WO2014051175A1 - Device and method for low voltage ride-through of wind power generator - Google Patents

Device and method for low voltage ride-through of wind power generator Download PDF

Info

Publication number
WO2014051175A1
WO2014051175A1 PCT/KR2012/007825 KR2012007825W WO2014051175A1 WO 2014051175 A1 WO2014051175 A1 WO 2014051175A1 KR 2012007825 W KR2012007825 W KR 2012007825W WO 2014051175 A1 WO2014051175 A1 WO 2014051175A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
energy storage
storage device
wind
generator
Prior art date
Application number
PCT/KR2012/007825
Other languages
French (fr)
Korean (ko)
Inventor
강정욱
채재훈
정태훈
Original Assignee
주식회사 메가베스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메가베스 filed Critical 주식회사 메가베스
Priority to PCT/KR2012/007825 priority Critical patent/WO2014051175A1/en
Publication of WO2014051175A1 publication Critical patent/WO2014051175A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a low voltage accommodating operation apparatus and method of a wind power generator, and more particularly, a system low voltage accommodating operation of a wind power generator using a bidirectional power converter and an energy storage device can be easily performed, and to improve wind power generation quality.
  • the present invention relates to a low voltage accommodating driving apparatus and method of a wind power generator.
  • the low voltage acceptance operation maintains the connected state without disconnecting the wind power generation from the grid within a predetermined time even when a momentary low voltage condition occurs in the grid, and at a point when the system recovers from the instantaneous low voltage status. It is to send power to the system to perform an operation that contributes to the system recovery.
  • the low voltage acceptance operation function includes a system voltage of a system at which an instantaneous low voltage of the system is in a steady state. It is the ability to operate for 0.625 seconds up to the% level and maintain the grid connection status when the steady state grid voltage recovers more than 90% for up to 3 seconds.
  • LVRT low voltage operation
  • Conventional known low voltage operation (LVRT) methods use Operation at reduced speed / load, variable dc buses and use of derated converters to operate at high currents. with more variable dc bus and higher currents, Additional capacitors on the dc bus, Active crowbar, Energy discharge, and the torque value applied to the generator Changing methods have been applied, and these methods basically use wind turbines to reduce the amount of power generated or consume the generated energy through loads such as resistors.
  • the conventional low voltage accommodation operation method has a very complicated structure due to the method of responding without stopping the wind generator fundamentally, there is a problem that requires a mechanical or electrical modification for the existing wind turbine. .
  • a method of sending only a part of the generated energy to the system without stopping the wind power generator and storing the rest in the energy storage device (ESS) may be applied. Because of the need to fit the wind power generation capacity, there is a cost and technical limitations, such as eventually to increase the capacity of the energy storage (ESS).
  • the current controller gain value according to the wind turbine inductance conversion before and after the grid connection plays an important role for stable grid input.
  • Wind generators using the Double Fed Induction Generation control the stator voltage by controlling the rotor current, and the controlled stator voltage is linked to the grid.
  • DFIG Double Fed Induction Generation
  • the internal parameter values of the generator will fluctuate. This may affect the current controller gain value of the MSC (Machine Side Converter) based on the generator parameters before the grid is energized, resulting in unstable current control.
  • the current control of the MSC side is unstable as the current control of the rotor becomes unstable due to Low Voltage Ride Through (LVRT) generated by the grid. This can cause equipment burnout.
  • LVRT Low Voltage Ride Through
  • the cause of the low voltage acceptance operation is caused by a ground fault in the system and a sudden voltage drop of the system.
  • the wind generator using the double-fed induction generation has an output terminal of the wind generator connected to a grid connected to TR.
  • the method of reducing the generator output by controlling the torque of the generator may be the most effective method of reducing the generator output through the pitch control, but the physical response of the pitch to a short low voltage of several hundreds [ms], such as low voltage acceptance operation
  • the disadvantage is that it is too slow.
  • the method using the active crowbar should be capable of sufficient energy control to control the surplus energy generated by the crowbar, but there is a problem that the power control semiconductor is burned out due to the energy control limit.
  • the present invention has been studied in view of the above-mentioned problems in the prior art, the generation of the wind power generator when a low voltage below a certain level in the system stops the power generation at the same time using the power converter and energy storage device (ESS) toward the system
  • LVRT low voltage acceptance operation
  • Another object of the present invention is to charge and discharge wind energy by using a power converter (PCS) and an energy storage device (ESS) even in a low voltage acceptance operation (LVRT) situation in which there is no low voltage generation below a certain level in the system.
  • PCS power converter
  • ESS energy storage device
  • LVRT low voltage acceptance operation
  • Wind turbine driving apparatus for achieving the above object is a system for low voltage acceptance operation, the blade is mounted on a rotatable shaft to produce rotational energy from the wind; A generator for generating electric power from the rotational energy of the blades; A power converter for converting the electric power produced by the generator into electric power of a form suitable for supplying a system connected to the wind turbine; A power converter including a DC / DC or an AC / DC bidirectional converter depending on the installation position to randomly charge and discharge the power of the energy storage device; An energy storage device connected to the power converter to supply power to the system when the voltage of the system falls below a predetermined level; Characterized in that configured to include.
  • Wind turbine driving method for achieving the above object is for the low voltage acceptance operation of the system, when the voltage of the system falls below a certain level, the first generation of the wind turbine at the first point Discontinuing operation and simultaneously applying power supply from the energy storage system to the grid; Preparing power supply from the energy storage device to the system from the first time point to a second time point at which the voltage of the system starts to rise; Starting to supply power from the energy storage device to the system until a third time point, when the voltage of the system is normally restored; Monitoring whether the voltage of the system has returned to a normal state and restarting the wind generator if it is determined that the voltage of the system has returned to the normal state; Supplying power from the energy storage system to the grid until a fourth time point when the output of the wind power generator reaches a normal level; Characterized in that it comprises a.
  • Wind turbine driving apparatus for achieving the above object is a system for low voltage acceptance operation, the blade is mounted on a rotating shaft to produce rotational energy from the wind, and to generate power from the rotational energy of the blade
  • a wind turbine generator comprising a generator and a power converter for converting the power produced by the generator into a power suitable for supplying the grid
  • the main switch is installed between the power converter and the grid of the wind turbine
  • the first energy storage device is connected between the converter and the main switch by the first switch
  • the second energy storage device is connected by the second switch between the main switch and the grid.
  • Wind generator operation method for achieving the above object is for the low voltage acceptance operation of the system, when the voltage of the system falls below a predetermined size, the opening of the main switch installed between the system and the wind turbine and Simultaneously stopping the power generation operation of the wind turbine;
  • the second switch is turned on so that power of the second energy storage device is supplied to the grid during the low voltage receiving operation period;
  • the grid voltage reaches a steady state, maintaining the first switch on to restart the wind power generator and supplying reactive power from the first energy storage device to the wind power generator;
  • the first energy storage device and the second energy storage device may implement an operation for stabilizing power quality.
  • the present invention provides the following effects.
  • a low voltage below a certain level occurs in a system in which a wind generator (small) is connected
  • power generation of the wind generator is stopped, and power is supplied using an energy storage device (ESS) including a power converter (PCS).
  • ESS energy storage device
  • PCS power converter
  • the energy storage device (ESS) including the power conversion device (PCS) according to the present invention has the advantage that can be applied to the existing wind turbine as well as a new wind generator.
  • the present invention can greatly reduce the capacity of the energy storage device (ESS) because it utilizes the discharge capacity of the energy storage device (ESS).
  • FIG. 1 is a diagram illustrating a low voltage acceptance operation (LVRT) function required for a wind power generator (small) when a momentary low voltage is generated in a system.
  • LVRT low voltage acceptance operation
  • FIG. 2 is a block diagram illustrating an example of installing an energy storage device (ESS) including a power conversion device (PCS) according to an embodiment of the present invention as a separate device between a wind generator and a grid;
  • ESS energy storage device
  • PCS power conversion device
  • FIG. 3 is a block diagram of installing an energy storage device (ESS) including a power conversion device (PCS) according to an embodiment of the present invention inside a power converter included in a wind turbine;
  • ESS energy storage device
  • PCS power conversion device
  • FIG. 4 is a detailed view of a wind turbine including an energy storage device (ESS) including a power conversion device (PCS) according to an embodiment of the present invention
  • FIG. 5 is a graph for explaining a method of discharging power to a grid in an energy storage device including a power conversion device (PCS) according to an embodiment of the present invention
  • PCS power converter
  • FIG. 7 is a schematic view showing a wind power generator using a double excitation method
  • FIG. 8 is a schematic view showing an example of a low voltage accommodating driving device of a wind turbine according to another embodiment of the present invention.
  • FIG. 9 is a view illustrating an operation of a first switch B1 and a second switch B2 according to an opening of a main switch and a first time with respect to a time axis of the low voltage accommodating and operating device of a wind power generator according to another embodiment of the present invention. And charge and discharge characteristics of the second energy storage devices ESS-1 and ESS-2.
  • FIG. 10 is a flowchart illustrating a low voltage acceptance driving method according to another embodiment of the present invention.
  • Low voltage acceptance operation (LVRT) method of the wind power generator according to the present invention is based on the existing concept that the wind power generator or wind power plant maintains the power generation state for a certain period of time while maintaining a system linkage when a low voltage below a certain level occurs in the system. Rather than focusing on the system, if the system generates a low voltage below a certain level, the grid connection is maintained but the wind turbine is stopped and the system is powered by using an energy storage device (ESS) instead of the wind power generation. The main focus is on meeting the needs.
  • ESS energy storage device
  • the present invention is to provide a system low-voltage receiving operation apparatus that can be applied to the existing wind turbine (small), as well as a new wind generator (small), generated in the wind generator (small) connected to the grid
  • An energy storage device including a two-way power conversion system (PCS) that can charge and discharge electricity is installed between the system and the wind power plant.
  • PCS power conversion system
  • Another point is to meet the requirements of Low Voltage Ride Through (LVRT), which is required for the system, and to maximize the power quality from wind power generation.
  • LVRT Low Voltage Ride Through
  • the system low voltage acceptance operation apparatus of the wind turbine includes a blade 12 mounted on a rotatable shaft and producing rotational energy from the wind;
  • the generator 14 generates electric power from the rotational energy of the blade 12 and converts the electric power produced by the generator 14 into a power suitable for supplying the system 30 connected to the wind turbine 10.
  • a power converter 16 (PCS: Power Conversion System) including a DC / DC or AC / DC bidirectional converter depending on the installation position to randomly charge and discharge electric power to the energy storage device, It is configured to include an energy storage device 20 (ESS: Energy Storage System) connected to the power converter 22.
  • the generator 14 generates electric power from the rotational energy of the blade 12, and the generated electric power is in the form of AC, but is not suitable to be directly supplied to the system, so that the power converter 16 generates the generator 14.
  • the power produced by is converted into a power of a form suitable for supplying the system 30 associated with the wind turbine (10).
  • the power converter 16 is an AC / DC converter 24 for converting the AC power produced by the generator 14 to DC, as shown in the accompanying FIG. DC / AC inverter 26 to convert to appropriate AC power.
  • the power converter 16 is not included in the fixed speed type (Fixed Speed Type) according to the characteristics of the wind generator, and corresponds to about 30% of the capacity of the wind generator in the double-fed induction generation (DFIG) Only the power converter capacity is connected to the rotor, and the direct drive method (WRSG: Wound Rotor Synchronous Generator & PMSG: Permanent Magnetic Synchronous Generator) includes power converter capacity capable of handling 100% of the wind turbine capacity.
  • Fixed Speed Type the fixed speed type
  • DFIG double-fed induction generation
  • the power conversion system 22 (PCS: Power Conversion System) includes a DC / DC or AC / DC bi-directional converter depending on the installation location to randomly charge and discharge power to the energy storage device (20).
  • This bi-directional power conversion system is an energy storage device to perform a low voltage acceptance operation (LVRT) function when the power generation of the wind turbine (small) is stopped due to the low voltage state below the predetermined level.
  • a command for supplying power to the system 30 from 20 is received, and control is performed to properly supply power from the energy storage device 20 to the system.
  • the power conversion system 22 (PCS: Power Conversion System) is authorized to supply power stored in the energy storage device 20 to the system at a first point when the voltage of the system drops below a predetermined size.
  • the power supply is prepared until the second time point at which the system voltage starts to rise, and the power from the energy storage device 20 until the third time point at which the system voltage starts to rise and is restored to a normal state.
  • the energy storage device 20 (ESS: Energy Storage System) including the power conversion system 22 (PCS: Power Conversion System) is provided as a separate individual device as shown in Figure 2, excluding the power converter, It may be installed between the wind generator 10 and the system 30.
  • ESS Energy Storage System
  • PCS Power Conversion System
  • the energy storage device 20 having the power conversion device 22 when the energy storage device 20 having the power conversion device 22 is combined in the existing power converter, since the retrofitting work and the cost thereof are very expensive, the power conversion device 22 without the retrofitting work is required. It is preferable to directly connect the energy storage device 20 between the power converter 16 and the system 30.
  • the energy storage system 20 (ESS: Energy Storage System) including the power conversion system 22 (PCS: Power Conversion System) is a power converter 16 included in the wind generator 10, as shown in FIG. Can be installed inside of.
  • ESS Energy Storage System
  • PCS Power Conversion System
  • the energy storage device 20 having the power converter 22 when the energy storage device 20 having the power converter 22 is installed in a new wind turbine, the energy storage device 20 having the power converter 22 is directly combined with the power converter 16. It is installed together with the power converter, the power conversion device 22 output terminal is the AC / DC converter 24 of the power converter 16 in the state that the energy storage device 20 is connected to the input terminal of the power converter 22 Connected between the DC / AC inverters 26.
  • the power converter 16 without a separate power converter is included. Only the energy storage device 20 may be connected between the AC / DC converter 24 and the DC / AC inverter 26 of the power source, and only the energy storage device may implement a system low voltage acceptance operation of the wind power generator according to the present invention. .
  • the energy storage device 20 should always store more than a certain level of energy in order to respond to the low-voltage acceptance operation (LVRT) requirements of the system at any time, and additionally the quality of wind power generation through the charge and discharge control of wind energy It is desirable to calculate the overall dose, taking into account the improvement target levels.
  • LVRT low-voltage acceptance operation
  • the energy storage device 20 itself includes a battery management system (BMS: Battery Management System) which is a kind of control means for safety management, temperature management, state of charge (SOC) management, communication functions, etc. Connected.
  • BMS Battery Management System
  • SOC state of charge
  • the energy storage device 20 is adopted to have a high discharge capacity to supply power to the system side through the discharge within a quick time, lithium ion battery (Li-ion), lithium iron phosphate battery (LiFePO 4 ), Lithium Manganese Oxide Battery (LiMn 2 O 4 ), Lithium Cobalt Oxide Battery (Lithum Cobalt Oxide), Lithium Polymer Battery (Li-ion Polymer), Lithium Air Battery, Ni-MH Battery, Nickel One or more of cadmium batteries (Ni-Cd), NaS batteries and supercapacitors can be used.
  • lithium ion battery Li-ion
  • LiFePO 4 lithium iron phosphate battery
  • LiMn 2 O 4 Lithium Manganese Oxide Battery
  • LiMn 2 O 4 Lithium Cobalt Oxide Battery
  • Lithium Polymer Battery Lithium Air Battery
  • Ni-MH Battery Nickel One or more of cadmium batteries (Ni-Cd), NaS batteries and supercapacitors
  • a low voltage acceptance operation method based on the above-described system low voltage acceptance operation apparatus of the present invention that is, a low voltage acceptance operation method performed by applying a command to supply power from the energy storage device to the system to the power conversion apparatus will be described below. Same as
  • FIG. 6 is a flowchart illustrating a method according to a preferred embodiment of the present invention for applying a command to supply power to a system from an energy storage device, and FIG. 5 to supply power to the system from an energy storage device.
  • LVRT reference diagram for explaining how to apply a command to the power converter and reference diagram showing the amount of energy discharge.
  • the power converter PCS
  • PCS power converter
  • a step (S101) of continuously monitoring whether the voltage of the system falls below a predetermined size to determine whether a low voltage situation occurs in the system is performed.
  • a time point at which the voltage of the system falls below a predetermined magnitude will be referred to as a first time point.
  • the wind power generation is stopped according to the wind generator stop algorithm (S102), and at the same time, the discharge of the energy storage device 20 is applied (S103).
  • the power converter 22 is discharged and starts to prepare for supply of power from the energy storage device 20 to the grid 30.
  • the time when the voltage of the system 30 falls below a predetermined magnitude, that is, the first time point corresponds to t0. It can be seen that, at this t0, the voltage of the system has dropped to Va. Accordingly, the power converter 22 can supply power from the energy storage device 20 to the system 30 while monitoring the voltage state of the system 30. Get ready.
  • a preparation process for supplying power from the energy storage device 20 to the system 30 As shown in FIG. 5, power supply preparation from the energy storage device to the system must be completed until t1, which is a point in time when the voltage of the system rises (hereinafter, referred to as a second time point).
  • the grid voltage sampling is periodically repeated for a predetermined time.
  • a slope for recovering the grid voltage is obtained and is proportional to the slope.
  • the discharge amount is increased, and the time to reach the third time point t2 can be predicted to be used for preparing the wind power generator (small).
  • the discharge of the energy storage device 20 is continued to monitor whether the voltage of the system 30 returns to the normal state (S106), and when it is determined that the voltage of the system 30 returns to the normal state, the wind power generator 10 ) Is restarted (S107).
  • the wind power generator 10 is restarted, and the energy storage device until the output according to the wind power generation reaches a normal level, that is, to the point (normally referred to as the fourth time point) at which power is normally supplied to the system ( Power supply to the system 30 is continued in 20) (S108).
  • the third time point t2 to the fourth time point t3 are the time taken for the wind power generator 10 to restart to produce power normally, wherein the third time point t2 to the fourth time point ( Since the energy storage device 20 discharges a lot of power in the section between t3), narrowing the range between the sections is effective to reduce the capacity of the energy storage device and also consumes invalidity when the wind turbine is restarted. Power can be supplied from the energy storage device.
  • ESS energy storage device 20 including the power converter 22 (PCS).
  • PCS power converter 22
  • the energy storage device 20 having a good instantaneous discharge capacity, it is possible to supply power to the system side through a large amount of discharge in a short time, the capacity of the energy storage device 20 Can be further reduced.
  • the low voltage accommodating operation apparatus of a wind power generator has an emphasis on solving the low voltage accommodating operation using an energy storage system (ESS) having an interlock structure.
  • ESS energy storage system
  • FIG. 8 which shows a low voltage accommodating and operating device of a wind turbine according to another embodiment of the present invention, an interlock switch (switch) having an interlock structure between the power converter 16 and the grid 30 of the wind turbine 10.
  • the dual energy storage device is connected by.
  • the main switch A1 is installed between the power converter 16 and the grid 30 of the wind power generator 10, and the first energy storage device ESS-1 between the power converter 16 and the main switch A1.
  • the second energy storage device (ESS-2) is connected by the second switch (B2) between the main switch (A1) and the system (30).
  • the main switch A1, the first switch B1, and the second switch B2 are arranged in an interlock structure with each other.
  • FIGS. 9 and 10 attached to a low voltage acceptance operation method of a wind power generator according to another embodiment of the present invention.
  • FIG. 9 illustrates the operation of the first switch B1 and the second switch B2 according to the opening of the main switch, and the charge / discharge characteristics of the first and second energy storage devices ESS-1 and ESS-2 with respect to the time axis.
  • 10 is a flowchart illustrating a low voltage accommodation driving method according to another embodiment of the present invention.
  • a step (S201) of continuously monitoring whether the voltage of the system falls below a predetermined size is performed.
  • the second energy storage device ESS-2 connected to the grid terminal by the second switch B2 has discharge characteristics, so that the main switch A1 is discharged.
  • the second energy storage device (ESS-2) becomes a virtual wind power generator to supply power to the grid during the low voltage receiving operation period in order to appear that there is no deviation of the wind turbine on the grid due to the opening.
  • the first energy storage device ESS-1 in the ON state of the first switch B1 is turned on.
  • the main switch (A1) is turned on to properly connect the wind generator 10 and the grid (30) (ON).
  • the first switch B1 is kept on and the second switch B2 is sequentially opened to continuously charge and discharge the first and second energy storage devices ESS-1 and ESS-2. Will be made.
  • the first energy storage device ESS-1 enters a discharge standby state (S206). The discharge is continued from the energy storage device ESS-2 to the system 30 (S207).
  • the first energy storage device ESS-1 is turned on in the state where the first switch B1 is turned on. Discharge is supplied to the generator 10 by the reactive power required for restart (S209), and at the same time the discharge of the second energy supply device (ESS-2) is continued (S210) and the voltage of the system 30 is stabilized
  • the main switch A1 is turned on (ON) in order to normally connect the wind power generator 10 and the system 30 (S212).
  • the voltage of the system 30 is maintained in a stable state, and after a predetermined time elapses, the main switch A1 is turned on (ON) and the second switch B2 is opened (off), thereby providing the wind generator 10.
  • the first energy storage device ESS-1 which continuously charges, serves as a buffer. After a predetermined time, only the wind turbine 10 is connected to the system 30 to supply power.
  • the wind turbine 10 and the grid 30 are instantaneously linked, so that the power of the grid 30 is transferred to the wind turbine 10.
  • the reverse algae flowing to the bar is generated, and the reverse algae is buffered in the first energy storage device ESS-1.
  • the main switch A1 is kept on in the state in which the wind power generator 10 and the system 30 are connected to each other.
  • the first switch B1 By turning on the first switch B1 to supply a certain level of reactive power from the first energy storage device ESS-1 to the wind turbine, it is possible to improve the power generation efficiency of the wind turbine 10.
  • the low voltage acceptance operation (LVRT) function required for the wind generator (small) in the system can be sufficiently satisfied, and After the low voltage acceptance operation (LVRT) is completed, the energy storage devices can be used for improving the power quality.

Abstract

The present invention relates to a device and a method for the low voltage ride-through of the systems of a wind power generator, wherein the low voltage ride-through of a wind power generator can be readily carried out using a bidirectional power conversion system and an energy storage system, and improvement in the quality of the wind power generation can be promoted. That is, the present invention is to provide an economical and efficient low voltage-ride through a device resolving the low voltage ride-through of systems by using the discharge capacity of the energy storage system with respect to a new wind power generator (plant) and the existing wind power generator (plant), wherein an energy storage system including a bidirectional power conversion system for charging or discharging electricity generated from a wind power generator connected to the system is provided and operated so as to meet the low voltage ride-through (LVRT) function required for the wind power generator (plant) when a low voltage below a predetermined level is generated in the system and maximize the electricity quality produced from the wind power generation.

Description

풍력발전기의 저전압수용운전 장치 및 방법Low voltage receiving operation device and method of wind power generator
본 발명은 풍력발전기의 저전압수용운전 장치 및 방법에 관한 것으로서, 더욱 상세하게는 양방향 전력변환장치 및 에너지저장장치를 이용하여 풍력발전기의 계통 저전압수용운전이 용이하게 이루어질 수 있고, 풍력발전 품질 향상을 도모할 수 있도록 한 풍력발전기의 저전압수용운전 장치 및 방법에 관한 것이다.The present invention relates to a low voltage accommodating operation apparatus and method of a wind power generator, and more particularly, a system low voltage accommodating operation of a wind power generator using a bidirectional power converter and an energy storage device can be easily performed, and to improve wind power generation quality. The present invention relates to a low voltage accommodating driving apparatus and method of a wind power generator.

잘 알려진 바와 같이, 화석연료의 고갈, 지구온난화 등의 대책으로 신재생 에너지에 대한 수요가 꾸준하게 증가하고 있고, 그 중에서도 현재 세계적으로 풍력 발전은 그 설치 용량이 급증하고 있으며, 이는 계통에서 풍력 발전이 차지하는 전력량 또한 급격하게 증가하는 것을 의미한다.As is well known, demand for renewable energy is steadily increasing due to the depletion of fossil fuels and global warming. Among them, the installed capacity of wind power is increasing rapidly in the world. The amount of power consumed also means a sharp increase.
그러나, 자연은 인간이 원하는 것을, 원하는 만큼, 인간이 원할 때 공급해 주지 않으며, 자연의 변화에 따라 발전량은 급격하게 변동하고 이는 전력계통 전체에 악영향을 주게 된다.However, nature does not supply what humans want, as much as they want, when humans want it, and the amount of power changes rapidly according to the change of nature, which adversely affects the entire power system.
또한, 풍력 발전이 전력계통에서 점차 차지하는 비중의 증가는 계통의 외란에 대해 발전을 멈추는 것이 아니라, 계통에 협조하는 역할을 수행하도록 요구하며, 이에 이미 많은 나라에서는 풍력 발전소에 대해 계통연계규정(Grid Code)을 만들어 법제화하고 있다.In addition, the increasing share of wind power in the power system requires not only to stop power generation from disturbing the system, but also to cooperate with the system. Code is being legislated.
특히, 저전압수용운전(LVRT)은 계통에서 순간적인 저전압 상태가 발생하더라도, 소정의 시간 이내에는 풍력발전을 계통으로부터 떼어내지 않고 계속 연결된 상태를 유지하며, 계통이 순간 저전압 상태에서 회복되는 시점에서 소정의 전력을 계통으로 보내어 계통 회복에 기여하는 동작을 수행하도록 하는 것이다.In particular, the low voltage acceptance operation (LVRT) maintains the connected state without disconnecting the wind power generation from the grid within a predetermined time even when a momentary low voltage condition occurs in the grid, and at a point when the system recovers from the instantaneous low voltage status. It is to send power to the system to perform an operation that contributes to the system recovery.
보다 상세하게는, 계통의 순간 저전압 발생시 풍력발전기(소)에 요구되는 저전압수용운전(LVRT) 기능을 예시한 도 1을 참조하면, 저전압수용운전 기능은 계통의 순간 저전압이 정상상태의 계통전압 20% 수준까지는 0.625초 동안 동작하고, 최대 3초 동안 정상상태의 계통전압이 90% 이상 회복될 경우 계통연계 상태를 계속 유지해야 하는 능력을 말한다.More specifically, referring to FIG. 1 illustrating the low voltage acceptance operation (LVRT) function required for a wind power generator (small) when an instantaneous low voltage of a system occurs, the low voltage acceptance operation function includes a system voltage of a system at which an instantaneous low voltage of the system is in a steady state. It is the ability to operate for 0.625 seconds up to the% level and maintain the grid connection status when the steady state grid voltage recovers more than 90% for up to 3 seconds.
종래에 알려진 저전압수용운전(LVRT) 방법은 감소된 속도/부하에서의 운전법(Operation at reduced speed/load), 가변 dc 버스 및 고전류로 동작되도록 정격 출력이 낮추어진 컨버터 사용(Use of derated converters to operate with more variable dc bus and higher currents), dc 버스에 커패시터 추가(Additional capacitors on the dc bus), 액티브 크로우바(Active crowbar) 사용, 에너지 배출법(Energy discharge), 제너레이터에 인가된 토크 값을 임의대로 변경하는 방법 등이 적용되어 왔으며, 이들 방법에서는 기본적으로 풍력발전기를 가동시키며 발전량을 줄이거나 발전된 에너지는 저항 등의 부하를 통해 소비하거나 등의 개념을 복합적으로 사용한 것이다.Conventional known low voltage operation (LVRT) methods use Operation at reduced speed / load, variable dc buses and use of derated converters to operate at high currents. with more variable dc bus and higher currents, Additional capacitors on the dc bus, Active crowbar, Energy discharge, and the torque value applied to the generator Changing methods have been applied, and these methods basically use wind turbines to reduce the amount of power generated or consume the generated energy through loads such as resistors.
그러나, 상기한 종래의 저전압수용운전 방법은 근본적으로 풍력 발전기를 멈추지 않고 대응하는 방법으로 인해 매우 복잡한 구조를 가지게 되며, 기존에 설치되어 있는 풍력발전기에 대해서는 기계적 또는 전기적 개조를 필요로 하는 문제점이 있다.However, the conventional low voltage accommodation operation method has a very complicated structure due to the method of responding without stopping the wind generator fundamentally, there is a problem that requires a mechanical or electrical modification for the existing wind turbine. .
또한, 종래의 저전압수용운전 방법으로서, 풍력발전기를 멈추지 않고 발전된 에너지의 일부만을 계통으로 보내고, 나머지는 에너지저장장치(ESS)에 저장하는 방법이 적용될 수 있지만, 에너지저장장치 특성상 일시적 충전이라 하더라도 충전부를 풍력발전 용량에 맞추어야 하므로, 결국 에너지저장장치(ESS) 용량을 키워야 하는 등 비용적, 기술적 한계를 가지고 있다.In addition, as a conventional low voltage accommodating operation method, a method of sending only a part of the generated energy to the system without stopping the wind power generator and storing the rest in the energy storage device (ESS) may be applied. Because of the need to fit the wind power generation capacity, there is a cost and technical limitations, such as eventually to increase the capacity of the energy storage (ESS).
한편, 이중여자 발전기를 사용하는 풍력발전기에서 안정적인 계통투입을 위해서는 계통연계 전/후의 풍력발전기 인덕턴스 변환에 따른 전류제어기 이득값이 중요한 역할을 한다.On the other hand, in the wind power generator using a double excitation generator, the current controller gain value according to the wind turbine inductance conversion before and after the grid connection plays an important role for stable grid input.
이중여자방식(DFIG : Double Fed Induction Generation)을 이용하는 풍력발전기는 회전자 전류제어를 함으로써, 고정자의 전압을 제어하고, 제어된 고정자 전압은 계통과 연계된다.Wind generators using the Double Fed Induction Generation (DFIG) control the stator voltage by controlling the rotor current, and the controlled stator voltage is linked to the grid.
풍력발전기가 계통과 연계되는 순간 발전기의 내부 파라미터값이 변동하게 되며, 이는 계통 투입전 발전기 파라미터에 근거한 MSC(Machine Side Converter)측 전류제어기 이득값에 영향을 미쳐서 전류제어가 불안전하게 되는 원인이 되거나, 전류제어 응답성을 낮추는 요인이 되며, 뿐만아니라 계통(Grid)에 의해 발생된 저전압수용운전(LVRT: Low Voltage Ride Through)에 의해 회전자의 전류제어가 불안정하게 됨에 따라 MSC측 전류제어도 불안정하게 되어 장비의 소손이 야기된다.As soon as the wind turbine is connected to the grid, the internal parameter values of the generator will fluctuate. This may affect the current controller gain value of the MSC (Machine Side Converter) based on the generator parameters before the grid is energized, resulting in unstable current control. In addition, the current control of the MSC side is unstable as the current control of the rotor becomes unstable due to Low Voltage Ride Through (LVRT) generated by the grid. This can cause equipment burnout.
참고로, 저전압수용운전(LVRT)의 원인은 계통에서 지락사고가 발생하여 계통의 급격한 전압강하가 발생되는 것에 기인한다.For reference, the cause of the low voltage acceptance operation (LVRT) is caused by a ground fault in the system and a sudden voltage drop of the system.
이중여자방식(DFIG : Double Fed Induction Generation)을 이용하는 풍력발전기는 첨부한 도 7에 도시된 바와 같이, 풍력발전기의 출력단이 계통에 연계 TR로 연결된다.As shown in the accompanying FIG. 7, the wind generator using the double-fed induction generation (DFIG) has an output terminal of the wind generator connected to a grid connected to TR.
이때, 계통에 이상이 발생하여 급격한 전압강하가 발생하게 되면, 이중여자방식(DFIG) 제너레이터의 고정자 전압이 급격하게 강하되어, 풍력발전기에서는 고정자 전압을 정상상태로 만들기 위하여 회전자의 회전속도를 증가시키게 되고, 그에 따라 잉여 에너지가 발생하게 되며, 이에 잉여 에너지는 MSC 및 DC-링크단의 전압 상승을 초래하게 된다.At this time, if an abnormality occurs in the system and a sudden voltage drop occurs, the stator voltage of the DFIG generator drops sharply, and the wind speed of the rotor increases to make the stator voltage normal. As a result, surplus energy is generated, which leads to an increase in voltage of the MSC and the DC-link stage.
따라서, 잉여 에너지를 처리하기 위한 추가적인 제어 방법들이 필요하게 되며, 그 중 계통 전압에 따른 발전기의 토크를 제어하여 발전기 출력을 줄여주는 방법이 공개특허 10-2009-53009(2009.05.27)에 개시되어 있고, DC-링크단의 액티브 크로우바(active croebar)를 이용하여 해결하는 방법이 공개특허 10-2008-90006(2008.10.08)에 개시되어 있다.Therefore, additional control methods for processing surplus energy are required, and a method of reducing generator output by controlling torque of a generator according to a grid voltage is disclosed in Korean Patent Laid-Open Publication No. 10-2009-53009 (2009.05.27). In addition, a method for solving the problem by using an active croebar of the DC-link stage is disclosed in Korean Patent Laid-Open Publication No. 10-2008-90006 (2008.10.08).
그러나, 발전기의 토크를 제어하여 발전기 출력을 줄이는 방법은 피치 제어를 통해 발전기의 출력을 줄이는 방법이 가장 효과적일 수 있으나, 저전압수용운전과 같이 수백[ms]의 짧은 저전압에 대한 피치의 물리적인 응답속도가 너무 느리다는 단점이 있다.However, the method of reducing the generator output by controlling the torque of the generator may be the most effective method of reducing the generator output through the pitch control, but the physical response of the pitch to a short low voltage of several hundreds [ms], such as low voltage acceptance operation The disadvantage is that it is too slow.
또한, 상기 액티브 크로우바를 이용한 방법은 크로우바가 발생된 잉여에너지를 제어할 수 있을 만큼 충분한 에너지 제어가 가능하여야 하나, 전력제어 반도체가 에너지 제어 한계에 의하여 소손되는 경우가 발생되는 문제점이 있다.In addition, the method using the active crowbar should be capable of sufficient energy control to control the surplus energy generated by the crowbar, but there is a problem that the power control semiconductor is burned out due to the energy control limit.

본 발명은 상기와 같은 종래의 제반 문제점을 감안하여 연구된 결과물로서, 계통에 일정수준 이하의 저전압 발생시 풍력발전기의 발전은 멈추고 동시에 전력변환장치 및 에너지저장장치(ESS)를 이용하여 전력을 계통쪽으로 공급함으로서, 계통에서 풍력 발전기(소)에 요구하는 저전압수용운전(LVRT) 규정을 만족시킬 수 있도록 한 풍력발전기(소)의 저전압수용운전 장치 및 방법을 제공하는데 그 목적이 있다.The present invention has been studied in view of the above-mentioned problems in the prior art, the generation of the wind power generator when a low voltage below a certain level in the system stops the power generation at the same time using the power converter and energy storage device (ESS) toward the system It is an object of the present invention to provide an apparatus and method for low voltage acceptance operation of a wind power generator (small) that can satisfy the low voltage acceptance operation (LVRT) regulation required for a wind power generator (small) in a system by supplying it.
본 발명의 다른 목적은 계통에 일정수준 이하의 저전압 발생이 없는 저전압수용운전(LVRT) 상황이 아닌 경우에도 전력변환장치(PCS) 및 에너지저장장치(ESS)를 이용하여 풍력발전 에너지의 충전 및 방전 제어가 이루어질 수 있도록 함으로써, 풍력발전의 출력변동을 완화시켜줄 수 있고, 풍력발전에서 요구하는 무효전력을 공급해줌으로서 풍력발전 품질 향상에 기여할 수 있도록 한 점에 있다.Another object of the present invention is to charge and discharge wind energy by using a power converter (PCS) and an energy storage device (ESS) even in a low voltage acceptance operation (LVRT) situation in which there is no low voltage generation below a certain level in the system. By allowing the control to be made, it is possible to mitigate the output fluctuation of the wind power generation, and to contribute to the improvement of wind power quality by supplying reactive power required by the wind power generation.

상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 풍력발전기 운전 장치는 계통 저전압수용운전을 위한 것으로서, 회전 가능한 축에 장착되어 바람으로부터 회전에너지를 생산하는 블레이드와; 블레이드의 회전에너지로부터 전력을 생산하는 제너레이터와; 제너레이터에서 생산된 전력을 풍력발전기와 연계된 계통에 공급하기에 적절한 형태의 전력으로 변환하는 전력컨버터와; 에너지저장장치의 전력을 임의대로 충방전하기 위해 설치 위치에 따라 DC/DC 또는 AC/DC 양방향 컨버터를 포함하는 전력변환장치와; 전력변환장치와 연결되어 계통의 전압이 일정 수준 이하로 하강될 때 계통에 전력을 공급하는 에너지저장장치; 를 포함하여 구성된 것을 특징으로 한다.Wind turbine driving apparatus according to an embodiment of the present invention for achieving the above object is a system for low voltage acceptance operation, the blade is mounted on a rotatable shaft to produce rotational energy from the wind; A generator for generating electric power from the rotational energy of the blades; A power converter for converting the electric power produced by the generator into electric power of a form suitable for supplying a system connected to the wind turbine; A power converter including a DC / DC or an AC / DC bidirectional converter depending on the installation position to randomly charge and discharge the power of the energy storage device; An energy storage device connected to the power converter to supply power to the system when the voltage of the system falls below a predetermined level; Characterized in that configured to include.
상기한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 풍력발전기 운전 방법은 계통 저전압수용운전을 위한 것으로서, 계통의 전압이 일정 수준 이하로 하강되면, 최초 하강된 제1시점에서 풍력발전기의 발전 작동을 중단시키는 동시에 에너지저장장치로부터 계통으로의 전력 공급이 인가되는 단계와; 상기 제1시점부터 계통의 전압이 상승을 시작하는 시점인 제2시점까지 에너지저장장치로부터 계통으로의 전력공급을 준비하는 단계와; 계통의 전압이 정상적으로 복구되는 시점인 제3시점까지 에너지저장장치로부터 계통으로 전력공급을 시작하여 전력공급량을 증가시키는 단계와; 계통의 전압이 정상상태로 돌아왔는지를 모니터링하여, 계통의 전압이 정상상태로 돌아온 것으로 판정되면 풍력 발전기가 재가동되는 단계와; 풍력발전기의 발전에 따른 출력이 정상 수준에 도달하는 제4시점까지 에너지저장장치에서 계통으로 전력 공급이 지속되는 단계; 를 포함하는 것을 특징으로 한다.Wind turbine driving method according to an embodiment of the present invention for achieving the above object is for the low voltage acceptance operation of the system, when the voltage of the system falls below a certain level, the first generation of the wind turbine at the first point Discontinuing operation and simultaneously applying power supply from the energy storage system to the grid; Preparing power supply from the energy storage device to the system from the first time point to a second time point at which the voltage of the system starts to rise; Starting to supply power from the energy storage device to the system until a third time point, when the voltage of the system is normally restored; Monitoring whether the voltage of the system has returned to a normal state and restarting the wind generator if it is determined that the voltage of the system has returned to the normal state; Supplying power from the energy storage system to the grid until a fourth time point when the output of the wind power generator reaches a normal level; Characterized in that it comprises a.
상기한 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 풍력발전기 운전 장치는 계통 저전압수용운전을 위한 것으로서, 회전축에 장착되어 바람으로부터 회전에너지를 생산하는 블레이드와, 블레이드의 회전에너지로부터 전력을 생산하는 제너레이터와, 제너레이터에서 생산된 전력을 계통에 공급하기에 적절한 형태의 전력으로 변환하는 전력컨버터를 포함하는 풍력발전기 운전 장치에 있어서, 상기 풍력발전기의 전력컨버터와 계통 간에 메인스위치를 설치하고, 전력컨버터와 메인스위치 사이에 제1에너지저장장치를 제1스위치에 의하여 연결하는 동시에 메인스위치와 계통 사이에 제2에너지저장장치를 제2스위치에 의하여 연결하여서 된 것을 특징으로 한다.Wind turbine driving apparatus according to another embodiment of the present invention for achieving the above object is a system for low voltage acceptance operation, the blade is mounted on a rotating shaft to produce rotational energy from the wind, and to generate power from the rotational energy of the blade A wind turbine generator comprising a generator and a power converter for converting the power produced by the generator into a power suitable for supplying the grid, the main switch is installed between the power converter and the grid of the wind turbine, The first energy storage device is connected between the converter and the main switch by the first switch, and the second energy storage device is connected by the second switch between the main switch and the grid.
상기한 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 풍력발전기 운전 방법은 계통 저전압수용운전을 위한 것으로서, 계통의 전압이 소정크기 이하로 하강하면, 계통과 풍력발전기 간에 설치된 메인스위치의 개방과 동시에 풍력발전기의 발전 동작을 중단시키는 단계와; 제2스위치가 온으로 작동하여, 제2에너지저장장치의 전력이 저전압수용운전 기간 동안 계통으로 공급되는 단계와; 계통 전압이 정상상태에 도달하면, 풍력발전기를 재가동시키기 위하여 제1스위치를 온으로 유지시켜 재가동에 따른 무효전력이 제1에너지저장장치에서 풍력발전기로 공급되는 단계와; 풍력발전기의 발전에 따른 출력이 정상 수준에 도달하게 되면 메인스위치를 온시키고, 제2스위치를 오프시키는 단계와; 계통의 전압이 안정화되어 제1스위치까지 풍력발전기단으로부터 완전히 오프되면 제1에너지저장장치와 제2에너지저장장치는 전력품질 안정화를 위한 동작을 구현하는 것을 특징으로 한다.Wind generator operation method according to another embodiment of the present invention for achieving the above object is for the low voltage acceptance operation of the system, when the voltage of the system falls below a predetermined size, the opening of the main switch installed between the system and the wind turbine and Simultaneously stopping the power generation operation of the wind turbine; The second switch is turned on so that power of the second energy storage device is supplied to the grid during the low voltage receiving operation period; When the grid voltage reaches a steady state, maintaining the first switch on to restart the wind power generator and supplying reactive power from the first energy storage device to the wind power generator; Turning on the main switch and turning off the second switch when the output of the wind power generator reaches a normal level; When the voltage of the system is stabilized and completely turned off from the wind turbine stage to the first switch, the first energy storage device and the second energy storage device may implement an operation for stabilizing power quality.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above problem solving means, the present invention provides the following effects.
본 발명에 따르면, 풍력 발전기(소)가 연계된 계통에서 일정수준 이하의 저전압 발생시 풍력발전기의 발전 작동을 중단시키고, 전력변환장치(PCS)를 포함한 에너지저장장치(ESS)를 이용하여 전력을 계통쪽으로 공급함으로서 계통에서 풍력 발전기(소)에 요구하는 저전압수용운전(LVRT) 기능을 만족시킬 수 있다. According to the present invention, when a low voltage below a certain level occurs in a system in which a wind generator (small) is connected, power generation of the wind generator is stopped, and power is supplied using an energy storage device (ESS) including a power converter (PCS). By supplying to the side, the system can satisfy the low voltage acceptance operation (LVRT) function required for the wind generator (small).
또한, 본 발명에 따른 전력변환장치(PCS)를 포함한 에너지저장장치(ESS)는 새로운 풍력발전기 뿐 아니라 기존에 설치되어 있는 풍력발전기에도 적용 가능한 장점이 있다.In addition, the energy storage device (ESS) including the power conversion device (PCS) according to the present invention has the advantage that can be applied to the existing wind turbine as well as a new wind generator.
특히, 본 발명은 에너지저장장치(ESS)의 방전 능력을 활용하기 때문에 에너지저장장치(ESS) 용량을 대폭 줄일 수 있다.In particular, the present invention can greatly reduce the capacity of the energy storage device (ESS) because it utilizes the discharge capacity of the energy storage device (ESS).

도 1은 계통에 순간 저전압 발생시에 풍력발전기(소)에 요구되는 저전압수용운전(LVRT) 기능을 예시한 도면이다.1 is a diagram illustrating a low voltage acceptance operation (LVRT) function required for a wind power generator (small) when a momentary low voltage is generated in a system.
도 2는 본 발명의 일 실시예에 따른 전력변환장치(PCS)를 포함한 에너지저장장치(ESS)를 개별 장치로 풍력 발전기와 계통 사이 설치하는 예를 설명하는 블록도,2 is a block diagram illustrating an example of installing an energy storage device (ESS) including a power conversion device (PCS) according to an embodiment of the present invention as a separate device between a wind generator and a grid;
도 3은 본 발명의 일 실시예에 따른 전력변환장치(PCS)를 포함한 에너지저장장치(ESS)를 풍력발전기에 포함되어 있는 전력컨버터 내부에 설치하는 블록도,3 is a block diagram of installing an energy storage device (ESS) including a power conversion device (PCS) according to an embodiment of the present invention inside a power converter included in a wind turbine;
도 4는 본 발명의 일 실시예에 따른 전력변환장치(PCS)를 포함한 에너지저장장치(ESS)가 포함된 풍력발전기의 상세도,4 is a detailed view of a wind turbine including an energy storage device (ESS) including a power conversion device (PCS) according to an embodiment of the present invention;
도 5는 본 발명의 일 실시예에 따라 전력변환장치(PCS)를 포함한 에너지저장장치에서 전력을 계통으로 방전하는 방법을 설명하기 위한 그래프,5 is a graph for explaining a method of discharging power to a grid in an energy storage device including a power conversion device (PCS) according to an embodiment of the present invention;
도 6은 본 발명의 일 실시예에 따라 전력변환장치(PCS)가 에너지저장장치를 통하여 계통으로 전력을 공급해야하는 지령을 인가받는 방법의 흐름도,6 is a flowchart of a method in which a power converter (PCS) receives a command to supply power to a system through an energy storage device according to an embodiment of the present invention;
도 7은 이중여자방식을 이용하는 풍력발전기를 나타내는 개략도,7 is a schematic view showing a wind power generator using a double excitation method,
도 8은 본 발명의 다른 실시예에 따른 풍력발전기의 저전압수용운전 장치의 일례를 나타내는 개략도,8 is a schematic view showing an example of a low voltage accommodating driving device of a wind turbine according to another embodiment of the present invention;
도 9는 본 발명의 다른 실시예에 따른 풍력발전기의 저전압수용운전 장치의 구성중, 메인스위치의 개방에 따른 제1스위치(B1) 및 제2스위치(B2)의 동작과, 시간축에 대한 제1 및 제2에너지저장장치(ESS-1,ESS-2)의 충방전 특성을 나타내는 도면, FIG. 9 is a view illustrating an operation of a first switch B1 and a second switch B2 according to an opening of a main switch and a first time with respect to a time axis of the low voltage accommodating and operating device of a wind power generator according to another embodiment of the present invention. And charge and discharge characteristics of the second energy storage devices ESS-1 and ESS-2.
도 10는 본 발명의 다른 실시예에 따른 저전압수용 운전 방법을 설명하는 순서도.10 is a flowchart illustrating a low voltage acceptance driving method according to another embodiment of the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 풍력발전기의 저전압수용운전(LVRT) 방법은, 계통에 일정 수준 이하의 저전압 발생시 풍력발전기 또는 풍력발전소는 계통 연계를 유지하면서 일정 시간동안 계속 발전 상태를 유지하도록 규정하는 기존의 개념에 초점을 맞춘 것이 아니라, 계통에 일정 수준 이하의 저전압 발생시 계통연계는 유지하되 풍력발전기는 멈추고 풍력발전 대신 에너지저장장치(ESS)를 이용하여 계통에 전력을 공급함으로서, 계통의 저전압수용운전(LVRT) 요구를 만족시킬 수 있도록 한 점에 주안점이 있다.Low voltage acceptance operation (LVRT) method of the wind power generator according to the present invention is based on the existing concept that the wind power generator or wind power plant maintains the power generation state for a certain period of time while maintaining a system linkage when a low voltage below a certain level occurs in the system. Rather than focusing on the system, if the system generates a low voltage below a certain level, the grid connection is maintained but the wind turbine is stopped and the system is powered by using an energy storage device (ESS) instead of the wind power generation. The main focus is on meeting the needs.
또한, 본 발명은 새로운 풍력발전기(소) 뿐만 아니라, 기존에 설치되어 있는 풍력발전기(소)에 대해 적용이 가능한 계통 저전압수용운전 장치를 제공하고자 한 것으로서, 계통에 연결된 풍력발전기(소)에서 발생한 전기를 충전 및 방전할 수 있는 양방향 전력변환장치(PCS:Power Conversion System)를 포함하는 에너지저장장치를 계통과 풍력발전소 사이에 설치하여 운영함으로서, 계통에 일정수준 이하의 저전압 발생시 풍력발전기(소)에 요구되는 저전압보상운전(LVRT: Low Voltage Ride Through) 기능을 충족시킬 수 있고, 풍력발전에서 나오는 전력품질을 극대화시킬 수 있도록 한 점에 또 다른 주안점이 있다.In addition, the present invention is to provide a system low-voltage receiving operation apparatus that can be applied to the existing wind turbine (small), as well as a new wind generator (small), generated in the wind generator (small) connected to the grid An energy storage device including a two-way power conversion system (PCS) that can charge and discharge electricity is installed between the system and the wind power plant. Another point is to meet the requirements of Low Voltage Ride Through (LVRT), which is required for the system, and to maximize the power quality from wind power generation.
이를 위해, 본 발명의 일 실시예에 따른 풍력발전기의 계통 저전압수용운전 장치는 첨부한 도 4의 블록도에 나타낸 바와 같이, 회전 가능한 축에 장착되어 바람으로부터 회전에너지를 생산하는 블레이드(12)와, 블레이드(12)의 회전에너지로부터 전력을 생산하는 제너레이터(14)와, 제너레이터(14)에서 생산된 전력을 풍력발전기(10)와 연계된 계통(30)에 공급하기에 적절한 형태의 전력으로 변환하는 전력컨버터(16)와, 에너지저장장치에 전력을 임의대로 충방전하기 위해 설치 위치에 따라 DC/DC 또는 AC/DC 양방향 컨버터를 포함하는 전력변환장치(22, PCS:Power Conversion System)와, 전력변환장치(22)와 연결되는 에너지저장장치(20, ESS:Energy Storage System)를 포함하여 구성된다.To this end, as shown in the block diagram of the accompanying FIG. 4, the system low voltage acceptance operation apparatus of the wind turbine according to an embodiment of the present invention includes a blade 12 mounted on a rotatable shaft and producing rotational energy from the wind; The generator 14 generates electric power from the rotational energy of the blade 12 and converts the electric power produced by the generator 14 into a power suitable for supplying the system 30 connected to the wind turbine 10. A power converter 16 (PCS: Power Conversion System) including a DC / DC or AC / DC bidirectional converter depending on the installation position to randomly charge and discharge electric power to the energy storage device, It is configured to include an energy storage device 20 (ESS: Energy Storage System) connected to the power converter 22.
상기 제너레이터(14)는 블레이드(12)의 회전 에너지로부터 전력을 생산하는 바, 그 생산되는 전력은 AC 형태이나, 계통에 직접 공급되기에는 부적합하며, 이에 상기 전력컨버터(16)는 제너레이터(14)에서 생산된 전력을 풍력발전기(10)와 연계된 계통(30)에 공급하기에 적절한 형태의 전력으로 변환하게 된다.The generator 14 generates electric power from the rotational energy of the blade 12, and the generated electric power is in the form of AC, but is not suitable to be directly supplied to the system, so that the power converter 16 generates the generator 14. The power produced by is converted into a power of a form suitable for supplying the system 30 associated with the wind turbine (10).
즉, 상기 전력컨버터(16)는 첨부한 도 3에 도시된 바와 같이, 제너레이터(14)에서 생산된 AC 전력을 DC로 변환하는 AC/DC 컨버터(24)와, 이를 다시 상기 계통에 공급하기에 적절한 AC 전력으로 변환하는 DC/AC 인버터(26)를 포함할 수 있다.That is, the power converter 16 is an AC / DC converter 24 for converting the AC power produced by the generator 14 to DC, as shown in the accompanying FIG. DC / AC inverter 26 to convert to appropriate AC power.
또한, 상기 전력컨버터(16)는 풍력발전기의 특성에 따라 고정속도방식(Fixed Speed Type)에는 포함되지 않고, 이중여자방식(DFIG : Double Fed Induction Generation)에는 해당 풍력발전기 용량의 30% 정도에 해당하는 전력컨버터 용량 만 로터(Rotor) 부분에 연결되며, 직접구동방식(WRSG:Wound Rotor Synchronous Generator & PMSG:Permanent Magnetic Synchronous Generator)에는 풍력발전기 용량 100%를 처리할 수 있는 전력컨버터 용량이 포함된다.In addition, the power converter 16 is not included in the fixed speed type (Fixed Speed Type) according to the characteristics of the wind generator, and corresponds to about 30% of the capacity of the wind generator in the double-fed induction generation (DFIG) Only the power converter capacity is connected to the rotor, and the direct drive method (WRSG: Wound Rotor Synchronous Generator & PMSG: Permanent Magnetic Synchronous Generator) includes power converter capacity capable of handling 100% of the wind turbine capacity.
상기 전력변환장치(22, PCS:Power Conversion System)는 에너지저장장치(20)에 전력을 임의대로 충방전하기 위해 그 설치 위치에 따라 DC/DC 또는 AC/DC 양방향 컨버터를 포함한다.The power conversion system 22 (PCS: Power Conversion System) includes a DC / DC or AC / DC bi-directional converter depending on the installation location to randomly charge and discharge power to the energy storage device (20).
이러한 양방향 전력변환장치(PCS : Power Conversion System)는 계통이 일정수준 이하의 저전압 상태가 되어 풍력발전기(소)의 전력 생산이 중단될 때, 저전압수용운전(LVRT) 기능을 수행하기 위하여 에너지저장장치(20)로부터 계통(30)으로 전력을 공급하도록 하는 지령을 인가받아서, 에너지저장장치(20)로부터 계통으로 전력을 적절히 공급하는 제어를 하게 된다.This bi-directional power conversion system (PCS) is an energy storage device to perform a low voltage acceptance operation (LVRT) function when the power generation of the wind turbine (small) is stopped due to the low voltage state below the predetermined level. A command for supplying power to the system 30 from 20 is received, and control is performed to properly supply power from the energy storage device 20 to the system.
즉, 후술하는 바와 같이 상기 전력변환장치(22, PCS : Power Conversion System)는 계통의 전압이 소정 크기 이하로 하강하는 제1시점에서 에너지저장장치(20)에 저장된 전력을 계통으로 공급하도록 인가받고, 계통 전압이 상승하기 시작하는 시점인 제2시점까지 전력공급을 준비하며, 또한 계통의 전압이 상승을 시작하여 정상상태로 복구되는 시점인 제3시점까지 에너지저장장치(20)로부터의 전력을 공급하기 시작하여 공급 전력을 증가시키고, 제3시점 이후 계통의 전압이 정상상태로 돌아온 상태에서 풍력발전기(10)가 재가동하여 정상적으로 복구되는 제4시점까지 에너지저장장치(20)의 전력을 계통(30)으로 계속 공급하는 역할을 하게 된다.That is, as will be described later, the power conversion system 22 (PCS: Power Conversion System) is authorized to supply power stored in the energy storage device 20 to the system at a first point when the voltage of the system drops below a predetermined size. The power supply is prepared until the second time point at which the system voltage starts to rise, and the power from the energy storage device 20 until the third time point at which the system voltage starts to rise and is restored to a normal state. Start supplying to increase the supply power, and the power of the energy storage device 20 until the fourth time point when the wind turbine 10 is restarted and normally restored after the voltage of the system returns to the normal state. 30) will continue to supply.
이때, 상기 전력변환장치(22, PCS:Power Conversion System)를 포함한 에너지저장장치(20, ESS:Energy Storage System)는 전력컨버터를 배제한 채, 도 2에서 보는 바와 같이 별도의 개별 장치로 구비되어, 풍력 발전기(10)와 계통(30) 사이에 설치될 수 있다. In this case, the energy storage device 20 (ESS: Energy Storage System) including the power conversion system 22 (PCS: Power Conversion System) is provided as a separate individual device as shown in Figure 2, excluding the power converter, It may be installed between the wind generator 10 and the system 30.
다시 말해서, 전력변환장치(22)를 갖는 에너지저장장치(20)를 기존 전력컨버터내에 조합시키는 경우에는 그 개조 작업 및 비용이 매우 많이 들기 때문에, 별도의 개조작업없이 전력변환장치(22)를 갖는 에너지저장장치(20)를 전력컨버터(16)와 계통(30) 사이에 바로 연결하는 것이 바람직하다.In other words, when the energy storage device 20 having the power conversion device 22 is combined in the existing power converter, since the retrofitting work and the cost thereof are very expensive, the power conversion device 22 without the retrofitting work is required. It is preferable to directly connect the energy storage device 20 between the power converter 16 and the system 30.
또는, 상기 전력변환장치(22, PCS:Power Conversion System)를 포함한 에너지저장장치(20, ESS:Energy Storage System)는 도 3에서 보듯이, 풍력 발전기(10)에 포함되어 있는 전력컨버터(16)의 내부에 설치될 수 있다.Alternatively, the energy storage system 20 (ESS: Energy Storage System) including the power conversion system 22 (PCS: Power Conversion System) is a power converter 16 included in the wind generator 10, as shown in FIG. Can be installed inside of.
즉, 상기 전력변환장치(22)를 갖는 에너지저장장치(20)를 새로운 풍력발전기 설비에 설치할 경우, 전력변환장치(22)를 갖는 에너지저장장치(20)를 전력컨버터(16)에 직접 조합시켜 전력컨버터와 함께 설치하게 되며, 이에 전력변환장치(22)의 입력단에 에너지저장장치(20)가 연결된 상태에서 전력변환장치(22) 출력단이 전력컨버터(16)의 AC/DC 컨버터(24) 및 DC/AC 인버터(26) 사이에 연결된다.That is, when the energy storage device 20 having the power converter 22 is installed in a new wind turbine, the energy storage device 20 having the power converter 22 is directly combined with the power converter 16. It is installed together with the power converter, the power conversion device 22 output terminal is the AC / DC converter 24 of the power converter 16 in the state that the energy storage device 20 is connected to the input terminal of the power converter 22 Connected between the DC / AC inverters 26.
또한, 상기 전력컨버터(16) 내부의 AC/DC컨버터(24) 및 DC/AC인버터(26)의 각 DC단에 전력변환장치의 기능을 부가시킨 경우, 별도의 전력변환장치 없이 전력컨버터(16)의 AC/DC 컨버터(24) 및 DC/AC 인버터(26) 사이에 에너지저장장치(20)만이 연결될 수 있고, 이 에너지저장장치만으로도 본 발명에 따른 풍력발전기의 계통 저전압수용운전을 구현할 수 있다.In addition, when a function of a power converter is added to each DC terminal of the AC / DC converter 24 and the DC / AC inverter 26 in the power converter 16, the power converter 16 without a separate power converter is included. Only the energy storage device 20 may be connected between the AC / DC converter 24 and the DC / AC inverter 26 of the power source, and only the energy storage device may implement a system low voltage acceptance operation of the wind power generator according to the present invention. .
한편, 상기 에너지저장장치(20)는 계통의 저전압수용운전(LVRT) 요구상황에 언제든지 대응하기 위하여 항상 일정 수준 이상의 에너지를 저장하고 있어야 하고, 추가적으로 풍력발전 에너지의 충전 및 방전 제어를 통한 풍력발전 품질향상 목표수준을 고려하여 전체적인 용량을 산출하는 것이 바람직하다.On the other hand, the energy storage device 20 should always store more than a certain level of energy in order to respond to the low-voltage acceptance operation (LVRT) requirements of the system at any time, and additionally the quality of wind power generation through the charge and discharge control of wind energy It is desirable to calculate the overall dose, taking into account the improvement target levels.
또한, 상기 에너지저장장치(20)에는 자체적으로 안전관리, 온도관리, 충전상태(SOC: State Of Charge)관리, 통신기능 등을 위한 일종의 제어수단인 배터리 관리 시스템(BMS:Battery Management System)이 포함 연결된다.In addition, the energy storage device 20 itself includes a battery management system (BMS: Battery Management System) which is a kind of control means for safety management, temperature management, state of charge (SOC) management, communication functions, etc. Connected.
바람직하게는, 상기 에너지저장장치(20)는 순간적으로 빠른 시간내의 방전을 통하여 계통측에 전력을 공급할 수 있도록 높은 방전능력을 갖는 것으로 채택하되, 리튬이온배터리(Li-ion), 리튬인산철배터리(LiFePO4), 리튬망간산화물배터리(LiMn2O4), 리튬코발트산화물배터리(Lithum Cobalt Oxide), 리튬폴리머배터리(Li-ion Polymer), 리튬에어배터리, 니켈수소배터리(Ni-MH), 니켈카드늄배터리(Ni-Cd), NaS 배터리 및 슈퍼캐퍼시터 중에서 한 가지 이상을 선택 사용할 수 있다.Preferably, the energy storage device 20 is adopted to have a high discharge capacity to supply power to the system side through the discharge within a quick time, lithium ion battery (Li-ion), lithium iron phosphate battery (LiFePO 4 ), Lithium Manganese Oxide Battery (LiMn 2 O 4 ), Lithium Cobalt Oxide Battery (Lithum Cobalt Oxide), Lithium Polymer Battery (Li-ion Polymer), Lithium Air Battery, Ni-MH Battery, Nickel One or more of cadmium batteries (Ni-Cd), NaS batteries and supercapacitors can be used.
여기서, 상기한 본 발명의 계통 저전압수용운전 장치를 기반으로 이루어지는 저전압수용운전 방법 즉, 에너지저장장치로부터 계통으로 전력을 공급하도록 하는 지령을 전력변환장치에 인가하여 이루어지는 저전압수용운전 방법을 설명하면 다음과 같다.Here, a low voltage acceptance operation method based on the above-described system low voltage acceptance operation apparatus of the present invention, that is, a low voltage acceptance operation method performed by applying a command to supply power from the energy storage device to the system to the power conversion apparatus will be described below. Same as
첨부한 도 6은 에너지저장장치로부터 계통으로 전력을 공급하도록 하는 지령을 전력변환장치에 인가하는 본 발명의 바람직한 실시예에 따른 방법을 나타내는 흐름도이고, 도 5는 에너지저장장치로부터 계통으로 전력을 공급하도록 하는 지령을 전력변환장치에 인가하는 방법을 설명하기 위한 LVRT 참고도 및 에너지 방전량을 표시한 참고도이다.6 is a flowchart illustrating a method according to a preferred embodiment of the present invention for applying a command to supply power to a system from an energy storage device, and FIG. 5 to supply power to the system from an energy storage device. LVRT reference diagram for explaining how to apply a command to the power converter and reference diagram showing the amount of energy discharge.
일단, 계통에 일정수준 이하의 저전압 상항이 아닌 정상 상태에서 전력변환장치(PCS)는 LVRT 기능 이외에 이미 부여받은 풍력품질 안정화 임무를 수행하기 위하여 에너지저장장치에 에너지를 충전하고 방전하는 지령을 수시로 인가받고 수행한다.Once the system is in a steady state other than a low voltage condition below a certain level, the power converter (PCS) frequently issues a command to charge and discharge energy to the energy storage device in order to perform the wind quality stabilization task that has already been granted in addition to the LVRT function. Receive and perform.
이렇게 계통의 정상 상태에서, 계통에 저전압 상황이 발생하였는지 판단하기 위하여 계통의 전압이 소정크기 이하로 하강하는지를 지속적으로 모니터링하는 단계(S101)가 진행된다.In the normal state of the system, a step (S101) of continuously monitoring whether the voltage of the system falls below a predetermined size to determine whether a low voltage situation occurs in the system is performed.
본 발명의 이해를 돕기 위하여, 계통의 전압이 소정 크기 이하로 하강하는 시점을 제1시점이라 하기로 한다.In order to facilitate understanding of the present invention, a time point at which the voltage of the system falls below a predetermined magnitude will be referred to as a first time point.
상기 계통(30)의 전압이 소정크기 이하로 하강하면, 풍력발전기 정지 알고리즘에 의거 풍력발전이 정지되고(S102), 이와 동시에 에너지저장장치(20)의 방전이 인가된다(S103).When the voltage of the system 30 falls below a predetermined size, the wind power generation is stopped according to the wind generator stop algorithm (S102), and at the same time, the discharge of the energy storage device 20 is applied (S103).
즉, 전력변환장치(22)는 방전을 인가받고 에너지저장장치(20)로부터 계통(30)으로 전력이 공급하기 위한 준비를 시작한다.In other words, the power converter 22 is discharged and starts to prepare for supply of power from the energy storage device 20 to the grid 30.
보다 상세하게는, 계통 전압의 변화 및 에너지저장장치의 방전량을 비교한 도 5를 참조하면, 계통(30)의 전압이 소정 크기 이하로 하강하는 시점 즉, 제1시점은 t0에 해당하는 바, 이 t0에서 계통의 전압이 Va로 하강하였음을 알 수 있으며, 따라서 전력변환장치(22)는 계통(30)의 전압상태를 모니터링하면서 에너지저장장치(20)로부터 계통(30)으로 전력을 공급할 준비를 하게 된다.More specifically, referring to FIG. 5 comparing the change in the system voltage and the discharge amount of the energy storage device, the time when the voltage of the system 30 falls below a predetermined magnitude, that is, the first time point corresponds to t0. It can be seen that, at this t0, the voltage of the system has dropped to Va. Accordingly, the power converter 22 can supply power from the energy storage device 20 to the system 30 while monitoring the voltage state of the system 30. Get ready.
이렇게, 상기 에너지저장장치(20)로부터 계통(30)에 전력을 공급하도록 지령이 전력변환장치(22)에 인가됨에 따라, 에너지저장장치(20)로부터 계통(30)에 전력이 공급되도록 준비과정을 거쳐야 하며, 도 5에서 보듯이 계통의 전압이 상승하는 시점(제2시점이라 하기로 한다)인 t1 까지 에너지저장장치로부터 계통에 전력 공급준비가 완료되어야 한다.Thus, as a command is applied to the power converter 22 to supply power from the energy storage device 20 to the system 30, a preparation process for supplying power from the energy storage device 20 to the system 30. As shown in FIG. 5, power supply preparation from the energy storage device to the system must be completed until t1, which is a point in time when the voltage of the system rises (hereinafter, referred to as a second time point).
다음으로, 계통(30)의 전압이 상승하기 시작하는지 지속적으로 모니터링하는 단계가 진행된다(S104).Next, the step of continuously monitoring whether the voltage of the system 30 starts to rise (S104).
모니터링 결과, 계통(30)의 전압이 상승하기 시작하면, 에너지저장장치(20)로부터 계통(30)으로 전력공급을 시작하여, 도 5에서 보듯이 계통의 전압이 정상적으로 복구되는 시점(제3시점이라 하기로 한다)인 t2까지 에너지저장장치의 방전량 즉, 에너지저장장치(20)로부터 계통(30)으로 공급되는 전력공급량을 증가시킨다(S105).As a result of the monitoring, when the voltage of the system 30 starts to rise, power supply is started from the energy storage device 20 to the system 30, and as shown in FIG. 5, the time point at which the voltage of the system is normally restored (third time point) The amount of discharge of the energy storage device, that is, the amount of power supply supplied from the energy storage device 20 to the system 30 up to t2, is increased (S105).
이때, 상기 제3시점은 계통(30)의 전압이 저전압 이전의 정상상태가 100%이면 그 보다 다소 낮은 전압(Vb) 수준에 도달하면 계통의 전압이 정상상태로 복구되는 시점으로 판단하게 된다.In this case, when the voltage of the system 30 reaches a somewhat lower voltage Vb level when the steady state before the low voltage is 100%, it is determined that the voltage of the system 30 is restored to the normal state.
따라서, 제2시점인 t1과 제3시점인 t2 사이 구간에서는 소정의 시간동안 계통전압 샘플링이 주기적으로 반복되는 바, 이를 통해 계통 전압이 회복되는 기울기를 구하고 그 기울기에 비례하여 에너지저장장치에서의 방전량을 증가하게 되며, 풍력발전기(소) 재가동 준비에 활용할 수 있도록 제3시점(t2)에 도달하는 시간을 예측할 수 있다.Therefore, in the interval between the second time point t1 and the third time point t2, the grid voltage sampling is periodically repeated for a predetermined time. Through this, a slope for recovering the grid voltage is obtained and is proportional to the slope. The discharge amount is increased, and the time to reach the third time point t2 can be predicted to be used for preparing the wind power generator (small).
위와 같이 에너지저장장치(20)의 방전이 지속되어 계통(30)의 전압이 정상상태로 돌아왔는지를 모니터링하여(S106), 계통(30)의 전압이 정상상태로 돌아온 것으로 판정되면 풍력발전기(10)가 재가동된다(S107).As described above, the discharge of the energy storage device 20 is continued to monitor whether the voltage of the system 30 returns to the normal state (S106), and when it is determined that the voltage of the system 30 returns to the normal state, the wind power generator 10 ) Is restarted (S107).
또한, 풍력발전기(10)가 재가동됨과 더불어, 풍력발전에 따른 출력이 정상 수준에 도달할 때까지, 즉 계통에 정상적으로 전력을 공급하게 되는 시점(제4시점이라 하기로 한다)까지 에너지저장장치(20)에서 계통(30)으로 전력 공급이 지속된다(S108).In addition, the wind power generator 10 is restarted, and the energy storage device until the output according to the wind power generation reaches a normal level, that is, to the point (normally referred to as the fourth time point) at which power is normally supplied to the system ( Power supply to the system 30 is continued in 20) (S108).
이때, 에너지저장장치(20)로부터 계통(30)으로 지속적인 전력 공급이 이루어질 때, 계통으로 공급되는 전력값은 풍력발전기(10)가 재가동되어 발생시키는 전력값과 비슷한 수준으로 유지시키는 것이 바람직하고, 그 이유는 계통의 전압이 정상적으로 복구되고 풍력발전기(10)가 재가동하여 전력을 생산 공급하게 되는 순간에 에너지저장장치(20)로부터 방전되는 값과 풍력발전기(10)에서 공급되는 전력 값의 불균형에 따른 충격을 완화하기 위함이다.At this time, when the continuous power supply from the energy storage device 20 to the system 30 is made, it is preferable to maintain the power value supplied to the system at a level similar to the power value generated by the wind turbine 10 is restarted, The reason is the imbalance between the value discharged from the energy storage device 20 and the power value supplied from the wind turbine 10 at the moment when the voltage of the system is restored normally and the wind turbine 10 restarts to produce and supply power. This is to alleviate the impact caused.
도 6에서 보듯이, 제3시점(t2)에서 제4시점(t3) 구간은 풍력발전기(10)가 재가동하여 정상적으로 전력을 생산하는데 걸리는 시간이며, 이때 제3시점(t2)~제4시점(t3)의 사이 구간에서는 에너지저장장치(20)가 많은 전력을 방전하게 되므로, 그 사이 구간 범위를 좁히는 것이 에너지저장장치 용량을 줄이는 데 효과적이고, 또한 풍력발전기(소)가 재가동할 때 소비하는 무효전력을 에너지저장장치로부터 공급할 수 있다. As shown in FIG. 6, the third time point t2 to the fourth time point t3 are the time taken for the wind power generator 10 to restart to produce power normally, wherein the third time point t2 to the fourth time point ( Since the energy storage device 20 discharges a lot of power in the section between t3), narrowing the range between the sections is effective to reduce the capacity of the energy storage device and also consumes invalidity when the wind turbine is restarted. Power can be supplied from the energy storage device.
최종적으로, 풍력발전기(10)가 재가동되어 정상적으로 전력을 생산 공급하는지를 판단하여(S109), 전력을 정상적으로 생산 공급하는 경우에는 에너지저장장치(20)의 방전 즉, 에너지저장장치(20)의 전력공급을 중단함(S110)에 따라, 상기한 저전압수용운전(LVRT) 대응이 종료된다.Finally, it is determined whether the wind power generator 10 is restarted to produce and supply power normally (S109), and when the power is normally produced and supplied, the discharge of the energy storage device 20, that is, the power supply of the energy storage device 20. In response to the step (S110), the low voltage acceptance operation (LVRT) corresponding to the end is terminated.
이와 같이, 본 발명의 일 실시예에 따르면, 풍력 발전기가 연계된 계통에서 일정수준 이하의 저전압 발생시 풍력발전기의 발전 작동을 중단시키고, 전력변환장치(22, PCS)를 포함한 에너지저장장치(20, ESS)를 이용하여 전력을 계통쪽으로 공급함으로서, 계통에서 풍력 발전기(소)에 요구하는 저전압수용운전(LVRT) 기능을 충분히 만족시킬 수 있고, 또한 에너지저장장치(ESS)의 방전 능력을 활용하기 때문에 에너지저장장치(ESS) 용량을 대폭 줄일 수 있다.As such, according to an embodiment of the present invention, when a low voltage of a predetermined level or less occurs in a system in which a wind generator is linked, the power generation operation of the wind generator is stopped, and the energy storage device 20 including the power converter 22 (PCS). By supplying power to the grid using ESS, it is possible to fully satisfy the low-voltage receiving operation (LVRT) function required for the wind generator (small) in the grid, and also to utilize the discharge capacity of the energy storage system (ESS). ESS capacity can be significantly reduced.
특히, 본 발명의 경우 순간 방전능력이 좋은 에너지저장장치(20)를 사용하여, 순간적으로 빠른 시간내에 많은 량의 방전을 통하여 계통측에 전력을 공급할 수 있도록 함으로써, 에너지저장장치(20)의 용량을 더욱 줄일 수 있다.In particular, in the case of the present invention by using the energy storage device 20 having a good instantaneous discharge capacity, it is possible to supply power to the system side through a large amount of discharge in a short time, the capacity of the energy storage device 20 Can be further reduced.
이하, 본 발명의 다른 실시예에 따른 풍력발전기의 저전압수용운전 장치 및 방법을 살펴보기로 한다.Hereinafter, a low voltage accommodating driving apparatus and method of a wind power generator according to another embodiment of the present invention will be described.
본 발명의 다른 실시예에 따른 풍력발전기의 저전압수용운전 장치는 인터록 구조의 에너지 저장장치(ESS : Energy Storage System)를 이용하여 저전압수용운전을 해결하고자 한 점에 주안점이 있다.The low voltage accommodating operation apparatus of a wind power generator according to another embodiment of the present invention has an emphasis on solving the low voltage accommodating operation using an energy storage system (ESS) having an interlock structure.
본 발명의 다른 실시예에 따른 풍력발전기의 저전압수용운전 장치를 나타내는 첨부한 도 8을 참조하면, 풍력발전기(10)의 전력컨버터(16)와 계통(30) 사이에 인터록 구조의 스위치(개폐기)에 의하여 이중의 에너지저장장치가 연결된다.Referring to FIG. 8, which shows a low voltage accommodating and operating device of a wind turbine according to another embodiment of the present invention, an interlock switch (switch) having an interlock structure between the power converter 16 and the grid 30 of the wind turbine 10. The dual energy storage device is connected by.
즉, 풍력발전기(10)의 전력컨버터(16)와 계통(30) 간에 메인스위치(A1)가 설치되고, 전력컨버터(16)와 메인스위치(A1) 사이에 제1에너지저장장치(ESS-1)가 제1스위치(B1)에 의하여 연결되며, 메인스위치(A1)와 계통(30) 사이에 제2에너지저장장치(ESS-2)가 제2스위치(B2)에 의하여 연결된다.That is, the main switch A1 is installed between the power converter 16 and the grid 30 of the wind power generator 10, and the first energy storage device ESS-1 between the power converter 16 and the main switch A1. ) Is connected by the first switch (B1), the second energy storage device (ESS-2) is connected by the second switch (B2) between the main switch (A1) and the system (30).
이렇게 메인스위치(A1)와 제1스위치(B1)와 제2스위치(B2)는 서로 인터록 구조를 이루며 배열된다.The main switch A1, the first switch B1, and the second switch B2 are arranged in an interlock structure with each other.
이러한 상태에서, 계통(Grid)에 이상이 생겨 급격한 전압강하가 발생하면, 상기 메인스위치(A1)는 오프되고, 제1스위치(B1)는 풍력발전기 단에 연결되는 동시에 제2스위치(B2)는 계통단에 각각 독립적으로 연결되는 상태가 된다.In this state, when an abnormality occurs in the grid and a sudden voltage drop occurs, the main switch A1 is turned off, and the first switch B1 is connected to the wind turbine stage, and the second switch B2 is It is connected to the grid stage independently.
여기서, 본 발명의 다른 실시예에 따른 풍력발전기의 저전압수용운전 방법을 첨부한 도 9 및 도 10을 참조로 설명하면 다음과 같다.Here, a description will be given with reference to FIGS. 9 and 10 attached to a low voltage acceptance operation method of a wind power generator according to another embodiment of the present invention.
도 9는 메인스위치의 개방에 따른 제1스위치(B1) 및 제2스위치(B2)의 동작과, 시간축에 대한 제1 및 제2에너지저장장치(ESS-1,ESS-2)의 충방전 특성을 나타내는 도면이고, 도 10는 본 발명의 다른 실시예에 따른 저전압수용 운전 방법을 설명하는 순서도이다.9 illustrates the operation of the first switch B1 and the second switch B2 according to the opening of the main switch, and the charge / discharge characteristics of the first and second energy storage devices ESS-1 and ESS-2 with respect to the time axis. 10 is a flowchart illustrating a low voltage accommodation driving method according to another embodiment of the present invention.
먼저, 계통(30)에 저전압 상황이 발생하였는지 판단하기 위하여 계통의 전압이 소정크기 이하로 하강하는지를 지속적으로 모니터링하는 단계(S201)가 진행된다.First, in order to determine whether a low voltage situation has occurred in the system 30, a step (S201) of continuously monitoring whether the voltage of the system falls below a predetermined size is performed.
상기 계통(30)의 전압이 소정크기 이하로 하강하면, 계통과 풍력발전기 간에 설치된 메인스위치(A1)가 개방(오프)된다(S202).When the voltage of the grid 30 falls below a predetermined size, the main switch A1 installed between the grid and the wind turbine is opened (off) (S202).
이와 동시에, 상기 메인스위치(A1)가 개방된 상태에서, 제2스위치(B2)에 의하여 계통단에 연계된 제2에너지저장장치(ESS-2)는 방전특성을 가지도록 하여, 메인스위치(A1) 개방에 따른 계통상의 풍력발전기의 이탈이 없는 것처럼 보이기 위하여 제2에너지저장장치(ESS-2)는 가상의 풍력발전기가 되어 계통상에 전력을 저전압수용운전 기간 동안 공급하게 된다.At the same time, in the state in which the main switch A1 is opened, the second energy storage device ESS-2 connected to the grid terminal by the second switch B2 has discharge characteristics, so that the main switch A1 is discharged. The second energy storage device (ESS-2) becomes a virtual wind power generator to supply power to the grid during the low voltage receiving operation period in order to appear that there is no deviation of the wind turbine on the grid due to the opening.
즉, 상기 메인스위치(A1)가 개방된 상태에서, 온(ON) 상태인 제2스위치(B2)를 통하여 제2에너지저장장치(ESS-2)로부터의 전력이 저전압수용운전 기간 동안 계통으로 공급된다(S204).That is, while the main switch A1 is open, the power from the second energy storage device ESS-2 is supplied to the system during the low voltage receiving operation period through the second switch B2 in the ON state. (S204).
본 발명에 따르면, 계통(30) 상의 순간적인 전압 강하로 인한 이상이 해결된 후에 풍력발전기(10)가 재가동될 때, 제1스위치(B1)가 온 상태에서 제1에너지저장장치(ESS-1)에서 풍력발전기(10)로 재가동에 필요한 무효전력을 공급하게 되며, 풍력발전기(10)가 정상적으로 가동되면, 풍력발전기(10)와 계통(30)을 정상적으로 연계시키기 위하여 메인스위치(A1)가 온(ON)된다.According to the present invention, when the wind generator 10 is restarted after the abnormality caused by the instantaneous voltage drop on the system 30 is solved, the first energy storage device ESS-1 in the ON state of the first switch B1 is turned on. ) To supply the reactive power required to restart the wind power generator 10, and if the wind generator 10 is normally operated, the main switch (A1) is turned on to properly connect the wind generator 10 and the grid (30) (ON).
이때, 제1스위치(B1)가 온으로 유지되는 동시에 제2스위치(B2)의 개방이 순차적으로 진행되어 제1 및 제2에너지 저장장치(ESS-1,ESS-2)의 충방전 동작이 지속적으로 이루어지게 된다.At this time, the first switch B1 is kept on and the second switch B2 is sequentially opened to continuously charge and discharge the first and second energy storage devices ESS-1 and ESS-2. Will be made.
즉, 계통(30)의 전압이 상승하기 시작하는지를 모니터링하여(S205), 계통 전압이 상승하기 시작한 것으로 판정되더라도 제1에너지저장장치(ESS-1)에는 방전 대기 상태가 되고(S206), 제2에너지저장장치(ESS-2)로부터 계통(30)으로 방전이 지속된다(S207).That is, by monitoring whether the voltage of the system 30 starts to rise (S205), even if it is determined that the system voltage starts to rise, the first energy storage device ESS-1 enters a discharge standby state (S206). The discharge is continued from the energy storage device ESS-2 to the system 30 (S207).
다음으로, 계통(30)의 전압이 정상상태에 도달하였는지를 모니터링하여(S208), 정상상태에 도달한 것으로 판정되면, 메인스위치(A1)를 온시키고, 동시에 제1스위치(B1)를 온으로 유지시키는 동시에 제2스위치(B2)를 오프시키게 된다.Next, by monitoring whether the voltage of the system 30 has reached the steady state (S208), if it is determined that the steady state has been reached, the main switch A1 is turned on and at the same time, the first switch B1 is kept on. At the same time, the second switch B2 is turned off.
따라서, 계통(30) 상의 순간적인 전압 강하로 인한 이상이 해결된 후에 풍력발전기(10)가 재가동될 때, 제1스위치(B1)가 온 상태에서 제1에너지저장장치(ESS-1)는 풍력발전기(10)쪽으로 재가동에 필요한 무효전력이 공급하는 방전을 하고(S209), 이와 동시에 제2에너지공급장치(ESS-2)의 방전이 지속되면서(S210) 계통(30)의 전압이 안정화됨과 더불어 무효전력에 의하여 풍력발전기(10)가 정상적으로 가동되면(S211), 풍력발전기(10)와 계통(30)을 정상적으로 연계시키기 위하여 메인스위치(A1)가 온(ON)된다(S212).Therefore, when the wind generator 10 is restarted after the abnormality due to the instantaneous voltage drop on the system 30 is solved, the first energy storage device ESS-1 is turned on in the state where the first switch B1 is turned on. Discharge is supplied to the generator 10 by the reactive power required for restart (S209), and at the same time the discharge of the second energy supply device (ESS-2) is continued (S210) and the voltage of the system 30 is stabilized When the wind power generator 10 is normally operated by the reactive power (S211), the main switch A1 is turned on (ON) in order to normally connect the wind power generator 10 and the system 30 (S212).
이때, 계통(30)의 전압이 안정적인 상태로 유지되고, 일정 시간이 경과한 후 메인스위치(A1)을 온(ON)시키는 동시에 제2스위치(B2)를 개방(오프)하여, 풍력발전기(10)와 계통(30)이 동기화되지 않는 상태에서 강제적인 계통 연계를 시킴으로써, 순간적인 역조류가 발생하게 되는데, 이때 지속적으로 충전을 수행하는 제1에너지저장장치(ESS-1)가 일정의 버퍼 역할을 수행하게 되고, 일정 시간 경과후에는 계통(30) 상에 풍력발전기(10)만이 연결되어 전력을 공급하는 상태가 된다.At this time, the voltage of the system 30 is maintained in a stable state, and after a predetermined time elapses, the main switch A1 is turned on (ON) and the second switch B2 is opened (off), thereby providing the wind generator 10. By forcibly linking the grid in a state in which the system and the system 30 are not synchronized, instantaneous reverse algae occur. In this case, the first energy storage device ESS-1, which continuously charges, serves as a buffer. After a predetermined time, only the wind turbine 10 is connected to the system 30 to supply power.
즉, 상기 메인스위치(A1)을 온시키는 동시에 제2스위치(B2)를 오프함에 따라, 풍력발전기(10)와 계통(30)이 순간적으로 연계되어, 계통(30)의 전력이 풍력발전기(10)로 흐르는 역조류가 발생하게 되는 바, 이때 제1에너지저장장치(ESS-1)에서 역조류를 버퍼시키게 된다.That is, as the main switch A1 is turned on and the second switch B2 is turned off, the wind turbine 10 and the grid 30 are instantaneously linked, so that the power of the grid 30 is transferred to the wind turbine 10. The reverse algae flowing to the bar is generated, and the reverse algae is buffered in the first energy storage device ESS-1.
한편, 풍력발전기(10)의 발전을 위한 풍향 및 풍속이 원하는 수준으로 유지되지 않을 경우에도, 메인스위치(A1)를 온으로 유지시켜 풍력발전기(10)와 계통(30)을 연계시킨 상태에서 제1스위치(B1)를 온시켜서 제1에너지저장장치(ESS-1)로부터 풍력발전기쪽으로 일정 수준의 무효전력이 공급되도록 함으로써, 풍력발전기(10)의 발전 효율 향상을 도모할 수 있다.On the other hand, even if the wind direction and the wind speed for generating the wind power generator 10 is not maintained at the desired level, the main switch A1 is kept on in the state in which the wind power generator 10 and the system 30 are connected to each other. By turning on the first switch B1 to supply a certain level of reactive power from the first energy storage device ESS-1 to the wind turbine, it is possible to improve the power generation efficiency of the wind turbine 10.
이와 같이 본 발명의 다른 실시예에 따르면, 풍력 발전기(소)가 연계된 계통에서 일정수준 이하의 저전압 발생시 메인스위치(A1)와 제1 및 제2스위치(B1,B2)의 스위칭 제어를 통하여, 제1 및 제2에너지저장장치(ESS-1,ESS-2)의 충방전이 이루어지도록 함으로써, 계통에서 풍력 발전기(소)에 요구하는 저전압수용운전(LVRT) 기능을 충분히 만족시킬 수 있고, 또한 저전압수용운전(LVRT)이 완전히 완료된 후, 평상시에는 에너지저장장치들을 전력품질 향상을 위한 용도로 사용할 수 있다.As described above, according to another embodiment of the present invention, through the switching control of the main switch (A1) and the first and second switches (B1, B2) when a low voltage below a certain level in the system in which the wind generator (small) is connected, By charging and discharging the first and second energy storage devices ESS-1 and ESS-2, the low voltage acceptance operation (LVRT) function required for the wind generator (small) in the system can be sufficiently satisfied, and After the low voltage acceptance operation (LVRT) is completed, the energy storage devices can be used for improving the power quality.
[부호의 설명][Description of the code]
10 : 풍력발전기10: wind power generator
12 : 블레이드12: blade
14 : 제너레이터14: Generator
16 : 전력컨버터16: power converter
20 : 에너지저장장치20: energy storage device
22 : 전력변환장치22: power converter
24 : AC/DC 컨버터24: AC / DC converter
26 : DC/AC 인버터26 DC / AC Inverter
30 : 계통 30: system
A1 : 메인스위치A1: main switch
B1 ; 제1스위치B1; First switch
B2 : 제2스위치B2: second switch
C1 : 제3스위치C1: third switch
ESS-1 : 제1에너지저장장치ESS-1: First Energy Storage Device
ESS-2 : 제2에너지저장장치ESS-2: Second Energy Storage Device

Claims (12)

  1. 회전축에 장착되어 바람으로부터 회전에너지를 생산하는 블레이드(12)와, 블레이드(12)의 회전에너지로부터 전력을 생산하는 제너레이터(14)와, 제너레이터(14)에서 생산된 전력을 계통(30)에 공급하기에 적절한 형태의 전력으로 변환하는 전력컨버터(16)를 포함하는 풍력발전기 또는 전력컨버터(16)를 포함하지 않는 풍력발전기의 저전압수용운전 장치에 있어서,
    상기 제너레이터(14)와 계통(30) 사이에 전력변환장치(22)를 갖는 에너지저장장치(20)를 설치하되, 에너지저장장치의 전력을 임의대로 충방전하기 위하여 DC/DC 또는 AC/DC 양방향 컨버터를 포함하는 전력변환장치(22)를 제너레이터(14)와 계통(30) 사이에 연결하고, 상기 전력변환장치(22)에 계통(30)의 전압이 일정 수준 이하로 하강될 때 풍력발전기의 작동 정지후 계통(30)에 전력을 공급하기 위한 에너지저장장치(20)를 연결하여서 된 것을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The blade 12 mounted on the rotating shaft to generate rotational energy from the wind, the generator 14 to generate electric power from the rotational energy of the blade 12, and the electric power produced by the generator 14 to supply the system 30 In the low-voltage receiving operation apparatus of the wind power generator including the power converter 16 or the power converter 16 for converting into a power of a suitable form below,
    An energy storage device 20 having a power conversion device 22 is installed between the generator 14 and the system 30, and in order to randomly charge and discharge the power of the energy storage device, DC / DC or AC / DC bidirectionally. A power converter 22 including a converter is connected between the generator 14 and the grid 30, and when the voltage of the grid 30 is lowered below a predetermined level to the power converter 22, Low voltage receiving operation device of the wind turbine, characterized in that by connecting the energy storage device 20 for supplying power to the system 30 after the operation stops.

  2. 청구항 1에 있어서,
    상기 전력변환장치(22)를 갖는 에너지저장장치(20)를 전력컨버터(16)의 AC/DC 컨버터(24) 및 DC/AC 인버터(26) 사이에 연결되는 것을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The method according to claim 1,
    An energy storage device 20 having the power converter 22 is connected between the AC / DC converter 24 and the DC / AC inverter 26 of the power converter 16. Driving device.

  3. 청구항 2에 있어서,
    상기 전력컨버터(16) 내부의 AC/DC컨버터(24) 및 DC/AC인버터(26)의 각 DC단에 전력변환장치의 기능을 부가시킨 경우, 전력컨버터(16)의 AC/DC 컨버터(24) 및 DC/AC 인버터(26) 사이에 에너지저장장치(20)만이 연결되는 것을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The method according to claim 2,
    When the function of the power converter is added to each DC terminal of the AC / DC converter 24 and the DC / AC inverter 26 in the power converter 16, the AC / DC converter 24 of the power converter 16 is added. Low voltage accommodating operation device of the wind turbine, characterized in that only the energy storage device 20 is connected between the) and the DC / AC inverter (26).

  4. 청구항 1에 있어서,
    상기 전력변환장치(22)를 갖는 에너지저장장치(20)를 이미 시공된 기존 풍력발전기 설비에 설치할 경우, 전력변환장치(22)에 에너지저장장치(20)가 연결된 상태에서 전력변환장치(22)가 전력컨버터(16)와 계통(30) 사이에 연결되는 것을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The method according to claim 1,
    When the energy storage device 20 having the power converter 22 is installed in an existing wind turbine installation, the power converter 22 is connected to the power converter 22 while the energy storage device 20 is connected. Low voltage receiving operation apparatus of the wind turbine, characterized in that is connected between the power converter 16 and the grid (30).

  5. 청구항 1 내지 청구항 3 중 어느 하나의 항에 있어서,
    상기 에너지저장장치(20)는 방전능력이 우수한 기능을 갖는 에너지저장장치로 채택된 것으로서, 리튬이온배터리(Li-ion), 리튬인산철배터리(LiFePO4), 리튬망간산화물배터리(LiMn2O4), 리튬코발트산화물배터리(Lithum Cobalt Oxide), 리튬폴리머배터리(Li-ion Polymer), 리튬에어배터리, 니켈수소배터리(Ni-MH), 니켈카드늄배터리(Ni-Cd), NaS 배터리 및 슈퍼캐퍼시터 중에서 어느 하나 이상으로 채택된 것임을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The method according to any one of claims 1 to 3,
    The energy storage device 20 is adopted as an energy storage device having excellent discharge capability, lithium ion battery (Li-ion), lithium iron phosphate battery (LiFePO 4 ), lithium manganese oxide battery (LiMn 2 O 4 ), Lithium cobalt oxide battery (Lithum Cobalt Oxide), lithium polymer battery (Li-ion Polymer), lithium air battery, nickel-hydrogen battery (Ni-MH), nickel cadmium battery (Ni-Cd), NaS battery and supercapacitor Low voltage receiving operation device of a wind turbine, characterized in that any one or more adopted.

  6. 계통(30)의 전압이 일정 수준 이하로 하강되면, 최초 하강된 제1시점에서 풍력발전기(10)의 발전 작동을 중단시키는 동시에 에너지저장장치(20)로부터 계통(30)으로의 전력 공급이 인가되는 단계와;
    상기 제1시점부터 계통(30)의 전압이 상승을 시작하는 시점인 제2시점까지 에너지저장장치(20)로부터 계통(30)으로의 전력공급을 준비하는 단계와;
    계통(30)의 전압이 상승을 시작하여 정상적으로 복구되는 시점인 제3시점까지 에너지저장장치(20)로부터 계통(30)으로 전력공급을 시작하여 공급되는 전력공급량을 증가시키는 단계와;
    계통(30)의 전압이 정상상태로 돌아왔는지를 모니터링하여, 계통(30)의 전압이 정상상태로 돌아온 것으로 판정되면 풍력발전기(10)가 재가동되는 단계와;
    풍력발전기(10)의 발전에 따른 출력이 정상 수준에 도달하는 제4시점까지 에너지저장장치(20)에서 계통(30)으로 전력 공급이 지속되는 단계;
    를 포함하는 것을 특징으로 하는 풍력발전기의 저전압수용운전 방법.

    When the voltage of the system 30 falls below a predetermined level, the power supply from the energy storage device 20 to the system 30 is applied while stopping the power generation operation of the wind power generator 10 at the first time of the first drop. Becoming a step;
    Preparing power supply from the energy storage device 20 to the system 30 from the first time point to a second time point when the voltage of the system 30 starts to rise;
    Starting power supply from the energy storage device 20 to the system 30 until the third time point at which the voltage of the system 30 starts to rise and is normally restored;
    Monitoring whether the voltage of the system 30 has returned to the normal state, and restarting the wind turbine 10 if it is determined that the voltage of the system 30 has returned to the normal state;
    Supplying power from the energy storage device 20 to the system 30 until a fourth time point at which the output according to the power generation of the wind power generator 10 reaches a normal level;
    Low voltage acceptance operation method of the wind turbine comprising a.

  7. 청구항 6에 있어서,
    상기 에너지저장장치(20)로부터 계통(30)으로의 전력 공급 개시가 계통의 전압이 일정수준 이하로 하강하는 제1시점에서 이루어지는 것을 특징으로 하는 풍력발전기의 저전압수용운전 방법.

    The method according to claim 6,
    Low voltage acceptance operation method of the wind power generator, characterized in that the power supply from the energy storage device 20 to the system 30 starts at a first point when the voltage of the system drops below a certain level.

  8. 회전축에 장착되어 바람으로부터 회전에너지를 생산하는 블레이드(12)와, 블레이드(12)의 회전에너지로부터 전력을 생산하는 제너레이터(14)와, 제너레이터(14)에서 생산된 전력을 계통(30)에 공급하기에 적절한 형태의 전력으로 변환하는 전력컨버터(16)를 포함하는 풍력발전기 또는 전력컨버터(16)를 포함하지 않는 풍력발전기의 저전압수용운전 장치에 있어서,
    상기 풍력발전기(10)의 전력컨버터(16)와 계통(30) 간에 계통(30)의 전압이 일정 수준 이하로 하강될 때 개방되는 메인스위치(A1)를 설치하고, 풍력발전기(10)의 작동 중지후 재가동될 때 무효전력을 공급하도록 전력컨버터(16)와 메인스위치(A1) 사이에 제1에너지저장장치(ESS-1)를 제1스위치(B1)에 의하여 연결하는 동시에 메인스위치(A1)와 계통(30) 사이에 계통(30)의 전압이 일정 수준 이하로 하강될 때 계통(30)에 전력을 공급하기 위한 제2에너지저장장치(ESS-2)를 제2스위치(B2)에 의하여 연결하여서 된 것을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The blade 12 mounted on the rotating shaft to generate rotational energy from the wind, the generator 14 to generate electric power from the rotational energy of the blade 12, and the electric power produced by the generator 14 to supply the system 30 In the low-voltage receiving operation apparatus of the wind power generator including the power converter 16 or the power converter 16 for converting into a power of a suitable form below,
    Between the power converter 16 and the system 30 of the wind turbine 10 is installed a main switch (A1) that is opened when the voltage of the system 30 falls below a certain level, the operation of the wind generator 10 The first switch B1 connects the first energy storage device ESS-1 between the power converter 16 and the main switch A1 so as to supply reactive power when it is restarted after stopping. A second energy storage device ESS-2 for supplying power to the system 30 when the voltage of the system 30 falls below a predetermined level between the system 30 and the system 30 by the second switch B2. Low voltage receiving operation device of the wind power generator, characterized in that by connecting.

  9. 청구항 8에 있어서,
    상기 제1 및 제2에너지저장장치(ESS-1,ESS-2)는 방전 능력이 우수한 기능을 갖는 에너지저장장치로 채택된 것으로서, 리튬이온배터리(Li-ion), 리튬인산철배터리(LiFePO4), 리튬망간산화물배터리(LiMn2O4), 리튬코발트산화물배터리(Lithum Cobalt Oxide), 리튬폴리머배터리(Li-ion Polymer), 리튬에어배터리, 니켈수소배터리(Ni-MH), 니켈카드늄배터리(Ni-Cd), NaS 배터리 및 슈퍼캐퍼시터 중에서 어느 하나 이상으로 채택된 것임을 특징으로 하는 풍력발전기의 저전압수용운전 장치.

    The method according to claim 8,
    The first and second energy storage devices ESS-1 and ESS-2 are adopted as energy storage devices having excellent discharge capability, and are lithium ion batteries (Li-ion) and lithium iron phosphate batteries (LiFePO 4). ), Lithium manganese oxide battery (LiMn 2 O 4 ), lithium cobalt oxide battery (Lithum Cobalt Oxide), lithium polymer battery (Li-ion Polymer), lithium air battery, nickel hydrogen battery (Ni-MH), nickel cadmium battery ( Ni-Cd), NaS battery and supercapacitor, the low voltage acceptance operation device characterized in that the adoption of any one or more.

  10. 계통(30)의 전압이 소정크기 이하로 하강하면, 계통(30)과 풍력발전기(10) 간에 설치된 메인스위치(A1)가 개방되는 동시에 풍력발전기는 발전 동작을 멈추는 단계와;
    제2스위치(B2)가 온(ON)으로 작동하여, 제2에너지저장장치(ESS-2)의 전력이 저전압수용운전 기간 동안 계통(30)으로 공급되는 단계와;
    계통(30)의 전압이 정상상태에 도달하면, 풍력발전기를 재가동시키기 위하여 제1스위치(B1)의 온 상태로 유지시켜 풍력발전기의 재가동을 위한 무효전력이 제1에너지저장장치(ESS-1)에서 풍력발전기(10)로 공급되는 단계와;
    풍력발전기의 발전에 따른 출력이 정상수준에 도달하면 메인스위치(A1)를 온시키는 동시에 제2스위치(B2)를 오프시키는 단계와;
    계통(30)의 전압이 안정화되면, 제1스위치(B1)까지 풍력발전기단으로부터 오프되는 단계;
    를 포함하는 것을 특징으로 하는 풍력발전기의 저전압수용운전 방법.

    When the voltage of the grid 30 falls below a predetermined size, the main switch A1 installed between the grid 30 and the wind turbine 10 is opened, and the wind turbine stops generating power;
    The second switch B2 is turned ON to supply the power of the second energy storage device ESS-2 to the system 30 during the low voltage receiving operation period;
    When the voltage of the grid 30 reaches the normal state, the first switch B1 is kept in the on state to restart the wind power generator so that the reactive power for restarting the wind power generator is the first energy storage device ESS-1. Supplying to the wind turbine generator 10;
    Turning on the main switch A1 and turning off the second switch B2 when the output of the wind power generator reaches a normal level;
    When the voltage of the grid 30 is stabilized, the first switch B1 is turned off from the wind turbine end;
    Low voltage receiving operation method of the wind power generator comprising a.

  11. 청구항 10에 있어서,
    상기 메인스위치(A1)을 온시키는 동시에 제2스위치(B2)를 오프하여, 풍력발전기(10)와 계통(30)이 순간적인 연계가 될 때, 계통(30)의 전력이 풍력발전기(10)로 흐르는 역조류를 제1에너지저장장치(ESS-1)에서 버퍼시키는 것을 특징으로 하는 풍력발전기의 저전압수용운전 방법.

    The method according to claim 10,
    When the main switch A1 is turned on and the second switch B2 is turned off, and the wind turbine 10 and the grid 30 are instantaneously connected, the power of the grid 30 is transferred to the wind turbine 10. Low voltage receiving operation method of the wind power generator, characterized in that for buffering the reverse current flowing in the first energy storage device (ESS-1).

  12. 청구항 10에 있어서,
    풍력발전기(10)의 발전을 위한 풍향 및 풍속이 원하는 수준으로 유지되지 않을 경우, 풍력발전기(10)와 계통(30)을 연계시킨 상태에서 제1스위치(B1)를 온시켜서 제1에너지저장장치(ESS-1)로부터 풍력발전기(10)쪽으로 일정 수준의 무효전력이 공급되도록 한 것을 특징으로 하는 풍력발전기의 저전압수용운전 방법.

    The method according to claim 10,
    If the wind direction and wind speed for generating the wind power generator 10 are not maintained at a desired level, the first energy storage device is turned on by turning on the first switch B1 in a state in which the wind power generator 10 is connected to the grid 30. Low voltage acceptance operation method of the wind turbine, characterized in that a predetermined level of reactive power is supplied from the (ESS-1) to the wind turbine (10).

PCT/KR2012/007825 2012-09-27 2012-09-27 Device and method for low voltage ride-through of wind power generator WO2014051175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/007825 WO2014051175A1 (en) 2012-09-27 2012-09-27 Device and method for low voltage ride-through of wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/007825 WO2014051175A1 (en) 2012-09-27 2012-09-27 Device and method for low voltage ride-through of wind power generator

Publications (1)

Publication Number Publication Date
WO2014051175A1 true WO2014051175A1 (en) 2014-04-03

Family

ID=50388551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007825 WO2014051175A1 (en) 2012-09-27 2012-09-27 Device and method for low voltage ride-through of wind power generator

Country Status (1)

Country Link
WO (1) WO2014051175A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944185A (en) * 2014-04-22 2014-07-23 上海电机学院 Double-fed asynchronous motor low-voltage ride through control system and method
KR101735308B1 (en) * 2015-03-06 2017-05-15 군산대학교 산학협력단 Power charge/discharge control system and method for wind turbines using flywheel energy storage
WO2018200511A1 (en) * 2017-04-24 2018-11-01 General Electric Company Energy storage system for doubly fed induction generator
CN113669199A (en) * 2021-09-06 2021-11-19 中国华能集团清洁能源技术研究院有限公司 Control method, system and device for offshore floating type single-wind-wheel wind generating set
CN114094624A (en) * 2021-11-17 2022-02-25 天津大学 Low-voltage ride through coordination control method for wave power generation system
WO2023005582A1 (en) * 2021-07-30 2023-02-02 西安热工研究院有限公司 High voltage ride through and low voltage ride through coordinated control system for thermal power hybrid energy storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200207432Y1 (en) * 2000-04-29 2000-12-15 김우종 A power circulation device of a device for generating electricity using force of the wind by assistant power
KR20090053009A (en) * 2007-11-22 2009-05-27 주식회사 플라스포 Method for low voltage ride through and wind turbine for performing the method
WO2010085988A2 (en) * 2009-01-30 2010-08-05 Dewind, Inc. Wind turbine with lvrt capabilities
EP2221934A1 (en) * 2007-12-14 2010-08-25 Mitsubishi Heavy Industries, Ltd. Aerogenerator system
US20110291416A1 (en) * 2008-07-16 2011-12-01 Thomas Edenfeld Use of pitch battery power to start wind turbine during grid loss/black start capability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200207432Y1 (en) * 2000-04-29 2000-12-15 김우종 A power circulation device of a device for generating electricity using force of the wind by assistant power
KR20090053009A (en) * 2007-11-22 2009-05-27 주식회사 플라스포 Method for low voltage ride through and wind turbine for performing the method
EP2221934A1 (en) * 2007-12-14 2010-08-25 Mitsubishi Heavy Industries, Ltd. Aerogenerator system
US20110291416A1 (en) * 2008-07-16 2011-12-01 Thomas Edenfeld Use of pitch battery power to start wind turbine during grid loss/black start capability
WO2010085988A2 (en) * 2009-01-30 2010-08-05 Dewind, Inc. Wind turbine with lvrt capabilities

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944185A (en) * 2014-04-22 2014-07-23 上海电机学院 Double-fed asynchronous motor low-voltage ride through control system and method
KR101735308B1 (en) * 2015-03-06 2017-05-15 군산대학교 산학협력단 Power charge/discharge control system and method for wind turbines using flywheel energy storage
WO2018200511A1 (en) * 2017-04-24 2018-11-01 General Electric Company Energy storage system for doubly fed induction generator
US10523088B2 (en) 2017-04-24 2019-12-31 General Electric Company Energy storage system for doubly fed induction generator
WO2023005582A1 (en) * 2021-07-30 2023-02-02 西安热工研究院有限公司 High voltage ride through and low voltage ride through coordinated control system for thermal power hybrid energy storage
CN113669199A (en) * 2021-09-06 2021-11-19 中国华能集团清洁能源技术研究院有限公司 Control method, system and device for offshore floating type single-wind-wheel wind generating set
CN114094624A (en) * 2021-11-17 2022-02-25 天津大学 Low-voltage ride through coordination control method for wave power generation system
CN114094624B (en) * 2021-11-17 2023-01-17 天津大学 Low-voltage ride through coordination control method for wave power generation system

Similar Documents

Publication Publication Date Title
US8247917B2 (en) Storage battery output power control method for wind turbine generator
KR101211114B1 (en) Device and method for low voltage ride through of wind generator
US9006927B2 (en) Installation for producing electrical energy provided with means of energy storage and control method of such an installation
EP2306001B1 (en) Multi-use energy storage for renewable sources
JP4759587B2 (en) Wind farm
JP5198791B2 (en) Wind power generation system, control method therefor, and wind power plant using the same
JP4947926B2 (en) Method of operating private power generation equipment equipped with power storage means and private power generation equipment
WO2014051175A1 (en) Device and method for low voltage ride-through of wind power generator
JP5167106B2 (en) Wind power plant and its power generation control method
CN114977471A (en) Energy storage system
KR102249662B1 (en) Marine integrated power control management system
JP5614626B2 (en) Power system
KR101959498B1 (en) Wind based load isolated electrical charging system
US11929638B2 (en) Full DC voltage power backup system for wind turbine
JP2013176282A (en) Power generation system provided with power generation facilities and power storage device, control method thereof and program
Gyawali et al. Power management of double-fed induction generator-based wind power system with integrated smart energy storage having superconducting magnetic energy storage/fuel-cell/electrolyser
JP2015056942A (en) Hybrid power generation system
CN103413983A (en) Charging method and charging management system of lead-acid battery pack for wind turbine generator system
JP4461050B2 (en) Power supply device and uninterruptible power supply system including the power supply device
Luu et al. Power smoothing of doubly fed induction generator for wind turbine using ultracapacitors
CN101141066B (en) Method for regulating and controlling renewable energy resources power generation system by flywheel accumulation energy device
KR20110112678A (en) Power control system by using distributed generation
Sarrias et al. Supervisory control system for DFIG wind turbine with energy storage system based on battery
CN115769454A (en) Fast frequency response of hybrid power plant
Nguyen et al. A comparative analysis among power dispatching control strategies for hybrid wind and energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/08/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12885790

Country of ref document: EP

Kind code of ref document: A1