JP4152164B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4152164B2
JP4152164B2 JP2002308546A JP2002308546A JP4152164B2 JP 4152164 B2 JP4152164 B2 JP 4152164B2 JP 2002308546 A JP2002308546 A JP 2002308546A JP 2002308546 A JP2002308546 A JP 2002308546A JP 4152164 B2 JP4152164 B2 JP 4152164B2
Authority
JP
Japan
Prior art keywords
film
forming
copper
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308546A
Other languages
Japanese (ja)
Other versions
JP2004146519A (en
Inventor
徳保 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2002308546A priority Critical patent/JP4152164B2/en
Publication of JP2004146519A publication Critical patent/JP2004146519A/en
Application granted granted Critical
Publication of JP4152164B2 publication Critical patent/JP4152164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置の製造方法に関し、特に、埋め込み方式の銅を含む金属からなる配線を用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置の配線層の信頼性を向上するために、半導体装置の配線層として、銅(Cu)配線が用いられていることが、知られている。その半導体装置の配線層のCu配線の形成には、ドライエッチング法によるパターン化が困難なことから、層間絶縁膜に溝を形成し、この溝に銅を埋め込む方法(ダマシン方法)がとられる。
【0003】
層間絶縁膜としては、主に、シリコン酸化膜(SiO2膜)が用いられるが、Cuはシリコン酸化膜(SiO2膜)膜に拡散して配線抵抗の増大や配線リークを生じるため、溝にCuの拡散を防止するバリア性のある薄膜を形成する方法がとられている。
【0004】
Cuの拡散防止膜としては、様々な膜が検討されており、バリア性、密着性の観点からは、タンタル(Ta)系の膜が有望視されている。
【0005】
このような従来の銅配線の形成技術は、例えば、特許文献1に、Cu埋め込み配線を形成する際に層間絶縁膜であるシリコン酸化膜(SiO2膜)とCuとの間に六方晶相のTaN層あるいは六方晶相のTaN層とα相のTaの多層膜をバリア膜として使用することで500℃のアニール中にCuが拡散する問題を防止できることが開示されている。
【0006】
以下に、図3および図4を参照して、従来の銅配線の形成工程を説明する。
【0007】
図3を参照すると、まず、トランジスタ(不図示)とコンタクト(不図示)を形成した半導体基板201上にシリコン酸化膜(SiO2膜)202を形成し、SiN膜、SiON膜などのエッチングストッパ膜203を50nm程度形成した後、Cuを埋め込む溝を形成するためのシリコン酸化膜(SiO2膜)からなる層間絶縁膜204を400nm程度成膜する(図3(a))。
【0008】
その上に、フォトレジスト205を塗布形成し、露光現像しパターニングした後(図3(b))、これをマスクとして層間絶縁膜204をエッチングして、図3(c)に示す配線溝206を形成する。
【0009】
次に、配線溝206の形成されたシリコン基板に、スパッタ法でTaあるいはTaNなどのTa系のバリア膜207を30nm程度、続いて、Cuスパッタ膜208を100nm程度スパッタし(図3(d))、電解メッキ法で、Cuメッキ膜209を800nm程度成膜する(図4(a))。
【0010】
電解メッキ法で成膜したCuメッキ膜209は比抵抗が2.4μΩ・cm(20℃)とバルクのCu(1.72μΩ・cm(20℃))と比較してやや高く、また粒径が小さいことからエレクトロマイグレーション(EM)耐性が低い。
【0011】
従来より、250℃〜400℃程度の温度でアニール処理することで比抵抗を1.9μΩ・cm(20℃)程度にまで低減することが可能であり、同時に粒成長が起こってEM耐性が向上することが知られている。
【0012】
その後、化学機械研磨(CMP)法にて層間絶縁膜204の表面が露出するまで平坦化することで、図4(b)に示す様に、Cuを溝に埋め込むことができる。次に、シリコン基板201を洗浄乾燥し、その後、SiN膜210等のCuの酸化保護膜をプラズマCVD法で全面に成膜することで、図4(c)に示すCu埋め込み配線を有する構造が実現される。
【0013】
【特許文献1】
特開平9−17790号公報(段落番号0023乃至段落番号0026、図1)
【非特許文献1】
Thin Solid Films, Oxidation of Ta diffusion barrier layer for Cu metallizationin thermal annealing,Fusen Chen et,388 (2001),PP27-33
【0014】
【発明が解決しようとする課題】
しかしながら、非特許文献1による、Fusen Chenらの報告によると、Ta上にCuを成膜してアニールを行うとCu/Ta界面にTaの酸化層が形成され、特に、600℃で圧力3×10-3torrのAr雰囲気中でアニールした場合にはCuのグレイン沿って、Taの酸化層が観察されると報告している。そして、Taの酸化を引き起こす酸素は、外気からCuのグレインを通って供給されると考察している。
【0015】
これより、Cu拡散防止のバリア膜としてTaを用いた場合には、アニールを行うことによって、Cu/Ta界面のTaが酸化されてしまう。バリア膜のTaが酸化された状態でCuの研磨を行うと、Cuのグレインに沿ってCu膜が剥がれ、配線欠陥になり易いことが経験的に判明している。
【0016】
Cuのグレインに沿ってCu膜が剥がれるのはCu/Ta界面のTaが酸化されることで、Cuとの密着性が悪化するためと考えられ、Cu配線に欠陥が生じると著しい信頼性の低下を招く問題がある。
【0017】
したがって、本発明はCu配線を用いた半導体装置において、Taをバリア膜とする場合に、アニール時におけるTaの酸化を防止することで、Cu配線の信頼を向上させる製造方法を提供する。すなわち、本発明の目的は、CuのアニールにおいてCuの拡散防止膜であるTa膜の酸化を防止または抑制する事で、アニール後のCu研磨におけるCuの剥がれを防止し、信頼性の高いCu配線の形成をすることにある。
【0018】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、半導体基板の絶縁膜上に形成された配線溝およびコンタクト孔のいずれか一つに、タンタル層膜またはタンタル層膜と他の合金膜の積層膜からなるバリア膜を成膜する第1の成膜工程と、前記バリア膜上に銅膜を電解メッキ法を含む方法で成膜する第2の成膜工程と、前記銅膜上に酸素拡散防止膜を形成する第3の成膜工程と、前記第3の成膜工程の後、前記銅膜の熱処理を250℃〜400℃の温度で行う銅膜熱処理工程を有する構成である。
【0021】
またさらに、本発明の半導体装置の製造方法で用いられる前記酸素拡散防止膜は、SiON膜である。また、本発明の半導体装置の製造方法で用いられる前記酸素拡散防止膜は、Cuメッキ膜を希弗酸で処理することで形成される水酸化第二銅、酸化第一銅、及び炭酸銅からなるCu酸化膜である。
【0023】
【発明の実施の形態】
以下、図面を参照して、本発明の半導体装置の製造方法の実施の形態について説明する。
【0024】
図1は、本発明の第1の実施の形態に係る半導体装置の製造方法を工程順に示す半導体装置の断面構造図である。なお、ここでは第1層配線にCu配線を適用した場合を示している。
【0025】
図1(a)を参照すると、本発明の第1の実施の形態に係る半導体装置の製造方法は、トランジスタ部(不図示)とコンタクト(不図示)を形成したシリコン基板101上にシリコン酸化膜(SiO2膜)絶縁膜102を成膜し、続いて、SiN膜、SiON膜などのエッチングストッパ膜103を50nm程度形成した後、Cuを埋め込む溝を形成するためのシリコン酸化膜(SiO2膜)からなる層間絶縁膜104を400nm程度成膜する。
【0026】
次に、その上にフォトレジスト105を塗布形成し、露光現像し、パターニングした後(図1(b))、これをマスクとして層間絶縁膜104をエッチングして図1(c)に示す配線溝106を形成する。
【0027】
次に、配線溝106の形成されたシリコン基板に、スパッタ法でTaのバリア膜107を形成する。前記バリア膜はTaに限らず、Taと他の合金との積層構造でもでも良い。バリア膜の膜厚は50〜60nmが好ましく、これより薄い場合はバリア性が不十分となる。
【0028】
続いて、Cuスパッタ膜108を100nm程度スパッタし(図1(d))、電解メッキ法でCuメッキ膜109を800nm程度成膜する(図2(a))。次に、アニール時に、外方から供給される酸素により、バリア膜であるTaが酸化されるのを防止するための酸素拡散防止膜110であるSiN膜を膜厚20nm程度、プラズマCVD法により、Cuメッキ膜109上に形成する(図2(b))。
【0029】
なお、この酸素拡散防止膜110はSiN膜に限定されるものではなく、SiON膜、またはCuメッキ膜を希弗酸などで処理することで形成される水酸化第二銅、酸化第一銅、及び炭酸銅からなるCu酸化膜でも良い。
【0030】
続いて、250℃〜400℃程度の温度でアニール処理を行う。アニール前に酸素拡散防止膜を形成することで、アニール時の雰囲気中に存在する酸素がCuのグレインに沿って、Cu中を拡散し、Cu/Ta界面のTaを酸化することを防止または抑制できる。
【0031】
その後、化学機械研磨(CMP)法にて層間絶縁膜104の表面が露出するまで平坦化することで、図2(c)に示す様に、Cuを溝に埋め込む。
【0032】
次に、シリコン基板101を洗浄乾燥し、その後、SiN膜111等のCuの酸化保護膜をプラズマCVD法で全面に成膜することで、図2(d)に示すCu埋め込み配線を有する構造が実現される。
【0033】
【発明の効果】
以上の説明のように、本発明は、酸素拡散防止膜を形成することによりアニール時の雰囲気中に存在する酸素がCuのグレインに沿ってCu中を拡散し、Cu/Ta界面のTaを酸化することを防止または抑制する効果がある。
【0034】
Taの酸化を抑制することで、CuとTaの密着性が保たれるため、CMP法にてCu膜の研磨を行う際に密着性が低い時に発生する、Cu膜の剥がれによるCu配線の欠陥発生を防止でき、Cu配線の信頼性の向上を計ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の半導体装置の製造工程断面図である。
【図2】図1に続く、本発明の実施の形態の半導体装置の製造工程断面図である。
【図3】従来の半導体装置の製造工程断面図である。
【図4】図3に続く、従来の半導体装置の製造工程断面図である。
【符号の説明】
101,201 半導体基板
102,202 シリコン酸化膜(SiO2膜)
103,203 エッチングストッパ膜
104,204 シリコン酸化膜(SiO2膜)層間絶縁膜
105,205 フォトレジスト
106,206 配線溝
107,207 バリア膜
108,208 Cuスパッタ膜
109,209 Cuメッキ膜
110 酸素拡散防止膜
111,210 SiN膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device using a wiring made of a metal including copper in a buried method.
[0002]
[Prior art]
In recent years, it has been known that copper (Cu) wiring is used as a wiring layer of a semiconductor device in order to improve the reliability of the wiring layer of the semiconductor device. Since Cu wiring in the wiring layer of the semiconductor device is difficult to be patterned by dry etching, a method of forming a groove in the interlayer insulating film and embedding copper in this groove (damascene method) is employed.
[0003]
As the interlayer insulating film, a silicon oxide film (SiO 2 film) is mainly used. However, since Cu diffuses into the silicon oxide film (SiO 2 film) and causes an increase in wiring resistance and wiring leakage, A method of forming a thin film having a barrier property to prevent diffusion of Cu is used.
[0004]
Various films have been studied as Cu diffusion preventing films, and tantalum (Ta) -based films are promising from the viewpoint of barrier properties and adhesion.
[0005]
Such a conventional technique for forming a copper wiring is disclosed, for example, in Patent Document 1, in which a hexagonal phase is formed between a silicon oxide film (SiO 2 film) that is an interlayer insulating film and Cu when forming a Cu buried wiring. It has been disclosed that the problem of Cu diffusion during annealing at 500 ° C. can be prevented by using a TaN layer or a multilayer film of a hexagonal phase TaN layer and an α phase Ta as a barrier film.
[0006]
Hereinafter, a conventional process for forming a copper wiring will be described with reference to FIGS.
[0007]
Referring to FIG. 3, first, a silicon oxide film (SiO 2 film) 202 is formed on a semiconductor substrate 201 on which a transistor (not shown) and a contact (not shown) are formed, and an etching stopper film such as a SiN film or a SiON film. After forming 203 about 50 nm, an interlayer insulating film 204 made of a silicon oxide film (SiO 2 film) for forming a trench for embedding Cu is formed about 400 nm (FIG. 3A).
[0008]
Then, a photoresist 205 is applied and formed, exposed and developed and patterned (FIG. 3B), and the interlayer insulating film 204 is etched using this as a mask to form a wiring groove 206 shown in FIG. 3C. Form.
[0009]
Next, a Ta-based barrier film 207 such as Ta or TaN is sputtered to a thickness of about 30 nm and then a Cu sputtered film 208 is sputtered to a thickness of about 100 nm on the silicon substrate on which the wiring trench 206 is formed (FIG. 3D). ), A Cu plating film 209 having a thickness of about 800 nm is formed by electrolytic plating (FIG. 4A).
[0010]
The Cu plating film 209 formed by the electrolytic plating method has a specific resistance of 2.4 μΩ · cm (20 ° C.) which is slightly higher than that of bulk Cu (1.72 μΩ · cm (20 ° C.)) and has a small particle size. Therefore, electromigration (EM) resistance is low.
[0011]
Conventionally, the specific resistance can be reduced to about 1.9 μΩ · cm (20 ° C.) by annealing at a temperature of about 250 ° C. to 400 ° C., and at the same time, grain growth occurs and EM resistance is improved. It is known to do.
[0012]
Thereafter, planarization is performed until the surface of the interlayer insulating film 204 is exposed by a chemical mechanical polishing (CMP) method, whereby Cu can be embedded in the groove as shown in FIG. Next, the silicon substrate 201 is washed and dried, and then a Cu oxide protective film such as the SiN film 210 is formed on the entire surface by the plasma CVD method, so that the structure having the Cu embedded wiring shown in FIG. Realized.
[0013]
[Patent Document 1]
JP-A-9-17790 (paragraph numbers 0023 to 0026, FIG. 1)
[Non-Patent Document 1]
Thin Solid Films, Oxidation of Ta diffusion barrier layer for Cu metallizationin thermal annealing, Fusen Chen et, 388 (2001), PP27-33
[0014]
[Problems to be solved by the invention]
However, according to a report by Fusen Chen et al. According to Non-Patent Document 1, when Cu is deposited on Ta and annealed, a Ta oxide layer is formed at the Cu / Ta interface. It is reported that a Ta oxide layer is observed along the grain of Cu when annealed in an Ar atmosphere of 10 −3 torr. It is considered that oxygen that causes oxidation of Ta is supplied from outside air through Cu grains.
[0015]
Therefore, when Ta is used as a barrier film for preventing Cu diffusion, Ta at the Cu / Ta interface is oxidized by annealing. It has been empirically found that when Cu is polished in a state where Ta of the barrier film is oxidized, the Cu film is peeled off along the Cu grains and easily becomes a wiring defect.
[0016]
The reason why the Cu film peels along the Cu grains is that Ta at the Cu / Ta interface is oxidized, which is considered to deteriorate the adhesiveness with Cu. There is a problem that invites.
[0017]
Therefore, the present invention provides a manufacturing method for improving the reliability of Cu wiring by preventing oxidation of Ta during annealing when Ta is used as a barrier film in a semiconductor device using Cu wiring. That is, the object of the present invention is to prevent or suppress the oxidation of the Ta film, which is a Cu diffusion preventing film, during Cu annealing, thereby preventing Cu peeling during Cu polishing after annealing and providing a highly reliable Cu wiring. Is to form.
[0018]
[Means for Solving the Problems]
The method of manufacturing a semiconductor device according to the present invention includes a barrier film made of a tantalum layer film or a laminated film of a tantalum layer film and another alloy film in any one of a wiring groove and a contact hole formed on an insulating film of a semiconductor substrate. forming a first film forming step of forming a film, a second film forming step of forming a copper film on the barrier film by a method comprising an electrolytic plating method, an oxygen diffusion barrier layer on the copper layer a third film forming step of, after the third film forming step, a structure having a copper film heat treatment step of performing heat treatment of the copper film at a temperature of 250 ° C. to 400 ° C..
[0021]
Furthermore, the oxygen diffusion preventing film used in the method for manufacturing a semiconductor device of the present invention is a SiON film. The oxygen diffusion prevention film used in the method for manufacturing a semiconductor device of the present invention is made of cupric hydroxide, cuprous oxide, and copper carbonate formed by treating a Cu plating film with dilute hydrofluoric acid. Cu oxide film.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a method for manufacturing a semiconductor device of the present invention will be described with reference to the drawings.
[0024]
FIG. 1 is a cross-sectional structure diagram of a semiconductor device showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps. Here, a case where Cu wiring is applied to the first layer wiring is shown.
[0025]
Referring to FIG. 1A, in the method of manufacturing a semiconductor device according to the first embodiment of the present invention, a silicon oxide film is formed on a silicon substrate 101 on which a transistor part (not shown) and a contact (not shown) are formed. (SiO 2 film) An insulating film 102 is formed, and subsequently an etching stopper film 103 such as a SiN film or a SiON film is formed to a thickness of about 50 nm, and then a silicon oxide film (SiO 2 film for forming a trench for embedding Cu is formed. Is formed to a thickness of about 400 nm.
[0026]
Next, a photoresist 105 is applied and formed thereon, exposed and developed, patterned (FIG. 1B), and then the interlayer insulating film 104 is etched using this as a mask to form the wiring trench shown in FIG. 1C. 106 is formed.
[0027]
Next, a Ta barrier film 107 is formed by sputtering on the silicon substrate on which the wiring trench 106 is formed. The barrier film is not limited to Ta, and may be a laminated structure of Ta and another alloy. The thickness of the barrier film is preferably 50 to 60 nm, and if it is thinner than this, the barrier property is insufficient.
[0028]
Subsequently, the Cu sputtered film 108 is sputtered to about 100 nm (FIG. 1D), and a Cu plated film 109 is formed to a thickness of about 800 nm by an electrolytic plating method (FIG. 2A). Next, an SiN film, which is an oxygen diffusion prevention film 110 for preventing Ta, which is a barrier film, from being oxidized by oxygen supplied from the outside during annealing, is formed by a plasma CVD method with a film thickness of about 20 nm. It is formed on the Cu plating film 109 (FIG. 2B).
[0029]
The oxygen diffusion prevention film 110 is not limited to the SiN film, but cupric hydroxide, cuprous oxide formed by treating the SiON film or Cu plating film with dilute hydrofluoric acid, Alternatively, a Cu oxide film made of copper carbonate may be used.
[0030]
Subsequently, annealing is performed at a temperature of about 250 ° C. to 400 ° C. By forming an oxygen diffusion prevention film before annealing, it is possible to prevent or suppress oxygen existing in the annealing atmosphere from diffusing in Cu along the Cu grains and oxidizing Ta at the Cu / Ta interface. it can.
[0031]
Thereafter, planarization is performed by chemical mechanical polishing (CMP) until the surface of the interlayer insulating film 104 is exposed, so that Cu is embedded in the groove as shown in FIG.
[0032]
Next, the silicon substrate 101 is washed and dried, and then a Cu oxidation protection film such as the SiN film 111 is formed on the entire surface by the plasma CVD method, so that the structure having the Cu embedded wiring shown in FIG. Realized.
[0033]
【The invention's effect】
As described above, according to the present invention, by forming an oxygen diffusion preventing film, oxygen existing in the atmosphere during annealing diffuses in Cu along the Cu grains, and oxidizes Ta at the Cu / Ta interface. This has the effect of preventing or suppressing the operation.
[0034]
Since the adhesion between Cu and Ta is maintained by suppressing the oxidation of Ta, defects in the Cu wiring due to peeling of the Cu film that occur when the adhesion is low when polishing the Cu film by the CMP method. Generation | occurrence | production can be prevented and the improvement of the reliability of Cu wiring can be measured.
[Brief description of the drawings]
FIG. 1 is a manufacturing process cross-sectional view of a semiconductor device according to an embodiment of the present invention;
FIG. 2 is a manufacturing process sectional view of the semiconductor device in the embodiment of the invention, following FIG. 1;
FIG. 3 is a cross-sectional view of a manufacturing process of a conventional semiconductor device.
4 is a manufacturing process sectional view of the conventional semiconductor device, following FIG. 3;
[Explanation of symbols]
101, 201 Semiconductor substrate 102, 202 Silicon oxide film (SiO 2 film)
103, 203 Etching stopper film 104, 204 Silicon oxide film (SiO 2 film) Interlayer insulating film 105, 205 Photo resist 106, 206 Wiring groove 107, 207 Barrier film 108, 208 Cu sputtered film 109, 209 Cu plating film 110 Oxygen diffusion Prevention film 111,210 SiN film

Claims (3)

半導体基板の絶縁膜上に形成された配線溝およびコンタクト孔のいずれか一つに、タンタル層膜またはタンタル層膜と他の合金膜の積層膜からなるバリア膜を成膜する第1の成膜工程と、
前記バリア膜上に銅膜を電解メッキ法を含む方法で成膜する第2の成膜工程と、
前記銅膜上に酸素拡散防止膜を形成する第3の成膜工程と、
前記第3の成膜工程の後、前記銅膜の熱処理を250℃〜400℃の温度で行う銅膜熱処理工程と
を有し、
前記酸素拡散防止膜は、Cuメッキ膜を希弗酸で処理することで形成される水酸化第二銅、酸化第一銅、及び炭酸銅からなるCu酸化膜であることを特徴とする半導体装置の製造方法。
A first film forming a barrier film made of a tantalum layer film or a laminated film of a tantalum layer film and another alloy film in any one of a wiring groove and a contact hole formed on an insulating film of a semiconductor substrate. Process,
A second film forming step of forming a copper film on the barrier film by a method including an electrolytic plating method;
A third film forming step of forming an oxygen diffusion preventing film on the copper film;
After the third film forming step, it has a copper film heat treatment step of performing heat treatment of the copper film at a temperature of 250 ° C. to 400 ° C.,
The oxygen diffusion prevention film is a Cu oxide film made of cupric hydroxide, cuprous oxide, and copper carbonate formed by treating a Cu plating film with dilute hydrofluoric acid. Manufacturing method.
前記第2の成膜工程は、前記銅膜を、スパッタ法で成膜しその後電解メッキ法で成膜する工程である請求項1に記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1, wherein the second film forming step is a step of forming the copper film by a sputtering method and then forming the copper film by an electrolytic plating method. 前記銅膜熱処理工程の後、CMP法によって前記絶縁膜の表面が露出するまで平坦化する工程をさらに含む請求項1または2に記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of planarizing the copper film by a CMP method until the surface of the insulating film is exposed after the copper film heat treatment step.
JP2002308546A 2002-10-23 2002-10-23 Manufacturing method of semiconductor device Expired - Fee Related JP4152164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308546A JP4152164B2 (en) 2002-10-23 2002-10-23 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308546A JP4152164B2 (en) 2002-10-23 2002-10-23 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004146519A JP2004146519A (en) 2004-05-20
JP4152164B2 true JP4152164B2 (en) 2008-09-17

Family

ID=32454658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308546A Expired - Fee Related JP4152164B2 (en) 2002-10-23 2002-10-23 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4152164B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137237A1 (en) * 2005-06-22 2006-12-28 Nec Corporation Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JP2004146519A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP3137087B2 (en) Method for manufacturing semiconductor device
US8035230B2 (en) Semiconductor device and method for manufacturing same
US7157370B2 (en) Semiconductor device and method for manufacturing the same
US20070145591A1 (en) Semiconductor device and manufacturing method therof
KR20030055135A (en) Semiconductor device and method for manufacturing the same
JP2008047719A (en) Method for manufacturing semiconductor device
KR100319588B1 (en) Method for forming interconnection structure
JP2000174023A (en) Semiconductor device and manufacture thereof
JP2006324584A (en) Semiconductor device and manufacturing method thereof
JPH05144811A (en) Thin film semiconductor device and manufacture thereof
JP4943110B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH02125447A (en) Semiconductor device and manufacture thereof
JP4152164B2 (en) Manufacturing method of semiconductor device
JP2010040771A (en) Method of manufacturing semiconductor device
JPH10256372A (en) Manufacture of semiconductor device
JP2006179950A (en) Manufacturing method of semiconductor integrated circuit device
JP2006253666A (en) Semiconductor device and manufacturing method thereof
JP2006135363A (en) Semiconductor device and method of manufacturing the semiconductor device
JPH11283981A (en) Semiconductor device and manufacture thereof
JP3592209B2 (en) Method for manufacturing semiconductor device
JP2007194566A (en) Semiconductor device, and its process for fabrication
JP3339901B2 (en) Semiconductor device having a multilayer wiring structure and method of manufacturing the same
KR100774642B1 (en) Manufacturing method of copper metalization for semiconductor device
JP2010040772A (en) Method of manufacturing semiconductor device
JP2004056096A (en) Method for forming wiring structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees