JP3583647B2 - AC interconnection apparatus and control method thereof - Google Patents

AC interconnection apparatus and control method thereof Download PDF

Info

Publication number
JP3583647B2
JP3583647B2 JP09486699A JP9486699A JP3583647B2 JP 3583647 B2 JP3583647 B2 JP 3583647B2 JP 09486699 A JP09486699 A JP 09486699A JP 9486699 A JP9486699 A JP 9486699A JP 3583647 B2 JP3583647 B2 JP 3583647B2
Authority
JP
Japan
Prior art keywords
power flow
interconnection device
phase adjuster
asynchronous
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09486699A
Other languages
Japanese (ja)
Other versions
JP2000295773A (en
Inventor
博雄 小西
雅浩 渡辺
秀紀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP09486699A priority Critical patent/JP3583647B2/en
Publication of JP2000295773A publication Critical patent/JP2000295773A/en
Application granted granted Critical
Publication of JP3583647B2 publication Critical patent/JP3583647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は2つの交流系統の連系に係わり、特に潮流制御応答を改善し且つコストの安い交流連系装置とその制御方法に関する。
【0002】
【従来の技術】
同じ周波数の交流系統を連系する場合、位相調整器による連系やBTB(Back To Back)等の直流を介した非同期連系装置による連系方法がある。位相調整器による連系では電圧安定性や発電機の軸ねじれ現象といった無効電力や有効電力制御に基づく問題はなく、交流系統事故時の運転停止といった問題も少ない。また、設置場所も比較的小さくて良く、コストが安いといったメリットがある。しかし、連系点の潮流制御量が系統の位相角の状態によって異なるために任意の潮流制御が難しい。また系統故障時に短絡電流が増大する問題がある。一方、非同期連系装置では潮流制御が容易で、系統事故時の短絡電流を増大せず、不要なループ潮流を防止できるメリットがある。しかしコストや設置面積の面で位相調整器に劣る。
【0003】
【発明が解決しようとする課題】
本発明の目的は、従来技術の問題点を克服し、任意に且つ高速に潮流制御が行え、系統安定度でも好適なコストの安い交流連系装置とその制御方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、2つの交流系統を連系する交流連系装置において、連続的に潮流制御の行える非同期連系装置(BTB等)と、階段的に潮流制御の行える位相調整器を並列に接続して構成することを特徴とする。
【0005】
前記位相調整器としてタップ調整器を持った位相調整器(機械式位相調整器)を使用する。前記非同期連系装置は、その連続的な潮流制御容量として前記位相調整器の1タップの調整容量以上を有していることを特徴とする。
【0006】
本発明は、2つの交流系統を連系する請求項1記載の交流連系装置の制御方法において、前記位相調整器の潮流調整量を前もって解析または測定した位相角に対する潮流から求めた位相角−潮流図に基づいて決定することを特徴とする。
【0007】
また、連系線の潮流制御量と前記位相調整器で調整される潮流量との差の潮流を前記非同期連系装置で制御することを特徴とする。
【0008】
【発明の実施の形態】
図1に本発明の交流連系装置を適用した一実施例を示す。1、2、3は異なる3つの交流系統を示す。11、12は交流を直流または直流を交流に変換する交直変換装置で、交直変換装置11、12をペアとしてBTB等の非同期連系装置10を構成する。20はタップ調整器を持った機械式位相調整器、31、32はBTB等の非同期連系装置により2つの交流系統1、2を連系するための連系線、41、42は位相調整器20により2つの交流系統1、2を連系するための連系線、100は連系線潮流制御装置で、2つの連系線の潮流を検出する潮流検出器130からの検出信号を受けて非同期連系装置10の制御装置111、112と位相調整器20の制御装置120に潮流の指令値を出す。
【0009】
今、連系線の潮流Pacを交流系統1から交流系統2に流す場合を考える。連系線潮流制御装置100は潮流Pacを、非同期連系装置10に潮流指令値Pdc、位相調整器20に潮流指令値Phsとして割り振る。勿論、指令値の間には数1の関係が成立する。
【0010】
【数1】
Pac=Pdc+Phs
連系線潮流制御装置100からの指令に基づいて、非同期連系装置10では2台の交直変換器11、12をそれぞれ順変換器、逆変換器として、指令値Pdcの潮流を流すように直流電流を制御する。
【0011】
一方、位相調整器20では前もって計算された位相角−潮流図に従って、潮流指令値Phsに相当する位相角θを決定し、この位相角θに相当するタップ位置を調整して指定の潮流Phsが流れるようにする。
【0012】
図2に位相角−潮流図を示す。横軸に潮流指令値と位相調整器の位相角、縦軸に非同期連系装置10の潮流と位相調整器20の潮流を示す。太い実線が連系線潮流指令値に対する潮流Pac、破線が非同期連系装置10の潮流Pdc、階段上の細い実線が位相調整器の位相角に対する潮流Phsを示す。潮流量の正値は交流系統1から交流系統2への潮流、潮流量の負値は逆を表す。
【0013】
上述のように、連系潮流指令値をPacとすると、連系潮流制御装置100では図2に示した位相角−潮流図に基づき、非同期連系装置10の制御装置111、112にPdc、位相調整器20の制御装置120にPhsの電力指令値を出す。この場合の位相調整器20の潮流は位相角θ1に相当する潮流となる。タップ位置がθ1に切り替わった段階では位相調整器20はPhs1の潮流を流し、非同期連系装置10は残りの潮流Pdc1を流すように設定される。定常的には数2の関係となる。
【0014】
【数2】
Pac=Pdc1+Phs1=Pac1
過渡的な動きを見ると、非同期連系装置10は潮流制御の応答が早いので、位相調整器20のタップが切り替わり潮流がPhs1となるまでは、数3の関係に従って電力を送電する。
【0015】
【数3】
Pdc=Pac1
位相調整器のタップがθ1に切り変わると、非同期連系装置10は数4の関係に従って送電電力を下げる。
【0016】
【数4】
Pdc=Pac1−Phs1
すなわち、潮流指令値Pacに応じた潮流Pac1が2つの連系装置により流れることになる。
【0017】
この場合、連系線潮流Pacに対して位相調整器20のタップ位置をθ2とし、非同期連系装置10を潮流反転して数5の関係に従った潮流制御動作も可能である。
【0018】
【数5】
−Pdc2=Phs2−Pac1
しかし、潮流が位相調整器20と非同期連系装置10で還流することになるので効率が悪く、このような運転は指令しないものとする。
【0019】
潮流量を下げる場合や、潮流方向を変える場合も同様である。図2の位相角−潮流図に従って決められた位相角θに位相調整器20のタップ位置が切り替わるまでの間、非同期連系装置10により指令値に従った高速の潮流制御が行われる。位相調整器のタップ位置が切り変わると、非同期連系装置10の潮流指令値が変更され潮流指令値に合った連系線潮流が定常的に流れることになる。
【0020】
このように非同期連系装置10が潮流量を指令値に高速に合わせる動作をするので、位相調整器20の潮流制御は高速に行わなくても良く、機械式タップ調整器を持った位相調整器構成で十分である。このため、低コストな交流連系装置で実現できる。
【0021】
このような構成とすれば、比較的ゆっくりした潮流を位相調整器20で調整し、高速に変化する潮流を非同期連系装置10で制御するように分担できるので、位相調整器20は連続的に且つ高速に潮流制御できなくても、非同期連系装置10で連続、且つ高速に潮流制御が行えるので、コストの安い交流連系装置が実現できる。
【0022】
図3に連系潮流制御装置が備える非同期連系装置の潮流指令値作成回路のブロック図を示す。加算器101は連系潮流指令値Pacと連系線潮流検出器130からの連系線41の潮流検出値Phsfとの差を求める。演算回路102は加算器101の出力を比例積分演算する。この演算結果が非同期連系装置10の潮流指令値Pdcとなる。指令値Pdcは制御装置111、112の潮流指令値となり、これにより連系線の潮流を指令値にあわせることができる。
【0023】
図4に位相調整器の構成例を示す。位相調整器20は並列変圧器Tr1と直列変圧器Tr2から構成される。Tr1の一次側は直列変圧器のTr2の直列巻線Sa,Sb,Scの中間点から取り出される。二次側はタップ巻線TPWが備わっており、位相調整器制御装置120からの位相角指令値によりタップ位置が決定される。Tr1の二次側はTr2の励磁巻線EXa,EXb,EXcに接続され、直列巻線Sa,Sb,Scにそれぞれ送電線電圧に直角方向成分の電圧を発生させる。
【0024】
図5に位相調整器制御装置が備える潮流指令値からタップ位置を求めるブロック図を示す。前もって系統図から計算、または測定されて位相調整器20によって調整される位相角θに対する潮流量Phsが、例えば図2に示したように求められている。この特性を備えるタップ指令値作成回路121では、潮流量Phsから逆にタップ位置Tapを求める。タップ位置Tapが決定されると、図示していないタップ駆動装置により並列変圧器Tr1のタップ位置が調整される。
【0025】
なお、非同期連系装置10の連続的な潮流制御容量は、少なくとも機械式位相調整器20の1タップ相当の調整容量以上とすれば、位相調整器20の追従遅れの分を非同期連系装置10の潮流制御で補うことができる。
【0026】
【発明の効果】
本発明によれば、コストの安い交流連系装置で連続、且つ高速に潮流制御が実現できる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例による交流連系装置の構成図。
【図2】位相角−潮流図。
【図3】一実施例による潮流指令値作成回路のブロック図。
【図4】一実施例による機械式位相調整器の構成図。
【図5】一実施例による位相調整器の制御ブロック図。
【符号の説明】
1,2,3…交流系統、10…非同期連系装置、11,12…交直変換装置、20…位相調整器、31,32,41,42…連系線、100…連系線潮流制御装置、101…加算器、102…演算回路、111,112…非同期連系装置の制御装置、120…位相調整器の制御装置、121…タップ指令値作成回路、130…連系線潮流検出器、Pac…連系潮流指令値、Pdc…非同期連系装置の潮流指令値、Phs…位相調整器の潮流指令値、Phsf…潮流検出値、Tr1…並列変圧器、TPW…タップ巻線、Tr2…直列変圧器、EXa,EXb,EXc…励磁巻線、Sa,Sb,Sc…直列巻線。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to interconnection of two AC systems, and more particularly, to an AC interconnection device that improves power flow control response and is inexpensive, and a control method thereof.
[0002]
[Prior art]
When interconnecting AC systems of the same frequency, there are interconnecting methods using a phase adjuster or an asynchronous interconnecting device via DC such as BTB (Back To Back). In the interconnection by the phase adjuster, there is no problem based on reactive power or active power control such as voltage stability or a generator twisting phenomenon, and there are few problems such as operation shutdown in the event of an AC system accident. Further, there is an advantage that the installation place can be relatively small and the cost is low. However, since the power flow control amount at the interconnection point differs depending on the state of the phase angle of the system, arbitrary power flow control is difficult. There is also a problem that a short-circuit current increases at the time of a system failure. On the other hand, the asynchronous interconnection device has the advantages that the power flow control is easy, the short-circuit current at the time of a system fault does not increase, and unnecessary loop power flow can be prevented. However, it is inferior to the phase adjuster in terms of cost and installation area.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-cost AC interconnection device capable of arbitrarily and at high speed, controlling power flow, and being suitable for system stability at low cost, and a control method therefor, which overcomes the problems of the prior art.
[0004]
[Means for Solving the Problems]
The present invention relates to an AC interconnection device for interconnecting two AC systems, in which an asynchronous interconnection device (BTB or the like) capable of continuously controlling a power flow and a phase adjuster capable of performing a stepwise power flow control are connected in parallel. It is characterized by comprising.
[0005]
A phase adjuster having a tap adjuster (mechanical phase adjuster) is used as the phase adjuster. The asynchronous interconnection device is characterized in that the continuous power flow control capacity has an adjustment capacity of one tap or more of the phase adjuster.
[0006]
The present invention relates to a control method of an AC interconnection device according to claim 1, wherein the two AC systems are interconnected, and a phase angle obtained from a power flow with respect to a phase angle obtained by previously analyzing or measuring the power flow adjustment amount of the phase adjuster. It is characterized in that it is determined based on a tide chart.
[0007]
In addition, the asynchronous flow device controls a flow of a difference between a power flow control amount of a connection line and a flow flow adjusted by the phase adjuster by the asynchronous connection device.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment to which the AC interconnection device of the present invention is applied. 1, 2, and 3 indicate three different AC systems. Reference numerals 11 and 12 denote AC / DC converters for converting AC to DC or DC to AC. The AC / DC converters 11 and 12 are paired to constitute an asynchronous interconnection device 10 such as a BTB. 20 is a mechanical phase adjuster having a tap adjuster, 31 and 32 are interconnection lines for interconnecting the two AC systems 1 and 2 by an asynchronous interconnection device such as BTB, and 41 and 42 are phase adjusters. Reference numeral 20 denotes a connection line for connecting the two AC systems 1 and 2, and 100 denotes a connection line power flow control device which receives a detection signal from a power flow detector 130 that detects the power flow of the two connection lines. Power flow command values are issued to the control devices 111 and 112 of the asynchronous interconnection device 10 and the control device 120 of the phase adjuster 20.
[0009]
Now, consider a case where the tidal current Pac of the interconnection line flows from the AC system 1 to the AC system 2. The interconnection line power flow control device 100 allocates the power flow Pac as the power flow command value Pdc to the asynchronous interconnection device 10 and the power flow command value Phs to the phase adjuster 20. Of course, the relationship of Equation 1 is established between the command values.
[0010]
(Equation 1)
Pac = Pdc + Phs
On the basis of a command from the interconnection line power flow control device 100, the asynchronous interconnection device 10 uses the two AC / DC converters 11 and 12 as a forward converter and an inverse converter, respectively, so that a direct current flows with the command value Pdc. Control the current.
[0011]
On the other hand, the phase adjuster 20 determines the phase angle θ corresponding to the power flow command value Phs according to the phase angle-power flow diagram calculated in advance, and adjusts the tap position corresponding to the phase angle θ so that the specified power flow Phs is determined. Let it flow.
[0012]
FIG. 2 shows a phase angle-power flow chart. The horizontal axis indicates the power flow command value and the phase angle of the phase adjuster, and the vertical axis indicates the power flow of the asynchronous interconnection device 10 and the power flow of the phase adjuster 20. The thick solid line indicates the power flow Pac with respect to the interconnection line power flow command value, the broken line indicates the power flow Pdc of the asynchronous interconnection device 10, and the thin solid line on the stairs indicates the power flow Phs with respect to the phase angle of the phase adjuster. A positive value of the tidal flow indicates a tidal flow from the AC system 1 to the AC system 2, and a negative value of the tidal flow indicates the reverse.
[0013]
As described above, assuming that the interconnected power flow command value is Pac, the interconnected power flow control device 100 transmits Pdc, phase to the control devices 111 and 112 of the asynchronous interconnected device 10 based on the phase angle-power flow diagram shown in FIG. The power command value of Phs is output to the control device 120 of the adjuster 20. In this case, the power flow of the phase adjuster 20 is a power flow corresponding to the phase angle θ1. At the stage when the tap position is switched to θ1, the phase adjuster 20 is set to flow the flow of Phs1, and the asynchronous interconnection device 10 is set to flow the remaining flow of flow Pdc1. The relationship of Equation 2 is normally obtained.
[0014]
(Equation 2)
Pac = Pdc1 + Phs1 = Pac1
Looking at the transitional movement, the asynchronous interconnecting device 10 responds quickly to the power flow control, and thus transmits power according to the relationship of Expression 3 until the tap of the phase adjuster 20 is switched and the power flow becomes Phs1.
[0015]
(Equation 3)
Pdc = Pac1
When the tap of the phase adjuster is switched to θ1, the asynchronous interconnection device 10 lowers the transmission power according to the relationship of Expression 4.
[0016]
(Equation 4)
Pdc = Pac1-Phs1
That is, the power flow Pac1 corresponding to the power flow command value Pac flows through the two interconnection devices.
[0017]
In this case, the tap position of the phase adjuster 20 is set to θ2 with respect to the interconnecting line power flow Pac, the power flow is inverted in the asynchronous interconnecting device 10, and the power flow control operation according to the relationship of Expression 5 is also possible.
[0018]
(Equation 5)
-Pdc2 = Phs2-Pac1
However, since the power flow is recirculated in the phase adjuster 20 and the asynchronous interconnection device 10, the efficiency is low, and such an operation is not commanded.
[0019]
The same applies to the case where the tidal flow is lowered or the tidal flow direction is changed. Until the tap position of the phase adjuster 20 is switched to the phase angle θ determined according to the phase angle-power flow diagram of FIG. 2, the asynchronous interconnection device 10 performs high-speed power flow control according to the command value. When the tap position of the phase adjuster is changed, the power flow command value of the asynchronous interconnection device 10 is changed, and an interconnecting line power flow that matches the power flow command value flows steadily.
[0020]
As described above, since the asynchronous interconnection device 10 operates to adjust the tidal flow rate to the command value at high speed, the tidal current control of the phase adjuster 20 does not need to be performed at high speed, and the phase adjuster having a mechanical tap adjuster is used. The configuration is sufficient. Therefore, it can be realized with a low-cost AC interconnection device.
[0021]
With such a configuration, a relatively slow power flow can be adjusted by the phase adjuster 20 and a rapidly changing power flow can be controlled by the asynchronous interconnection device 10, so that the phase adjuster 20 can be continuously operated. Even if the power flow cannot be controlled at a high speed, the power flow can be controlled continuously and at a high speed by the asynchronous interconnection device 10, so that a low-cost AC interconnection device can be realized.
[0022]
FIG. 3 is a block diagram of a power flow command value creation circuit of the asynchronous interconnection device included in the interconnection power flow control device. The adder 101 obtains a difference between the interconnected power flow command value Pac and the detected power flow Phsf of the interconnected line 41 from the interconnected line power flow detector 130. The arithmetic circuit 102 performs a proportional integral operation on the output of the adder 101. This calculation result becomes the power flow command value Pdc of the asynchronous interconnection device 10. The command value Pdc becomes a power flow command value of the control devices 111 and 112, and accordingly, the power flow of the interconnection line can be adjusted to the command value.
[0023]
FIG. 4 shows a configuration example of the phase adjuster. The phase adjuster 20 includes a parallel transformer Tr1 and a series transformer Tr2. The primary side of Tr1 is taken from an intermediate point between the series windings Sa, Sb, Sc of Tr2 of the series transformer. The secondary side is provided with a tap winding TPW, and the tap position is determined by a phase angle command value from the phase adjuster control device 120. The secondary side of Tr1 is connected to the excitation windings EXa, EXb, EXc of Tr2, and causes the series windings Sa, Sb, Sc to generate a voltage of a component perpendicular to the transmission line voltage, respectively.
[0024]
FIG. 5 is a block diagram for obtaining a tap position from a power flow command value provided in the phase adjuster control device. The tide flow Phs with respect to the phase angle θ calculated or measured in advance from the system diagram and adjusted by the phase adjuster 20 is obtained, for example, as shown in FIG. The tap command value creation circuit 121 having this characteristic determines the tap position Tap from the tide flow Phs. When the tap position Tap is determined, the tap position of the parallel transformer Tr1 is adjusted by a tap driving device (not shown).
[0025]
If the continuous power flow control capacity of the asynchronous interconnection device 10 is at least equal to or greater than the adjustment capacity corresponding to one tap of the mechanical phase adjuster 20, the following delay of the phase adjuster 20 is reduced by the asynchronous interconnection device 10 Tide control.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect which can implement | achieve power flow control continuously and at high speed with the low cost AC interconnection device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an AC interconnection device according to an embodiment of the present invention.
FIG. 2 is a phase angle-power flow chart.
FIG. 3 is a block diagram of a power flow command value creation circuit according to one embodiment.
FIG. 4 is a configuration diagram of a mechanical phase adjuster according to one embodiment.
FIG. 5 is a control block diagram of a phase adjuster according to one embodiment.
[Explanation of symbols]
1, 2, 3 ... AC system, 10 ... Asynchronous interconnection device, 11, 12 ... AC / DC converter, 20 ... Phase adjuster, 31, 32, 41, 42 ... Interconnection line, 100 ... Interconnection line power flow control device 101, an adder, 102, an arithmetic circuit, 111, 112, a control device of an asynchronous interconnection device, 120, a control device of a phase adjuster, 121, a tap command value creation circuit, 130, an interconnection line power flow detector, Pac ... Linked power flow command value, Pdc: Power flow command value of asynchronous interconnection device, Phs: Power flow command value of phase adjuster, Phsf: Power flow detection value, Tr1: Parallel transformer, TPW: Tap winding, Tr2: Series transformer , EXa, EXb, EXc ... exciting winding, Sa, Sb, Sc ... series winding.

Claims (4)

2つの交流系統を連系する交流連系装置において、
連続的に潮流制御の行える非同期連系装置と、階段的に潮流制御の行えるタップ調整器をもつ位相調整器を並列に接続し、
前記位相調整器による追従遅れの分を前記非同期連系装置で潮流制御する構成とすることを特徴とする交流連系装置。
In an AC interconnection device that interconnects two AC systems,
Asynchronous interconnection device that can continuously control power flow and phase adjuster with tap adjuster that can control power flow stepwise are connected in parallel ,
An AC interconnection device, wherein a power flow control is performed by the asynchronous interconnection device for a follow-up delay caused by the phase adjuster .
請求項1記載の交流連系装置において、
前記非同期連系装置は、その連続的な潮流制御容量として前記位相調整器の1タップの調整容量以上を有していることを特徴とする交流連系装置。
The AC interconnection device according to claim 1 ,
The AC interconnection device, wherein the asynchronous interconnection device has, as its continuous power flow control capacitance, an adjustment capacitance of one tap or more of the phase adjuster.
2つの交流系統を連系する請求項1記載の交流連系装置の制御方法において、
前記位相調整器の潮流調整量を前もって解析または測定した位相角に対する潮流から求めた位相角−潮流図に基づいて決定することを特徴とする交流連系装置の制御方法。
The control method for an AC interconnection device according to claim 1, wherein the two AC systems are interconnected.
A method for controlling an AC interconnection device, characterized in that a power flow adjustment amount of the phase adjuster is determined based on a phase angle-power flow diagram obtained from a power flow with respect to a phase angle previously analyzed or measured.
2つの交流系統を連系する請求項1記載の交流連系装置の制御方法において、
連系線の潮流制御量と前記位相調整器で調整される潮流量との差の潮流を前記非同期連系装置で制御することを特徴とする交流連系装置の制御方法。
The control method for an AC interconnection device according to claim 1, wherein the two AC systems are interconnected.
A method of controlling an AC interconnection device, wherein a power flow of a difference between a power flow control amount of an interconnection line and a tide flow adjusted by the phase adjuster is controlled by the asynchronous interconnection device.
JP09486699A 1999-04-01 1999-04-01 AC interconnection apparatus and control method thereof Expired - Fee Related JP3583647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09486699A JP3583647B2 (en) 1999-04-01 1999-04-01 AC interconnection apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09486699A JP3583647B2 (en) 1999-04-01 1999-04-01 AC interconnection apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2000295773A JP2000295773A (en) 2000-10-20
JP3583647B2 true JP3583647B2 (en) 2004-11-04

Family

ID=14121977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09486699A Expired - Fee Related JP3583647B2 (en) 1999-04-01 1999-04-01 AC interconnection apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP3583647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355907B2 (en) * 2008-02-29 2013-11-27 株式会社東芝 Power system stabilization system

Also Published As

Publication number Publication date
JP2000295773A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
EP3484009B1 (en) Hydropower generation system
JP4135420B2 (en) Wind power generator output power smoothing control device
US8134316B2 (en) Method for braking an AC motor
JP3583647B2 (en) AC interconnection apparatus and control method thereof
CA2714698C (en) Method and system for braking an ac motor
JP6258806B2 (en) Power converter for grid connection
US10014764B1 (en) Method for controlling inverter
JP2006271199A (en) Wind-power generator
JP3367737B2 (en) Control device for grid-connected inverter
JP2006094684A (en) Controller of power converter
JPH09135535A (en) Static-type reactive power compensator
JP6424639B2 (en) Stand-alone operation device of small hydropower variable speed power generation system
JP3097745B2 (en) AC excitation rotating electric machine control device
JPS5839298A (en) Main-shaft driven generating set
JP3312178B2 (en) Control device for self-excited inverter
JPH08126400A (en) Vector controller for induction motor
JP2010119248A (en) Power generating system
JP3752804B2 (en) AC machine control device
JP2889254B2 (en) Variable speed pumped storage power generation control device
JP3323895B2 (en) Control device for power converter
JP3686273B2 (en) AC power system equipment
JP2512414Y2 (en) Control device for main shaft drive generator
JP2000308349A (en) Frequency converter
JPH08237869A (en) Power converter
JPH08251933A (en) Controller and control method for inverter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees