JP3637186B2 - Power control method for wind turbine generator - Google Patents

Power control method for wind turbine generator Download PDF

Info

Publication number
JP3637186B2
JP3637186B2 JP26485897A JP26485897A JP3637186B2 JP 3637186 B2 JP3637186 B2 JP 3637186B2 JP 26485897 A JP26485897 A JP 26485897A JP 26485897 A JP26485897 A JP 26485897A JP 3637186 B2 JP3637186 B2 JP 3637186B2
Authority
JP
Japan
Prior art keywords
power
wind turbine
converter
generator
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26485897A
Other languages
Japanese (ja)
Other versions
JPH1182282A (en
Inventor
真司 有永
洋一 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26485897A priority Critical patent/JP3637186B2/en
Publication of JPH1182282A publication Critical patent/JPH1182282A/en
Application granted granted Critical
Publication of JP3637186B2 publication Critical patent/JP3637186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、風力発電装置の電力制御方法に関する。
【0002】
【従来の技術】
従来より風力発電装置においては、図4に示すように風力エネルギーをブレード1により駆動軸2の回転エネルギーに変換し、その回転エネルギーを誘導発電機4により電気エネルギーに変換して電力系統15へ電力を供給している。
【0003】
【発明が解決しようとする課題】
しかし、風力エネルギーは風速の変動にともない変動し、これに対応して電力系統へ供給される電力も変動する。この電力変動は系統の周波数変動や電圧変動をもたらすため、比較的大規模な系統に接続し風車発電力の変動の影響を極力受けないようにしている。
また、前記風力発電装置の発電機に誘導発電機が多く用いられているが、発電するためには系統より発電に必要な電力を供給する必要がある。
このように従来の風力発電装置では、小規模な系統や風車単独での運転が困難であった。
【0004】
そこで、本発明では風速変動を避けることの出来ない風力発電装置においても系統への供給電力の変動を極力抑制することで、小規模系統や風車単独での運転を可能とする風力発電装置の電力制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、ピッチ角を調整可能に構成した風車ブレードに駆動軸を介して誘導発電機を連結し、該発電機よりの交流電力からなる風車発生電力をAC/DC変換器により直流電力に変換したのち、更にDC/AC変換器により交流電力に変換して電力系統に供給する風力発電装置において、
前記風車発生電力が、電力系統側の消費電力を上回る場合には、前記AC/DC変換器にて無効電力(前記誘導発電機に磁界を発生させる電力)の周波数を上昇させて風車ブレードの回転数を上昇させることにより回転上昇エネルギーとして蓄えるとともに、この回転数の上昇が所定の回転数を超えると、前記風車ブレードが所定の回転数内となるように前記ピッチ角を操作して制御し、
一方、前記風車発電電力が、電力系統側の消費電力を下回る場合には、前記AC/DC変換器にて無効電力の周波数を下降させて、回転上昇エネルギーとして蓄えていた余剰エネルギーを回収することを特徴とする。
【0006】
請求項2記載の発明は、請求項1記載の発明に蓄電池による充放電機構を効果的に組合せたもので、
ピッチ角を調整可能に構成した風車ブレードに駆動軸を介して誘導発電機を連結し、該発電機よりの交流電力からなる風車発生電力をAC/DC変換器により直流電力に変換したのち、更にDC/AC変換器により交流電力に変換して電力系統に供給するとともに、前記直流電力ライン上に風車発電電力の余剰電力を蓄電池に蓄える充電装置と、また不足電力を前記蓄電池より供給するための放電装置を具えてなる風力発電装置において、
前記風車発生電力が、電力系統側の消費電力を上回る場合には、前記蓄電池への充電と並行して、前記AC/DC変換器にて無効電力の周波数を上昇させて風車ブレードの回転数を上昇させることにより回転上昇エネルギーとして蓄えるとともに、この回転数の上昇が所定の回転数を超えると、前記風車ブレードが所定の回転数内となるように前記ピッチ角を操作して制御し、
一方、前記風車発電電力が、電力系統側の消費電力を下回る場合には、前記蓄電池よりの放電と並行して前記AC/DC変換器にて無効電力の周波数を下降させて、回転上昇エネルギーとして蓄えていた余剰エネルギーを回収することを特徴とする。
【0007】
請求項3記載の発明は、請求項2記載の発明にヒータによる放電機構を効果的に組合せたもので、
前記直流電力ライン上に風車発電電力の余剰電力を放出するヒータを設け、前記風車発生電力が、電力系統側の消費電力を上回る場合には蓄電池への充電を行うとともに、該充電量が蓄電池の容量を超える恐れのある場合に、前記ヒータにて放電することを特徴とする。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
図1は本発明の第1の実施形態に係る風力発電装置の説明図である。
図中、1は風車ブレードで、風車駆動軸2を介して誘導発電機4を連結するとともに、ブレードピッチ角駆動装置3によりそのピッチ角を調整可能に構成している。
5は該発電機4により発電された交流電力を直流電力に変換するAC/DC変換器、13は直流電力ライン6を介して得られる直流電力を交流電力に変換して系統ライン15へ供給するDC/AC変換器、14は電力系統ライン15の交流電力を直流電力に変換して直流電力ライン6に供給するAC/DC変換器で、その作用は後記に詳説する。
【0009】
次に本実施形態の動作を説明する。
風車ブレード1の起動は風速がカットイン風速(発電開始風速)以上になると、ピッチ角駆動装置3により、風車ブレード1のピッチ角をフェザリング(単に風を通過させる翼角)の位置から風力エネルギーを回収する方向へ動かして風車ブレード1の回転数を上昇させる。
そして、回転数が同期速度に到達すると電力系統ライン15に連結される。このとき、電力系統ライン15の有効電力をAC/DC変換器14により直流電力に変換して直流電力ライン6に供給され、この直流電力ライン6の直流電力からAC/DC変換器5により無効電力(誘導発電機4に磁界を発生させる電力)を生成し、風力誘導発電機4へ励磁電流が供給されて、該誘導発電機4が発電を始める。
【0010】
風車誘導発電機4で発電された交流電力はAC/DC変換器5にて直流電力に変換され直流電力ライン6へ供給される。
風車発電電力が増加して直流変換された電力が消費電力を上回る場合には、AC/DC変換器5にて無効電力の周波数を上昇させて風車ブレード1の回転数を上昇させる。この上昇により余剰エネルギーを一旦回転エネルギーとして蓄えることができる。(いわゆるフライホイールとしての役目)
【0011】
しかし、この回転数の上昇が所定の回転数を超えると、風車ブレード1が所定の回転数内となるようにピッチ角駆動装置3によりピッチ角を操作して制御する。
逆に、風車発電電力が減少してAC/DC変換器5にて直流変換された電力が、電力系統ライン15の消費電力を下回る場合には、AC/DC変換器5にて無効電力の周波数を下降させて、回転上昇エネルギーとして蓄えていた余剰エネルギーを回収する。
【0012】
このようにして、風速変動に伴い変動する風車発電力を、無効電力の周波数制御により平滑して系統へ給電できるため小規模系統での並列運転時に系統への擾乱を与えることがないとともに、単独運転時にはDC/AC変換器13により定周波数及び定電圧制御にて電力変換して電力系統へ給電することができる。
【0013】
図2は本発明の第2の実施形態に係る風力発電装置の説明図である。
前記第1の実施形態に付加した構成を説明するに、7は直流電力ライン6上に設けた余剰電力放電装置、14は前記したAC/DC変換器で、両装置よりの直流電力は切替器12を介して充電装置8に送られ、蓄電池10に充電される。切換器12は蓄電池10の充電が必要なときに、風車発電電力が過剰なときには余剰電力放電装置7からの電力で充電し、風車発電電力が不足のときには電力系統ライン15からの電力をAC/DC変換器14で直流電力に変換した電力で充電するように切り換える装置である。そして蓄電池10に充電された余剰電力は必要に応じ放電装置11を介して直流電力ライン6に戻される。
【0014】
次に本実施形態の動作を説明する。
前記実施形態と同様に、風車ブレード1の起動は風速がカットイン風速以上になるとブレード1のピッチ角をフェザリングの位置から風力エネルギーを回収する方向へ動かしてブレード1の回転数を上昇させる。
そして、回転数が同期速度に到達すると電力系統ライン15に連結される。このとき、配電系統の有効電力をAC/DC変換器14により直流電力に変換して直流電力ライン6に供給され、この直流電力ライン6の直流電力からAC/DC変換器5により無効電力を生成し、風車誘導発電機4へ励磁電流が供給され、誘導発電機4が発電を始める。
【0015】
また、蓄電池10に直流電力が蓄電されている場合には、この電力を放電装置11を介して直流電力ライン6上に直流電力が供給されて前記と同様に無効電力を生成し、風車誘導発電機4へ励磁電流を供給して起動することもできる。
風車誘導発電機4で発電された交流電力はAC/DC変換器5にて直流電力に変換され直流電力ライン6へ供給される。
【0016】
かかる構成において、風車発電電力が増加して直流変換された電力が消費電力を上回る場合には、前記実施形態と同様にAC/DC変換器5にて無効電力の周波数を上昇させて風車の回転数を上昇させる。この上昇により余剰エネルギーを一旦回転エネルギーとして蓄えることができる。
しかし、この回転数の上昇が所定の回転数を超えると、ブレード1が所定の回転数内となるようにピッチ角駆動装置3によりピッチ角を操作して制御する。
さらに風車発電電力が過剰となるときには、直流電力ライン6に設けた余剰電力放電装置7により放電し、切替器12を介して充電装置8にて蓄電池10に充電される。
【0017】
逆に、風車発電電力が減少して直流変換された電力が消費電力を下回る場合には、AC/DC変換器5にて無効電力の周波数を下降させて、回転上昇エネルギーとして蓄えていた余剰エネルギーを回収する。さらに電力系統ライン15への供給電力が不足する場合には、放電装置11により蓄電池10から放電して直流ライン6へ供給する。
【0018】
このようにして、風速変動にともない変動する風車発電力を、無効電力の周波数制御により平滑して系統へ給電できるため小規模系統での並列運転時に系統への擾乱を与えることがないとともに、また、定周波数及び定電圧制御により、系統へ定周波数、定電圧の電力を供給することができるので風車単独運転が可能となる。
【0019】
図3は前記第2の実施形態の変形例で、余剰電力放電装置の出力側にヒータ9を設けている。
かかる装置によれば、電力系統ライン15の電力需要(消費電力)が風車発電電力より小さくなる供給過多状態では、その供給過多中前記第2実施形態に示すように、蓄電池10への充電を行うが、その供給過多が長期化すると、蓄電池10の容量を超える不具合があり、この為余剰電力放電装置7の出力側に設けたヒータ9に放電する構成を取る。
【0020】
【発明の効果】
以上詳述したように、図1に対応する請求項1記載の発明によれば、風車発生電力の変動を余剰分はブレード回転数上昇により一旦回転エネルギーとして蓄え、不足分は回転上昇エネルギーとして蓄えていた余剰エネルギーを回収することができるので、系統への供給電力の変動を抑制することができ、これにより小規模系統でも系統への擾乱を抑制することができるという利点がある。
【0021】
又図2に対応する請求項2記載の発明によれば 請求項1記載の発明に蓄電池による充放電機構を効果的に組合せた為に、風車発生電力の変動を、余剰分は前記したブレード回転数上昇により一旦回転エネルギーとして蓄えるとともに蓄電池に充電し、不足分は前記蓄積した回転エネルギーの回収とともに蓄電池より放電することができるので、請求項1記載の発明より更に効果的に系統への供給電力の変動を抑制することができ、小規模系統でも系統への擾乱を抑制することができるという利点がある。
また、いずれの発明も系統電圧および周波数をDC/AC変換器により一定に制御することにより、電力、系統周波数、系統電圧を一定にできるので、風車単独での運転が可能となる。
【0022】
請求項3記載の発明は、請求項2記載の発明にヒータによる放電機構を効果的に組合せた為に、電力系統ラインの電力需要(消費電力)が風車発電電力より小さくなる供給過多状態が長期化し、蓄電池の容量を超える場合においても、ヒータの放電により安定した余剰電力の吸収が可能である。
【図面の簡単な説明】
【図1】本発明の第一の実施形態としての風力発電装置の全体構成を示す系統図である。
【図2】本発明の第二の実施形態としての風力発電装置の全体構成を示す系統図である。
【図3】本発明の第三の実施形態としての風力発電装置の全体構成を示す系統図である。
【図4】従来の風力発電装置の全体構成を示す系統図である。
【符号の説明】
1 風車ブレード
2 風車駆動軸
3 ブレードピッチ角駆動装置
4 誘導発電機
5 AC/DC変換器
6 直流電力ライン
7 余剰電力放電装置
8 充電装置
9 ヒータ
10 蓄電池
11 放電装置
12 切替器
13 DC/AC変換器
14 AC/DC変換器
15 系統ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power control method for a wind turbine generator.
[0002]
[Prior art]
Conventionally, in a wind turbine generator, wind energy is converted into rotational energy of the drive shaft 2 by the blade 1 as shown in FIG. 4, and the rotational energy is converted into electrical energy by the induction generator 4 to supply power to the power system 15. Supply.
[0003]
[Problems to be solved by the invention]
However, the wind energy fluctuates as the wind speed fluctuates, and the power supplied to the power system fluctuates accordingly. Since this power fluctuation causes a frequency fluctuation and a voltage fluctuation of the system, it is connected to a relatively large system so as not to be affected as much as possible by the fluctuation of the wind turbine power generation.
Further, an induction generator is often used as the generator of the wind power generator, but in order to generate power, it is necessary to supply power necessary for power generation from the system.
As described above, it is difficult for a conventional wind power generator to operate with a small system or a windmill alone.
[0004]
Therefore, even in a wind power generator that cannot avoid fluctuations in wind speed in the present invention, the power of the wind power generator that enables operation in a small-scale system or a windmill alone by suppressing fluctuations in power supplied to the system as much as possible. An object is to provide a control method.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, an induction generator is connected to a wind turbine blade configured to be adjustable in pitch angle via a drive shaft, and wind turbine generated power consisting of AC power from the generator is converted by an AC / DC converter. In the wind power generator that converts to DC power and then converts it to AC power by a DC / AC converter and supplies it to the power system,
When the wind turbine generated power exceeds the power consumption on the power system side, the frequency of reactive power (power that generates a magnetic field in the induction generator) is increased by the AC / DC converter to rotate the wind turbine blade. Rutotomoni stored as rotation increase energy by increasing the number, the increase of the rotational speed exceeds a predetermined rotational speed, the wind turbine blade is controlled by manipulating the pitch angle to be within a predetermined rotational speed ,
On the other hand, when the wind turbine generated power is lower than the power consumption on the power system side, the frequency of the reactive power is lowered by the AC / DC converter, and the surplus energy stored as the rotation increasing energy is recovered. It is characterized by.
[0006]
The invention according to claim 2 is a combination of the invention according to claim 1 with an effective charging / discharging mechanism using a storage battery.
An induction generator is connected to a wind turbine blade configured to be adjustable in pitch angle via a drive shaft, and wind turbine generated power consisting of AC power from the generator is converted into DC power by an AC / DC converter. A DC / AC converter converts the AC power into an electric power system and supplies it to the power system, and also stores a surplus power of the wind turbine generated power on the DC power line in the storage battery, and supplies the insufficient power from the storage battery. In a wind turbine generator comprising a discharge device,
The wind turbine generator power, when above the power consumption of the electric power system side, in parallel with the charging of the battery, the rotational speed of the wind turbine blades by increasing the frequency of the reactive power in the AC / DC converter Rutotomoni stored as rotation increase energy by increasing, the increase of the rotational speed exceeds a predetermined rotational speed, the wind turbine blade is controlled by manipulating the pitch angle to be within a predetermined speed,
Meanwhile, the wind turbine generator power, if less than the power consumption of the electric power system side, by lowering the frequency of the reactive power in front SL AC / DC converter in parallel with the discharge from the battery, rotation increase energy It is characterized by recovering surplus energy stored as.
[0007]
The invention according to claim 3 is a combination of the invention according to claim 2 and an effective discharge mechanism using a heater.
A heater for releasing surplus power of the wind turbine generated power is provided on the DC power line, and when the wind turbine generated power exceeds the power consumption on the power system side, the storage battery is charged and the amount of charge is stored in the storage battery. When there is a possibility of exceeding the capacity, the heater is discharged.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
FIG. 1 is an explanatory diagram of a wind turbine generator according to a first embodiment of the present invention.
In the figure, reference numeral 1 denotes a windmill blade, which is configured to connect the induction generator 4 via the windmill drive shaft 2 and to adjust the pitch angle by the blade pitch angle driving device 3.
5 is an AC / DC converter that converts AC power generated by the generator 4 into DC power, and 13 is a converter that converts DC power obtained through the DC power line 6 into AC power and supplies it to the system line 15. A DC / AC converter 14 is an AC / DC converter 14 that converts AC power of the power system line 15 into DC power and supplies the DC power to the DC power line 6, and its operation will be described in detail later.
[0009]
Next, the operation of this embodiment will be described.
When the wind turbine blade 1 starts up when the wind speed exceeds the cut-in wind speed (power generation start wind speed), the pitch angle driving device 3 causes the pitch angle of the wind turbine blade 1 to be adjusted from the position of feathering (the blade angle that allows the wind to pass). Is moved in the direction of collecting the wind turbine blade 1 to increase the rotational speed.
When the rotational speed reaches the synchronous speed, the power system line 15 is connected. At this time, the active power of the power system line 15 is converted into DC power by the AC / DC converter 14 and supplied to the DC power line 6. The reactive power is converted from the DC power of the DC power line 6 by the AC / DC converter 5. (Electric power that causes the induction generator 4 to generate a magnetic field) is generated, excitation current is supplied to the wind power induction generator 4, and the induction generator 4 starts generating power.
[0010]
The AC power generated by the windmill induction generator 4 is converted into DC power by the AC / DC converter 5 and supplied to the DC power line 6.
When the wind turbine generated power increases and the DC converted power exceeds the power consumption, the AC / DC converter 5 increases the frequency of the reactive power to increase the rotation speed of the wind turbine blade 1. With this increase, surplus energy can be temporarily stored as rotational energy. (Role as a so-called flywheel)
[0011]
However, when the increase in the rotational speed exceeds a predetermined rotational speed, the pitch angle driving device 3 controls the pitch angle so that the wind turbine blade 1 is within the predetermined rotational speed.
On the other hand, when the power generated by the wind turbine is reduced and the direct current converted by the AC / DC converter 5 is lower than the power consumption of the power system line 15, the frequency of the reactive power is output by the AC / DC converter 5. Is lowered to recover the surplus energy stored as the rotational increase energy.
[0012]
In this way, wind turbine power that fluctuates with fluctuations in wind speed can be smoothed by reactive power frequency control and fed to the system, so there is no disturbance to the system during parallel operation in a small-scale system. During operation, the DC / AC converter 13 can convert power by constant frequency and constant voltage control to supply power to the power system.
[0013]
FIG. 2 is an explanatory diagram of a wind turbine generator according to the second embodiment of the present invention.
The configuration added to the first embodiment will be described. 7 is a surplus power discharge device provided on the DC power line 6, 14 is the AC / DC converter, and DC power from both devices is a switch. The battery is sent to the charging device 8 via 12 and the storage battery 10 is charged. When the storage battery 10 needs to be charged, the switcher 12 is charged with the power from the surplus power discharge device 7 when the wind turbine generated power is excessive, and when the wind turbine generated power is insufficient, the power from the power system line 15 is AC / It is a device that switches to charge with the power converted into DC power by the DC converter 14. Then, surplus power charged in the storage battery 10 is returned to the DC power line 6 via the discharge device 11 as necessary.
[0014]
Next, the operation of this embodiment will be described.
As in the above-described embodiment, when the wind turbine blade 1 is activated, when the wind speed exceeds the cut-in wind speed, the pitch angle of the blade 1 is moved in the direction of collecting wind energy from the position of feathering to increase the rotational speed of the blade 1.
When the rotational speed reaches the synchronous speed, the power system line 15 is connected. At this time, the active power of the distribution system is converted into DC power by the AC / DC converter 14 and supplied to the DC power line 6, and reactive power is generated from the DC power of the DC power line 6 by the AC / DC converter 5. Then, the exciting current is supplied to the wind turbine induction generator 4, and the induction generator 4 starts generating power.
[0015]
Further, when DC power is stored in the storage battery 10, this power is supplied to the DC power line 6 via the discharge device 11 to generate reactive power in the same manner as described above, thereby generating windmill induction power generation. It can also be activated by supplying an exciting current to the machine 4.
The AC power generated by the windmill induction generator 4 is converted into DC power by the AC / DC converter 5 and supplied to the DC power line 6.
[0016]
In such a configuration, when the wind turbine generated power increases and the DC-converted power exceeds the power consumption, the AC / DC converter 5 increases the frequency of the reactive power to rotate the wind turbine as in the above embodiment. Increase the number. With this increase, surplus energy can be temporarily stored as rotational energy.
However, when the increase in the rotational speed exceeds a predetermined rotational speed, the pitch angle is controlled by the pitch angle driving device 3 so that the blade 1 is within the predetermined rotational speed.
Further, when the wind turbine generated power becomes excessive, it is discharged by the surplus power discharging device 7 provided in the DC power line 6, and the storage battery 10 is charged by the charging device 8 through the switch 12.
[0017]
On the other hand, when the wind turbine generated power is reduced and the direct-current converted power is lower than the power consumption, the AC / DC converter 5 lowers the frequency of the reactive power and stores the surplus energy stored as the rotational increase energy. Recover. Furthermore, when the supply power to the power system line 15 is insufficient, the discharge device 11 discharges the battery 10 and supplies it to the DC line 6.
[0018]
In this way, wind turbine power that fluctuates with wind speed fluctuations can be smoothed and fed to the system by frequency control of reactive power, so there is no disturbance to the system during parallel operation in a small system, and The constant frequency and constant voltage control can supply power of a constant frequency and a constant voltage to the system, so that the wind turbine can be operated independently.
[0019]
FIG. 3 shows a modification of the second embodiment, in which a heater 9 is provided on the output side of the surplus power discharge device.
According to such a device, in the excessive supply state in which the power demand (power consumption) of the power system line 15 is smaller than the wind turbine generated power, the storage battery 10 is charged during the excessive supply as shown in the second embodiment. However, when the excessive supply is prolonged, there is a problem that the capacity of the storage battery 10 is exceeded, so that the heater 9 provided on the output side of the surplus power discharge device 7 is discharged.
[0020]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention corresponding to FIG. 1, the surplus fluctuation of the wind turbine is temporarily stored as rotational energy by increasing the blade rotation speed, and the shortage is stored as rotational increase energy. Since the surplus energy that has been stored can be recovered, fluctuations in the power supplied to the system can be suppressed, and this has the advantage that disturbance to the system can be suppressed even in a small-scale system.
[0021]
Further, according to the invention described in claim 2 corresponding to FIG. 2, since the charging / discharging mechanism by the storage battery is effectively combined with the invention described in claim 1, the fluctuation of the wind turbine generated electric power, the surplus is the blade rotation described above. Since the rotational energy is temporarily stored as rotational energy and the storage battery is charged by the increase in the number, the shortage can be discharged from the storage battery together with the recovery of the accumulated rotational energy. Therefore, the power supplied to the system is more effective than the invention according to claim 1. There is an advantage in that fluctuations in the system can be suppressed, and disturbance to the system can be suppressed even in a small-scale system.
In any of the inventions, the power, the system frequency, and the system voltage can be made constant by controlling the system voltage and frequency with a DC / AC converter, so that the wind turbine can be operated alone.
[0022]
In the invention according to claim 3, since the discharge mechanism by the heater is effectively combined with the invention according to claim 2, the excessive supply state in which the power demand (power consumption) of the power system line becomes smaller than the wind turbine generated power is long-term. Even when the capacity of the storage battery is exceeded, stable surplus power can be absorbed by the discharge of the heater.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an overall configuration of a wind turbine generator as a first embodiment of the present invention.
FIG. 2 is a system diagram showing an overall configuration of a wind turbine generator as a second embodiment of the present invention.
FIG. 3 is a system diagram showing an overall configuration of a wind turbine generator as a third embodiment of the present invention.
FIG. 4 is a system diagram showing an overall configuration of a conventional wind turbine generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Windmill blade 2 Windmill drive shaft 3 Blade pitch angle drive device 4 Induction generator 5 AC / DC converter 6 DC power line 7 Surplus power discharge device 8 Charging device 9 Heater 10 Storage battery 11 Discharge device 12 Switcher 13 DC / AC conversion 14 AC / DC converter 15 System line

Claims (3)

ピッチ角を調整可能に構成した風車ブレードに駆動軸を介して誘導発電機を連結し、該発電機よりの交流電力からなる風車発生電力をAC/DC変換器により直流電力に変換したのち、更にDC/AC変換器により交流電力に変換して電力系統に供給する風力発電装置において、
前記風車発生電力が、電力系統側の消費電力を上回る場合には、前記AC/DC変換器にて無効電力の周波数を上昇させて風車ブレードの回転数を上昇させることにより回転上昇エネルギーとして蓄えるとともに、この回転数の上昇が所定の回転数を超えると、前記風車ブレードが所定の回転数内となるように前記ピッチ角を操作して制御し、
一方、前記風車発電電力が、電力系統側の消費電力を下回る場合には、前記AC/DC変換器にて無効電力の周波数を下降させて、回転上昇エネルギーとして蓄えていた余剰エネルギーを回収することを特徴とする風力発電装置の電力制御方法。
An induction generator is connected to a wind turbine blade configured to be adjustable in pitch angle via a drive shaft, and wind turbine generated power consisting of AC power from the generator is converted into DC power by an AC / DC converter. In a wind turbine generator that is converted into AC power by a DC / AC converter and is supplied to a power system,
The wind turbine generator power, when above the power consumption of the electric power system side, Ru stored as rotation increase energy by increasing the rotational speed of the AC / DC converter increases the frequency of the reactive power in to the wind turbine blade At the same time, when the increase in the rotational speed exceeds a predetermined rotational speed, the pitch angle is operated and controlled so that the windmill blade is within the predetermined rotational speed,
On the other hand, when the wind turbine generated power is lower than the power consumption on the power system side, the frequency of the reactive power is lowered by the AC / DC converter, and the surplus energy stored as the rotation increasing energy is recovered. A power control method for a wind turbine generator.
ピッチ角を調整可能に構成した風車ブレードに駆動軸を介して誘導発電機を連結し、該発電機よりの交流電力からなる風車発生電力をAC/DC変換器により直流電力に変換したのち、更にDC/AC変換器により交流電力に変換して電力系統に供給するとともに、前記直流電力ライン上に風車発電電力の余剰電力を蓄電池に蓄える充電装置と、また不足電力を前記蓄電池より供給するための放電装置を具えてなる風力発電装置において、
前記風車発生電力が、電力系統側の消費電力を上回る場合には、前記蓄電池への充電と並行して、前記AC/DC変換器にて無効電力の周波数を上昇させて風車ブレードの回転数を上昇させることにより回転上昇エネルギーとして蓄えるとともに、この回転数の上昇が所定の回転数を超えると、前記風車ブレードが所定の回転数内となるように前記ピッチ角を操作して制御し、
一方、前記風車発電電力が、電力系統側の消費電力を下回る場合には、前記蓄電池よりの放電と並行して前記AC/DC変換器にて無効電力の周波数を下降させて、回転上昇エネルギーとして蓄えていた余剰エネルギーを回収することを特徴とする風力発電装置の電力制御方法。
An induction generator is connected to a wind turbine blade configured to be adjustable in pitch angle via a drive shaft, and wind turbine generated power consisting of AC power from the generator is converted into DC power by an AC / DC converter. A DC / AC converter converts the AC power into an electric power system and supplies it to the power system, and also stores a surplus power of the wind turbine generated power on the DC power line in the storage battery, and supplies the insufficient power from the storage battery. In a wind turbine generator comprising a discharge device,
The wind turbine generator power, when above the power consumption of the electric power system side, in parallel with the charging of the battery, the rotational speed of the wind turbine blades by increasing the frequency of the reactive power in the AC / DC converter Rutotomoni stored as rotation increase energy by increasing, the increase of the rotational speed exceeds a predetermined rotational speed, the wind turbine blade is controlled by manipulating the pitch angle to be within a predetermined speed,
Meanwhile, the wind turbine generator power, if less than the power consumption of the electric power system side, by lowering the frequency of the reactive power in front SL AC / DC converter in parallel with the discharge from the battery, rotation increase energy A method for controlling the power of a wind turbine generator, characterized by recovering surplus energy stored as.
前記直流電力ライン上に風車発電電力の余剰電力を放出するヒータを設け、前記風車発生電力が、電力系統側の消費電力を上回る場合には蓄電池への充電を行うとともに、該充電量が蓄電池の容量を超える恐れのある場合に、前記ヒータにて放電することを特徴とする請求項2記載の風力発電装置の電力制御方法。A heater for releasing surplus power of the wind turbine generated power is provided on the DC power line, and when the wind turbine generated power exceeds the power consumption on the power system side, the storage battery is charged and the amount of charge is stored in the storage battery. The power control method for a wind turbine generator according to claim 2 , wherein when there is a risk of exceeding the capacity, the heater discharges.
JP26485897A 1997-09-11 1997-09-11 Power control method for wind turbine generator Expired - Fee Related JP3637186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26485897A JP3637186B2 (en) 1997-09-11 1997-09-11 Power control method for wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26485897A JP3637186B2 (en) 1997-09-11 1997-09-11 Power control method for wind turbine generator

Publications (2)

Publication Number Publication Date
JPH1182282A JPH1182282A (en) 1999-03-26
JP3637186B2 true JP3637186B2 (en) 2005-04-13

Family

ID=17409207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26485897A Expired - Fee Related JP3637186B2 (en) 1997-09-11 1997-09-11 Power control method for wind turbine generator

Country Status (1)

Country Link
JP (1) JP3637186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338978B2 (en) 2011-02-10 2012-12-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator having electrical storage device and acoustic noise suppression method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684399B2 (en) * 2000-09-06 2011-05-18 株式会社三社電機製作所 Wind power generator
PT1433238T (en) 2001-09-28 2017-08-29 Wobben Properties Gmbh Method for operating a wind park
JP4135420B2 (en) * 2002-07-19 2008-08-20 株式会社明電舎 Wind power generator output power smoothing control device
JP4894906B2 (en) * 2009-11-13 2012-03-14 株式会社日立製作所 Wind power generation system control method
KR20130005261A (en) * 2011-04-14 2013-01-15 미츠비시 쥬고교 가부시키가이샤 Power output leveling method and apparatus for wind turbine generating facility
WO2013021481A1 (en) 2011-08-10 2013-02-14 三菱重工業株式会社 Control device for wind power plant and control method for wind power plant
JP2013183491A (en) * 2012-02-29 2013-09-12 Wind-Smile Co Ltd Wind power generation control device
JP2013211944A (en) * 2012-03-30 2013-10-10 Hitachi Ltd Battery system
JP6466100B2 (en) * 2014-08-22 2019-02-06 株式会社羽野製作所 Wind power generation control device and wind power generation control method
CN105545591B (en) * 2015-12-30 2018-04-06 科诺伟业风能设备(北京)有限公司 A kind of method for suppressing wind power generating set Turbulent Flow Effects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338978B2 (en) 2011-02-10 2012-12-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator having electrical storage device and acoustic noise suppression method thereof

Also Published As

Publication number Publication date
JPH1182282A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
JP5198791B2 (en) Wind power generation system, control method therefor, and wind power plant using the same
JP5770854B2 (en) Adjustment device for adjusting the angle of attack of the rotor blades of a wind turbine generator
JP4495001B2 (en) Power generation system
CA2409514C (en) Method for operating a wind power station and wind power station
EP2703643B1 (en) Wind power generation system, device using wind power generation system, and method for operating same
JP2003339118A (en) Distributed power supply system
JP3637186B2 (en) Power control method for wind turbine generator
JP2015513890A (en) Method for operating a combination power plant, and a combination power plant
PL210291B1 (en) Separate network and method for operating a separate network
TW200826433A (en) Hybrid power-generating device
CN102265477B (en) Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
JP2010116070A (en) Marine vessel energy system
KR101211114B1 (en) Device and method for low voltage ride through of wind generator
JP3470996B2 (en) Operating method of fuel cell power generator
JP3758359B2 (en) Wind power output stabilization method and apparatus
CN110829898A (en) Starting control method for grid connection of new energy synchronous motor
US20120299425A1 (en) Closed energy combined cycle system and operation method thereof
WO2014051175A1 (en) Device and method for low voltage ride-through of wind power generator
JP4092949B2 (en) Wind power generator equipped with secondary battery, converter control device, and power converter control method
JP3950706B2 (en) Grid interconnection system
JPH1150945A (en) Method for controlling power generating amount of wind power generator
JP3974373B2 (en) Wind power generator and wind power generation method
CN204498036U (en) A kind of excitation unit of double-fed wind power generator
JP4475843B2 (en) Control method of power generation system combining wind power generation and diesel power generation, and power generation system combining wind power generation and diesel power generation
JPH11299295A (en) Control of wind power generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees