JP4135420B2 - Wind power generator output power smoothing control device - Google Patents

Wind power generator output power smoothing control device Download PDF

Info

Publication number
JP4135420B2
JP4135420B2 JP2002210522A JP2002210522A JP4135420B2 JP 4135420 B2 JP4135420 B2 JP 4135420B2 JP 2002210522 A JP2002210522 A JP 2002210522A JP 2002210522 A JP2002210522 A JP 2002210522A JP 4135420 B2 JP4135420 B2 JP 4135420B2
Authority
JP
Japan
Prior art keywords
output
wind
pitch angle
power
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002210522A
Other languages
Japanese (ja)
Other versions
JP2004052649A (en
Inventor
隆之 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2002210522A priority Critical patent/JP4135420B2/en
Publication of JP2004052649A publication Critical patent/JP2004052649A/en
Application granted granted Critical
Publication of JP4135420B2 publication Critical patent/JP4135420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、かご型誘導発電機を用いた風力発電機のピッチ角制御による出力電力の平滑化制御装置に関するものである。
【0002】
【従来の技術】
風力発電機に用いられる発電機としては、安価、堅牢、良好な保守性を有するかご型誘導発電機が多く用いられている。しかし、かご型誘導発電機で発電した電力を商用系統に供給する場合、(1)起動時の突入電流の問題、(2)固定速での運転が前提であることから最高効率での運転が不可能であり、(3)風速変動に対して発電出力が変動し、商用系統に対して電圧変動や弱小系統の場合には、周波数変動を与えるなど電力品質に影響を与える問題などがある。
【0003】
かご型誘導発電機を用いた風力発電設備では、上記(1)の問題に対しては逆並列サイリスタによるソフトスタート方式により対策が図られるが、その他の問題点に対しては有効な解決策がないのが現状である。
【0004】
このため、かご型誘導発電機をコンバータ・インバータ装置を介して商用系統に連係すれば、上記(1)〜(3)の技術的な問題は何れも解決可能であるが、発電容量の増加に伴い、コンバータ・インバータ装置の容量も増加させなくてはならない新たな問題が生じてくる。
【0005】
従って、かご型誘導発電機を商用系統に連係する際に、コンバータ・インバータ装置を使用しなくてはならないため、かご型誘導発電機を使用する経済的効果が損なわれてしまう。(参照:特開平11−050945号と特開平11−82282号)
また、風車は、風速変動に対してブレードのピッチ角を制御して伝達トルクを制御することが可能であるが、主に定格出力相当以上の風速に対して、これを制限することに重きをおいており、定格出力以下では固定ピッチ角で制御されるように構成されていることも問題となる。
【0006】
【発明が解決しようとする課題】
上記のように、かご型誘導発電機を用いた風力発電設備では、風速変動に対して発電出力が大きく変動するために、かご型誘導発電機を商用系統に直結すると系統の電圧・周波数に悪影響を及ぼしてしまう。このため、かご型誘導発電機を用いた風力発電設備では、どうしてもコンバータ・インバータ装置を使用して系統に連係する手段を採らざるを得なく上述のように技術的問題による経済的効果が損なわれてしまう問題があった。
【0007】
この発明は、上記の事情に鑑みてなされたもので、かご型誘導発電機を系統に直結しても系統に与える電圧変動や周波数変動を極力抑制し電力品質を改善し、経済的効果を損なわないようにした風力発電機の出力電力平滑化制御装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
この発明は、上記の課題を達成するために、第1発明は、風車ブレードのピッチ角が制御可能な風車に連結されたかご型誘導発電機と、このかご型誘導発電機の発電出力の内、無効電力を調整して有効電力として商用電源に供給する連系変圧器と、風車に隣接して設置され、風速を電気信号に変換して計測する風速計と、この風速計により得られた電気信号を平滑化するローパスフィルタと、このフィルタの出力が供給される入出力比例特性器と、この入出力比例特性器の出力をかご型誘導発電機の有効電力の目標値とし、この目標値とかご型誘導発電機からの有効電力の実測値との偏差を得、この偏差出力が供給され、この出力が零となるように動作する制御器と、この制御器の出力を風車ブレードのピッチ角制御目標値として入力され、この目標値に応じて風車ブレードのピッチ角を制御するピッチ角制御用サーボ機構とを備えたことを特徴とするものである。
【0009】
第2発明は、風車の回転数と風車ブレードの半径とを積算して周速を得、この周速と風速計で得られた風速の実測値からベクトル合成器により風車ブレード上を流れる風の合成ベクトルの仰角を算出し、算出された仰角に対するトルク零となるピッチ角を決定し、ピッチ角のフィードフォワード補償量を得て、この補償量を制御器の出力に加えるようにしたことを特徴とするものである。
【0010】
【発明の実施の形態】
以下この発明の実施の形態を図面に基づいて説明する。図1はこの発明の実施の第1形態を示す構成説明図で、図1において、11は発電設備、21は制御装置である。
【0011】
発電設備11は、風車12、かご型誘導発電機13、この発電機13で発電した無効電力を調整する無効電力調整装置14、発電機13で発電した電力を商用電源15と連係させる連系変圧器16及び風車12に隣接して設置される風速計17から構成される。
【0012】
制御装置21は、風速計17により計測された風速が電気信号に変換されて供給されるローパスフィルタ22、入出力比例特性器23、加減算器24、制御器25及びピッチ角制御用サーボ機構26から構成される。
【0013】
上記のように構成された発電設備11において、かご型誘導発電機13の出力は、風車12への風向きが変わると、同じ風速でも風車12の受けるトルクが変わるために変動する。理想的には、風速に比例した発電機出力となるはずであるが、風車12のブレードのピッチ角によって風車12の発生するトルクTが変わり、このため、出力Pも変わってしまう(P=ωT)。そこで、ピッチ角でトルクTを変えて出力Pを制御するようにした。
【0014】
このように、風車12のブレードのピッチ角制御を行なって風速変動に対するかご型誘導発電機13の急峻な出力変動を抑制し、しかる後、出力を平滑化して、商用系統に与える電圧・周波数の急峻かつ広範囲な変動を抑制する。
【0015】
以下その作用を述べる。風速計17により計測される風速は、風速変動のために、図2(イ)に示すように高い周波数成分を含んだ電気信号に変換されて出力される。この電気信号は、ローパスフィルタ22に供給されると、高い周波数成分の内、追従すべき周波数帯域を通過帯域とするフィルタ特性により図2(ロ)に示すような滑らかな電気信号に処理されて、入出力比例特性器23に供給される。
【0016】
入出力比例特性器23は、図3に示すようなほぼ入力信号に対して出力信号が比例する関係のもので、入出力比例特性器23の出力は、加減算器24のプラス端子に供給される。この特性器23の出力は、風力発電機13の有効電力出力の目標値Psetとして加減算器24のプラス端子に、系統より計測された風力発電機13の出力電力Pactの実測値を加減算器24のマイナス端子に供給して減算し、有効電力出力の目標値との偏差を加減算器24の出力に得る。
【0017】
この偏差出力は、PID制御または状態変数制御等により、最適に設計された周波数特性を有する制御器25に入力される。制御器25は、入力された偏差出力を零とするように動作する。制御器25の出力は風車のブレードのピッチ角目標値として、ピッチ角制御用サーボ機構26に入力され、このサーボ機構26の出力で風車12のブレードのピッチ角θpを調整して発電機13の出力変動を抑制する。
【0018】
ここで、風車12のブレード12aのピッチ角θpと風車の発生するトルクTについて述べる。ピッチ角θpとトルクTは、図4に示すように風速ベクトルと、ブレード12aの回転数で決まる周速ベクトルの合成ベクトルで決定される風がブレード12a上を流れる。この合成ベクトルで表される風によりブレード12aは揚力を発生し、発電機に伝達されるトルクを発生する。
【0019】
よって、ピッチ角θpにより周速と風速の大きさにより揚力零、つまり発生トルク零となるピッチ角θpの中性点が存在することになる。
【0020】
図5はこの発明の実施の第2形態を示す構成説明図で、図1に示す第1形態と同一部分には同一符号を付して説明する。図5において、周速と風速の実測値をベクトル合成器27に入力し、このベクトル合成器27によりブレード上を流れる風の合成ベクトルの仰角を算出する。なお、周速は、風車の回転数を検出し、ブレードの半径を積算することにより算出する。
【0021】
ベクトル合成器27により算出された仰角は、関数テーブル28に入力される。関数テーブル28は、仰角に対して揚力零、つまりトルク零となるピッチ角を予め算出して用意したもので、この関数テーブル28で入力された仰角に対してトルク零となるピッチ角を得る。
【0022】
得られたピッチ角は制御器25とサーボ機構26との間に設けられた加算器29に入力してピッチ角のフィードフォワード補償として使用する。これにより風速変動に対してはフィードフォワード補償により追従し、制御器25は発生するトルクの補償量に対して動作するようになり、制御性能の改善性が図れる。
【0023】
なお、上記実施の第1、第2形態において、ローパスフィルタ22と入出力比例特性器23の位置を入れ替えても略同様の作用効果が得られる。
【0024】
【発明の効果】
以上述べたように、この発明によれば、風速変動を原因としたかご型誘導発電機の出力電圧の変動を、風速を計測して得られた電気信号をフィルタにより平滑化し、平滑化した信号を出力電圧の目標値として風車ブレードのピッチ角を制御することで、発電機の出力電圧を平均化し、電圧変動、周波数変動などを抑制して商用系統に供給するようにしたので、電力品質を大幅に改善することができる。
【0025】
また、風速と周速から求めたトルク零となるピッチ角のフィードフォワード補償を行なうことにより、風速変動による電圧、周波数変動への抑制効果がより向上し、発電機出力電圧への追従性が増してより電力品質の向上が可能となる。
【図面の簡単な説明】
【図1】この発明の実施の第1形態を示す構成説明図。
【図2】第1形態の動作を述べるための波形図。
【図3】第1形態の動作を述べるための入出力比例特性図。
【図4】風車ブレードのピッチ角と風車の発生するトルクについての説明図。
【図5】この発明の実施の第2形態を示す構成説明図。
【符号の説明】
11…発電設備
12…風車
12a…ブレード
13…かご型誘導発電機
14…無効電力調整装置
15…商用電源
16…連係変圧器
17…風速計
21…制御装置
22…ローパスフィルタ
23…入出力比例特性器
24…加減算器
25…制御器
26…ピッチ角制御用サーボ機構
27…ベクトル合成器
28…関数テーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a smoothing control device for output power by pitch angle control of a wind power generator using a squirrel-cage induction generator.
[0002]
[Prior art]
As a generator used for a wind power generator, a squirrel-cage induction generator having a low cost, a robustness, and good maintainability is often used. However, when power generated by a cage induction generator is supplied to a commercial system, (1) the problem of inrush current at start-up, and (2) the operation at a fixed speed is premised. This is not possible. (3) In the case where the power generation output fluctuates with respect to the wind speed fluctuation, and the voltage fluctuation or weak system with respect to the commercial system, there is a problem that affects the power quality such as frequency fluctuation.
[0003]
In wind power generation equipment using a cage induction generator, the problem (1) can be solved by a soft start method using an anti-parallel thyristor, but there are effective solutions for other problems. There is no current situation.
[0004]
Therefore, if the squirrel-cage induction generator is linked to the commercial system via the converter / inverter device, all of the technical problems (1) to (3) can be solved, but the generation capacity is increased. Along with this, a new problem arises that the capacity of the converter / inverter device must also be increased.
[0005]
Therefore, when the squirrel-cage induction generator is linked to a commercial system, the converter / inverter device must be used, so the economic effect of using the squirrel-cage induction generator is impaired. (Reference: JP-A-11-050945 and JP-A-11-82282)
In addition, the wind turbine can control the transmission torque by controlling the pitch angle of the blades against fluctuations in the wind speed, but the emphasis is mainly on limiting this to wind speeds equivalent to or higher than the rated output. However, it is also problematic that it is configured to be controlled at a fixed pitch angle below the rated output.
[0006]
[Problems to be solved by the invention]
As described above, in a wind power generation facility using a squirrel-cage induction generator, the power generation output fluctuates greatly with respect to fluctuations in wind speed. Will be affected. For this reason, in wind power generation equipment using a squirrel-cage induction generator, it is unavoidable to use a converter / inverter device to link the system, and the economic effects due to technical problems are impaired as described above. There was a problem.
[0007]
The present invention has been made in view of the above circumstances, and even if a squirrel-cage induction generator is directly connected to the system, voltage fluctuations and frequency fluctuations applied to the system are suppressed as much as possible to improve power quality and impair the economic effect. It is an object of the present invention to provide an output power smoothing control device for a wind power generator that is not provided.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a cage induction generator connected to a wind turbine capable of controlling a pitch angle of a wind turbine blade, and a power generation output of the cage induction generator . An anemometer that adjusts reactive power and supplies it to commercial power as active power, an anemometer that is installed adjacent to the windmill and converts wind speed into an electrical signal, and obtained by this anemometer A low-pass filter that smooths the electrical signal, an input / output proportional characteristic device that is supplied with the output of this filter, and an output of this input / output proportional characteristic device is set as the target value of the active power of the cage induction generator. and obtain a deviation from the active power from squirrel-cage induction generator, the differential output is supplied, and a controller that operates to output becomes zero, the pitch of the output of the controller of the wind turbine blade It is input as the angle control target value, Is characterized in that a servo mechanism for the pitch angle control for controlling the pitch angle of the wind turbine blade in accordance with the target value.
[0009]
In the second invention, the rotational speed of the windmill and the radius of the windmill blade are integrated to obtain a peripheral speed, and the wind current flowing on the windmill blade by the vector synthesizer is calculated from the peripheral speed and the actual measured wind speed obtained by the anemometer. The elevation angle of the combined vector is calculated, the pitch angle at which the torque for the calculated elevation angle becomes zero is determined, the feedforward compensation amount of the pitch angle is obtained, and this compensation amount is added to the output of the controller. It is what.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention. In FIG. 1, 11 is a power generation facility, and 21 is a control device.
[0011]
The power generation facility 11 includes a windmill 12, a cage induction generator 13, a reactive power adjustment device 14 that adjusts reactive power generated by the generator 13, and an interconnected transformer that links power generated by the generator 13 with a commercial power supply 15. And an anemometer 17 installed adjacent to the wind turbine 16 and the wind turbine 12.
[0012]
The control device 21 includes a low-pass filter 22, an input / output proportional characteristic device 23, an adder / subtractor 24, a controller 25, and a pitch angle control servo mechanism 26 to which the wind speed measured by the anemometer 17 is converted into an electric signal. Composed.
[0013]
In the power generation facility 11 configured as described above, when the wind direction to the windmill 12 changes, the output of the squirrel-cage generator 13 changes because the torque received by the windmill 12 changes even at the same wind speed. Ideally, the generator output should be proportional to the wind speed, but the torque T generated by the windmill 12 varies depending on the pitch angle of the blades of the windmill 12, and therefore the output P also varies (P = ωT). ). Therefore, the output P is controlled by changing the torque T according to the pitch angle.
[0014]
In this way, the pitch angle control of the blades of the wind turbine 12 is performed to suppress the steep output fluctuation of the squirrel-cage generator 13 with respect to the wind speed fluctuation, and then the output is smoothed to obtain the voltage / frequency to be supplied to the commercial system. Suppresses steep and wide range fluctuations.
[0015]
The operation will be described below. The wind speed measured by the anemometer 17 is converted into an electrical signal containing a high frequency component and output as shown in FIG. When this electric signal is supplied to the low-pass filter 22, it is processed into a smooth electric signal as shown in FIG. , And supplied to the input / output proportional characteristic device 23.
[0016]
The input / output proportional characteristic device 23 has a relationship in which the output signal is substantially proportional to the input signal as shown in FIG. 3, and the output of the input / output proportional characteristic device 23 is supplied to the plus terminal of the adder / subtractor 24. . The output of the characteristic unit 23 is obtained by adding the actual measured value of the output power Pact of the wind power generator 13 measured by the system to the plus terminal of the adder / subtractor 24 as the target value Pset of the active power output of the wind power generator 13. The value is supplied to the minus terminal and subtracted to obtain the deviation from the target value of the active power output at the output of the adder / subtractor 24.
[0017]
This deviation output is input to the controller 25 having the optimally designed frequency characteristic by PID control or state variable control. The controller 25 operates so that the input deviation output is zero. The output of the controller 25 is input to the pitch angle control servo mechanism 26 as a pitch angle target value of the windmill blade, and the pitch angle θp of the blade of the windmill 12 is adjusted by the output of the servo mechanism 26 to Suppress output fluctuation.
[0018]
Here, the pitch angle θp of the blade 12a of the wind turbine 12 and the torque T generated by the wind turbine will be described. As shown in FIG. 4, the pitch angle θp and the torque T flow on the blade 12a as determined by the combined vector of the wind speed vector and the peripheral speed vector determined by the rotational speed of the blade 12a. The blade 12a generates lift by the wind expressed by the composite vector, and generates torque transmitted to the generator.
[0019]
Therefore, there exists a neutral point of the pitch angle θp at which the lift is zero, that is, the generated torque is zero, depending on the size of the peripheral speed and the wind speed by the pitch angle θp.
[0020]
FIG. 5 is a structural explanatory view showing a second embodiment of the present invention. The same parts as those in the first embodiment shown in FIG. In FIG. 5, the measured values of the circumferential speed and the wind speed are input to the vector synthesizer 27, and the vector synthesizer 27 calculates the elevation angle of the combined vector of the wind flowing on the blade. The peripheral speed is calculated by detecting the number of rotations of the windmill and integrating the blade radii.
[0021]
The elevation angle calculated by the vector synthesizer 27 is input to the function table 28. The function table 28 is prepared by calculating in advance the pitch angle at which the lift is zero, that is, the torque is zero with respect to the elevation angle, and obtains the pitch angle at which the torque is zero with respect to the elevation angle input in the function table 28.
[0022]
The obtained pitch angle is input to an adder 29 provided between the controller 25 and the servo mechanism 26 to be used as feedforward compensation of the pitch angle. As a result, the wind speed fluctuation is followed by feed-forward compensation, and the controller 25 operates with respect to the compensation amount of the generated torque, thereby improving the control performance.
[0023]
In the first and second embodiments, substantially the same effect can be obtained even if the positions of the low-pass filter 22 and the input / output proportional characteristic device 23 are interchanged.
[0024]
【The invention's effect】
As described above, according to the present invention, the fluctuation of the output voltage of the squirrel-cage induction generator caused by the fluctuation of the wind speed is obtained by smoothing the electric signal obtained by measuring the wind speed with the filter and smoothing the signal. By controlling the pitch angle of the wind turbine blades with the target value of the output voltage, the output voltage of the generator is averaged, and voltage fluctuation, frequency fluctuation, etc. are suppressed and supplied to the commercial system. It can be greatly improved.
[0025]
In addition, by performing feedforward compensation for the pitch angle at which the torque obtained from the wind speed and peripheral speed is zero, the effect of suppressing the voltage and frequency fluctuation due to the wind speed fluctuation is further improved, and the followability to the generator output voltage is increased. As a result, the power quality can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention.
FIG. 2 is a waveform chart for explaining the operation of the first embodiment.
FIG. 3 is an input / output proportional characteristic diagram for explaining the operation of the first embodiment;
FIG. 4 is an explanatory diagram of a pitch angle of a windmill blade and a torque generated by the windmill.
FIG. 5 is a configuration explanatory view showing a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Power generation equipment 12 ... Windmill 12a ... Blade 13 ... Cage type induction generator 14 ... Reactive power adjustment device 15 ... Commercial power supply 16 ... Linkage transformer 17 ... Anemometer 21 ... Control device 22 ... Low-pass filter 23 ... Input-output proportional characteristic 24 ... Adder / Subtractor 25 ... Controller 26 ... Pitch angle control servo mechanism 27 ... Vector synthesizer 28 ... Function table

Claims (2)

風車ブレードのピッチ角が制御可能な風車に連結されたかご型誘導発電機と、このかご型誘導発電機の発電出力の内、無効電力を調整して有効電力として商用電源に供給する連系変圧器と、風車に隣接して設置され、風速を電気信号に変換して計測する風速計と、この風速計により得られた電気信号を平滑化するフィルタと、このフィルタの出力が供給される入出力比例特性器と、この入出力比例特性器の出力をかご型誘導発電機の有効電力の目標値とし、この目標値とかご型誘導発電機からの有効電力の実測値との偏差を得、この偏差出力が供給され、この出力が零となるように動作する制御器と、この制御器の出力を風車ブレードのピッチ角制御目標値として入力され、この目標値に応じて風車ブレードのピッチ角を制御するピッチ角制御用サーボ機構とを備えたことを特徴とする風力発電機の出力電力平滑化制御装置。A cage induction generator connected to a wind turbine capable of controlling the pitch angle of the wind turbine blades, and an interconnected transformer that adjusts the reactive power of the generated output of the cage induction generator and supplies it to the commercial power supply as the active power An anemometer installed adjacent to the wind turbine and converting the wind speed into an electrical signal and measuring, a filter for smoothing the electrical signal obtained by the anemometer, and an input to which the output of the filter is supplied an output proportional characteristics unit, the output of the input-output proportionality device as the target value of the active power of the cage type induction generator, to obtain a deviation from the active power from the target value and the squirrel-cage induction generator, A controller that operates so that this deviation output is supplied and this output becomes zero, and the output of this controller is input as a pitch angle control target value of the windmill blade, and the pitch angle of the windmill blade is determined according to this target value. Pitch angle system to control Output power smoothing control apparatus of a wind power generator, characterized in that a use servo mechanism. 請求項1記載の風力発電機の出力電力平滑化制御装置において、風車の回転数と風車ブレードの半径とを積算して周速を得、この周速と風速計で得られた風速の実測値からベクトル合成器により風車ブレード上を流れる風の合成ベクトルの仰角を算出し、算出された仰角に対するトルク零となるピッチ角を決定し、ピッチ角のフィードフォワード補償量を得て、この補償量を制御器の出力に加えるようにしたことを特徴とする風力発電機の出力電力平滑化制御装置。  The wind power generator output power smoothing control device according to claim 1, wherein the rotational speed of the windmill and the radius of the windmill blade are integrated to obtain a peripheral speed, and the peripheral speed and the actual measured wind speed obtained by the anemometer. The vector synthesizer calculates the elevation angle of the combined vector of the wind flowing on the wind turbine blade, determines the pitch angle at which the torque is zero with respect to the calculated elevation angle, obtains the feed forward compensation amount of the pitch angle, and calculates this compensation amount. An output power smoothing control device for a wind power generator characterized by being added to the output of a controller.
JP2002210522A 2002-07-19 2002-07-19 Wind power generator output power smoothing control device Expired - Fee Related JP4135420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210522A JP4135420B2 (en) 2002-07-19 2002-07-19 Wind power generator output power smoothing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210522A JP4135420B2 (en) 2002-07-19 2002-07-19 Wind power generator output power smoothing control device

Publications (2)

Publication Number Publication Date
JP2004052649A JP2004052649A (en) 2004-02-19
JP4135420B2 true JP4135420B2 (en) 2008-08-20

Family

ID=31933997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210522A Expired - Fee Related JP4135420B2 (en) 2002-07-19 2002-07-19 Wind power generator output power smoothing control device

Country Status (1)

Country Link
JP (1) JP4135420B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198791B2 (en) * 2007-05-07 2013-05-15 株式会社日立製作所 Wind power generation system, control method therefor, and wind power plant using the same
JP2010071159A (en) * 2008-09-17 2010-04-02 Univ Of Ryukyus Device for smoothing electric power generated by wind power generation using wind mill and storage battery
CN101639038B (en) * 2009-08-14 2011-01-26 江南大学 FPGA-based maximum power tracking controller of wind power system
JP4894906B2 (en) * 2009-11-13 2012-03-14 株式会社日立製作所 Wind power generation system control method
JP5089715B2 (en) * 2010-02-22 2012-12-05 中国電力株式会社 Power generation output control device and power generation output control method
CN102477943A (en) * 2010-11-26 2012-05-30 惠州三华工业有限公司 Intelligent MPPT (maximum power point tracking) wind energy controller
CN102588215B (en) * 2012-03-21 2013-08-21 罗洋 Pitch angle adjusting mechanism for blades of vertical axis wind generator and vertical axis wind generator
CN103032265B (en) * 2012-12-12 2014-11-05 天津市电力公司 Maximum output tracking control method of wind generation unit based on extremum research
CN105281621B (en) * 2015-10-09 2018-09-11 南京南瑞继保电气有限公司 Static frequency changer Poewr control method
KR101939908B1 (en) * 2017-06-01 2019-01-17 군산대학교산학협력단 Global Power Regulation of Wind Turbines
CN110336324A (en) * 2019-07-16 2019-10-15 兰州理工大学 A kind of device and method for the extensive heat accumulation space-time translation of wind power plant
KR102197643B1 (en) * 2019-11-25 2020-12-31 연세대학교 산학협력단 Power Smoothing Control System and Method of Wind Turbine for Frequency Regulation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
JPH06117353A (en) * 1992-10-05 1994-04-26 Yamaha Motor Co Ltd Wind power generating device
JPH1150945A (en) * 1997-08-04 1999-02-23 Mitsubishi Heavy Ind Ltd Method for controlling power generating amount of wind power generator
JP3637186B2 (en) * 1997-09-11 2005-04-13 三菱重工業株式会社 Power control method for wind turbine generator
JP2000078896A (en) * 1998-08-28 2000-03-14 Hitachi Engineering & Services Co Ltd Wind power generating system
JP2002048050A (en) * 2000-08-07 2002-02-15 Mitsubishi Heavy Ind Ltd Method and device for controlling pitch angle of wind power plant

Also Published As

Publication number Publication date
JP2004052649A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN111431208B (en) Voltage source and current source dual-mode self-adaptive coordination control method for wind turbine generator
US7952216B2 (en) Wind turbine generator system
JP5156029B2 (en) Wind power generator and control method thereof
JP4135420B2 (en) Wind power generator output power smoothing control device
US8934270B2 (en) Control circuit and method for converters of wind turbines
CN110611331B (en) Method for supporting grid frequency by grid-connected power electronic equipment
CN110994685B (en) Optimization control method based on self-adaptive virtual inertia parameters
JPS62282172A (en) Variable speed water-wheel generator
JP2020502989A (en) How to adjust wind turbine unloading
CN114006420A (en) Method for inhibiting voltage offset of direct current bus
EP2478609A1 (en) A method of controlling a wind turbine generator and apparatus for controlling electric power generated by a wind turbine generator
JP3912911B2 (en) Wind power generator
JP4386068B2 (en) Wind power generator, control method for wind power generator, control device
JP3793788B2 (en) Constant voltage control method for induction generator
JPH0634626B2 (en) Control device for variable speed turbine generator
JP2005304156A (en) Power converter
CN113937826B (en) Double-fed fan self-adaptive frequency modulation control system and method based on critical oscillation wind speed
CN111313434B (en) Resonance coefficient control method, subsynchronous suppression device and controller
JP4387676B2 (en) Power converter for wind power generation
JP5386086B2 (en) Wind power generation system
KR20090096849A (en) Method for controlling reactive power of double-fed induction type wind generator
JP4595398B2 (en) Generator control device and control method thereof
JP3583647B2 (en) AC interconnection apparatus and control method thereof
CN117175716A (en) Additional reactive power control method and system for improving frequency modulation response of doubly-fed wind turbine
JPH0467800A (en) Method and apparatus for controlling reversible generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees