JP4156423B2 - S字型曲線光導波路及び光学装置 - Google Patents

S字型曲線光導波路及び光学装置 Download PDF

Info

Publication number
JP4156423B2
JP4156423B2 JP2003095092A JP2003095092A JP4156423B2 JP 4156423 B2 JP4156423 B2 JP 4156423B2 JP 2003095092 A JP2003095092 A JP 2003095092A JP 2003095092 A JP2003095092 A JP 2003095092A JP 4156423 B2 JP4156423 B2 JP 4156423B2
Authority
JP
Japan
Prior art keywords
optical waveguide
curved optical
curved
curvature
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003095092A
Other languages
English (en)
Other versions
JP2004302143A (ja
JP2004302143A5 (ja
Inventor
信生 宮寺
礼 山本
立身 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003095092A priority Critical patent/JP4156423B2/ja
Publication of JP2004302143A publication Critical patent/JP2004302143A/ja
Publication of JP2004302143A5 publication Critical patent/JP2004302143A5/ja
Application granted granted Critical
Publication of JP4156423B2 publication Critical patent/JP4156423B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、曲線光導波路及びそれを用いた光学装置に関する。
【0002】
【従来の技術】
近年のパソコンやインターネットの普及に伴い、情報伝送需要が急激に増大しており、伝送速度の速い光伝送が普及されつつある。光導波路はこのような光伝送における光インターコネクションとして使用されている。この光導波路(コア)の形状がS字型曲線などの曲線型である場合、曲率の不連続変化部分において光伝搬モードの中心軸がコアの幾何学的中心軸に対してずれが生じ、結果として光損失が生ずる。この損失を低減するためには曲線の一部にコアの中心軸をずらした軸ずれ構造部分(オフセット)を設ける必要がある。しかし、かかる軸ずれ構造はコアとクラッドとの屈折率、コア寸法、光波長に依存するため、製造上のばらつき等の要因により最適な軸ずれ構造を設けることは困難であり、光損失が生じる問題があるため、一般には軸ずれ構造を有さないことが好ましい。また、波長依存性のため、広帯域の波長範囲で最適な軸ずれ量を設けることはできないことが課題であった。
なお、光導波路のかかる軸ずれ構造については、文献(例えば非特許文献1参照)に一般的な記載がある。
【0003】
ここでCADソフト等において、光導波路等における曲線形状を作成する関数が幾つか知られている。一つは曲率半径Rの二つの弧を逆方向に接続した形状(以下アーク結合形状と称する)である。アーク結合形状は接続点において曲率が不連続に変化するため、上述したように弧の接続部分に軸ずれ構造を設ける必要がある。(図5D)
【0004】
また、下記コサイン関数を用いた形状(CADソフト上では、Sベンドコサインと称されている)も知られており、この形状では上記の軸ずれ構造を曲線の中途に設ける必要がない。
【数9】
Figure 0004156423
しかし、両端においてその曲率が有限であるため、直線光導波路との接合において軸ずれ構造を設ける必要が生じる。(図5C)
また、下記サイン関数を利用した形状(CADソフト上では、Sベンドサインと称されている)は軸ずれ構造を中途に設ける必要がなく、両端においてその曲率半径が無限大(曲率が0)となるので、直線光導波路と両端で接合する場合には中心軸が一致し、軸ずれ構造を設ける必要がない。(図5B)
【数10】
Figure 0004156423
【0005】
【非特許文献1】
光波工学、國分泰雄、共立出版株式会社、第250頁
【0006】
【発明が解決しようとする課題】
光導波路が光スプリッタ(例えば図3)を構成する場合などにおいて、分岐された2本の光導波路が分岐部に接続する端部側(図4A、D)では、理想的には2本の光導波路の間隔を限りなく小さくすること(無限小)ができればSベンドサイン形状等の両端が直線型(曲率=0)の光導波路と結合でき、光の損失が少なくなるため有効である。しかし、製造上の制約から歩留まりよく無限小の間隙を形成することは極めて困難であり、現実には分岐部と2本の光導波路の接続する部分では2本の光導波路の間にかなりの隙間が存在するため、かかる直線型光導波路との結合では光の損失を招く。すなわち、モード中心がそれぞれ内側に軸ずれを生じていない直線型光導波路との結合の場合、光の損失を招く。これらの損失を低減するためには、Sベンドコサインやアーク結合形状のS字型曲線(端部の曲率>0)が好適である。一方、光スプリッタの他の端部側(図4A、E)は端部が直線型(曲率=0)である方が光の損失無く直線光導波路または光ファイバーと結合できる。また、該端部側が次段の分岐部に接続する場合においては(図4B、F)、S字型曲線としてSベンドコサインやアーク結合形状を用いた場合には、モード形状が非対称となるため、分岐比が波長に依存してしまう。同様の問題は光導波路が方向性結合器を構成する場合においてもみられる。このように、上述したいずれの従来の形状を用いてもかかる接続の両端において損失を押さえ、かつ/または波長依存性を押さえることはできない。
【0007】
すなわち、アーク型形状、Sベンドコサイン形状の両端はいずれも曲率が有限(曲率>0)であるため、上述した光スプリッタの直線結合すべき端部側(図4A、E、図4B、F)との結合において損失が生じ、若しくは分岐比が不適切となる。一方、分岐部との接続側(図4A、D)では2本の光導波路が隙間を有するため両端が直線型(曲率=0)であるSベンドサイン形状の曲線では光の損失を招く。
したがって、本発明は、光スプリッタや方向性結合器等においても両端の接続部で軸ずれ構造を設ける必要がなく、光損失が最小限となり、かつ曲線の途中で軸ずれ構造を設ける必要がない形状の光導波路を提供することである。
したがって、本発明は、光スプリッタや方向性結合器等においても両端の接続部で光損失が最小限となり、かつ曲線の途中で軸ずれ構造を設ける必要がない形状の光導波路を提供することである。
【0008】
【課題を解決するための手段】
本発明は、式(1)で定義される形状を有する曲線光導波路を提供する。
【数11】
Figure 0004156423
上記式において、y及びzは光導波路が存在する平面上の直交する座標軸であり、f(z)はzの連続関数であり、f(0)=0,f(1)=1である。
【0009】
上記関数で定義される形状を有する曲線光導波路は、連続的に曲率が変化するため途中で軸ずれ構造が必要ではなく、一端における曲率が0であり、他端における曲率が有限(>0)である。 この曲線光導波路は、両端に直線光導波路を接合する場合、片端のみに軸ずれ構造を設ける必要がある性状の曲線光導波路である(図5A)。
曲率が0である端部の接合は、直線光導波路への接合の他に、分岐構造の結合部(1x2であれば、1ch側)との接合に好適に用いることができる。この接合部分においては、従来の軸ずれが必要な曲線光導波路を用いた場合に比べ、製造ばらつきが小さく、良好な歩留りで光導波路を得ることができる。さらに、広い波長範囲において、良好な光導波路を提供することができる。
また、曲率が有限である端部の接合は、曲線光導波路への接合の他に、分岐構造の分岐部(1x2であれば、2ch側)との接合に好適に用いることができる。この接合部分においては、分岐根元部の狭幅部分を有限の間隙とした場合であっても、分岐部根元中央部からの漏れ光を低減することができ、分岐過剰損失を少なくすることが可能である。
なお、本明細書において“軸ずれ構造”とは、光導波路コアの中心線が不連続となっている構造のことである。
【0010】
本発明はまた上記曲線光導波路を用いた光学装置を提供する。本発明はまた、式(1)で定義される形状を有する曲線光導波路製造用マスクを提供する。
【数12】
Figure 0004156423
上記式において、y及びzは光導波路が存在する平面上の直交する座標軸であり、f(z)はzの連続関数であり、f(0)=0,f(1)=1である。
【0011】
【発明の実施の形態】
本発明は、式(1)で定義されるコア形状の曲線光導波路により実現することができる。
【数13】
Figure 0004156423
上記式において、y及びzは光導波路が存在する平面上の直交する座標軸であり、f(z)はzの連続関数であり、f(0)=0,f(1)=1である。
【0012】
式(1)における一つの好ましい実施態様は、f(z)=zとした場合であって式式(2)で定義される。
【数14】
Figure 0004156423
【0013】
また、式(1)における他の好ましい実施態様は、f(z)=z2であって、式(3)で定義される。
【数15】
Figure 0004156423
【0014】
また、本発明の他の好ましい実施態様は、
【数16】
Figure 0004156423
であって、式(4)で定義される。
【数17】
Figure 0004156423
なお、式(1)〜(4)では、座標系を始点がz=0、=0、終点がz=1、=1となる形で規格化して示しているが、必要に応じて方向及びまたはz方向に拡大縮小して用いることができる。
【0015】
上記S字型曲線光導波路は、例えば、平行に配置された入力光導波路と出力光導波路とが同一直線状にない場合にこれらの光導波路を結合するために用いることができる。また、S字型の曲線光導波路は、例えば、平行に配置された複数の入力光導波路と複数出力光導波路とを接続する際に、それぞれの複数の光導波路のピッチが異なる場合にこれらの光導波路を結合するために用いることができる。S字型の光導波路は、例えば、反射面と接合する構成で用いることができる。なお、本発明の曲線光導波路を他の光導波路若しくは光ファイバと接続する場合には、光学的に接続されていればよく、それぞれのコア同士が直結した構成となっている必要はない。
【0016】
本発明の曲線光導波路を用いる光学装置としては、光スプリッタ、方向性結合器、光カプラ、光合分岐器、光合分波器、光送信モジュール、光受信モジュール、光送受信モジュール、光スイッチ、光変調器、光フィルタ、光偏向器、光分散補償器、光アドドロップモジュール、光クロスコネクトなどがあげられる。
【0017】
また、本発明の曲線光導波路は、式(1)で定義される形状を有する曲線光導波路製造用マスク:
【数18】
Figure 0004156423
(上記式において、y及びzは光導波路が存在する平面上の直交する座標軸であり、f(z)はzの連続関数であり、f(0)=0,f(1)=1である)を用いて製造することができる。すなわち、本発明の製造用マスクには、上記式(1)で表される関数を用いたパターンが描かれている。
【0018】
また、さらに式(2)で定義される形状を有する、曲線光導波路製造用マスクも好ましい。
【数19】
Figure 0004156423
【0019】
さらに式(3)で定義される形状を有する、曲線光導波路製造用マスクも好ましい。
【数20】
Figure 0004156423
【0020】
また、式(4)で定義される形状を有する、曲線光導波路製造用マスクも好ましい。
【数21】
Figure 0004156423
【0021】
本発明の曲線光導波路は、上述したマスクを用いることにより、従来の曲線光導波路について公知の手順で同様に作製することができる。例えばクラッド上にコア材料(後述)からなる層を設けた後、前記層上に感光性レジスト層を設け、上記マスクを載せて、露光、現像を行い、本発明の曲線光導波路形状を有するレジスト層を設け、その後エッチング等の手段により本発明の曲線光導波路形状を有するコアを形成する。また、上記マスク材料は、公知のいずれのものを用いてもよい。
【0022】
本発明の曲線光導波路のコア、クラッド材料としてはガラスや半導体材料等の無機材料、樹脂等の有機材料など様々なものが挙げられるが、樹脂等のポリマーがドライエッチング等により短時間で加工しやすいため好ましい。なお、クラッドの全部若しくは一部として空気層を用いてもよい。このようなポリマーとしてはいずれのものも使用できるが、具体例としては、ポリイミド系樹脂(例、ポリイミド樹脂、ポリ(イミド・イソインドロキナゾリンジオンイミド)樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリエステルイミド樹脂等)、シリコーン系樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリキノリン系樹脂、ポリキノキサリン系樹脂、ポリベンゾオキサゾール系樹脂、ポリベンゾチアゾール系樹脂、ポリベンゾイミダゾール系樹脂、及びフォトブリーチング用樹脂(例、特開2001−296438号公報記載のポリシラン、ニトロン化合物を有するシリコーン樹脂、DMAPN{(4−N,N−ジメチルアミノフェニル)−N−フェニルニトロン}を含有するポリメタクリル酸メチル、ダイポリマー(dye polymer)、ニトロン化合物を含有するポリイミド樹脂あるいはエポキシ樹脂、特開2000−66051号公報記載の加水分解性シラン化合物等)が挙げられる。上記樹脂はフッ素原子を有しているものであってもよい。ポリマーとして好ましいものとしては、ガラス転移温度(Tg)が高く、耐熱性に優れることからポリイミド樹脂が挙げられ、その中でも透過率、屈折率特性からフッ素を含むポリイミド系樹脂が特に好ましい。
【0023】
フッ素を含むポリイミド系樹脂としては、フッ素を含むポリイミド樹脂、フッ素を含むポリ(イミド・イソインドロキナゾリンジオンイミド)樹脂、フッ素を含むポリエーテルイミド樹脂、フッ素を含むポリアミドイミド樹脂などが挙げられる。
【0024】
上記フッ素を含むポリイミド系樹脂の前駆体溶液は、N−メチル−2−ピロリドン,N,N−ジメチルアセトアミド、γ−ブチロラクトン、ジメチルスルホキシドなどの極性溶媒中で、テトラカルボン酸二無水物とジアミンを反応させることにより得られる。フッ素は、テトラカルボン酸二無水物とジアミンの両者に含まれていても良いし、いずれか一方にのみ含まれていてもよい。
また、上記フッ素を含まないポリイミド系樹脂の前駆体溶液は、N−メチル−2−ピロリドン,N,N−ジメチルアセトアミド、γ−ブチロラクトン、ジメチルスルホキシドなどの極性溶媒中で、フッ素を含まないテトラカルボン酸二無水物とフッ素を含まないジアミンを反応させることにより得られる。
【0025】
フッ素を含む酸二無水物の例としては、(トリフルオロメチル)ピロメリット酸二無水物、ジ(トリフルオロメチル)ピロメリット酸二無水物、ジ(ヘプタフルオロプロピル)ピロメリット酸二無水物、ペンタフルオロエチルピロメリット酸二無水物、ビス{3,5−ジ(トリフルオロメチル)フェノキシ}ピロメリット酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、5,5′−ビス(トリフルオロメチル)−3,3′,4,4′−テトラカルボキシビフェニル二無水物、2,2′,5,5′−テトラキス(トリフルオロメチル)−3,3′,4,4′−テトラカルボキシビフェニル二無水物、5,5′−ビス(トリフルオロメチル)−3,3′,4,4′−テトラカルボキシジフェニルエーテル二無水物、5,5′−ビス(トリフルオロメチル)−3,3′,4,4′−テトラカルボキシベンゾフェノン二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ベンゼン二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}(トリフルオロメチル)ベンゼン二無水物、ビス(ジカルボキシフェノキシ)(トリフルオロメチル)ベンゼン二無水物、ビス(ジカルボキシフェノキシ)ビス(トリフルオロメチル)ベンゼン二無水物、ビス(ジカルボキシフェノキシ)テトラキス(トリフルオロメチル)ベンゼン二無水物、2,2−ビス{(4−(3,4−ジカルボキシフェノキシ)フェニル}ヘキサフルオロプロパン二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ビフェニル二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ビス(トリフルオロメチル)ビフェニル二無水物、ビス{(トリフルオロメチル)ジカルボキシフェノキシ}ジフェニルエーテル二無水物、ビス(ジカルボキシフェノキシ)ビス(トリフルオロメチル)ビフェニル二無水物などが挙げられる。
【0026】
フッ素を含むジアミンとしては、例えば、4−(1H,1H,11H−エイコサフルオロウンデカノキシ)−1,3−ジアミノベンゼン、4−(1H,1H−パ−フルオロ−1−ブタノキシ)−1,3−ジアミノベンゼン、4−(1H,1H−パーフルオロ−1−ヘプタノキシ)−1,3−ジアミノベンゼン、4−(1H,1H−パーフルオロ−1−オクタノキシ)−1,3−ジアミノベンゼン、4−ペンタフルオロフェノキシ−1,3−ジアミノベンゼン、4−(2,3,5,6−テトラフルオロフェノキシ)−1,3−ジアミノベンゼン、4−(4−フルオロフェノキシ)−1,3−ジアミノベンゼン、4−(1H,1H,2H,2H−パーフルオロ−1−ヘキサノキシ)−1,3−ジアミノベンゼン、4−(1H,1H,2H,2H−パーフルオロ−1−ドデカノキシ)−1,3−ジアミノベンゼン、2,5−ジアミノベンゾトリフルオライド、ビス(トリフルオロメチル)フェニレンジアミン、ジアミノテトラ(トリフルオロメチル)ベンゼン、ジアミノ(ペンタフルオロエチル)ベンゼン、2,5−ジアミノ(パーフルオロヘキシル)ベンゼン、2,5−ジアミノ(パーフルオロブチル)ベンゼン、2,2′−ビス(トリフルオロメチル)−4,4′−ジアミノビフェニル、3,3′−ビス(トリフルオロメチル)−4,4′−ジアミノビフェニル、オクタフルオロベンジジン、4,4′−ジアミノジフェニルエーテル、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロブタン、1,5−ビス(アニリノ)デカフルオロペンタン、1,7−ビス(アニリノ)テトラデカフルオロヘプタン、2,2′−ビス(トリフルオロメチル)−4,4′−ジアミノジフェニルエーテル、3,3′−ビス(トリフルオロメチル)−4,4′−ジアミノジフェニルエーテル、3,3′,5,5′−テトラキス(トリフルオロメチル)−4,4′−ジアミノジフェニルエーテル、3,3′−ビス(トリフルオロメチル)−4,4′−ジアミノベンゾフェノン、4,4′−ジアミノ−p−テルフェニル、1,4−ビス(p−アミノフェニル)ベンゼン、p−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、ビス(アミノフェノキシ)ビス(トリフルオロメチル)ベンゼン、ビス(アミノフェノキシ)テトラキス(トリフルオロメチル)ベンゼン、2,2−ビス{4−(4−アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2−ビス{4−(3−アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2−ビス{4−(2−アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2−ビス{4−(4−アミノフェノキシ)−3,5−ジメチルフェニル}ヘキサフルオロプロパン、2,2−ビス{4−(4−アミノフェノキシ)−3,5−ジトリフルオロメチルフェニル}ヘキサフルオロプロパン、4,4′−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ビフェニル、4,4′−ビス(4−アミノ−3−トリフルオロメチルフェノキシ)ビフェニル、4,4′−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4′−ビス(3−アミノ−5−トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2−ビス{4−(4−アミノ−3−トリフルオロメチルフェノキシ)フェニル}ヘキサフルオロプロパン、ビス{(トリフルオロメチル)アミノフェノキシ}ビフェニル、ビス〔{(トリフルオロメチル)アミノフェノキシ}フェニル〕ヘキサフルオロプロパン、ビス{2−〔(アミノフェノキシ)フェニル〕ヘキサフルオロイソプロピル}ベンゼンなどが挙げられる。
【0027】
上記のテトラカルボン酸二無水物およびジアミンは二種以上を併用してもよい。ポリイミド系樹脂の前駆体溶液として、感光性を有するものを使用することもできる。
ポリイミド系樹脂前駆体溶液は、スピナあるいは印刷などによる方法により基板表面上に塗布され、最終温度200〜400℃で熱処理し硬化されてポリイミド系樹脂被膜とされる。
【0028】
以下、実施例により本発明を説明するが、本発明の範囲を限定するものではない。
[実施例1]
本発明の光導波路の曲線部分における過剰損失を以下のように評価した。(入力波長1.31μm及び1.55μm)
式(2)の関数で表される曲線を有する本発明の光導波路の両端に直線光導波路を接続した光導波路(図5A)における過剰損失は、−0.063dB(波長1.31dBの場合)、−0.052dB(波長1.55dBの場合)であり、一方、Sベンドコサイン曲線を有する従来の光導波路の両端に直線光導波路を接続した光導波路(図5C)における過剰損失は、−0.009dB(波長1.31μmの場合)、−0.028dB(波長1.55dBの場合)であり、両者の過剰損失はほぼ同等であった。なお、過剰損失の計算はビーム伝搬法(BPM)を用いた。
【0029】
また、以下のようにして、上記のコアパターンのマスクを作製した。コアパターン寸法はプロセスで変化するので、変化量を考慮したコアパターンをCADで製図した。コアパターン以外にもマスクと基板の位置精度を向上させるためのアライメントマークや、その他パターン計測等に使用するマーカもマスクに追加した。CADの製図の手順は、製図作業の効率をよくするため、初めに1素子分のパターンを製図し、前記1素子分のパターンを配列複写してマスク全体にパターンを配置する。1素子分のパターンには、レイヤーを設けコアパターンを製図したレイヤー以外にも、違うレイヤーを用いてパターンを製図することが可能である。以上のように製図したCAD図面からマスク基板にパターンを露光機を用いて直接描画し、パターン部分をCrの金属膜で埋めたマスクと、パターン部分以外をCrの金属膜で埋めたマスクとを製作した。上記2つのマスクは、コアパターン形成プロセスで使用するレジストの種類及び光導波路製造におけるコア形成プロセスの種類によって使い分けることが可能である。
以上のように、本発明の光導波路は、コアとクラッドとの屈折率、コア寸法、光波長に依存するため、製造上のばらつき等の要因により最適な構造を形成することが困難な軸ずれ構造を片方の端部には設ける必要がなく、かつSベンドコサイン曲線を有する従来の光導波路の曲線部分とほぼ同等な過剰損失を示した。
【0030】
[実施例2]
次に、図6に示した構成の1×2スプリッタについて過剰損失を計算した。接続に本発明の式(2)の関数で表される曲線光導波路を用いた場合は、−3.5dB(波長1.31μm)及び−3.3dB(波長1.55μm)、Sベンドサイン形状のS字型曲線光導波路を用いた場合は−3.7dB(波長1.31μm)及び−3.5dB(波長1.55μm)であった。
なお、図6における分岐幅A、コア幅Bは以下のとおりである。
分岐幅A:3.5μm
コア幅B:6.5μm
また、過剰損失の計算にはビーム伝搬法(BPM)を用いた。
また、以下のようにして、上記のコアパターンのマスクを作製した。コアパターン寸法はプロセスで変化するので、変化量を考慮したコアパターンをCADで製図した。コアパターン以外にもマスクと基板の位置精度を向上させるためのアライメントマークや、その他パターン計測等に使用するマーカもマスクに追加した。CADの製図の手順は、製図作業の効率をよくするため、初めに1素子分のパターンを製図し、前記1素子分のパターンを配列複写してマスク全体にパターンを配置する。1素子分のパターンには、レイヤーを設けコアパターンを製図したレイヤー以外にも、違うレイヤーを用いてパターンを製図することが可能である。以上のように製図したCAD図面からマスク基板にパターンを露光機を用いて直接描画し、パターン部分をCrの金属膜で埋めたマスクと、パターン部分以外をCrの金属膜で埋めたマスクとを製作した。上記2つのマスクは、コアパターン形成プロセスで使用するレジストの種類及び光導波路製造におけるコア形成プロセスの種類によって使い分けることが可能である。
以上のように、本発明の曲線光導波路を用いて構成された1×2型スプリッタでは、Sベンドサイン形状のS字型光導波路を用いて構成された従来のスプリッタよりも良好な過剰損失を示した。
【0031】
[実施例3]
次に、1×8スプリッタ用光導波路パターンを有するマスクを作製し、このマスクを用いて作製した光導波路を評価した。
以下の材料を用いて、図7に示される概略構造を有する曲線光導波路を有する光スプリッタ用光導波路基板を作製した。
コア:日立化成工業株式会社製 OPI−N3205
クラッド:日立化成工業株式会社製 OPI−N1005
製造方法;シリコンウエハ上に有機ジルコニウムキレートをスピンコート法により乾燥膜厚100オングストロームとなるように塗布し、乾燥後、その上にフッ素を含まないポリイミド樹脂を乾燥膜厚0.3μmとなるように塗布し、乾燥後、フッ素を含むポリイミド樹脂からなる下部クラッド層(8μm)及びコア層(6.5μm)を形成した。次にコア層の上にシリコン含有レジストを0.5μm厚となるように塗布、乾燥し、コアパターンを介して露光、現像し、このレジストパターンを介して反応性イオンエッチングを行い、コア層を形成した。レジスト剥離後、上部クラッド層(15μm)を形成してポリイミド光導波路を作成した。その後、ダイシングによりチップに切り出した。
【0032】
なお、図2における分岐幅A、コア幅Bは以下のとおりである。図7に示される曲線光導波路は、式(2)の関数で表される曲線である。
分岐幅A:3.5μm
コア幅B:6.5μm
比較として、図3に示される概略構造を有する従来のSベンドコサイン曲線を有する曲線光導波路を用いて構成した1×8型スプリッタ用光導波路基板を作製した。比較曲線光導波路における両端におけるコア幾何学中心と光学中心のずれ量はどちらも0.4μmである。
【0033】
得られた光導波路の挿入損失の評価にあたっては、光導波路基板の両端にガラスブロック付き光ファイバーと光ファイバーアレイを用いて、アクティブ調心法によって測定した。光源としては、波長1.31μmの半導体レーザを用いた。本発明の曲線光導波路を用いた場合の挿入損失は、平均値が−11dB、Sベンドコサイン形状のS字型曲線光導波路を用いた場合の挿入損失は、平均値が−12dBであった。
以上のように、本発明の曲線光導波路を用いて構成された1×8型ツリー構成のスプリッタでは、Sベンドコサイン形状のS字型曲線光導波路を用いて構成された従来のスプリッタよりも良好な挿入損失を示した。
なお、本実施例では、スプリッタ用光導波路を構成するすべてのS字型曲線光導波路に本発明の曲線光導波路を用いたが、他のS字型曲線と混在した構成としてもよい。
【0034】
【発明の効果】
本発明のS字型曲線光導波路を用いることで、一端においては直線導波路と軸ずれなしに低損失に結合し、他端においては同一の曲率の曲線光導波路と軸ずれなしに結合する光導波路を構成することができる。また、本発明のS字型曲線光導波路を用いることで、一端においては直線導波路と軸ずれなしに低損失に結合し、他端においては光のモード中心を導波路コアの幾何学的中心から軸ずれを起こした形で結合する光導波路を構成することができる。
曲率が0である端部の接合は、直線光導波路への接合の他に、分岐構造の結合部(1x2であれば、1ch側)との接合に好適に用いることができる。この接合部分においては、従来の軸ずれが必要な曲線光導波路を用いた場合に比べ、製造ばらつきが小さく、良好な歩留りで光導波路を得ることができる。さらに、広い波長範囲において、良好な光導波路を提供することができる。
曲率が有限である端部の接合は、曲線光導波路への接合の他に、分岐構造の分岐部(1x2であれば、2ch側)との接合に好適に用いることができる。この接合部分においては、分岐根元部の狭幅部分を有限の間隙とした場合であっても、分岐部根元中央部からの漏れ光を低減することができ、分岐過剰損失を少なくすることが可能である。
【図面の簡単な説明】
【図1】本発明の曲線光導波路を用いた光スプリッタの一実施態様を示す図である。
【図2】図1における分岐部分の拡大図である。
【図3】従来のSベンドコサイン曲線光導波路を用いた光スプリッタ示す図である。
【図4】図4Aは、光スプリッタにおけるS字型曲線光導波路と直線光導波路との接続部を表した図である。図4Bは、光スプリッタにおけるS字型曲線光導波路と分岐光導波路との接続部を表した図である。
【図5】図5A〜図5Dは、各曲線光導波路の両端における直線光導波路との接続部を表した図である。図5Aは、本発明の曲線光導波路を示す図である。図5Bは従来のSベンドサイン形状の曲線光導波路を示す図である。図5Cは従来のSベンドコサイン形状の曲線光導波路を示す図である。図5Dは従来のアーク結合形状の曲線光導波路を示す図である。
【図6】本発明の曲線光導波路を用いた光スプリッタ用光導波路の一実施態様を示す図である。
【図7】本発明の曲線光導波路を用いた光スプリッタ用光導波路基板の一実施態様を示す図である。
【符号の説明】
A:分岐幅
B:コア幅
D:分岐出力部と2本のS字型曲線光導波路との接続部
E:S字型曲線光導波路と直線光導波路との接続部
F:S字型曲線光導波路と分岐入力部との接続部
1〜14:本発明の曲線光導波路
41〜44:コア
50:クラッド
100:光スプリッタ用光導波路基板

Claims (14)

  1. コア及びクラッドからなり、連続的に曲率が変化する形状を有するS字型曲線光導波路であって、コア形状が式(1)で定義される形状を有し、一端における曲率が0であり、他端における曲率が有限(>0)である曲線光導波路:
    Figure 0004156423
    上記式において、y及びzは光導波路が存在する平面上の直交する座標軸であり、f(z)はzの連続関数であり、f(0)=0,f(1)=1であり、上記式は、座標系を始点が z 0 y 0 、終点が z 1 y 1 となる形で規格化して示している。
  2. コア形状が式(2)で定義される形状を有する、請求項1記載の曲線光導波路。
    Figure 0004156423
  3. コア形状が式(3)で定義される形状を有する、請求項1記載の曲線光導波路。
    Figure 0004156423
  4. コア形状が式(4)で定義される形状を有する、請求項1記載の曲線光導波路。
    Figure 0004156423
  5. コアおよび/またはクラッドの一部または全部がポリマーである、請求項1〜請求項4のいずれか一項に記載の曲線光導波路。
  6. ポリマーがフッ素を含むポリイミド樹脂である、請求項5に記載の曲線光導波路。
  7. 請求項1〜請求項6のいずれか一項に記載の曲線光導波路を用いた光学装置。
  8. 光学装置が光スプリッタであり、請求項1〜請求項6のいずれか1項に記載の曲線光導波路の曲率が0である端部が分岐構造の結合部に接合し、曲率が有限である端部が分岐構造の分岐部に接合した請求項7記載の光学装置。
  9. 光学装置が光スプリッタであり、請求項1〜請求項6のいずれか1項に記載の曲線光導波路の曲率が0である端部が直線導波路に接合し、曲率が有限である端部が分岐構造の分岐部に接合した請求項7記載の光学装置。
  10. 連続的に曲率が変化する形状を有し、一端における曲率が0であり、他端における曲率が有限(>0)である、式(1)で定義される形状を有するS字型曲線光導波路製造用マスク:
    Figure 0004156423
    上記式において、y及びzは光導波路が存在する平面上の直交する座標軸であり、f(z)はzの連続関数であり、f(0)=0,f(1)=1であり、上記式は、座標系を始点が z 0 y 0 、終点が z 1 y 1 となる形で規格化して示している。
  11. 式(2)で定義される形状を有する、請求項10記載の曲線光導波路製造用マスク。
    Figure 0004156423
  12. 式(3)で定義される形状を有する、請求項10記載の曲線光導波路製造用マスク。
    Figure 0004156423
  13. 式(4)で定義される形状を有する、請求項10記載の曲線光導波路製造用マスク。
    Figure 0004156423
  14. 請求項10〜13のいずれか一項に記載のマスクを使用することを特徴とする、曲線光導波路の製造方法。
JP2003095092A 2003-03-31 2003-03-31 S字型曲線光導波路及び光学装置 Expired - Fee Related JP4156423B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095092A JP4156423B2 (ja) 2003-03-31 2003-03-31 S字型曲線光導波路及び光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095092A JP4156423B2 (ja) 2003-03-31 2003-03-31 S字型曲線光導波路及び光学装置

Publications (3)

Publication Number Publication Date
JP2004302143A JP2004302143A (ja) 2004-10-28
JP2004302143A5 JP2004302143A5 (ja) 2005-11-04
JP4156423B2 true JP4156423B2 (ja) 2008-09-24

Family

ID=33407498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095092A Expired - Fee Related JP4156423B2 (ja) 2003-03-31 2003-03-31 S字型曲線光導波路及び光学装置

Country Status (1)

Country Link
JP (1) JP4156423B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177882A (ja) 2002-11-29 2004-06-24 Hitachi Ltd 光導波路装置
WO2005071454A1 (ja) * 2004-01-26 2005-08-04 Hitachi Chemical Co., Ltd. 曲線光導波路及び光学装置

Also Published As

Publication number Publication date
JP2004302143A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
JP5413339B2 (ja) 光導波路構造
JP4033231B2 (ja) 光分岐光導波路
US7496254B2 (en) Curved optical waveguide and optical device
US7444050B2 (en) S-shaped curved optical waveguide and optical device
JP4151071B2 (ja) S字型曲線光導波路及び光学装置
JP4010011B2 (ja) 光導波路構造
JP4156423B2 (ja) S字型曲線光導波路及び光学装置
JP2008046657A (ja) S字型曲線光導波路及び光学装置
US7450803B2 (en) Optical waveguide
JP5158428B2 (ja) 光導波路
JP2005208445A (ja) 曲線光導波路及び光学装置
JP2005208446A (ja) 曲線光導波路及び光学装置
JP2007219560A (ja) 光導波路構造
JP4423668B2 (ja) 光導波路
JP2005345702A (ja) 光分岐光導波路
JP2004301951A (ja) 光導波路
JP2005128099A (ja) 光導波路伝搬光のモニタ方法及びモニタ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees