JP4140138B2 - Printed circuit board cooling structure - Google Patents

Printed circuit board cooling structure Download PDF

Info

Publication number
JP4140138B2
JP4140138B2 JP24373599A JP24373599A JP4140138B2 JP 4140138 B2 JP4140138 B2 JP 4140138B2 JP 24373599 A JP24373599 A JP 24373599A JP 24373599 A JP24373599 A JP 24373599A JP 4140138 B2 JP4140138 B2 JP 4140138B2
Authority
JP
Japan
Prior art keywords
cooling
circuit board
printed circuit
electronic component
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24373599A
Other languages
Japanese (ja)
Other versions
JP2001068887A (en
Inventor
浩通 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP24373599A priority Critical patent/JP4140138B2/en
Publication of JP2001068887A publication Critical patent/JP2001068887A/en
Application granted granted Critical
Publication of JP4140138B2 publication Critical patent/JP4140138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プリント基板の冷却構造に関するものである。
【0002】
【従来の技術】
次に、従来のプリント基板の冷却構造を、図5により説明する。冷却管34はパイプ32とブロック33で構成される。ブロック33の側面にパイプ32が接合される。ブロック33の他側面にねじ穴35が形成される。伝熱板37のフランジ部に長穴42を形成し、凸部に座ぐり穴43を形成する。伝熱板38はねじ穴39を有する。伝熱板38は熱伝導性接着剤40でIC36と接着される。伝熱板37と伝熱板38との間、伝熱板37とブロック33との間は熱伝導性グリス41を入れている。伝熱板37はねじ44でブロック33に固定される。伝熱板38はねじ45で伝熱板37に固定される。図6は組立状態図である。
図5に戻り、IC36の実装高さは長穴42でばらつきを吸収する。
一方、ねじ45のねじ径より、座ぐり穴43の径が大きく形成されているので、伝熱板38はIC36のパッケージ平面上に微小移動できる。図6の構造において、パイプ32に冷媒を流動させると複数のIC36を冷却できる。
【0003】
【発明が解決しようとする課題】
従来の構造はIC36の実装高さや平面上の組立調整が容易である。しかし、組立後のプリント基板31のひずみや熱による応力の吸収が不十分であり、IC36のリード47部に負荷がかかると、リード47がプリント基板31から分離する可能性がある。また、ブロック33を含む冷却管が銅材を使用しているので、プリント基板全体として重量であるという問題がある。
【0004】
本発明は、プリント基板上への電子部品組立後の構造上の応力を電子部品に直接かけないことにより、断線を防止する冷却構造を提供することを目的とする。さらに、軽量で、安価な冷却構造を提供する。
【0005】
【課題を解決するための手段】
以上の課題を解決すべく請求項1記載の発明は、複数の電子部品を実装したプリント基板上に冷却部材を固定し、前記電子部品上に前記冷却部材を熱的接続して電子部品を冷却する構造であって、
前記冷却部材と前記電子部品間に熱伝導性弾性部材が介設されて前記冷却部材には冷媒通路を形成する冷却パイプが結合され、前記冷却部材が前記プリント基板上にスペーサを介して所定高さに固定されて前記冷却パイプには複数の前記電子部品の各々にそれぞれ対応する複数の前記冷却部材が連設され、
前記電子部品は前記プリント基板からの高さの異なるものを含み、
前記プリント基板からの高さのより高い前記電子部品に対して相対的により長い前記スペーサを適用して前記プリント基板から相対的により高い位置に前記冷却部材及びこれに結合する部分の前記冷却パイプを設置し、
高さの異なる前記冷却部材間において前記冷却パイプを変形させてその高さを変遷させてなること、を特徴としている。
【0006】
ここで、熱伝導性弾性部材として、熱伝導性に優れたゲルやグリス、ばね等が挙げられる。
【0007】
以上のように、請求項1記載の発明によれば、冷媒通路を有しプリント基板上に固定された冷却部材と電子部品との間に、熱伝導性弾性部材を設けたことにより、プリント基板や電子部品の反りや熱による応力は、熱伝導性弾性部材に吸収されるので、電子部品のリードとプリント基板との接合部に負荷を与えることがなく、分離を抑制することができる。
また、請求項1記載の発明によれば、冷却パイプに結合した冷却部材をスペーサを介してプリント基板上の所定高さにねじ止めすることにより、プリント基板上の電子部品に冷却部材が当接しないので、プリント基板や電子部品に生じた反りや応力を、冷却部材に伝わらないようにすることができる。また、スペーサの長さを変えることにより、様々な高さの電子部品に適用することができる。
また、請求項1記載の発明によれば、電子部品にそれぞれ対応する冷却部材が冷却パイプに連設しているので、それぞれの電子部品の高さに合せて冷却部材を設置することができ、各電子部品を均一に冷却することが可能である。
【0008】
請求項2記載の発明は、請求項1記載のプリント基板の冷却構造において、例えば図4に示すように、前記冷却パイプは塑性変形可能な金属製であること、を特徴としている。
【0013】
このように、請求項2記載の発明によれば、冷却パイプを塑性変形可能な金属製としたことにより、それぞれの電子部品の高さに合せて設置した冷却部材に、冷却パイプを塑性変形により追従させることができ、各冷却部材と冷却パイプの距離を一定に保つことができる。
【0014】
請求項3記載の発明は、請求項1記載のプリント基板の冷却構造において、熱伝導性弾性部材はグリスであること、を特徴としている。
【0015】
請求項4記載の発明は、請求項1記載のプリント基板の冷却構造において、例えば図3に示すように、電子部品の直上に冷媒通路を配置すること、を特徴としている。
【0016】
このように、請求項4記載の発明によれば、電子部品の直上に冷媒通路を配置することにより、熱が伝導する距離を最小とすることができるので、効率よく電子部品を冷却できる。
【0017】
【発明の実施の形態】
以下に、本発明に係るプリント基板冷却構造の実施の形態例を図1から図4に基づいて説明する。
図1はプリント基板の冷却構造を示す分解斜視図であり、図2は図1におけるプリント基板の冷却構造を組み立てた状態を示す斜視図である。
本発明のプリント基板の冷却構造は、冷却パイプ1、冷却プレート2、スペーサ3で、概略構成されている。
冷却プレート2は、プリント基板4上に実装された電子デバイス5の上方に、一定の隙間を有して位置するよう、スペーサ3を介してプリント基板4上に設置されている。ここで、個々の電子デバイス5に対し、冷却プレート2は一つずつ設けられている。電子デバイス5の外対角に当たる位置に、2つの穴7が設けられている。冷却プレート2にも、前記2つの穴7のピッチに合せた穴8が設けられている。プリント基板4上の穴7にスペーサ3の雄ねじを入れ、スペーサ3上に冷却プレート2の穴8を合せて載せる。冷却プレート2の上方から、穴8にねじ9を螺入して、冷却プレート2を固定する。図2は図1における構成品を組み立てた状態である。
また、図3に示すように、電子デバイス5の直上に冷却パイプ1が位置するように、冷却プレート2の上面に冷却パイプ1をカシメ接合する。冷却パイプ1に複数の冷却プレート2が連設されている。
冷却プレート2と電子デバイス5との間の隙間には、熱伝導性弾性部材として熱伝導性グリス6が充填されている(図3参照)。
電子デバイス5の高さに合せて、スペーサ3は様々な長さのものを適宜用いるものとする。
また、冷却パイプ1は、塑性変形可能な金属、例えば銅のなまし材等で形成されているものとし、塑性変形することによって、様々な高さに設置された複数の冷却プレート2に追従する(図4参照)。
【0018】
次に、上記冷却構造を用いた、プリント基板の冷却方法を説明する。
プリント基板4上に複数実装された電子デバイス5に、冷却プレート2が対になるように、プリント基板の冷却構造を複数設置する。ここで、各冷却プレート2を支持する各スペーサ3の長さは、個々の電子デバイス5の高さに合せる。各冷却プレート2と電子デバイス5との間の隙間を一定(例えば、0.1〜0.05mm)にするものとする。
冷却パイプ1内に冷媒を流通させると、冷媒の熱は冷却パイプ1から冷却プレート2に伝わる。冷却プレート2に伝わった熱は、熱伝導性グリス6を介して、電子デバイス5に伝わり、電子デバイス5を冷却する。
【0019】
プリント基板6あるいは電子デバイス5に、反りや熱による応力が生じた場合、この反りや応力を熱伝導性グリス6が吸収し、電子デバイス5のパッケージ上面が冷却プレート2に当接しないようになる。
【0020】
このように、上記実施の形態のプリント基板の冷却構造によれば、冷却プレート2をスペーサ3を用いて電気デバイス5の上方に一定の隙間を有して固定し、この隙間に熱伝導性グリス6を充填したことにより、プリント基板4あるいは電気デバイス5に生じた反りや応力を熱伝導性グリス6が吸収し、冷却プレート2に電気デバイス5が当接するのを避けている。したがって、プリント基板4あるいは電気デバイス5に反り等が生じても、電気デバイス5のリードとプリント基板4との接合部分に負荷がかかることが少なく、剥離が生じるのを抑制できる。
また、熱伝導性弾性部材として熱伝導性グリス6を用いたことにより、冷却プレート2と電子デバイス5との隙間に隙間なくに充填することができ、電気デバイス5等に反り等が生じても常に熱的接続を保つことができる。
複数の電子デバイス5にそれぞれ対応する冷却プレート2を備え、冷却プレート2とプリント基板4との間に介在させるスペーサ3の長さを変えることができることにより、様々な高さの電気デバイス5に適用することができる。さらに、冷却パイプ1を塑性変形可能として、冷却プレート2に追従させることにより、各冷却プレート2と冷却パイプ1の距離を一定に保つことができるので、各電子デバイスを均一に冷却できる。
また、冷却パイプ1を電子デバイス5の直上になるように配置したことにより、熱の伝導距離を最小にすることができ、冷却効率を向上できる。
さらに、冷却部材として、冷却プレート2を用いたことにより、プリント基板の冷却構造を薄く軽量で、安価なものにすることができる。
【0021】
なお、以上の実施の形態例においては、冷却パイプを形成する素材として銅のなまし材を用いたが、本発明はこれに限定されるものではなく、塑性変形可能であり、熱を伝達しやすいものであれば良い。
また、冷却プレートの形状や、プリント基板への固定方法等も任意であり、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。
【0022】
【発明の効果】
以上のように、請求項1記載の発明に係るプリント基板の冷却構造によれば、冷媒通路を有しプリント基板上に固定された冷却部材と電子部品との間に設けた熱伝導性弾性部材が、プリント基板や電子部品に生じる反りや熱による応力を吸収するので、電気部品とプリント基板との接合部に負荷が加わることによって生じる断線を抑制できる。
【0023】
請求項記載の発明に係るプリント基板の冷却構造によれば、冷却パイプに結合した冷却部材を、スペーサを介してプリント基板上に固定し、電子部品と冷却部材とが当接しないようにすることにより、プリント基板や電子部品に生じた反りや応力が、冷却部材に伝わらない。また、スペーサの長さを変えることにより、様々な高さの電子部品に適用できる。
【0024】
請求項記載の発明に係るプリント基板の冷却構造によれば、電子部品にそれぞれ対応する冷却部材を備え、それぞれの電子部品の高さに合せて対応する冷却部材を設置することにより、各電子部品と冷却部材との距離を一定にすることができ、各電子部品を均一に冷却することができる。
【0025】
請求項2記載の発明に係るプリント基板の冷却構造によれば、冷却パイプは塑性変形が可能であるので、高さの異なる電子部品に合せて、様々な高さに設置された冷却部材に追従することができ、各冷却部材と冷却パイプの距離を一定に保つことができる。
【0026】
請求項4記載の発明に係るプリント基板の冷却構造によれば、冷媒通路を電子部品の直上に配置して、冷媒の熱が伝導する距離を最小とすることにより、電子部品を効率よく冷却できる。
【図面の簡単な説明】
【図1】本発明を適用した一例としてのプリント基板冷却構造を示す分解斜視図である。
【図2】図1におけるプリント基板冷却構造を組み立てた状態を示す斜視図である。
【図3】図2におけるプリント基板冷却構造の断面図である。
【図4】図2におけるプリント基板冷却構造の側面図であり、高さの異なる電子デバイスに適用した場合の、冷却パイプの状態を示している。
【図5】従来のプリント基板冷却構造を示す分解斜視図である。
【図6】図5におけるプリント基板冷却構造を組み立てた状態を示す斜視図である。
【符号の説明】
1 冷却パイプ
2 冷却プレート
3 スペーサ
4 プリント基板
5 電子デバイス
6 熱伝導性グリス
7 穴
8 穴
9 ねじ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed circuit board cooling structure.
[0002]
[Prior art]
Next, a conventional printed circuit board cooling structure will be described with reference to FIG. The cooling pipe 34 includes a pipe 32 and a block 33. The pipe 32 is joined to the side surface of the block 33. A screw hole 35 is formed on the other side surface of the block 33. A long hole 42 is formed in the flange portion of the heat transfer plate 37, and a counterbore hole 43 is formed in the convex portion. The heat transfer plate 38 has a screw hole 39. The heat transfer plate 38 is bonded to the IC 36 with a heat conductive adhesive 40. Thermally conductive grease 41 is inserted between the heat transfer plate 37 and the heat transfer plate 38 and between the heat transfer plate 37 and the block 33. The heat transfer plate 37 is fixed to the block 33 with screws 44. The heat transfer plate 38 is fixed to the heat transfer plate 37 with screws 45. FIG. 6 is an assembled state diagram.
Returning to FIG. 5, the mounting height of the IC 36 absorbs variations in the long holes 42.
On the other hand, since the counterbore 43 has a larger diameter than the screw 45, the heat transfer plate 38 can be moved slightly on the package plane of the IC 36. In the structure of FIG. 6, a plurality of ICs 36 can be cooled by flowing a refrigerant through the pipe 32.
[0003]
[Problems to be solved by the invention]
In the conventional structure, the mounting height of the IC 36 and assembly adjustment on a plane are easy. However, the assembled printed circuit board 31 is not sufficiently absorbed by strain and heat, and if the load is applied to the lead 47 portion of the IC 36, the lead 47 may be separated from the printed circuit board 31. Moreover, since the cooling pipe containing the block 33 uses the copper material, there exists a problem that it is weight as the whole printed circuit board.
[0004]
An object of the present invention is to provide a cooling structure that prevents disconnection by not applying structural stress directly to an electronic component after assembling the electronic component on a printed circuit board. Furthermore, a lightweight and inexpensive cooling structure is provided.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is to cool a electronic component by fixing a cooling member on a printed circuit board on which a plurality of electronic components are mounted, and thermally connecting the cooling member on the electronic component . A structure to
A heat conductive elastic member is interposed between the cooling member and the electronic component, and a cooling pipe that forms a refrigerant passage is coupled to the cooling member, and the cooling member has a predetermined height via a spacer on the printed circuit board. A plurality of the cooling members corresponding to each of the plurality of electronic components are connected to the cooling pipe.
The electronic component includes ones having different heights from the printed circuit board,
Applying the longer spacer to the electronic component having a higher height from the printed circuit board, the cooling member and a portion of the cooling pipe coupled to the cooling member at a relatively higher position from the printed circuit board. Install
The cooling pipe is deformed between the cooling members having different heights to change the height thereof.
[0006]
Here, examples of the heat conductive elastic member include gels, greases, springs, and the like excellent in heat conductivity.
[0007]
As described above, according to the first aspect of the present invention, the heat conductive elastic member is provided between the cooling member having the refrigerant passage and fixed on the printed circuit board, and the electronic component. In addition, since the heat conductive elastic member absorbs warpage or heat stress of the electronic component, no load is applied to the joint between the lead of the electronic component and the printed circuit board, and separation can be suppressed.
According to the first aspect of the present invention, the cooling member connected to the cooling pipe is screwed to a predetermined height on the printed circuit board through the spacer, so that the cooling member comes into contact with the electronic component on the printed circuit board. Therefore, it is possible to prevent warping or stress generated in the printed circuit board or the electronic component from being transmitted to the cooling member. Further, by changing the length of the spacer, it can be applied to electronic components having various heights.
Further, according to the invention of claim 1, since the cooling members corresponding to the respective electronic components are connected to the cooling pipe, the cooling members can be installed in accordance with the heights of the respective electronic components, It is possible to cool each electronic component uniformly.
[0008]
According to a second aspect of the present invention, in the printed circuit board cooling structure according to the first aspect, for example, as shown in FIG. 4, the cooling pipe is made of a plastically deformable metal .
[0013]
Thus, according to the invention described in claim 2, the cooling pipe is made of metal that can be plastically deformed, so that the cooling pipe is plastically deformed on the cooling member installed in accordance with the height of each electronic component. The distance between each cooling member and the cooling pipe can be kept constant.
[0014]
According to a third aspect of the present invention, in the printed circuit board cooling structure according to the first aspect, the thermally conductive elastic member is grease .
[0015]
According to a fourth aspect of the present invention, in the printed circuit board cooling structure according to the first aspect , for example, as shown in FIG. 3, a refrigerant passage is arranged immediately above the electronic component.
[0016]
Thus, according to the invention described in claim 4 , the distance through which heat is conducted can be minimized by disposing the refrigerant passage immediately above the electronic component, so that the electronic component can be efficiently cooled.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a printed circuit board cooling structure according to the present invention will be described below with reference to FIGS.
FIG. 1 is an exploded perspective view showing a printed circuit board cooling structure, and FIG. 2 is a perspective view showing a state in which the printed circuit board cooling structure in FIG. 1 is assembled.
The printed circuit board cooling structure of the present invention is roughly constituted by a cooling pipe 1, a cooling plate 2, and a spacer 3.
The cooling plate 2 is installed on the printed circuit board 4 via the spacer 3 so as to be positioned above the electronic device 5 mounted on the printed circuit board 4 with a certain gap. Here, one cooling plate 2 is provided for each electronic device 5. Two holes 7 are provided at positions corresponding to the outer diagonals of the electronic device 5. The cooling plate 2 is also provided with holes 8 that match the pitch of the two holes 7. The male screw of the spacer 3 is inserted into the hole 7 on the printed circuit board 4, and the hole 8 of the cooling plate 2 is placed on the spacer 3 together. A screw 9 is screwed into the hole 8 from above the cooling plate 2 to fix the cooling plate 2. FIG. 2 shows a state in which the components in FIG. 1 are assembled.
Further, as shown in FIG. 3, the cooling pipe 1 is caulked and joined to the upper surface of the cooling plate 2 so that the cooling pipe 1 is positioned immediately above the electronic device 5. A plurality of cooling plates 2 are connected to the cooling pipe 1.
The gap between the cooling plate 2 and the electronic device 5 is filled with thermally conductive grease 6 as a thermally conductive elastic member (see FIG. 3).
According to the height of the electronic device 5, spacers of various lengths are used as appropriate.
The cooling pipe 1 is made of a plastically deformable metal such as copper annealing material, and follows a plurality of cooling plates 2 installed at various heights by plastic deformation. (See FIG. 4).
[0018]
Next, a method for cooling a printed circuit board using the cooling structure will be described.
A plurality of printed circuit board cooling structures are installed on the electronic device 5 mounted on the printed circuit board 4 so that the cooling plates 2 are paired. Here, the length of each spacer 3 that supports each cooling plate 2 matches the height of each electronic device 5. It is assumed that the gap between each cooling plate 2 and the electronic device 5 is constant (for example, 0.1 to 0.05 mm).
When the refrigerant flows through the cooling pipe 1, the heat of the refrigerant is transmitted from the cooling pipe 1 to the cooling plate 2. The heat transferred to the cooling plate 2 is transferred to the electronic device 5 through the thermally conductive grease 6 and cools the electronic device 5.
[0019]
When warpage or heat stress occurs in the printed circuit board 6 or the electronic device 5, the warp or stress is absorbed by the heat conductive grease 6 so that the upper surface of the package of the electronic device 5 does not contact the cooling plate 2. .
[0020]
Thus, according to the printed circuit board cooling structure of the above-described embodiment, the cooling plate 2 is fixed with a certain gap above the electric device 5 by using the spacer 3, and the thermally conductive grease is fixed in the gap. By filling 6, warp and stress generated in the printed circuit board 4 or the electric device 5 are absorbed by the heat conductive grease 6, and the electric device 5 is prevented from coming into contact with the cooling plate 2. Therefore, even if warpage or the like occurs in the printed circuit board 4 or the electric device 5, a load is hardly applied to the joint portion between the lead of the electric device 5 and the printed circuit board 4, and the occurrence of peeling can be suppressed.
Further, by using the heat conductive grease 6 as the heat conductive elastic member, the gap between the cooling plate 2 and the electronic device 5 can be filled without any gap, and even if the electric device 5 or the like warps. A thermal connection can always be maintained.
Since the cooling plate 2 corresponding to each of the plurality of electronic devices 5 is provided and the length of the spacer 3 interposed between the cooling plate 2 and the printed circuit board 4 can be changed, it can be applied to the electric devices 5 having various heights. can do. Further, by making the cooling pipe 1 plastically deformable and following the cooling plate 2, the distance between each cooling plate 2 and the cooling pipe 1 can be kept constant, so that each electronic device can be uniformly cooled.
In addition, by disposing the cooling pipe 1 directly above the electronic device 5, the heat conduction distance can be minimized and the cooling efficiency can be improved.
Furthermore, by using the cooling plate 2 as a cooling member, the cooling structure of the printed circuit board can be made thin, light and inexpensive.
[0021]
In the above embodiment, the copper annealing material is used as the material for forming the cooling pipe. However, the present invention is not limited to this, and can be plastically deformed to transmit heat. It should be easy.
Further, the shape of the cooling plate, the fixing method to the printed circuit board, and the like are arbitrary, and it is needless to say that specific detailed structures and the like can be appropriately changed.
[0022]
【The invention's effect】
As described above, according to the printed circuit board cooling structure according to the first aspect of the present invention, the heat conductive elastic member provided between the cooling member having the coolant passage and fixed on the printed circuit board and the electronic component. However, since the stress by the curvature and heat which arise in a printed circuit board or an electronic component is absorbed, the disconnection which arises when a load is added to the junction part of an electrical component and a printed circuit board can be suppressed.
[0023]
According to the printed circuit board cooling structure of the first aspect of the invention, the cooling member coupled to the cooling pipe is fixed on the printed circuit board via the spacer so that the electronic component and the cooling member do not come into contact with each other. Accordingly, warpage and stress generated in the printed circuit board and the electronic component are not transmitted to the cooling member. Further, it can be applied to electronic components of various heights by changing the length of the spacer.
[0024]
According to the printed circuit board cooling structure of the first aspect of the present invention, each electronic component is provided with a cooling member corresponding to each electronic component, and the corresponding cooling member is installed according to the height of each electronic component. The distance between the component and the cooling member can be made constant, and each electronic component can be cooled uniformly.
[0025]
According to the printed circuit board cooling structure of the second aspect of the invention, the cooling pipe can be plastically deformed, so that it follows the cooling members installed at various heights in accordance with electronic components having different heights. The distance between each cooling member and the cooling pipe can be kept constant.
[0026]
According to the printed circuit board cooling structure according to the fourth aspect of the present invention, the electronic component can be efficiently cooled by disposing the refrigerant passage immediately above the electronic component and minimizing the distance through which the heat of the refrigerant is conducted. .
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a printed circuit board cooling structure as an example to which the present invention is applied.
FIG. 2 is a perspective view showing a state in which the printed circuit board cooling structure in FIG. 1 is assembled.
3 is a cross-sectional view of the printed circuit board cooling structure in FIG. 2. FIG.
4 is a side view of the printed circuit board cooling structure in FIG. 2, showing a state of the cooling pipe when applied to electronic devices having different heights.
FIG. 5 is an exploded perspective view showing a conventional printed circuit board cooling structure.
6 is a perspective view showing a state in which the printed circuit board cooling structure in FIG. 5 is assembled. FIG.
[Explanation of symbols]
1 Cooling pipe 2 Cooling plate 3 Spacer 4 Printed circuit board 5 Electronic device 6 Thermally conductive grease 7 Hole 8 Hole 9 Screw

Claims (4)

複数の電子部品を実装したプリント基板上に冷却部材を固定し、前記電子部品上に前記冷却部材を熱的接続して電子部品を冷却する構造であって、
前記冷却部材と前記電子部品間に熱伝導性弾性部材が介設されて前記冷却部材には冷媒通路を形成する冷却パイプが結合され、前記冷却部材が前記プリント基板上にスペーサを介して所定高さに固定されて前記冷却パイプには複数の前記電子部品の各々にそれぞれ対応する複数の前記冷却部材が連設され、
前記電子部品は前記プリント基板からの高さの異なるものを含み、
前記プリント基板からの高さのより高い前記電子部品に対して相対的により長い前記スペーサを適用して前記プリント基板から相対的により高い位置に前記冷却部材及びこれに結合する部分の前記冷却パイプを設置し、
高さの異なる前記冷却部材間において前記冷却パイプを変形させてその高さを変遷させてなること、
を特徴とするプリント基板の冷却構造。
A cooling member is fixed on a printed circuit board on which a plurality of electronic components are mounted, and the cooling member is thermally connected to the electronic component to cool the electronic component ,
A heat conductive elastic member is interposed between the cooling member and the electronic component, and a cooling pipe that forms a refrigerant passage is coupled to the cooling member , and the cooling member has a predetermined height via a spacer on the printed circuit board. A plurality of the cooling members corresponding to each of the plurality of electronic components are connected to the cooling pipe.
The electronic component includes ones having different heights from the printed circuit board,
Applying the longer spacer to the electronic component having a higher height from the printed circuit board, the cooling member and a portion of the cooling pipe coupled to the cooling member at a relatively higher position from the printed circuit board. Install
The cooling pipe is deformed between the cooling members having different heights, and the height is changed.
Printed circuit board cooling structure characterized by
前記冷却パイプは塑性変形可能な金属製であること
を特徴とする請求項1記載のプリント基板の冷却構造。
The cooling pipe is made of a plastically deformable metal ;
The printed circuit board cooling structure according to claim 1.
前記熱伝導性弾性部材はグリスであること
を特徴とする請求項1記載のプリント基板の冷却構造。
The thermally conductive elastic member is grease ;
The printed circuit board cooling structure according to claim 1 .
前記電子部品の直上に冷媒通路を配置すること
を特徴とする請求項1記載のプリント基板の冷却構造。
Disposing a refrigerant passage directly above the electronic component ;
The printed circuit board cooling structure according to claim 1.
JP24373599A 1999-08-30 1999-08-30 Printed circuit board cooling structure Expired - Lifetime JP4140138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24373599A JP4140138B2 (en) 1999-08-30 1999-08-30 Printed circuit board cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24373599A JP4140138B2 (en) 1999-08-30 1999-08-30 Printed circuit board cooling structure

Publications (2)

Publication Number Publication Date
JP2001068887A JP2001068887A (en) 2001-03-16
JP4140138B2 true JP4140138B2 (en) 2008-08-27

Family

ID=17108220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24373599A Expired - Lifetime JP4140138B2 (en) 1999-08-30 1999-08-30 Printed circuit board cooling structure

Country Status (1)

Country Link
JP (1) JP4140138B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545873B1 (en) * 2000-09-29 2003-04-08 Samsung Electronics Co., Ltd. System and method for extracting heat from a printed circuit board assembly
JP4928749B2 (en) 2005-06-30 2012-05-09 株式会社東芝 Cooling system
KR100863585B1 (en) * 2008-03-17 2008-10-15 프롬써어티 주식회사 Colling apparatus for heating element
JP5257599B2 (en) * 2008-11-14 2013-08-07 ダイキン工業株式会社 Cooling member mounting structure
EP2736315B1 (en) 2011-07-20 2019-02-06 Daikin Industries, Ltd. Installation structure for coolant pipe
KR101463946B1 (en) 2012-08-31 2014-11-26 주식회사 뉴파워 프라즈마 Radiation apparatus having linear structure for increased installation efficiency
JP2014107310A (en) * 2012-11-26 2014-06-09 Hitachi Automotive Systems Ltd Brake device

Also Published As

Publication number Publication date
JP2001068887A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP4130802B2 (en) Electronic device assembly method
JP5007296B2 (en) Power module base
US6180436B1 (en) Method for removing heat from a flip chip semiconductor device
US6570764B2 (en) Low thermal resistance interface for attachment of thermal materials to a processor die
US20090027859A1 (en) Surface mounted heat sink and electromagnetic shield
US10631438B2 (en) Mechanically flexible cold plates for low power components
JPH02305498A (en) Cold plate assembly
KR19980063404A (en) Electronic package assembly, method of manufacturing electronic package assembly, and method of manufacturing thermally conductive structure
US20080068797A1 (en) Mounting assembly and electronic device with the mounting assembly
JP4140138B2 (en) Printed circuit board cooling structure
JP3725257B2 (en) Mounting component cooling structure
JP6606581B2 (en) Semiconductor heat conduction and heat dissipation structure
JPH06163758A (en) Heat-dissipating structure by ic socket using spring made of shape memory alloy
JP2000332175A (en) Heat sink with fin
US20230164956A1 (en) Apparatus, system, and method for mitigating deformation of spring-loaded heatsinks
JP2010021410A (en) Thermo-module
JP2000022366A (en) Heat conduction member and cooling structure using the same
JP2021150645A (en) Electronic assembly and method of assembling electronic assembly
JPH1098287A (en) Cooler for circuit board module and portable electronic equipment having the cooler
CN103620335B (en) Make the orientable radiator pedestal of radiator
JP2020009989A (en) Semiconductor device
CN114842749B (en) Display module and display device
JP2009188192A (en) Circuit device
US7061765B2 (en) Electronic device
JP3158655B2 (en) Radiator for electronic equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170620

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170620

Year of fee payment: 9

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170620

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term