JP4155632B2 - Dissolved hydrogen sensor in molten metal - Google Patents

Dissolved hydrogen sensor in molten metal Download PDF

Info

Publication number
JP4155632B2
JP4155632B2 JP25386098A JP25386098A JP4155632B2 JP 4155632 B2 JP4155632 B2 JP 4155632B2 JP 25386098 A JP25386098 A JP 25386098A JP 25386098 A JP25386098 A JP 25386098A JP 4155632 B2 JP4155632 B2 JP 4155632B2
Authority
JP
Japan
Prior art keywords
electrode
oxide
metal
electromotive force
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25386098A
Other languages
Japanese (ja)
Other versions
JP2000088794A (en
Inventor
幸司 片平
邦博 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP25386098A priority Critical patent/JP4155632B2/en
Publication of JP2000088794A publication Critical patent/JP2000088794A/en
Application granted granted Critical
Publication of JP4155632B2 publication Critical patent/JP4155632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明はプロトン導電性をもつ固体電解質を用いた溶融金属中の溶存水素センサに関する。
【0002】
【従来の技術】
溶融金属中特に溶鋼中には酸素、水素、等のガス成分が含まれている。このまま凝固させると割れや内部欠陥の原因となるため、真空あるいは不活性ガス中で脱ガス処理を行いこれらを除去している。脱ガス処理でこれらガスがどれだけ除去されたかを検出する必要がある。溶鋼中の溶存酸素は従来から固体電解質型酸素センサで検出されているが、溶存水素については高温であるため検出するセンサがなく、無管理状態で脱ガス処理をせざるを得なかった。
【0003】
【本発明が解決しようとする課題】
本発明はこれまでにない高温の溶融金属中の溶存水素を検出するセンサを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決した本発明に係る溶存水素センサは、測定すべき水素が溶存している溶融金属と接触するプロトン導電性固体電解質からなる第1電極と、該第1電極の該溶融金属と接触する面と背向する面に形成された金属と金属酸化物とからなる第2電極と、該溶融金属と接触する酸化物イオン導電性固体電解質からなる第3電極と、該第3電極の該溶融金属と接触する面と背向する面に形成された該金属と該金属酸化物とからなる第4電極と、該第1電極と該第2電極間の起電力E12を測定する第1起電力測定手段と、該第3電極と該第4電極間の起電力E34を測定する第2起電力測定手段と、からなり、第1電極と第2電極間の起電力と第3電極と第4電極間の起電力の差分をとることにより、酸素による起電力をキャンセルして高温の溶融金属中の水素を検出することを特徴とする。
【0005】
【発明の実施の形態】
水素が溶存している溶融金属と接触するプロトン導電性固体電解質からなる第1電極としては、例えば、酸化物イオン導電性電解質であるホタル石型酸化物の表面にプロトン−酸化物イオン混合導電性電解質であるABO3型のペロブスカイト酸化物が膜状に積層したものが使用できる。第1電極の形状は第1電極をベースにする場合と後述の第2電極をベースにする場合で異なる。第1電極をベースにする場合は、第1電極を円筒状や試験管状等所定の形状にプレス成形後焼成する。第2電極をベースにする場合は、例えば円柱状の第2電極をベースにして、その外周面に固体電解質を膜状に形成して第2電極とすることになる。
【0006】
ABO3型のA元素は、アルカリ土類金属(Sr,Ca,Ba)からなる群から選択された一種以上の元素である。B元素は前記ホタル石型酸化物の金属元素またはその一部をアルカリ土類金属(Mg,Ca,Sr,Ba)、および、希土類元素(Sc,Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Yb)からなる群から選択された一種以上の元素で1〜30モル%置換固溶されて生じるホタル石型酸化物の金属元素である。
【0007】
このようなABO3型のペロブスカイト酸化物としては、SrZrO3,BaCeO3,SrCeO3,BaZrO3,あるいはCaZrO3がある。
ホタル石型酸化物表面へのペロブスカイト酸化物膜の形成は、プラズマ溶射、スパッタ等でもできるが、次の方法が簡便でコスト的にも優れている。すなわち、ホタル石型酸化物の表面にたとえば、アルカリ土類金属の無機酸塩、有機酸塩、および有機金属化合物の一種以上を塗布し、大気中等の酸化性雰囲気中で800℃以上の温度で加熱焼成することにより、ペロブスカイト酸化物膜を形成することができる。このペロブスカイト酸化物の膜厚は10μm以上が望ましい。膜厚が10μm未満では水素がホタル石型酸化物層に侵入し、これを還元するためである。
【0008】
ホタル石型酸化物としては、ジルコニア(ZrO2)あるいはセリア(CeO2)の一部をアルカリ土類金属(Mg,Ca,Sr,Ba)および希土類元素(Sc,Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Ba)からなる群から選択した一種以上の元素の酸化物で1〜30モル%置換固溶させた安定化ジルコニアまたは安定化セリアが望ましい。上記ホタル石型酸化物は酸化物イオン導電性に優れており、かつ熱膨張による亀裂発生の問題もない。
【0009】
このようなホタル石型酸化物には、たとえば(ZrO0.89(CaO)0.11、(ZrO0.92(Y0.08、(CeO0.9(Y0. (CeO0.8(CaO)0.2、(CeO0.8(SrO)0.2等がある。
前記金属と金属酸化物とからなる第2電極は、発明者らの実験によれば、Pt、Au、Fe、Ni、Cu、Zn、Cr、Mo等の電気伝導性に優れた金属と、Fe、Ni、CuO、ZnO、Cr、Mo等の金属酸化物との混合物のとき、水素検出感度が高くなることが示された。さらに、前記金属がCuで前記金属酸化物がCuOのとき、あるいは、前記金属がCrで前記金属酸化物がCrのとき、より一層検出感度が高くなることが示された。
【0010】
前記金属と金属酸化物との混合物である第2電極は、該第2電極をベースにする場合と、前記プロトン導電性固体電解質からなる第1電極をベースにする場合で作り方が異なる。第2電極をベースにする場合は、例えば次のようにして形成される。すなわち、金属と金属酸化物の粉末を適当な割合で混合し、円柱、平板等所用の形状にプレス成形した後、800℃以上で焼成する。
【0011】
CuとCu2O、CrとCr23のように金属が金属酸化物の金属と同じ場合は、金属あるいは金属酸化物の粉末だけを用いて、第2電極を作ることができる。例えば、Cu2O粉末をプレス成形した後還元性雰囲気中で焼成することにより、Cu2Oの一部が還元され、CuとCu2Oの混合物となる。あるいはCr粉末をプレス成形した後酸化性雰囲気中で焼成することにより、Crの一部が酸化され、CrとCr23の混合物となる。第1電極をベースにする場合は、例えば試験管状の第1電極の中に前記金属と金属酸化物の粉末を圧入して第2電極とすることができる。
【0012】
溶融金属と接触する酸化物イオン導電性固体電解質からなる第3電極は、前記第1電極を形成する酸化物イオン導電性電解質と同じである。すなわち、たとえば、第1電極の酸化物イオン導電性電解質がホタル石型酸化物である(ZrO20.89(CaO)0.11である場合は、第3電極の酸化物イオン導電性電解質も(ZrO20.89(CaO)0.11である。
【0013】
第4電極は、前記第2電極と同じ金属と金属酸化物とからなり、製法も同じである。すなわち、第2電極がCrとCr23の混合物である場合は、第4電極もCrとCr23の混合物である。
第1起電力測定手段は前記第1電極と前記第2電極とリード線で接続され、両電極間の起電力E12を測定するもので、通常の電圧計、電流計、ガルバノメータ等が使われる。
【0014】
第2起電力測定手段は前記第3電極と前記第4電極とリード線で接続され、両電極間の起電力E34を測定するもので、通常の電圧計、電流計、ガルバノメータ等が使われる。
第1起電力測定手段と第1電極の接続および第2起電力測定手段と第3電極の接続は、それぞれ溶融金属を介して行われる。具体的には溶融金属中に電気伝導性および耐熱性に優れたNi、Mo、W等の金属円柱等を浸漬し、それに第1起電力測定手段と第2起電力測定手段に一端が接続されたリード線を接続することで、達成される。なお、発明者等の実験によると、前記第2電極と第4電極がCrとCr23の混合物である場合は、前記溶融金属中に浸漬する金属円柱をCrと同族のMo製にし、前記リード線もMo線にした方が水素の検出感度が高いことが示された。
【0015】
【作用】
一般に溶融金属中には水素の他に酸素や窒素等が溶存している。溶融金属に接触するプロトン導電性固体電解質からなる第1電極近傍では水素がプロトンになり、電子を発生する。生成されたプロトンは第1電極中を移動して第2電極に達する。発生した電子は第1電極と第2電極をつなぐリード線の中を通り第1起電力測定手段を経て第2電極に達する。そうすると、第2電極を構成する金属酸化物が酸化剤として働き、金属酸化物とプロトンおよび電子が反応して金属酸化物が還元される。この一連の反応で第1電極から第2電極に電子が移動する。
【0016】
一方、溶融金属と接触する酸化物イオン導電性固体電解質からなる第3電極近傍では酸素が電子と反応してマイナスの酸素イオンを発生する。発生した酸素イオンは第1電極の中を移動して第2電極に達すると共に、第3電極の中を移動して第4電極に達する。そうすると、第2電極と第4電極を構成する金属が還元剤として働き、金属と酸素イオンが反応して金属が酸化され電子を発生する。第2電極で発生した電子は、リード線の中を通り第1起電力測定手段を経て第1電極に達する。第4電極で発生した電子は、第4電極と第3電極をつなぐリード線の中を通り第2起電力測定手段を経て第3電極に達する。
【0017】
したがって、第1起電力測定手段で測定される起電力E12には水素と酸素の両方の反応による電子が寄与しているが、第2起電力測定手段で測定される起電力E34には酸素だけの反応による電子が寄与しているので、両起電力の差分すなわちE12−E34から水素量を知ることができる。
【0018】
【実施例】
本発明の実施例を示し、本発明をさらに具体的に説明する。
本実施例の溶存水素センサを測定すべき溶融金属中に取り付けた主要部断面図を図1に示す。
本溶存水素センサ1は、溶融金属4と接触する下端部が閉じた円筒状のプロトン導電性固体電解質からなる第1電極11と、その円筒状第1電極11の中に圧入された金属と金属酸化物とからなる第2電極12と、溶融金属4と接触する下端部が閉じた円筒状の酸化物イオン導電性固体電解質からなる第3電極13と、その円筒状第3電極14の中に圧入された金属と金属酸化物とからなる第4電極14と、一端が溶融金属4に浸漬している金属円柱18に、他端が第2電極12にリード線17で接続された第1起電力測定手段15と、一端が金属円柱18に、他端が第4電極14にリード線17で接続された第2起電力測定手段16と、からなる。
【0019】
溶存水素センサ1は、金属円柱18を真ん中にして第1電極11と第3電極13が左右に対称になるように上端部が取付治具2に固定され、下端部が容器3に入った溶融金属4に浸積されている。本実施例ではリード線17のとり回しをしやすくするために左右対称にしたが、水素センサの性能と機能面では左右対称でなくてもよい。
【0020】
円筒状のプロトン導電性固体電解質からなる第1電極11は、内径20mm、外径25mm、内空深さ50mmの円筒状のホタル石型酸化物111と、その外周面に形成された膜状のペロブスカイト酸化物112とからなる。
円筒状のホタル石型酸化物111は、安定化ジルコニア、(CaO)0.11ZrO 0.89で、市販の(CaO)0.11ZrO 0.89粉末を金型に入れ1ton/cmの圧力で円筒状に成型した後、焼成炉で空気中、1500℃、保持5時間の条件で焼成したものである。
【0021】
膜状のペロブスカイト酸化物112は、SrZrO3で、円筒状のホタル石型酸化物111の外周面にアルカリ土類金属の中のSrの硝酸塩の飽和水溶液(ペースト)を塗布し、室温で乾燥後、空気中、1200℃、保持10時間の条件で焼成したもので、膜厚は10μmである。
第2電極11は、CrとCr23の混合物で、前記円筒状ホタル石型酸化物111の円筒の中央に太さ1mmのMo線であるリード線17を挿入した後、CrとCr23を1対1の割合で混合した粉末を圧入して作られた。第2電極の長さは40mmである。
【0022】
円筒状の酸化物イオン導電性固体電解質からなる第3電極13は、前記円筒状ホタル石型酸化物111と組成、製法、寸法、形状が全く同じである。すなわち、固体電解質15は(CaO)0.11ZrO 0.89製で、内径20mm、外径25mm、内空深さ50mmの円筒である。
第4電極14は前記第2電極と組成、製法、寸法が全く同じである。すなわち、第4電極14はCrとCrを1対1の割合で混合した粉末を円筒状の第3電極13の中に圧入したものである。
【0023】
溶融金属4の中に下端部が浸漬される金属円柱18は直径6mm,長さ40mmのMo製である。上端部には太さ1mmのMo線であるリード線17が固着されてある。
第1電極11と第2電極12の間の起電力E12を測定する第1起電力測定手段15は電圧計である。同様に、第3電極13と第4電極14の間の起電力E34を測定する第2起電力測定手段16は同じタイプの電圧計である。
【0024】
溶融金属4を温度1600〜1650℃の溶鋼とし、溶存水素分圧を変化させたときの、本溶存水素センサの起電力差E12−E34と溶存水素分圧の関係を図2に示す。水素分圧が0.0001〜0.1atm範囲で直線性よく水素を検出できることがわかる。
【0025】
【発明の効果】
本発明の溶存水素センサは、コモン電極としての第2電極および第4電極と、プロトン導電性固体電解質からなる第1電極と、酸化物イオン導電性固体電解質からなる第3電極とからなり、第1電極と第2電極間の起電力E12と第3電極と第4電極間の起電力E34の差分をとることにより、酸素による起電力をキャンセルして高温の溶融金属中の水素を検出することができる。
【図面の簡単な説明】
【図1】実施例の溶存水素センサを溶融金属中に取り付けた断面図。
【図2】実施例の溶存水素センサの起電力と水素分圧の関係を示すグラフ。
【符号の説明】
1・・溶存水素センサ、2・・取付治具、3・・容器、4・・溶融金属、11・・プロトン導電性固体電解質からなる第1電極、12・・金属と金属酸化物からなる第2電極、13・・酸化物イオン導電性固体電解質からなる第3電極、14・・金属と金属酸化物からなる第4電極、15・・第1起電力測定手段、16・・第2起電力測定手段、17・・リード線、18・・金属円柱、111・・ホタル石型酸化物、112・・ペロブスカイト酸化物。
[0001]
[Industrial application fields]
The present invention relates to a sensor for dissolved hydrogen in molten metal using a solid electrolyte having proton conductivity.
[0002]
[Prior art]
Gas components such as oxygen and hydrogen are contained in the molten metal, particularly in the molten steel. If solidified as it is, it causes cracks and internal defects, so these are removed by degassing in vacuum or in an inert gas. It is necessary to detect how much of these gases have been removed by the degassing process. Conventionally, dissolved oxygen in molten steel has been detected by a solid electrolyte oxygen sensor, but dissolved hydrogen has a high temperature, so there is no sensor to detect it, and degassing treatment has to be performed in an unmanaged state.
[0003]
[Problems to be solved by the present invention]
An object of this invention is to provide the sensor which detects the dissolved hydrogen in the unprecedented high temperature molten metal.
[0004]
[Means for Solving the Problems]
The dissolved hydrogen sensor according to the present invention that has solved the above problems includes a first electrode made of a proton conductive solid electrolyte in contact with a molten metal in which hydrogen to be measured is dissolved, and a contact with the molten metal of the first electrode. A second electrode made of a metal and a metal oxide formed on the surface facing and the back face, a third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal, and the third electrode A first electrode for measuring a fourth electrode made of the metal and the metal oxide formed on a surface in contact with the molten metal and a surface facing the molten metal, and an electromotive force E12 between the first electrode and the second electrode; a power measuring means, and a second electromotive force measuring means for measuring the electromotive force E34 between third electrodes and the fourth electrodes, Tona is, the electromotive force and the third electrode between the first electrode and the second electrode By taking the difference in electromotive force between the fourth electrodes, the electromotive force due to oxygen is canceled and the high temperature It is characterized by detecting hydrogen in the molten metal .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the first electrode made of a proton conductive solid electrolyte that comes into contact with a molten metal in which hydrogen is dissolved include, for example, proton-oxide ion mixed conductivity on the surface of a fluorite-type oxide that is an oxide ion conductive electrolyte. An electrolyte in which ABO 3 type perovskite oxide, which is an electrolyte, is laminated in a film shape can be used. The shape of the first electrode is different when the first electrode is used as a base and when the second electrode described later is used as a base. When the first electrode is used as a base, the first electrode is fired after being press-molded into a predetermined shape such as a cylindrical shape or a test tube. In the case of using the second electrode as a base, for example, a cylindrical second electrode is used as a base, and a solid electrolyte is formed in a film shape on the outer peripheral surface to form the second electrode.
[0006]
The ABO 3 type A element is one or more elements selected from the group consisting of alkaline earth metals (Sr, Ca, Ba). B element is a metal element of the fluorite-type oxide or a part thereof, alkaline earth metal (Mg, Ca, Sr, Ba), and rare earth element (Sc, Y, La, Nd, Sm, Eu, Gd, It is a metal element of a fluorite-type oxide produced by substitution solid solution of 1 to 30 mol% with one or more elements selected from the group consisting of Dy, Ho, Yb).
[0007]
Examples of such ABO 3 type perovskite oxide include SrZrO 3 , BaCeO 3 , SrCeO 3 , BaZrO 3 , and CaZrO 3 .
The perovskite oxide film can be formed on the surface of the fluorite-type oxide by plasma spraying, sputtering, or the like, but the following method is simple and excellent in cost. That is, for example, at least one of an alkaline earth metal inorganic acid salt, an organic acid salt, and an organic metal compound is applied to the surface of the fluorite-type oxide, and the temperature is 800 ° C. or higher in an oxidizing atmosphere such as the air. A perovskite oxide film can be formed by heating and baking. The thickness of the perovskite oxide is desirably 10 μm or more. This is because when the film thickness is less than 10 μm, hydrogen enters the fluorite-type oxide layer and reduces it.
[0008]
As the fluorite-type oxide, a part of zirconia (ZrO 2 ) or ceria (CeO 2 ) is replaced with alkaline earth metal (Mg, Ca, Sr, Ba) and rare earth elements (Sc, Y, La, Nd, Sm, Desirable is stabilized zirconia or stabilized ceria in which 1 to 30 mol% of a substitutional solid solution with an oxide of one or more elements selected from the group consisting of Eu, Gd, Dy, Ho, and Ba) is used. The fluorite-type oxide is excellent in oxide ion conductivity and has no problem of cracking due to thermal expansion.
[0009]
Examples of such fluorite-type oxides include (ZrO 2 ) 0.89 (CaO) 0.11 , (ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 , (CeO 2 ) 0.9. (Y 2 O 3 ) 0. 1 , (CeO 2 ) 0.8 (CaO) 0.2 , (CeO 2 ) 0.8 (SrO) 0.2, and the like.
According to experiments conducted by the inventors, the second electrode composed of the metal and the metal oxide is composed of a metal having excellent electrical conductivity such as Pt, Au, Fe, Ni, Cu, Zn, Cr, and Mo, Fe It was shown that the hydrogen detection sensitivity becomes high when the mixture is a metal oxide such as 2 O 3 , Ni 2 O 3 , Cu 2 O, ZnO, Cr 2 O 3 , and Mo 2 O 3 . Furthermore, when the metal is Cu and the metal oxide is Cu 2 O, or when the metal is Cr and the metal oxide is Cr 2 O 3 , it is shown that the detection sensitivity is further increased.
[0010]
The second electrode, which is a mixture of the metal and the metal oxide, is produced differently when the second electrode is used as a base and when the first electrode made of the proton conductive solid electrolyte is used as a base. When the second electrode is used as a base, it is formed as follows, for example. That is, a metal and a metal oxide powder are mixed at an appropriate ratio, press-formed into a shape such as a cylinder or a flat plate, and then fired at 800 ° C. or higher.
[0011]
When the metal is the same as the metal oxide metal such as Cu and Cu 2 O and Cr and Cr 2 O 3 , the second electrode can be formed using only the metal or metal oxide powder. For example, after Cu 2 O powder is press-molded and fired in a reducing atmosphere, a part of Cu 2 O is reduced to form a mixture of Cu and Cu 2 O. Alternatively, the Cr powder is press-molded and then fired in an oxidizing atmosphere, whereby a part of Cr is oxidized and becomes a mixture of Cr and Cr 2 O 3 . In the case of using the first electrode as a base, for example, the metal and metal oxide powder can be press-fitted into a test tube first electrode to form a second electrode.
[0012]
The third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal is the same as the oxide ion conductive electrolyte forming the first electrode. That is, for example, when the oxide ion conductive electrolyte of the first electrode is a fluorite type oxide (ZrO 2 ) 0.89 (CaO) 0.11 , the oxide ion conductive electrolyte of the third electrode is also (ZrO 2 0.89 (CaO) 0.11 .
[0013]
The fourth electrode is made of the same metal and metal oxide as the second electrode, and the manufacturing method is the same. That is, when the second electrode is a mixture of Cr and Cr 2 O 3 , the fourth electrode is also a mixture of Cr and Cr 2 O 3 .
The first electromotive force measuring means is connected to the first electrode, the second electrode and the lead wire, and measures the electromotive force E12 between both electrodes, and a normal voltmeter, ammeter, galvanometer, or the like is used.
[0014]
The second electromotive force measuring means is connected to the third electrode and the fourth electrode by a lead wire, and measures the electromotive force E34 between both electrodes, and a normal voltmeter, ammeter, galvanometer or the like is used.
The connection between the first electromotive force measuring means and the first electrode and the connection between the second electromotive force measuring means and the third electrode are performed via molten metal, respectively. Specifically, a metal cylinder or the like of Ni, Mo, W or the like excellent in electrical conductivity and heat resistance is immersed in molten metal, and one end is connected to the first electromotive force measuring means and the second electromotive force measuring means. This is achieved by connecting the lead wires. According to the experiments by the inventors, when the second electrode and the fourth electrode are a mixture of Cr and Cr 2 O 3 , the metal cylinder immersed in the molten metal is made of Mo of the same family as Cr, It was shown that hydrogen detection sensitivity was higher when the lead wire was also made of Mo wire.
[0015]
[Action]
In general, oxygen, nitrogen and the like are dissolved in the molten metal in addition to hydrogen. In the vicinity of the first electrode made of a proton conductive solid electrolyte in contact with the molten metal, hydrogen becomes protons and generates electrons. The generated protons move through the first electrode and reach the second electrode. The generated electrons pass through the lead wire connecting the first electrode and the second electrode, and reach the second electrode through the first electromotive force measuring means. If it does so, the metal oxide which comprises a 2nd electrode will work as an oxidizing agent, a metal oxide, a proton, and an electron will react, and a metal oxide will be reduced. In this series of reactions, electrons move from the first electrode to the second electrode.
[0016]
On the other hand, oxygen reacts with electrons to generate negative oxygen ions in the vicinity of the third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal. The generated oxygen ions move in the first electrode to reach the second electrode, and move in the third electrode to reach the fourth electrode. If it does so, the metal which comprises a 2nd electrode and a 4th electrode will work as a reducing agent, a metal and oxygen ion will react, a metal will be oxidized, and an electron will be generated. Electrons generated at the second electrode pass through the lead wire and reach the first electrode through the first electromotive force measuring means. The electrons generated at the fourth electrode pass through the lead wire connecting the fourth electrode and the third electrode, and reach the third electrode through the second electromotive force measuring means.
[0017]
Therefore, electrons due to the reaction of both hydrogen and oxygen contribute to the electromotive force E12 measured by the first electromotive force measuring means, but only oxygen is included in the electromotive force E34 measured by the second electromotive force measuring means. Since the electrons by the reaction of (2) contribute, the amount of hydrogen can be known from the difference between both electromotive forces, that is, E12-E34.
[0018]
【Example】
Examples of the present invention will be shown to describe the present invention more specifically.
FIG. 1 shows a cross-sectional view of the main part in which the dissolved hydrogen sensor of this embodiment is mounted in the molten metal to be measured.
The present dissolved hydrogen sensor 1 includes a first electrode 11 made of a cylindrical proton conductive solid electrolyte with a closed lower end contacting the molten metal 4, and a metal and a metal press-fitted into the cylindrical first electrode 11. In the second electrode 12 made of an oxide, the third electrode 13 made of a cylindrical oxide ion conductive solid electrolyte with a closed lower end contacting the molten metal 4, and the cylindrical third electrode 14 A first electrode 14 made of a press-fitted metal and metal oxide, a metal cylinder 18 having one end immersed in the molten metal 4, and the other end connected to the second electrode 12 by a lead wire 17. The power measuring means 15 and the second electromotive force measuring means 16 having one end connected to the metal cylinder 18 and the other end connected to the fourth electrode 14 by a lead wire 17 .
[0019]
In the dissolved hydrogen sensor 1, the upper end portion is fixed to the mounting jig 2 so that the first electrode 11 and the third electrode 13 are symmetrical left and right with the metal cylinder 18 in the middle, and the lower end portion is melted in the container 3. It is immersed in the metal 4. In the present embodiment, the lead wires 17 are symmetric in order to facilitate the handling of the lead wires 17, but the hydrogen sensor may not be symmetric in terms of performance and function.
[0020]
The first electrode 11 made of a cylindrical proton conductive solid electrolyte includes a cylindrical fluorite-type oxide 111 having an inner diameter of 20 mm, an outer diameter of 25 mm, and an inner space depth of 50 mm, and a film-like film formed on the outer peripheral surface thereof. And perovskite oxide 112.
Cylindrical fluorite-type oxide 111 is stabilized zirconia, (CaO) 0.11 ( ZrO 2 ) 0.89 , and commercially available (CaO) 0.11 ( ZrO 2 ) 0.89 powder is used as a mold. After being molded into a cylindrical shape with a pressure of 1 ton / cm 2 , it was fired in a firing furnace in air at 1500 ° C. for 5 hours.
[0021]
The membranous perovskite oxide 112 is SrZrO 3 , and a saturated aqueous solution (paste) of Sr nitrate in alkaline earth metal is applied to the outer peripheral surface of the cylindrical fluorite-type oxide 111 and dried at room temperature. The film was fired in air at 1200 ° C. for 10 hours, and the film thickness was 10 μm.
The second electrode 11 is a mixture of Cr and Cr 2 O 3 , and after inserting a lead wire 17, which is a Mo wire having a thickness of 1 mm, into the center of the cylindrical fluorite-type oxide 111, Cr and Cr 2 It was made by press-fitting a powder in which O 3 was mixed at a ratio of 1: 1. The length of the second electrode is 40 mm.
[0022]
The third electrode 13 made of a cylindrical oxide ion conductive solid electrolyte has exactly the same composition, manufacturing method, dimensions, and shape as the cylindrical fluorite-type oxide 111. That is, the solid electrolyte 15 is made of (CaO) 0.11 ( ZrO 2 ) 0.89 , and is a cylinder having an inner diameter of 20 mm, an outer diameter of 25 mm, and an inner air depth of 50 mm.
The fourth electrode 14 has exactly the same composition, manufacturing method, and dimensions as the second electrode. That is, the fourth electrode 14 is obtained by press-fitting a powder in which Cr and Cr 2 O 3 are mixed at a ratio of 1: 1 into the cylindrical third electrode 13.
[0023]
The metal cylinder 18 whose lower end is immersed in the molten metal 4 is made of Mo having a diameter of 6 mm and a length of 40 mm. A lead wire 17 which is a Mo wire having a thickness of 1 mm is fixed to the upper end portion.
The first electromotive force measuring means 15 for measuring the electromotive force E12 between the first electrode 11 and the second electrode 12 is a voltmeter. Similarly, the second electromotive force measuring means 16 for measuring the electromotive force E34 between the third electrode 13 and the fourth electrode 14 is the same type of voltmeter.
[0024]
FIG. 2 shows the relationship between the electromotive force difference E12-E34 of the present dissolved hydrogen sensor and the dissolved hydrogen partial pressure when the molten metal 4 is a molten steel having a temperature of 1600 to 1650 ° C. and the dissolved hydrogen partial pressure is changed. It can be seen that hydrogen can be detected with good linearity when the hydrogen partial pressure is in the range of 0.0001 to 0.1 atm.
[0025]
【The invention's effect】
The dissolved hydrogen sensor of the present invention includes a second electrode and a fourth electrode as common electrodes, a first electrode made of a proton conductive solid electrolyte, and a third electrode made of an oxide ion conductive solid electrolyte. The difference between the electromotive force E12 between the first electrode and the second electrode and the electromotive force E34 between the third electrode and the fourth electrode is taken to cancel the electromotive force due to oxygen and detect hydrogen in the high-temperature molten metal. Can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in which a dissolved hydrogen sensor according to an embodiment is mounted in molten metal.
FIG. 2 is a graph showing a relationship between an electromotive force and a hydrogen partial pressure of a dissolved hydrogen sensor of an example.
[Explanation of symbols]
1 .... dissolved hydrogen sensor, 2 .... mounting jig, 3 .... container, 4 .... molten metal, 11 .... first electrode made of proton conductive solid electrolyte, 12 .... made of metal and metal oxide 2 electrode, 13 ... third electrode made of oxide ion conductive solid electrolyte, 14 ... fourth electrode made of metal and metal oxide, 15 ... first electromotive force measuring means, 16 ... second electromotive force Measuring means, 17 ... lead wire, 18 ... metal cylinder, 111 ... fluorite type oxide, 112 ... perovskite oxide.

Claims (6)

測定すべき水素が溶存している溶融金属と接触するプロトン導電性固体電解質からなる第1電極と、該第1電極の該溶融金属と接触する面と背向する面に形成された金属と金属酸化物とからなる第2電極と、該溶融金属と接触する酸化物イオン導電性固体電解質からなる第3電極と、該第3電極の該溶融金属と接触する面と背向する面に形成された該金属と該金属酸化物とからなる第4電極と、該第1電極と該第2電極間の起電力を測定する第1起電力測定手段と、該第3電極と該第4電極間の起電力を測定する第2起電力測定手段と、からなり、
前記第1電極と前記第2電極間の起電力と前記第3電極と前記第4電極間の起電力の差分をとることにより、酸素による起電力をキャンセルして高温の溶融金属中の水素を検出することを特徴とする溶融金属中の溶存水素センサ。
A first electrode made of a proton conductive solid electrolyte in contact with a molten metal in which hydrogen to be measured is dissolved; A second electrode made of an oxide, a third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal, and a surface of the third electrode facing away from the surface in contact with the molten metal. a fourth electrode comprising a said metal and said metal oxide, a first electromotive force measuring means for measuring the electromotive force between the first electrode and the second electrode, the third electrode and the fourth electrode a second electromotive force measuring means for measuring the electromotive force between, Ri Tona,
By taking the difference between the electromotive force between the first electrode and the second electrode and the electromotive force between the third electrode and the fourth electrode, the electromotive force due to oxygen is canceled and hydrogen in the high-temperature molten metal is removed. A sensor for detecting dissolved hydrogen in a molten metal.
前記金属はCuで、前記金属酸化物はCuOである請求項1記載の溶存水素センサ。The dissolved hydrogen sensor according to claim 1, wherein the metal is Cu and the metal oxide is Cu 2 O. 前記金属はCrで前記金属酸化物はCrである請求項1記載の溶存水素センサ。The dissolved hydrogen sensor according to claim 1, wherein the metal is Cr and the metal oxide is Cr 2 O 3 . 前記プロトン導電性固体電解質は酸化物イオン導電性電解質であるホタル石型酸化物の表面にプロトン−酸化物イオン混合導電性電解質であるABO型のペロブスカイト酸化物が膜状に積層しており、該A元素がアルカリ土類金属(Sr,Ca,Ba)からなる群から選択された一種以上の元素であり、該B元素は該ホタル石型酸化物の金属元素またはその一部をアルカリ土類金属(Mg,Ca,Sr,Ba)、および、希土類元素(Sc,Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Yb)からなる群から選択された一種以上の元素で置換されて生じる該ホタル石型酸化物の金属元素である請求項1記載の溶存水素センサ。In the proton conductive solid electrolyte, an ABO 3 type perovskite oxide that is a proton-oxide ion mixed conductive electrolyte is laminated on the surface of a fluorite-type oxide that is an oxide ion conductive electrolyte, The element A is one or more elements selected from the group consisting of alkaline earth metals (Sr, Ca, Ba), and the B element is a metal element of the fluorite-type oxide or a part thereof as an alkaline earth Substitution with one or more elements selected from the group consisting of metals (Mg, Ca, Sr, Ba) and rare earth elements (Sc, Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Yb) The dissolved hydrogen sensor according to claim 1, wherein the dissolved hydrogen sensor is a metal element of the fluorite-type oxide produced by 前記酸化物イオン導電性固体電解質はホタル石型酸化物である請求項1記載の溶存水素センサ。The dissolved hydrogen sensor according to claim 1, wherein the oxide ion conductive solid electrolyte is a fluorite-type oxide. 前記ホタル石型酸化物は安定化ジルコニアまたは安定化セリアであり、前記ABO型のペロブスカイト酸化物はSrZrO,BaCeO,SrCeO,BaZrO,あるいはCaZrOである請求項4あるいは請求項5記載の溶存水素センサ。The fluorite type oxide is stabilized zirconia or stabilized ceria, and the ABO 3 type perovskite oxide is SrZrO 3 , BaCeO 3 , SrCeO 3 , BaZrO 3 , or CaZrO 3. The dissolved hydrogen sensor described.
JP25386098A 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal Expired - Fee Related JP4155632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25386098A JP4155632B2 (en) 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25386098A JP4155632B2 (en) 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal

Publications (2)

Publication Number Publication Date
JP2000088794A JP2000088794A (en) 2000-03-31
JP4155632B2 true JP4155632B2 (en) 2008-09-24

Family

ID=17257145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25386098A Expired - Fee Related JP4155632B2 (en) 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal

Country Status (1)

Country Link
JP (1) JP4155632B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0221393D0 (en) * 2002-09-14 2002-10-23 Univ Cambridge Tech Hydrogen sensing apparatus and method
KR101325508B1 (en) * 2012-03-14 2013-11-07 한국과학기술원 Hetero junction hydrogen sensor
US9977006B2 (en) 2013-09-12 2018-05-22 Korea Advanced Institute Of Science And Technology Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same
JP6149008B2 (en) * 2014-06-30 2017-06-14 東京窯業株式会社 Hydrogen sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264856A (en) * 1989-04-06 1990-10-29 Nkk Corp Method and probe for measuring activity of solute element in molten metal
JPH0829375A (en) * 1994-07-12 1996-02-02 Tokyo Yogyo Co Ltd Sensor for measuring quantity of hydrogen dissolved in molten metal
JP2000019152A (en) * 1998-07-01 2000-01-21 Tokyo Yogyo Co Ltd Hydrogen gas sensor

Also Published As

Publication number Publication date
JP2000088794A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
US6361821B1 (en) Method of treating an exhaust sensor and a product thereof
US20020013214A1 (en) Oxide ion conductor, manufacturing method therefor, and fuel cell using the same
JP6836935B2 (en) Ammonia sensor detection electrode and ammonia sensor
US10996191B2 (en) Sensor element and gas sensor
JP4155632B2 (en) Dissolved hydrogen sensor in molten metal
JP6386150B2 (en) Nitrogen oxide sensor and method of manufacturing the same
JP4980996B2 (en) Gas sensor element and gas sensor
JP2005091228A (en) Cell for nox detection, manufacturing method therefor, and nox detector equipped with the cell
JP4592484B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
US20040112743A1 (en) Concentration cell type hydrogen sensor and method for preparing solid electrolyte capable od conducting proton
JP2000292409A5 (en)
WO2019087735A1 (en) Solid electrolyte, method for producing same and gas sensor
JP2000019152A (en) Hydrogen gas sensor
KR100347580B1 (en) Manufacturing method of oxygen sensor element
JP4084505B2 (en) Heater integrated oxygen sensor element
US20050155859A1 (en) Insulation material and gas sensor
WO2019087736A1 (en) Solid electrolyte, method for preparing same, and gas sensor
JPH08506906A (en) Insulating layer system for electrical isolation of current circuits
JP4690755B2 (en) Horizontal stripe fuel cell, cell stack, and fuel cell
JPH11283642A (en) Solid-electrolyte fuel cell
JP2001099810A (en) Nitrogen oxide gas sensor
JP2007162132A (en) Composition for intermediate temperature application, method for manufacturing thereof and article containing the same
JPH05190183A (en) Solid electrolyte type fuel cell
JP2002162383A (en) Electrochemical oxygen pump cell and nitrogen oxide gas sensor using it
JPH10321239A (en) Electrode of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees