JP2000088794A - Sensor for dissolved hydrogen in molten metal - Google Patents

Sensor for dissolved hydrogen in molten metal

Info

Publication number
JP2000088794A
JP2000088794A JP10253860A JP25386098A JP2000088794A JP 2000088794 A JP2000088794 A JP 2000088794A JP 10253860 A JP10253860 A JP 10253860A JP 25386098 A JP25386098 A JP 25386098A JP 2000088794 A JP2000088794 A JP 2000088794A
Authority
JP
Japan
Prior art keywords
electrode
metal
oxide
electromotive force
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10253860A
Other languages
Japanese (ja)
Other versions
JP4155632B2 (en
Inventor
Koji Katahira
幸司 片平
Kunihiro Koide
邦博 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP25386098A priority Critical patent/JP4155632B2/en
Publication of JP2000088794A publication Critical patent/JP2000088794A/en
Application granted granted Critical
Publication of JP4155632B2 publication Critical patent/JP4155632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a dissolved hydrogen gas in a high-temperature molten metal by offsetting an electromotive force by oxygen. SOLUTION: A sensor 1 comprises a first electrode 11 consisting of a proton conductive solid electrolyte in touch with a molten metal to be measured, a second electrode 12 consisting of a metal and a metallic oxide formed to a face opposite to a face of the first electrode 11 in touch with the molten metal, a third electrode 13 consisting of an oxide ion conductive solid electrolyte in touch with the molten metal, a fourth electrode 14 consisting of the metal and metallic oxide formed to a face opposite to a face of the third electrode 13 in touch with the molten metal, a first electromotive force-measuring means 15 for-measuring an electromotive force E12 between the first electrode 11 and second electrode 12, and a second electromotive forcemeasuring means 16 for measuring an electromotive force E34 between the third electrode 13 and fourth electrode 14. The sensor obtains a difference of the electromotive force E12 by protons and oxygen ions between the first electrode 11 and second electrode 12 and the electromotive force E34 by oxygen ions between the third electrode 13 and fourth electrode 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はプロトン導電性をもつ固
体電解質を用いた溶融金属中の溶存水素センサに関す
る。
The present invention relates to a sensor for dissolved hydrogen in molten metal using a solid electrolyte having proton conductivity.

【0002】[0002]

【従来の技術】溶融金属中特に溶鋼中には酸素、水素、
等のガス成分が含まれている。このまま凝固させると割
れや内部欠陥の原因となるため、真空あるいは不活性ガ
ス中で脱ガス処理を行いこれらを除去している。脱ガス
処理でこれらガスがどれだけ除去されたかを検出する必
要がある。溶鋼中の溶存酸素は従来から固体電解質型酸
素センサで検出されているが、溶存水素については高温
であるため検出するセンサがなく、無管理状態で脱ガス
処理をせざるを得なかった。
2. Description of the Related Art In a molten metal, particularly in a molten steel, oxygen, hydrogen,
And other gas components. Solidification as it is may cause cracks and internal defects. Therefore, these are removed by degassing in a vacuum or inert gas. It is necessary to detect how much these gases have been removed in the degassing process. Dissolved oxygen in molten steel has been conventionally detected by a solid electrolyte type oxygen sensor, but since dissolved hydrogen is at a high temperature, there is no sensor to detect it, and degassing treatment has to be performed without management.

【0003】[0003]

【本発明が解決しようとする課題】本発明はこれまでに
ない高温の溶融金属中の溶存水素を検出するセンサを提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sensor for detecting dissolved hydrogen in a molten metal at a high temperature, which has never been seen before.

【0004】[0004]

【課題を解決するための手段】上記課題を解決した本発
明に係る溶存水素センサは、測定すべき水素が溶存して
いる溶融金属と接触するプロトン導電性固体電解質から
なる第1電極と、該第1電極の該溶融金属と接触する面
と背向する面に形成された金属と金属酸化物とからなる
第2電極と、該溶融金属と接触する酸化物イオン導電性
固体電解質からなる第3電極と、該第3電極の該溶融金
属と接触する面と背向する面に形成された該金属と該金
属酸化物とからなる第4電極と、該第1電極と該第2電
極間の起電力E12を測定する第1起電力測定手段と、該
第3電極と該第4電極間の起電力E34を測定する第2起
電力測定手段と、からなることを特徴とする
According to the present invention, there is provided a dissolved hydrogen sensor comprising: a first electrode made of a proton conductive solid electrolyte which comes into contact with a molten metal in which hydrogen to be measured is dissolved; A second electrode formed of a metal and a metal oxide formed on a surface of the first electrode opposite to a surface in contact with the molten metal; and a third electrode formed of an oxide ion conductive solid electrolyte in contact with the molten metal. An electrode; a fourth electrode formed of the metal and the metal oxide formed on a surface of the third electrode opposite to a surface in contact with the molten metal; and a fourth electrode formed between the first electrode and the second electrode. A first electromotive force measuring means for measuring the electromotive force E12; and a second electromotive force measuring means for measuring an electromotive force E34 between the third electrode and the fourth electrode.

【0005】[0005]

【発明の実施の形態】水素が溶存している溶融金属と接
触するプロトン導電性固体電解質からなる第1電極とし
ては、例えば、酸化物イオン導電性電解質であるホタル
石型酸化物の表面にプロトン−酸化物イオン混合導電性
電解質であるABO3型のペロブスカイト酸化物が膜状
に積層したものが使用できる。第1電極の形状は第1電
極をベースにする場合と後述の第2電極をベースにする
場合で異なる。第1電極をベースにする場合は、第1電
極を円筒状や試験管状等所定の形状にプレス成形後焼成
する。第2電極をベースにする場合は、例えば円柱状の
第2電極をベースにして、その外周面に固体電解質を膜
状に形成して第2電極とすることになる。
BEST MODE FOR CARRYING OUT THE INVENTION As a first electrode made of a proton-conductive solid electrolyte which comes into contact with a molten metal in which hydrogen is dissolved, for example, a proton-type solid electrolyte which is an oxide ion-conductive electrolyte has A film in which an ABO 3 type perovskite oxide which is a mixed oxide ion conductive electrolyte is laminated in a film shape can be used. The shape of the first electrode is different between a case where the first electrode is used as a base and a case where the second electrode described below is used as a base. When the first electrode is used as a base, the first electrode is press-formed into a predetermined shape such as a cylindrical shape or a test tube, and then fired. When the second electrode is used as a base, for example, the second electrode is formed by forming a solid electrolyte in a film shape on the outer peripheral surface of the second electrode in the form of a column.

【0006】ABO3型のA元素は、アルカリ土類金属
(Sr,Ca,Ba)からなる群から選択された一種以
上の元素である。B元素は前記ホタル石型酸化物の金属
元素またはその一部をアルカリ土類金属(Mg,Ca,
Sr,Ba)、および、希土類元素(Sc,Y,La,
Nd,Sm,Eu,Gd,Dy,Ho,Yb)からなる
群から選択された一種以上の元素で1〜30モル%置換
固溶されて生じるホタル石型酸化物の金属元素である。
The ABO 3 type A element is one or more elements selected from the group consisting of alkaline earth metals (Sr, Ca, Ba). The B element is a metal element of the fluorite-type oxide or a part thereof is an alkaline earth metal (Mg, Ca,
Sr, Ba) and rare earth elements (Sc, Y, La,
Nd, Sm, Eu, Gd, Dy, Ho, Yb) is a metal element of a fluorite-type oxide formed by being substituted with 1 to 30 mol% of one or more elements selected from the group consisting of:

【0007】このようなABO3型のペロブスカイト酸
化物としては、SrZrO3,BaCeO3,SrCeO
3,BaZrO3,あるいはCaZrO3がある。ホタル
石型酸化物表面へのペロブスカイト酸化物膜の形成は、
プラズマ溶射、スパッタ等でもできるが、次の方法が簡
便でコスト的にも優れている。すなわち、ホタル石型酸
化物の表面にたとえば、アルカリ土類金属の無機酸塩、
有機酸塩、および有機金属化合物の一種以上を塗布し、
大気中等の酸化性雰囲気中で800℃以上の温度で加熱
焼成することにより、ペロブスカイト酸化物膜を形成す
ることができる。このペロブスカイト酸化物の膜厚は1
0μm以上が望ましい。膜厚が10μm未満では水素が
ホタル石型酸化物層に侵入し、これを還元するためであ
る。
Such ABO 3 type perovskite oxides include SrZrO 3 , BaCeO 3 , and SrCeO.
3 , BaZrO 3 or CaZrO 3 . The formation of a perovskite oxide film on the surface of fluorite oxide
Plasma spraying, sputtering, etc. can be used, but the following method is simple and excellent in cost. That is, for example, on the surface of the fluorite type oxide, an inorganic acid salt of an alkaline earth metal,
Apply one or more organic acid salts and organometallic compounds,
The perovskite oxide film can be formed by heating and baking at a temperature of 800 ° C. or more in an oxidizing atmosphere such as the air. The thickness of this perovskite oxide is 1
0 μm or more is desirable. If the thickness is less than 10 μm, hydrogen penetrates into the fluorite-type oxide layer and reduces it.

【0008】ホタル石型酸化物としては、ジルコニア
(ZrO2)あるいはセリア(CeO2)の一部をアルカ
リ土類金属(Mg,Ca,Sr,Ba)および希土類元
素(Sc,Y,La,Nd,Sm,Eu,Gd,Dy,
Ho,Ba)からなる群から選択した一種以上の元素の
酸化物で1〜30モル%置換固溶させた安定化ジルコニ
アまたは安定化セリアが望ましい。上記ホタル石型酸化
物は酸化物イオン導電性に優れており、かつ熱膨張によ
る亀裂発生の問題もない。
As the fluorite-type oxide, part of zirconia (ZrO 2 ) or ceria (CeO 2 ) is converted to an alkaline earth metal (Mg, Ca, Sr, Ba) and a rare earth element (Sc, Y, La, Nd). , Sm, Eu, Gd, Dy,
Stabilized zirconia or stabilized ceria in which 1 to 30 mol% of an oxide of one or more elements selected from the group consisting of Ho and Ba) is solid-displaced and dissolved is desirable. The fluorite-type oxide is excellent in oxide ion conductivity and has no problem of crack generation due to thermal expansion.

【0009】このようなホタル石型酸化物には、たとえ
ば(ZrO20.89(CaO)0.11、(ZrO2
0.92(Y230.08、(CeO20.9(Y230.1
(CeO20.9(SmO1.50.1、(CeO20.8(C
aO)0.2、(CeO20.8(SrO)0.2等がある。前
記金属と金属酸化物とからなる第2電極は、発明者らの
実験によれば、Pt、Au、Fe、Ni、Cu、Zn、
Cr、Mo等の電気伝導性に優れた金属と、Fe23
Ni23、Cu2O、ZnO、Cr23、Mo23等の
金属酸化物との混合物のとき、水素検出感度が高くなる
ことが示された。さらに、前記金属がCuで前記金属酸
化物がCu2Oのとき、あるいは、前記金属がCrで前
記金属酸化物がCr23のとき、より一層検出感度が高
くなることが示された。
Such fluorite-type oxides include, for example, (ZrO 2 ) 0.89 (CaO) 0.11 and (ZrO 2 )
0.92 (Y 2 O 3 ) 0.08 , (CeO 2 ) 0.9 (Y 2 O 3 ) 0.1 ,
(CeO 2 ) 0.9 (SmO 1.5 ) 0.1 , (CeO 2 ) 0.8 (C
aO) 0.2 and (CeO 2 ) 0.8 (SrO) 0.2 . According to experiments performed by the inventors, the second electrode composed of the metal and the metal oxide is formed of Pt, Au, Fe, Ni, Cu, Zn,
Metals having excellent electrical conductivity such as Cr and Mo, Fe 2 O 3 ,
It was shown that the hydrogen detection sensitivity was increased when a mixture with a metal oxide such as Ni 2 O 3 , Cu 2 O, ZnO, Cr 2 O 3 , and Mo 2 O 3 was used. Furthermore, it was shown that the detection sensitivity was further improved when the metal was Cu and the metal oxide was Cu 2 O, or when the metal was Cr and the metal oxide was Cr 2 O 3 .

【0010】前記金属と金属酸化物との混合物である第
2電極は、該第2電極をベースにする場合と、前記プロ
トン導電性固体電解質からなる第1電極をベースにする
場合で作り方が異なる。第2電極をベースにする場合
は、例えば次のようにして形成される。すなわち、金属
と金属酸化物の粉末を適当な割合で混合し、円柱、平板
等所用の形状にプレス成形した後、800℃以上で焼成
する。
The second electrode, which is a mixture of the metal and the metal oxide, is formed differently depending on whether the second electrode is a base or the first electrode made of the proton conductive solid electrolyte. . When the second electrode is used as a base, it is formed, for example, as follows. That is, powders of a metal and a metal oxide are mixed at an appropriate ratio, pressed into a shape for a column, a flat plate or the like, and then fired at 800 ° C. or more.

【0011】CuとCu2O、CrとCr23のように
金属が金属酸化物の金属と同じ場合は、金属あるいは金
属酸化物の粉末だけを用いて、第2電極を作ることがで
きる。例えば、Cu2O粉末をプレス成形した後還元性
雰囲気中で焼成することにより、Cu2Oの一部が還元
され、CuとCu2Oの混合物となる。あるいはCr粉
末をプレス成形した後酸化性雰囲気中で焼成することに
より、Crの一部が酸化され、CrとCr23の混合物
となる。第1電極をベースにする場合は、例えば試験管
状の第1電極の中に前記金属と金属酸化物の粉末を圧入
して第2電極とすることができる。
When the metal is the same as the metal oxide such as Cu and Cu 2 O or Cr and Cr 2 O 3 , the second electrode can be formed using only the metal or metal oxide powder. . For example, by pressing a Cu 2 O powder and then firing in a reducing atmosphere, a part of the Cu 2 O is reduced to form a mixture of Cu and Cu 2 O. Alternatively, Cr powder is press-molded and then fired in an oxidizing atmosphere to partially oxidize Cr to form a mixture of Cr and Cr 2 O 3 . When the first electrode is used as a base, for example, the powder of the metal and the metal oxide is press-fitted into the first electrode of a test tube to form a second electrode.

【0012】溶融金属と接触する酸化物イオン導電性固
体電解質からなる第3電極は、前記第1電極を形成する
酸化物イオン導電性電解質と同じである。すなわち、た
とえば、第1電極の酸化物イオン導電性電解質がホタル
石型酸化物である(ZrO20.89(CaO)0.11であ
る場合は、第3電極の酸化物イオン導電性電解質も(Z
rO20.89(CaO)0.11である。
The third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal is the same as the oxide ion conductive electrolyte forming the first electrode. That is, for example, when the oxide ion conductive electrolyte of the first electrode is a fluorite-type oxide (ZrO 2 ) 0.89 (CaO) 0.11 , the oxide ion conductive electrolyte of the third electrode is also (ZrO 2 ).
rO 2 ) 0.89 (CaO) 0.11 .

【0013】第4電極は、前記第2電極と同じ金属と金
属酸化物とからなり、製法も同じである。すなわち、第
2電極がCrとCr23の混合物である場合は、第4電
極もCrとCr23の混合物である。第1起電力測定手
段は前記第1電極と前記第2電極とリード線で接続さ
れ、両電極間の起電力E12を測定するもので、通常の電
圧計、電流計、ガルバノメータ等が使われる。
The fourth electrode is made of the same metal and metal oxide as the second electrode, and has the same manufacturing method. That is, when the second electrode is a mixture of Cr and Cr 2 O 3 , the fourth electrode is also a mixture of Cr and Cr 2 O 3 . The first electromotive force measuring means is connected to the first electrode and the second electrode by a lead wire, and measures the electromotive force E12 between the two electrodes. A normal voltmeter, ammeter, galvanometer or the like is used.

【0014】第2起電力測定手段は前記第3電極と前記
第4電極とリード線で接続され、両電極間の起電力E34
を測定するもので、通常の電圧計、電流計、ガルバノメ
ータ等が使われる。第1起電力測定手段と第1電極の接
続および第2起電力測定手段と第3電極の接続は、それ
ぞれ溶融金属を介して行われる。具体的には溶融金属中
に電気伝導性および耐熱性に優れたNi、Mo、W等の
金属円柱等を浸漬し、それに第1起電力測定手段と第2
起電力測定手段に一端が接続されたリード線を接続する
ことで、達成される。なお、発明者等の実験によると、
前記第2電極と第4電極がCrとCr23の混合物であ
る場合は、前記溶融金属中に浸漬する金属円柱をCrと
同族のMo製にし、前記リード線もMo線にした方が水
素の検出感度が高いことが示された。
The second electromotive force measuring means is connected to the third electrode and the fourth electrode by a lead wire, and generates an electromotive force E34 between the two electrodes.
And a normal voltmeter, ammeter, galvanometer or the like is used. The connection between the first electromotive force measuring means and the first electrode and the connection between the second electromotive force measuring means and the third electrode are respectively performed via a molten metal. Specifically, a metal column or the like made of Ni, Mo, W or the like having excellent electrical conductivity and heat resistance is immersed in a molten metal, and the first electromotive force measuring means and the second
This is achieved by connecting a lead wire having one end connected to the electromotive force measuring means. According to experiments by the inventors,
When the second electrode and the fourth electrode are a mixture of Cr and Cr 2 O 3 , it is preferable that the metal column immersed in the molten metal is made of Mo, which is the same as Cr, and the lead wire is also made of Mo. It was shown that the detection sensitivity of hydrogen was high.

【0015】[0015]

【作用】一般に溶融金属中には水素の他に酸素や窒素等
が溶存している。溶融金属に接触するプロトン導電性固
体電解質からなる第1電極近傍では水素がプロトンにな
り、電子を発生する。生成されたプロトンは第1電極中
を移動して第2電極に達する。発生した電子は第1電極
と第2電極をつなぐリード線の中を通り第1起電力測定
手段を経て第2電極に達する。そうすると、第2電極を
構成する金属酸化物が酸化剤として働き、金属酸化物と
プロトンおよび電子が反応して金属酸化物が還元され
る。この一連の反応で第1電極から第2電極に電子が移
動する。
In general, oxygen, nitrogen and the like are dissolved in a molten metal in addition to hydrogen. In the vicinity of the first electrode made of a proton-conductive solid electrolyte that comes into contact with the molten metal, hydrogen becomes a proton and generates an electron. The generated protons move through the first electrode and reach the second electrode. The generated electrons pass through a lead wire connecting the first electrode and the second electrode, and reach the second electrode via the first electromotive force measuring means. Then, the metal oxide constituting the second electrode functions as an oxidizing agent, and the metal oxide reacts with protons and electrons to reduce the metal oxide. In this series of reactions, electrons move from the first electrode to the second electrode.

【0016】一方、溶融金属と接触する酸化物イオン導
電性固体電解質からなる第3電極近傍では酸素が電子と
反応してマイナスの酸素イオンを発生する。発生した酸
素イオンは第1電極の中を移動して第2電極に達すると
共に、第3電極の中を移動して第4電極に達する。そう
すると、第2電極と第4電極を構成する金属が還元剤と
して働き、金属と酸素イオンが反応して金属が酸化され
電子を発生する。第2電極で発生した電子は、リード線
の中を通り第1起電力測定手段を経て第1電極に達す
る。第4電極で発生した電子は、第4電極と第3電極を
つなぐリード線の中を通り第2起電力測定手段を経て第
3電極に達する。
On the other hand, in the vicinity of the third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal, oxygen reacts with electrons to generate negative oxygen ions. The generated oxygen ions move in the first electrode to reach the second electrode, and also move in the third electrode to reach the fourth electrode. Then, the metal forming the second electrode and the fourth electrode functions as a reducing agent, and the metal reacts with oxygen ions to oxidize the metal and generate electrons. The electrons generated at the second electrode pass through the lead wire and reach the first electrode via the first electromotive force measuring means. The electrons generated at the fourth electrode pass through a lead wire connecting the fourth electrode and the third electrode, and reach the third electrode via the second electromotive force measuring means.

【0017】したがって、第1起電力測定手段で測定さ
れる起電力E12には水素と酸素の両方の反応による電子
が寄与しているが、第2起電力測定手段で測定される起
電力E34には酸素だけの反応による電子が寄与している
ので、両起電力の差分すなわちE12−E34から水素量を
知ることができる。
Therefore, although the electron by the reaction of both hydrogen and oxygen contributes to the electromotive force E12 measured by the first electromotive force measuring means, the electromotive force E34 measured by the second electromotive force measuring means is increased. Since electrons due to the reaction of oxygen alone contribute, the amount of hydrogen can be known from the difference between the two electromotive forces, that is, E12-E34.

【0018】[0018]

【実施例】本発明の実施例を示し、本発明をさらに具体
的に説明する。本実施例の溶存水素センサを測定すべき
溶融金属中に取り付けた主要部断面図を図1に示す。本
溶存水素センサ1は、溶融金属4と接触する下端部が閉
じた円筒状のプロトン導電性固体電解質からなる第1電
極11と、その円筒状第1電極11の中に圧入された金
属と金属酸化物とからなる第2電極12と、溶融金属4
と接触する下端部が閉じた円筒状の酸化物イオン導電性
固体電解質からなる第3電極13と、その円筒状第3電
極14の中に圧入された金属と金属酸化物とからなる第
4電極14と、一端が溶融金属4に浸積している金属円
柱18に、他端が第2電極12にリード線17で接続さ
れた第1起電力測定手段15と、一端が金属円柱18
に、他端が第4電極14にリード線18で接続された第
2起電力測定手段16と、からなる。
The present invention will be described in more detail with reference to Examples of the present invention. FIG. 1 is a sectional view of a main part in which the dissolved hydrogen sensor of this embodiment is mounted in a molten metal to be measured. The present dissolved hydrogen sensor 1 includes a first electrode 11 made of a cylindrical proton-conductive solid electrolyte having a closed lower end in contact with the molten metal 4, and a metal and a metal pressed into the first cylindrical electrode 11. A second electrode 12 made of an oxide;
A third electrode 13 made of a cylindrical oxide ion conductive solid electrolyte having a closed lower end and a fourth electrode made of a metal and a metal oxide pressed into the cylindrical third electrode 14. A first electromotive force measuring means 15 having one end connected to a metal column 18 immersed in the molten metal 4, the other end connected to the second electrode 12 by a lead wire 17, and one end connected to the metal column 18.
And a second electromotive force measuring means 16 whose other end is connected to the fourth electrode 14 by a lead wire 18.

【0019】溶存水素センサ1は、金属円柱18を真ん
中にして第1電極11と第3電極13が左右に対称にな
るように上端部が取付治具2に固定され、下端部が容器
3に入った溶融金属4に浸積されている。本実施例では
リード線17のとり回しをしやすくするために左右対称
にしたが、水素センサの性能と機能面では左右対称でな
くてもよい。
The dissolved hydrogen sensor 1 has an upper end fixed to the mounting jig 2 so that the first electrode 11 and the third electrode 13 are symmetrical left and right with the metal column 18 in the middle, and a lower end connected to the container 3. It is immersed in the molten metal 4 that has entered. In the present embodiment, the lead wires 17 are symmetrical in order to facilitate the routing, but the hydrogen sensor may not be symmetrical in terms of performance and function.

【0020】円筒状のプロトン導電性固体電解質からな
る第1電極11は、内径20mm、外径25mm、内空
深さ50mmの円筒状のホタル石型酸化物111と、そ
の外周面に形成された膜状のペロブスカイト酸化物11
2とからなる。円筒状のホタル石型酸化物111は、安
定化ジルコニア、(CaO)0.11(ZrO30.89で、
市販の(CaO)0.11(ZrO30.89粉末を金型に入
れ1ton/cm2の圧力で円筒状に成型した後、焼成
炉で空気中、1500℃、保持5時間の条件で焼成した
ものである。
The first electrode 11 made of a cylindrical proton-conductive solid electrolyte was formed on a cylindrical fluorite oxide 111 having an inner diameter of 20 mm, an outer diameter of 25 mm, and a depth of 50 mm in the inner space, and was formed on the outer peripheral surface thereof. Perovskite oxide film 11
Consists of two. The cylindrical fluorite oxide 111 is stabilized zirconia, (CaO) 0.11 (ZrO 3 ) 0.89 ,
A commercially available (CaO) 0.11 (ZrO 3 ) 0.89 powder was placed in a mold, molded into a cylindrical shape at a pressure of 1 ton / cm 2 , and fired in a firing furnace at 1500 ° C. for 5 hours in air. is there.

【0021】膜状のペロブスカイト酸化物112は、S
rZrO3で、円筒状のホタル石型酸化物111の外周
面にアルカリ土類金属の中のSrの硝酸塩の飽和水溶液
(ペースト)を塗布し、室温で乾燥後、空気中、120
0℃、保持10時間の条件で焼成したもので、膜厚は1
0μmである。第2電極11は、CrとCr23の混合
物で、前記円筒状ホタル石型酸化物111の円筒の中央
に太さ1mmのMo線であるリード線17を挿入した
後、CrとCr23を1対1の割合で混合した粉末を圧
入して作られた。第2電極の長さは40mmである。
The film-like perovskite oxide 112 is
A saturated aqueous solution (paste) of nitrate of Sr in alkaline earth metal is applied to the outer peripheral surface of the cylindrical fluorite-type oxide 111 with rZrO 3 , and dried at room temperature.
It was baked under the conditions of 0 ° C. and holding for 10 hours.
0 μm. The second electrode 11 is a mixture of Cr and Cr 2 O 3 , and after inserting a lead wire 17 which is a Mo wire having a thickness of 1 mm into the center of the cylindrical fluorite oxide 111, the second electrode 11 is made of Cr and Cr 2. It was made by injecting powder mixed with O 3 in a ratio of 1: 1. The length of the second electrode is 40 mm.

【0022】円筒状の酸化物イオン導電性固体電解質か
らなる第3電極13は、前記円筒状ホタル石型酸化物1
11と組成、製法、寸法、形状が全く同じである。すな
わち、固体電解質15は(CaO)0.11(ZrO3
0.89製で、内径20mm、外径25mm、内空深さ50
mmの円筒である。第4電極14は前記第2電極と組
成、製法、寸法が全く同じである。すなわち、第4電極
14はCrとCr23を1対1の割合で混合した粉末を
円筒状の第3電極13の中に圧入したものである。
The third electrode 13 made of a cylindrical oxide ion conductive solid electrolyte is used for the cylindrical fluorite oxide 1
11 has exactly the same composition, manufacturing method, dimensions, and shape. That is, the solid electrolyte 15 is (CaO) 0.11 (ZrO 3 )
Made of 0.89 , inner diameter 20mm, outer diameter 25mm, inner depth 50
mm cylinder. The fourth electrode 14 has exactly the same composition, manufacturing method, and dimensions as the second electrode. That is, the fourth electrode 14 is obtained by pressing a powder obtained by mixing Cr and Cr 2 O 3 at a ratio of 1: 1 into the cylindrical third electrode 13.

【0023】溶融金属4の中に下端部が浸積される金属
円柱18は直径6mm,長さ40mmのMo製である。
上端部には太さ1mmのMo線であるリード線17が固
着されてある。第1電極11と第2電極12の間の起電
力E12を測定する第1起電力測定手段15は電圧計であ
る。同様に、第3電極13と第4電極14の間の起電力
E34を測定する第2起電力測定手段16は同じタイプの
電圧計である。
The metal column 18 whose lower end is immersed in the molten metal 4 is made of Mo having a diameter of 6 mm and a length of 40 mm.
A lead wire 17, which is a Mo wire having a thickness of 1 mm, is fixed to the upper end. The first electromotive force measuring means 15 for measuring the electromotive force E12 between the first electrode 11 and the second electrode 12 is a voltmeter. Similarly, the second electromotive force measuring means 16 for measuring the electromotive force E34 between the third electrode 13 and the fourth electrode 14 is a voltmeter of the same type.

【0024】溶融金属4を温度1600〜1650℃の
溶鋼とし、溶存水素分圧を変化させたときの、本溶存水
素センサの起電力差E12−E34と溶存水素分圧の関係を
図2に示す。水素分圧が0.0001〜0.1atm範
囲で直線性よく水素を検出できることがわかる。
FIG. 2 shows the relationship between the electromotive force difference E12-E34 of the present dissolved hydrogen sensor and the dissolved hydrogen partial pressure when the molten metal 4 is molten steel at a temperature of 1600-1650 ° C. and the dissolved hydrogen partial pressure is changed. . It can be seen that hydrogen can be detected with good linearity when the hydrogen partial pressure is in the range of 0.0001 to 0.1 atm.

【0025】[0025]

【発明の効果】本発明の溶存水素センサは、コモン電極
としての第2電極および第4電極と、プロトン導電性固
体電解質からなる第1電極と、酸化物イオン導電性固体
電解質からなる第3電極とからなり、第1電極と第2電
極間の起電力E12と第3電極と第4電極間の起電力E34
の差分をとることにより、酸素による起電力をキャンセ
ルして高温の溶融金属中の水素を検出することができ
る。
The dissolved hydrogen sensor of the present invention has a second electrode and a fourth electrode as common electrodes, a first electrode made of a proton conductive solid electrolyte, and a third electrode made of an oxide ion conductive solid electrolyte. And an electromotive force E12 between the first electrode and the second electrode and an electromotive force E34 between the third electrode and the fourth electrode.
By taking the difference, the electromotive force due to oxygen can be canceled and hydrogen in the high-temperature molten metal can be detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の溶存水素センサを溶融金属中に取り付
けた断面図。
FIG. 1 is a cross-sectional view in which a dissolved hydrogen sensor of an embodiment is mounted in a molten metal.

【図2】実施例の溶存水素センサの起電力と水素分圧の
関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an electromotive force and a hydrogen partial pressure of the dissolved hydrogen sensor of the embodiment.

【符号の説明】[Explanation of symbols]

1・・溶存水素センサ、2・・取付治具、3・・容器、
4・・溶融金属、11・・プロトン導電性固体電解質か
らなる第1電極、12・・金属と金属酸化物からなる第
2電極、13・・酸化物イオン導電性固体電解質からな
る第3電極、14・・金属と金属酸化物からなる第4電
極、15・・第1起電力測定手段、16・・第2起電力
測定手段、17・・リード線、18・・金属円柱、11
1・・ホタル石型酸化物、112・・ペロブスカイト酸
化物。
1. Dissolved hydrogen sensor 2. Mounting jig 3. Container
4. a molten metal, a first electrode composed of a proton-conductive solid electrolyte, a second electrode composed of a metal and a metal oxide, a third electrode composed of an oxide ion-conductive solid electrolyte, ... A fourth electrode composed of a metal and a metal oxide, 15... A first electromotive force measuring means, 16... A second electromotive force measuring means, 17.
1. fluorite-type oxide, 112 perovskite oxide.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】測定すべき水素が溶存している溶融金属と
接触するプロトン導電性固体電解質からなる第1電極
と、該第1電極の該溶融金属と接触する面と背向する面
に形成された金属と金属酸化物とからなる第2電極と、
該溶融金属と接触する酸化物イオン導電性固体電解質か
らなる第3電極と、該第3電極の該溶融金属と接触する
面と背向する面に形成された該金属と該金属酸化物とか
らなる第4電極と、該第1電極と該第2電極間の起電力
E12を測定する第1起電力測定手段と、該第3電極と該
第4電極間の起電力E34を測定する第2起電力測定手段
と、からなることを特徴とする溶融金属中の溶存水素セ
ンサ。
1. A first electrode comprising a proton-conductive solid electrolyte in contact with a molten metal in which hydrogen to be measured is dissolved, and a first electrode formed on a surface of the first electrode opposite to a surface in contact with the molten metal. A second electrode made of a metal and a metal oxide,
A third electrode made of an oxide ion conductive solid electrolyte in contact with the molten metal, and the metal and the metal oxide formed on the surface of the third electrode opposite to the surface in contact with the molten metal. A fourth electrode, a first electromotive force measuring means for measuring an electromotive force E12 between the first electrode and the second electrode, and a second electromotive force E34 for measuring an electromotive force E34 between the third electrode and the fourth electrode. A sensor for dissolved hydrogen in molten metal, comprising: an electromotive force measuring means.
【請求項2】前記金属はCuで、前記金属酸化物はCu
2Oである請求項1記載の溶存水素センサ。
2. The method according to claim 1, wherein the metal is Cu, and the metal oxide is Cu.
Dissolved hydrogen sensor of claim 1 wherein the 2 O.
【請求項3】前記金属はCrで前記金属酸化物はCr2
3である請求項1記載の溶存水素センサ。
3. The method according to claim 1, wherein the metal is Cr and the metal oxide is Cr 2.
O 3 is dissolved hydrogen sensor according to claim 1, wherein.
【請求項4】前記プロトン導電性固体電解質は酸化物イ
オン導電性電解質であるホタル石型酸化物の表面にプロ
トン−酸化物イオン混合導電性電解質であるABO3
のペロブスカイト酸化物が膜状に積層しており、該A元
素がアルカリ土類金属(Sr,Ca,Ba)からなる群
から選択された一種以上の元素であり、該B元素は該ホ
タル石型酸化物の金属元素またはその一部をアルカリ土
類金属(Mg,Ca,Sr,Ba)、および、希土類元
素(Sc,Y,La,Nd,Sm,Eu,Gd,Dy,
Ho,Yb)からなる群から選択された一種以上の元素
で置換されて生じる該ホタル石型酸化物の金属元素であ
る請求項1記載の溶存水素センサ。
4. The proton-conductive solid electrolyte comprises a fluorite-type oxide which is an oxide ion-conductive electrolyte, and an ABO 3 type perovskite oxide which is a proton-oxide ion mixed conductive electrolyte formed on the surface of the oxide-ion conductive electrolyte. The element A is at least one element selected from the group consisting of alkaline earth metals (Sr, Ca, Ba), and the element B is a metal element of the fluorite-type oxide or one of the elements. Parts are alkaline earth metals (Mg, Ca, Sr, Ba) and rare earth elements (Sc, Y, La, Nd, Sm, Eu, Gd, Dy,
The dissolved hydrogen sensor according to claim 1, wherein the dissolved hydrogen sensor is a metal element of the fluorite-type oxide generated by being replaced with one or more elements selected from the group consisting of Ho, Yb).
【請求項5】前記酸化物イオン導電性固体電解質はホタ
ル石型酸化物である請求項1記載の溶存水素センサ。
5. The dissolved hydrogen sensor according to claim 1, wherein the oxide ion conductive solid electrolyte is a fluorite-type oxide.
【請求項6】前記ホタル石型酸化物は安定化ジルコニア
または安定化セリアであり、前記ABO3型のペロブス
カイト酸化物はSrZrO3,BaCeO3,SrCeO
3,BaZrO3,あるいはCaZrO3である請求項4
あるいは請求項5記載の溶存水素センサ。
6. The fluorite-type oxide is stabilized zirconia or stabilized ceria, and the ABO 3 type perovskite oxide is SrZrO 3 , BaCeO 3 , SrCeO.
3, BaZrO 3 claim 4 or a CaZrO 3,
Alternatively, the dissolved hydrogen sensor according to claim 5.
JP25386098A 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal Expired - Fee Related JP4155632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25386098A JP4155632B2 (en) 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25386098A JP4155632B2 (en) 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal

Publications (2)

Publication Number Publication Date
JP2000088794A true JP2000088794A (en) 2000-03-31
JP4155632B2 JP4155632B2 (en) 2008-09-24

Family

ID=17257145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25386098A Expired - Fee Related JP4155632B2 (en) 1998-09-08 1998-09-08 Dissolved hydrogen sensor in molten metal

Country Status (1)

Country Link
JP (1) JP4155632B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513403A (en) * 2002-09-14 2006-04-20 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド Hydrogen detection apparatus and method
EP2827137A4 (en) * 2012-03-14 2015-11-18 Korea Advanced Inst Sci & Tech Hydrogen measurement sensor having junction structure of solid oxygen ion conductor and solid hydrogen ion conductor in molten metal
JP2016011936A (en) * 2014-06-30 2016-01-21 東京窯業株式会社 Hydrogen sensor
EP3045900A4 (en) * 2013-09-12 2017-08-30 Korea Advanced Institute Of Science And Technology Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264856A (en) * 1989-04-06 1990-10-29 Nkk Corp Method and probe for measuring activity of solute element in molten metal
JPH0829375A (en) * 1994-07-12 1996-02-02 Tokyo Yogyo Co Ltd Sensor for measuring quantity of hydrogen dissolved in molten metal
JP2000019152A (en) * 1998-07-01 2000-01-21 Tokyo Yogyo Co Ltd Hydrogen gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02264856A (en) * 1989-04-06 1990-10-29 Nkk Corp Method and probe for measuring activity of solute element in molten metal
JPH0829375A (en) * 1994-07-12 1996-02-02 Tokyo Yogyo Co Ltd Sensor for measuring quantity of hydrogen dissolved in molten metal
JP2000019152A (en) * 1998-07-01 2000-01-21 Tokyo Yogyo Co Ltd Hydrogen gas sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513403A (en) * 2002-09-14 2006-04-20 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド Hydrogen detection apparatus and method
JP4773094B2 (en) * 2002-09-14 2011-09-14 ケンブリッジ エンタープライズ リミティド Hydrogen detection apparatus and method
EP2827137A4 (en) * 2012-03-14 2015-11-18 Korea Advanced Inst Sci & Tech Hydrogen measurement sensor having junction structure of solid oxygen ion conductor and solid hydrogen ion conductor in molten metal
US9366646B2 (en) * 2012-03-14 2016-06-14 Korea Advanced Institute Of Science And Technology Hydrogen measurement sensor having junction structure of solid oxygen ion conductor and solid hydrogen ion conductor in molten metal
EP3045900A4 (en) * 2013-09-12 2017-08-30 Korea Advanced Institute Of Science And Technology Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same
US9977006B2 (en) 2013-09-12 2018-05-22 Korea Advanced Institute Of Science And Technology Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same
JP2016011936A (en) * 2014-06-30 2016-01-21 東京窯業株式会社 Hydrogen sensor

Also Published As

Publication number Publication date
JP4155632B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4608047B2 (en) Mixed ionic conductor and device using the same
US6872331B2 (en) Oxide ion conductor, manufacturing method therefor, and fuel cell using the same
JP6836935B2 (en) Ammonia sensor detection electrode and ammonia sensor
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
US10996191B2 (en) Sensor element and gas sensor
JP4980996B2 (en) Gas sensor element and gas sensor
JP4592484B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP4155632B2 (en) Dissolved hydrogen sensor in molten metal
EP1376117A1 (en) Concentration cell type hydrogen sensor and method for preparing solid electrolyte capable of conducting proton
JP2002195978A (en) Gas detector element and gas sensing device using it
JP2018055913A (en) Collector member and solid oxide fuel battery cell unit
JP2000019152A (en) Hydrogen gas sensor
JP2019085286A (en) Solid electrolyte, method of manufacturing the same, and gas sensor
Traulsen et al. Reversible decomposition of secondary phases in BaO infiltrated LSM electrodes—polarization effects
JPH06103988A (en) Solid electrolyte type fuel cell
WO2019087736A1 (en) Solid electrolyte, method for preparing same, and gas sensor
JP4690755B2 (en) Horizontal stripe fuel cell, cell stack, and fuel cell
JP2002236107A (en) Gas detecting element and gas detector using the same
JP2000097905A (en) APPARATUS AND METHOD FOR MEASURING NOx GAS CONCENTRATION
JPH05190183A (en) Solid electrolyte type fuel cell
JPH1064565A (en) Solid electrolytic fuel cell
JPH11283642A (en) Solid-electrolyte fuel cell
JP2001099810A (en) Nitrogen oxide gas sensor
JP6134086B1 (en) Electrochemical cell
JP3367640B2 (en) Solid electrolyte thick film laminated carbon monoxide sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees