en) Through silicon via-based oscillator wafer-level-package structure and method for fabricating the same
JP2005130341A (en) Piezoelectric component and its manufacturing method, communications equipment
US20230208388A1 (en) Vibrator device and method for manufacturing vibrator device
JP5082968B2 (en) Piezoelectric oscillator
JP2004328028A (en) Piezoelectric device and manufacturing method therefor
JP2013168893A (en) Piezoelectric vibration device
JP2013157702A (en) Vibration element, vibrator, oscillator, and electronic apparatus
JP4578231B2 (en) Piezoelectric oscillator and manufacturing method thereof
US11652467B2 (en) Vibration device
JP4384567B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2001244775A (en) Crystal vibrator and its manufacturing method
JP4085549B2 (en) Piezoelectric device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4221756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term