JP3541982B2 - System overvoltage protection method and device for photovoltaic power converter - Google Patents

System overvoltage protection method and device for photovoltaic power converter Download PDF

Info

Publication number
JP3541982B2
JP3541982B2 JP11834695A JP11834695A JP3541982B2 JP 3541982 B2 JP3541982 B2 JP 3541982B2 JP 11834695 A JP11834695 A JP 11834695A JP 11834695 A JP11834695 A JP 11834695A JP 3541982 B2 JP3541982 B2 JP 3541982B2
Authority
JP
Japan
Prior art keywords
voltage
point
solar cell
set value
maximum power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11834695A
Other languages
Japanese (ja)
Other versions
JPH08317664A (en
Inventor
克利 山中
英樹 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP11834695A priority Critical patent/JP3541982B2/en
Publication of JPH08317664A publication Critical patent/JPH08317664A/en
Application granted granted Critical
Publication of JP3541982B2 publication Critical patent/JP3541982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

【0001】
【産業上の利用分野】
本発明は、太陽光発電用電力変換装置の系統過電圧保護方法及び装置に関する。
【0002】
【従来の技術】
太陽光発電用電力変換装置と系統電源との連系において、電力変換装置 (インバータ) から送電される電力が大きくなるか、柱上変圧器から電力変換装置までの配電線が長くインピーダンスが大きい場合、電力変換装置と系統とが接続されている連系点電圧が配電線の逆起電力によって上昇し、連系点につながる家電設備等の負荷に悪影響を及ぼす恐れがある。
従来、このような連系点の過電圧を抑えるために、まず電力変換装置の出力電流を電圧に対して進相させて電圧上昇を抑制し、次に電力変換装置出力力率が規定値になっても電圧上昇が抑制されない場合には、電力変換装置の出力電流を減少させることで連系点電圧の過電圧を抑制していた(分散型電源系統連系技術指針 JEAG 9701−1993)。
【0003】
【発明が解決しようとする課題】
連系点電圧を電力変換装置の出力電流を減少させて抑制するには、電力変換装置を太陽電池の最大電力点追従制御から、連系点の電圧上昇を抑制する連系点電圧抑制制御に切り換えなければならない。このとき、太陽電池の出力電力は減少し、太陽電池の動作点は図2のように最大電力点(A)から電力の小さい2ケ所(B,C)のうちどちらかに移動する。また連系点電圧抑制制御の状態で、太陽電池の動作点が最大電力点(A)になれば連系点電圧制御から最大電力点追従制御へ切り換えなければならない。しかし、最大電力点(A)は日射量や太陽電池温度によって変化し、最大電力点追従制御を行っていない状態では、太陽電池の最大電力点(A)がどこにあるかは不明なため、連系点電圧抑制制御を終了して最大電力点追従制御に移行する条件を効率よく検出できないといった問題があった。本発明が解決すべき課題は、連系点電圧が設定値以上に上昇した場合の電力変換装置の連系点電圧の調整および連系点電圧調整の終了を簡単に判断できる方法及び装置を提供することにある。
【0004】
【課題を解決するための手段】
前記課題を解決するため、本発明の太陽光発電用電力変換装置の系統過電圧保護方法は、太陽電池の出力を交流電力に変換し、電力系統に連系する電力変換装置において、前記太陽電池の動作点を変動させ最大電力点を追従する最大電力点追従制御を行う最大電力点追従制御回路と、前記電力系統の連系点電圧を検出する検出器を設け、前記連系点電圧が第1の設定値電圧以上になったときに、前記最大電力点追従制御回路の前記最大電力点追従制御を停止し、太陽電池動作点指令電圧を固定し、前記連系点電圧が前記第1の設定値電圧以上の第2の設定値より高ければ増加、前記第2の設定値より低ければ減少させるような零以上の値をもつ補正電圧と前記固定された太陽電池動作点指令電圧との和または差をとったものを新たな太陽電池動作指令電圧として前記電力変換装置に与え、前記連系点電圧を前記第2の設定値に維持するように制御し、前記補正電圧が零になったときに、前記連系電圧を前記第2の設定値に維持する制御を停止し、前記最大電力点追従制御回路の前記太陽電池動作点指令電圧の固定を解除し、前記最大電力点追従制御を再開して、前記連係点電圧の過電圧を抑制するものである。
【0005】
【作用】
上記手段によって電力変換装置と系統との連系点電圧を監視することにより、連系点電圧が設定値以上に上昇した場合の電力変換装置の連系点電圧の調整および連系点電圧調整の終了を簡単に判断できる。
【0006】
【実施例】
以下、本発明の実施例を図に基づいて説明する。
図1は本発明の実施例の制御ブロック図、図2は太陽電池動作点の移動を示した説明図である。
図中、1は電力変換装置、2は太陽電池、3は連系点電圧を検出するトランス、4および5は基準電圧発生器、6は最大電力点追従指令電圧発生器、7は補正電圧発生器である。
回路構成は従来の電力変換装置1と、基準電圧発生器5と、補正電圧発生器7と、最大電力点追従指令電圧発生器6と、基準電圧発生器4から構成され、基準電圧発生器5と補正電圧発生器7は連系点電圧Ve =V2 に制御する回路であり、補正電圧発生器7は太陽電池2の動作電圧(または動作電流)を増加または減少のどちらか一方にしか補正できないものとする。
【0007】
具体的な動作として、図1および図2を用いて説明する。ここで、電力変換装置1は最大電力点追従指令発生器6の出力する太陽電池動作点電圧指令電圧Vs と補正電圧発生器7の発生電圧との和に応じて太陽電池2の動作点電圧を制御するものとする。連系点電圧Ve が第1の基準電圧発生器4によって設定された第1の設定値V1 を超えると最大電力点追従指令電圧発生器6は太陽電池2の最大電力点追従制御を停止して、Vs はそのときの値に固定する。更に連系点電圧が第2の基準電圧発生器5によって設定された第2の設定値V2 (≧V1 )を超えると、Vs に補正電圧を加える。この補正電圧は、(Ve −V2 )>0のとき増加、(Ve −V2 )<0のとき減少、(Ve −V2 )=0のとき固定として、補正電圧が負にならないように制限する。
太陽電池2の最大電力点追従制御を停止したときの動作電圧は、ほぼ最大電力点付近であり、この点を図2のAとする。連系点電圧がV2 よりも上昇すると補正電圧発生器7が正の補正電圧を出力し始め、太陽電池2の動作点電圧は上昇する。そして、太陽電池出力電力が減少して電力変換装置1の出力電流も減少することで連系点電圧も減少する。連系点電圧がV2 になると補正電圧の上昇は止まり(このときの太陽電池の動作点をBとする)、太陽電池2の動作点はB付近に落ち着き、連系点電圧がVe =V2 になるように電力変換装置1は制御される。
【0008】
日射量の低下による太陽電池2の出力電力の低下や電力系統側の負荷変動によって、連系点電圧が低下し、補正電圧発生器7の補正電圧が減少して零となったら、最大電力点追従指令電圧発生器6はこれを検出して太陽電池2の最大電力点追従制御を再開する。
前記補正電圧発生器7の補正電圧とVs との差を取るかまたは補正電圧発生器7の電圧の発生方法を逆転しても、この回路は同様に電圧を抑制できる。しかし、この場合は太陽電池の動作点がC側へと移動するので、B側に移動するのに比べて太陽電池出力電流が増加しロスが増える。
また前記第1実施例では第1の基準電圧発生器4、第2の基準電圧発生器5、最大電力点追従指令電圧発生器6、補正電圧発生器7と具体的な回路で説明したが、これらを電力変換装置1に内蔵された制御回路のソフトウエアで実現してもよい。
【0009】
【発明の効果】
以上述べたように、本発明によれば従来方式に比べ、下記の効果を奏する。
▲1▼ 連系点電圧上昇を簡単な制御回路の付加によって抑制できる。
▲2▼ 電圧抑制制御中に太陽電池の最大電力点を調べる必要がない。
▲3▼ 以上により、電力変換装置、制御の簡略化ができ、コストを抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施例の制御ブロック図である。
【図2】太陽電池動作点の移動を示した説明図である。
【符号の説明】
1 電力変換装置、2 太陽電池、3 トランス、4 第1の基準電圧発生器、5 第2の基準電圧発生器、6 最大電力点追従指令電圧発生器、7 補正電圧発生器
[0001]
[Industrial applications]
The present invention relates to a system overvoltage protection method and device for a photovoltaic power conversion device.
[0002]
[Prior art]
When the power transmitted from the power converter (inverter) is large or the distribution line from the pole transformer to the power converter is long and has high impedance in the interconnection between the power converter for photovoltaic power generation and the system power supply In addition, the voltage at the interconnection point where the power conversion device and the system are connected may rise due to the back electromotive force of the distribution line, which may adversely affect the load of the home electric appliance or the like connected to the interconnection point.
Conventionally, in order to suppress such an overvoltage at the interconnection point, first, the output current of the power converter is advanced with respect to the voltage to suppress the voltage rise, and then the output power factor of the power converter becomes a specified value. Even if the voltage rise is not suppressed, the overcurrent of the interconnection point voltage is suppressed by reducing the output current of the power converter (distributed power supply system interconnection technical guideline JEAG 9701-1993).
[0003]
[Problems to be solved by the invention]
In order to suppress the interconnection point voltage by reducing the output current of the power converter, the power converter is switched from the maximum power point tracking control of the solar cell to the interconnection point voltage suppression control that suppresses the voltage rise at the interconnection point. I have to switch. At this time, the output power of the solar cell decreases, and the operating point of the solar cell moves from the maximum power point (A) to one of two places (B, C) where the power is small as shown in FIG. If the operating point of the solar cell reaches the maximum power point (A) in the state of the interconnection point voltage suppression control, it is necessary to switch from the interconnection point voltage control to the maximum power point tracking control. However, the maximum power point (A) varies depending on the amount of solar radiation and the temperature of the solar cell, and in a state where the maximum power point tracking control is not performed, it is unknown where the maximum power point (A) of the solar cell is. There is a problem that the condition for terminating the system point voltage suppression control and shifting to the maximum power point tracking control cannot be detected efficiently. The problem to be solved by the present invention is to provide a method and a device that can easily determine the adjustment of the interconnection point voltage of the power conversion device and the end of the interconnection point voltage adjustment when the interconnection point voltage rises above a set value. Is to do.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, a system overvoltage protection method for a power converter for photovoltaic power generation of the present invention converts an output of a solar cell into AC power, and in a power converter connected to a power system, A maximum power point tracking control circuit for performing a maximum power point tracking control for varying an operating point and following a maximum power point, and a detector for detecting a connection point voltage of the power system; When the voltage becomes equal to or higher than the set value voltage, the maximum power point tracking control of the maximum power point tracking control circuit is stopped, a solar cell operating point command voltage is fixed, and the interconnection point voltage is set to the first setting. The sum of the correction voltage having a value of zero or more and the fixed solar cell operating point command voltage, which increases when the voltage is higher than a second set value equal to or higher than the value voltage and decreases when the voltage is lower than the second set value, or New solar cell with difference The operation voltage is supplied to the power converter as a working command voltage, and the connection point voltage is controlled to be maintained at the second set value. When the correction voltage becomes zero, the connection voltage is changed to the second connection value. Stop the control to maintain the set value of, release the fixation of the solar cell operating point command voltage of the maximum power point tracking control circuit, restart the maximum power point tracking control, the overvoltage of the link point voltage It is to suppress.
[0005]
[Action]
By monitoring the interconnection point voltage between the power converter and the system by the above means, it is possible to adjust the interconnection point voltage of the power converter and to adjust the interconnection point voltage when the interconnection point voltage rises above a set value. The end can be easily determined.
[0006]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a control block diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing movement of a solar cell operating point.
In the figure, 1 is a power converter, 2 is a solar cell, 3 is a transformer for detecting a connection point voltage, 4 and 5 are reference voltage generators, 6 is a maximum power point tracking command voltage generator, and 7 is a correction voltage generator. It is a vessel.
The circuit configuration includes a conventional power converter 1, a reference voltage generator 5, a correction voltage generator 7, a maximum power point tracking command voltage generator 6, and a reference voltage generator 4. And the correction voltage generator 7 are circuits for controlling the connection point voltage to Ve = V2, and the correction voltage generator 7 can correct the operating voltage (or operating current) of the solar cell 2 only to either increase or decrease. Shall be.
[0007]
A specific operation will be described with reference to FIGS. Here, the power converter 1 changes the operating point voltage of the solar cell 2 according to the sum of the solar cell operating point voltage command voltage Vs output from the maximum power point tracking command generator 6 and the voltage generated by the correction voltage generator 7. Shall be controlled. When the interconnection point voltage Ve exceeds the first set value V1 set by the first reference voltage generator 4, the maximum power point tracking command voltage generator 6 stops the maximum power point tracking control of the solar cell 2 and , Vs are fixed at the values at that time. Further, when the interconnection point voltage exceeds the second set value V2 (≥V1) set by the second reference voltage generator 5, a correction voltage is added to Vs. The correction voltage is increased when (Ve-V2)> 0, decreased when (Ve-V2) <0, and fixed when (Ve-V2) = 0, so that the correction voltage is not negative.
The operating voltage when the maximum power point tracking control of the solar cell 2 is stopped is approximately near the maximum power point, and this point is denoted by A in FIG. When the interconnection point voltage rises above V2, the correction voltage generator 7 starts outputting a positive correction voltage, and the operating point voltage of the solar cell 2 rises. Then, as the output power of the solar cell decreases and the output current of the power converter 1 also decreases, the interconnection point voltage also decreases. When the interconnection point voltage becomes V2, the correction voltage stops increasing (the operating point of the solar cell at this time is B), the operating point of the solar cell 2 is settled near B, and the interconnection point voltage becomes Ve = V2. The power conversion device 1 is controlled so as to be as follows.
[0008]
If the interconnection point voltage decreases due to a decrease in the output power of the solar cell 2 due to a decrease in the amount of solar radiation or a load change on the power system side, and the correction voltage of the correction voltage generator 7 decreases to zero, the maximum power point The tracking command voltage generator 6 detects this and restarts the maximum power point tracking control of the solar cell 2.
Even if the difference between the correction voltage of the correction voltage generator 7 and Vs is taken or the method of generating the voltage of the correction voltage generator 7 is reversed, this circuit can similarly suppress the voltage. However, in this case, since the operating point of the solar cell moves to the C side, the output current of the solar cell increases and the loss increases compared to moving to the B side.
In the first embodiment, the first reference voltage generator 4, the second reference voltage generator 5, the maximum power point tracking command voltage generator 6, and the correction voltage generator 7 have been described with specific circuits. These may be realized by software of a control circuit built in the power conversion device 1.
[0009]
【The invention's effect】
As described above, according to the present invention, the following effects are obtained as compared with the conventional system.
{Circle around (1)} An increase in the interconnection point voltage can be suppressed by adding a simple control circuit.
(2) It is not necessary to check the maximum power point of the solar cell during the voltage suppression control.
{Circle around (3)} As described above, the power converter and control can be simplified, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a control block diagram of an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing movement of a solar cell operating point.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power conversion device, 2 Solar cell, 3 Transformers, 4 First reference voltage generator, 5 Second reference voltage generator, 6 Maximum power point tracking command voltage generator, 7 Correction voltage generator

Claims (2)

太陽電池の出力を交流電力に変換し、電力系統に連系する電力変換装置において、前記太陽電池の動作点を変動させ最大電力点を追従する最大電力点追従制御を行う最大電力点追従制御回路と、前記電力系統の連系点電圧を検出する検出器を設け、
前記連系点電圧が第1の設定値電圧以上になったときに、
前記最大電力点追従制御回路の前記最大電力点追従制御を停止し、太陽電池動作点指令電圧を固定し、前記連系点電圧が前記第1の設定値電圧以上の第2の設定値より高ければ増加、前記第2の設定値より低ければ減少させるような零以上の値をもつ補正電圧と前記固定された太陽電池動作点指令電圧との和または差をとったものを新たな太陽電池動作指令電圧として前記電力変換装置に与え、前記連系点電圧を前記第2の設定値に維持するように制御し、
前記補正電圧が零になったときに、
前記連系電圧を前記第2の設定値に維持する制御を停止し、前記最大電力点追従制御回路の前記太陽電池動作点指令電圧の固定を解除し、前記最大電力点追従制御を再開して、
前記連系点電圧の過電圧を抑制することを特徴とする太陽光発電用電力変換装置の系統の電圧保護方法。
A power converter that converts the output of a solar cell into AC power and interconnects with a power system, wherein a maximum power point tracking control circuit that performs a maximum power point tracking control that varies the operating point of the solar cell and tracks a maximum power point And a detector for detecting an interconnection point voltage of the power system,
When the interconnection point voltage becomes equal to or higher than a first set value voltage,
The maximum power point tracking control of the maximum power point tracking control circuit is stopped, a solar cell operating point command voltage is fixed, and the interconnection point voltage is higher than a second set value equal to or higher than the first set value voltage. The sum or difference between the correction voltage having a value equal to or greater than zero and increasing or decreasing the value if the value is lower than the second set value and the fixed solar cell operating point command voltage is used as a new solar cell operation. Giving to the power converter as a command voltage, controlling the connection point voltage to be maintained at the second set value,
When the correction voltage becomes zero,
Stop the control to maintain the interconnection voltage at the second set value, release the fixing of the solar cell operating point command voltage of the maximum power point tracking control circuit, resume the maximum power point tracking control ,
A voltage protection method for a system of a power converter for photovoltaic power generation, wherein an overvoltage of the interconnection point voltage is suppressed.
太陽電池の出力を交流電力に変換し、電力系統に連系する電力変換装置において、前記太陽電池の動作点を変動させ最大電力点を追従する最大電力点追従制御を行う最大電力点追従制御回路と、A power converter that converts the output of a solar cell into AC power and interconnects with a power system, wherein a maximum power point tracking control circuit that performs a maximum power point tracking control that varies the operating point of the solar cell and tracks a maximum power point When,
前記電力系統の連系点電圧を検出する検出器と、A detector for detecting an interconnection point voltage of the power system,
前記連系点電圧が第1の設定値電圧以上になったときに、前記最大電力点追従制御を停止し、太陽電池動作点指令電圧を固定し、前記連系点電圧が前記第1の設定値電圧以上の第2の設定値より高ければ増加、前記第2の設定値より低ければ減少させるような零以上の値をもつ補正電圧と前記固定された太陽電池動作点指令電圧との和または差をとったものを新たな太陽電池動作指令電圧として前記電力変換装置に与え、前記連系点電圧を前記第2の設定値に維持するように制御し、前記補正電圧が零になったときに、前記連系電圧を前記第2の設定値に維持する制御を停止し、前記太陽電池動作点指令電圧の固定を解除し、前記最大電力点追従制御を再開して、前記連系点電圧の過電圧を抑制する制御装置と  When the interconnection point voltage becomes equal to or higher than a first set value voltage, the maximum power point tracking control is stopped, a solar cell operating point command voltage is fixed, and the interconnection point voltage is set to the first set value. The sum of the correction voltage having a value of zero or more and the fixed solar cell operating point command voltage, which increases when the voltage is higher than a second set value equal to or higher than the value voltage and decreases when the voltage is lower than the second set value, or The difference is given to the power converter as a new solar cell operation command voltage, and the connection point voltage is controlled to be maintained at the second set value, and when the correction voltage becomes zero. Stopping the control for maintaining the interconnection voltage at the second set value, releasing the fixation of the solar cell operating point command voltage, resuming the maximum power point tracking control, and resuming the interconnection point voltage. Control device to suppress overvoltage of
を備えたことを特徴とする太陽光発電用電力変換装置の系統過電圧保護装置。A system overvoltage protection device for a power converter for photovoltaic power generation, comprising:
JP11834695A 1995-05-17 1995-05-17 System overvoltage protection method and device for photovoltaic power converter Expired - Lifetime JP3541982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11834695A JP3541982B2 (en) 1995-05-17 1995-05-17 System overvoltage protection method and device for photovoltaic power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11834695A JP3541982B2 (en) 1995-05-17 1995-05-17 System overvoltage protection method and device for photovoltaic power converter

Publications (2)

Publication Number Publication Date
JPH08317664A JPH08317664A (en) 1996-11-29
JP3541982B2 true JP3541982B2 (en) 2004-07-14

Family

ID=14734426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11834695A Expired - Lifetime JP3541982B2 (en) 1995-05-17 1995-05-17 System overvoltage protection method and device for photovoltaic power converter

Country Status (1)

Country Link
JP (1) JP3541982B2 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004023497D1 (en) 2003-05-06 2009-11-19 Enecsys Ltd POWER SUPPLY CIRCUITS
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
JP2005312138A (en) * 2004-04-19 2005-11-04 Canon Inc Power controller, power generation system and power system
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
GB2454389B (en) 2006-01-13 2009-08-26 Enecsys Ltd Power conditioning unit
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2011507465A (en) 2007-12-05 2011-03-03 ソラレッジ テクノロジーズ リミテッド Safety mechanism, wake-up method and shutdown method in distributed power installation
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
WO2009118683A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero voltage switching
EP3719949A1 (en) 2008-05-05 2020-10-07 Solaredge Technologies Ltd. Direct current power combiner
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2496140B (en) 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
JP5829053B2 (en) * 2011-06-03 2015-12-09 株式会社ダイヘン Grid-connected inverter device
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2496139B (en) 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
JP5886658B2 (en) * 2012-03-02 2016-03-16 京セラ株式会社 Control device and control method
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
JP5869999B2 (en) * 2012-09-19 2016-02-24 株式会社Nttドコモ Solar power system
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems

Also Published As

Publication number Publication date
JPH08317664A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
JP3541982B2 (en) System overvoltage protection method and device for photovoltaic power converter
JP2002165357A (en) Power converter and its control method, and power generating system
JP2002204531A (en) Ac-interconnecting device and control method thereof
JP2004517598A (en) Uninterruptible power system
US10270332B2 (en) Overload current limiting method for voltage source converter
KR20110026500A (en) Low voltage ride through
WO2017019359A1 (en) Redundant residential power sources
JP2005269843A (en) Parallel operation device
JP3407234B2 (en) Control method of distributed arrangement type power supply linked to power system
JPH08314555A (en) Power converter for solar power generation
CN112152183B (en) Method for operating a converter and converter arrangement
JP2004357390A (en) Power supply device including system interconnection inverter
JP4258452B2 (en) Power conditioner control device, power conditioner control method, and cogeneration system
JP6894866B2 (en) Power control system, power control device, and power control method
JP3499942B2 (en) Solar power generator
JPH11122820A (en) Solar light generator
CN111049410B (en) Control method of electric energy conversion device and electric energy conversion system
US7233081B2 (en) Power-supply device
JP2011139594A (en) System interconnection system
JPH07163056A (en) Electric power supply system
JP2001333536A (en) Non-utility generating facility
CN114825367A (en) Control method for islanding operation of flexible direct current transmission system
JP2708246B2 (en) Control device for self-excited power converter
CN115589026B (en) Power supply system and grid-connected/disconnected switching method of energy storage converter
JP2001218368A (en) Power converter and photovoltaic generation system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

EXPY Cancellation because of completion of term