JP3793788B2 - Constant voltage control method for induction generator - Google Patents

Constant voltage control method for induction generator Download PDF

Info

Publication number
JP3793788B2
JP3793788B2 JP26297397A JP26297397A JP3793788B2 JP 3793788 B2 JP3793788 B2 JP 3793788B2 JP 26297397 A JP26297397 A JP 26297397A JP 26297397 A JP26297397 A JP 26297397A JP 3793788 B2 JP3793788 B2 JP 3793788B2
Authority
JP
Japan
Prior art keywords
phase
current
axis
voltage
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26297397A
Other languages
Japanese (ja)
Other versions
JPH11103600A (en
Inventor
文俊 市川
聡 宮崎
公良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP26297397A priority Critical patent/JP3793788B2/en
Publication of JPH11103600A publication Critical patent/JPH11103600A/en
Application granted granted Critical
Publication of JP3793788B2 publication Critical patent/JP3793788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、単独運転する誘導発電機の電圧一定制御方法に関するものである。
【0002】
【従来の技術】
誘導発電機は風車,水車,エンジン等の原動機で駆動され、誘導発電機の励磁電流の供給及び負荷の遅れ電流の供給は外部より行われる。このため誘導発電機は単独運転されることなく、同期発電機や電力系統と並列運転されることが多い。
【0003】
誘導発電機の単独運転方法としては、誘導発電機の出力端にコンデンサを設置し、コンデンサに流れる進相電流で誘導発電機に自己励磁を起こし、電圧が確立した後、負荷を投入する方法がある。
【0004】
【発明が解決しようとする課題】
誘導発電機の単独運転において、負荷が投入,遮断されると、当然誘導発電機電圧が変化する。これを防止し電圧変動を抑制し一定に保つ方法として、自励式インバータを誘導発電機と並列に設置し、調相機能動作を行わせる方法がある。
【0005】
この方法は誘導発電機電圧が下がったら進相電流を流し、電圧が上がったら遅相電流を流し、誘導発電機の自己励磁を調整して電圧制御を行うものであるが、現在このようなインバータによる誘導発電機の電圧一定制御方法は確立していない。
【0006】
この発明は、コンデンサによる自己励磁で誘導発電機を起動した後、負荷の変動によって生じる電圧変動を抑制し、電圧を一定に保つと共に、システム全体の性能を高めることができる誘導発電機の電圧一定制御方法を提供することにある。
【0007】
【課題を解決するための手段】
この発明の誘導発電機の電圧一定制御方法は、単独運転する誘導発電機の電圧一定制御方法において、誘導発電機にPWMインバータを並列に設置し、誘導発電機の電圧実効値を演算し、誘導発電機の電圧設定値と実効値の偏差をPI演算し、この電圧偏差が無くなるように、電圧設定値が大きければ遅れ電流、低ければ進み電流をPWMインバータが出力する制御を行うと共に、発電機の負荷電流を3相2相正相座標変換回路でd,q2軸の2相電流に変換し、そのd軸電流をローパスフィルタを通しd軸直流分として負荷無効電流を抽出し、この無効電流を補償するようにインバータをフィードフォワード制御し、PI演算制御によるフィードバック制御の応答より速くフィードフォワード制御により無効電流を補償し、誘導電圧変動の過渡応答時間を短くし、電圧変動を小さくする。
【0008】
または、前記3相2相正相座標変換回路で変換したd,q2軸の電流をそれぞれハイパスフィルタを通し、d,q軸交流分として負荷高調波電流を検出し、この高調波電流を補償するようにインバータを制御すると共に、発電機負荷電流を3相2相逆相変換し、ローパスフィルタを通してd,q軸直流分として負荷逆相電流を検出し、この逆相電流を補償するようにインバータを制御することで、誘導発電機の発熱を抑制し、誘導発電機の小形化と誘導発電機の自己励磁用コンデンサへの高調波電流の流入を防止する。
【0009】
または、単独運転する誘導発電機の電圧一定制御方法において、誘導発電機にPWMインバータを並列に設置し、誘導発電機の電圧実効値と設定値との偏差をPI演算して発電機電圧一定制御するためのd軸電流を得、発電機負荷電流を3相2相逆相座標変換回路で逆回転座標のd,q軸電流に変換し、このd,q軸電流からそれぞれローパスフィルタで2相の逆相成分を抽出し、抽出した逆相成分を逆相正相変換回路でd,q軸正回転座標の逆相電流に変換してd,q軸逆相電流を得、発電機負荷電流を3相2相正相座標変換回路でd,q軸電流に変換し、このd,q軸電流からそれぞれ前記ローパスフィルタで抽出したd,q軸逆相成分を引いて逆相分を含まないd,q軸負荷変流を求め、このd,q軸負荷電流からそれぞれハイパスフィルタd,q軸高調波電流を抽出し、前記d軸負荷電流の直流分をローパスフィルタで抽出してd軸無効電流を得、前記PWMインバータの直流電圧と直流電圧設定値との偏差をPI演算して直流電圧一定制御するためのq軸電流を得、前記各d軸電流指令および各q軸電流指令をそれぞれ加算し、2相3相変換回路で3相に変換して電流指令とし、この電流指令と前記PWMインバータ出力電流との偏差がなくなるように、前記電圧設定値が大きければ遅れ電流、低ければ進み電流をPWMインバータが出力する制御を行うことで、誘導発電機電圧を一定とする。
【0010】
【発明の実施の形態】
図1に単独運転する誘導発電機の電圧一定制御ブロック図を示す。図中、1は誘導発電機(以下、単に発電機という)、2は発電機を駆動する原動機、3は発電機1から負荷への給電線、4は発電機自己励磁用コンデンサ、5は発電機電圧を一定制御するためのPWMインバータ、10は補償電流を演算してインバータ5を制御する制御装置である。
【0011】
制御装置10について、11は電圧検出器PT1で検出した発電機電圧からその基本波電圧を抽出するローパスフィルタ、12はこの基本波電圧から発電機電圧の実効値を演算する実効値演算回路、14は発電機電圧一定制御回路で、発電機電圧実効値と設定器13からの発電機電圧設定値との偏差をPI演算し、電圧一定制御のd軸電流指令を出力するPI演算器15とこの電流指令を制限するリミッタ16で構成されている。
【0012】
17はフィルタ11で抽出した基本波電圧から後記各座標変換回路用の電源角周波数ωを検出するPLL回路、18は電流検出器CT1で検出した発電機の総負荷電流をd,q軸座標の2相電流に変換する3相2相正相座標変換回路、19は発電機の総負荷電流を2相の逆相電流に変換する3相2相逆相座標変換回路である
【0013】
21は負荷電流の逆相分を打ち消すための逆相電流補償回路で、3相2相逆相座標変換回路19で変換された2相逆相電流の直流分(基本波逆相成分)を抽出するローパスフィルタ23,24と、この抽出した逆相分電流を正相に変換し逆相電流補償の2相の電流指令を出力する逆相正相座標変換回路25と、この電流指令を制限するリミッタ26,27で構成されている。
【0014】
29はローパスフィルタ23,24で抽出した逆相分電流を正相に変換する逆相正相座標変換回路、31,32は座標変換回路18,29の2相の電流差をとり逆相分を除去した2相の負荷電流を出力する減算器である
【0015】
33は負荷電流の高調波を打ち消すための高調波電流補償回路で、減算器31,32からの2相電流の交流分(高調波成分)を抽出し、高調波電流補償の2相の電流指令を出力するハイパスフィルタ35,36と、この電流指令を制限するリミッタ37,38で構成されている。
【0016】
41は負荷電流の無効分を打ち消すための無効電流補償回路で、加算器31からのd軸電流の直流分(無効成分)を抽出し無効電流補償のd軸電流指令を出力するローパスフィルタ42と、この電流指令を制限するリミッタ43で構成されている。
【0017】
46はインバータ5の直流電圧を一定とする直流電圧一定制御回路で、インバータ直流電圧Vdと設定器45から直流電圧設定値の偏差をPI演算し直流圧電制御のq軸電流指令を出力するPI演算器47で構成されている。
【0018】
51〜53は高調波電流補償回路33,無効電流補償回路41,発電機電圧一定制御回路14,逆相電流補償回路21からの各d軸電流指令を加算する加算器、54,55は高調波電流補償回路33と直流電圧一定制御回路と逆相電流補償回路21からの各q軸電流指令を加算するための加算器、56はこの加算されたd,q軸の電流指令を3相に変換する2相3相座標変換回路、57はこの3相電流指令と電流検出器CT2で検出したインバータ出力電流との偏差をPI演算してインバータ5のPWM回路51に電流制御指令を出力しインバータをPWM制御する電流制御回路である。
【0019】
次に、制御装置10の要部の動作について説明する。
【0020】
(1)発電機電圧一定制御回路14は、実効値演算回路12で求めた発電機電圧実効値と電圧設定値との偏差を0にするようなPI演算を行いd軸電流(無効分電流)として出力する。
【0021】
したがって、インバータ5は上記電圧偏差が0になるように電圧設定値の方が大きければ遅れ電流(電源から見て)を出力し、低ければ、進み電流を出力して発電機出力電圧を一定に制御する。
【0022】
(2)無効電流補償回路41は、3相2相正相座標変換回路18で変換した総負荷電流のd軸電流から減算器31で逆相分を差し引いて逆相分を除去したd軸電流からローパスフィルタ42で無効分電流を抽出し、これをフィードフォワード制御のd軸無効電流指令として出力する。
【0023】
したがって、負荷電流に無効電流変動があった場合、インバータをフィードフォワード制御で、上記フィードバックループ制御の電圧一定制御応答より速く無効電流の補償を行うことができ、発電機1の電圧変動の過渡応答時間が短くなり、また変動幅も小さくなる。
【0024】
(3)高調波電流補償回路33は、3相2相正相座標変換回路18で変換した2相の負荷電流から逆相正相座標変換回路29からの2相の逆相分電流を減算器31,32で除去した2相の電流からハイパスフィルタ35,36で高調波分を抽出して、これを高調波電流補償の2相の電流指令として出力する。したがって、インバータ5は高調波電流をアクティブフィルタ機能により補償する。
【0025】
この高調波補償は、発電機1の出力電圧を制御するわけではないが、負荷電流に含まれる高調波電流を補償することで発電機1に流れる高調波電流は低減し、発熱等を低減でき結果として発電機1の小型化が可能となる。また自己励磁用コンデンサ4への高調波電流の流入も防止できる。
【0026】
(4)逆相電流補償回路21は、総負荷電流を3相2相逆相座標変換回路で変換したd,q2軸の逆相電流の基本波成分をローパスフィルタで抽出し、逆相正相変換回路25で正相に変換して正相の逆相電流補償の電流指令として出力する。したがって、インバータ5は負荷電流の逆相分を打ち消して逆相補償する。
【0027】
逆相電流についても高調波電流と同様、除去することが必要である。このために逆相補償回路21を独自に設けている。これは高調波補償のハイパスフィルタ35,36ではカットオフ周波数が高いため完全に逆相分を検出できないことによる。このため、逆相電流補償回路21で逆相補償の電流指令を求めて出力すると共に、予め高調波電流補償回路33に入力する逆相分をキャンセルしておくための逆相正相変換回路29と減算器31,32を設けている。
【0028】
(5)発電機一定制御回路14と各電流補償回路21,33,41及び直流電圧一定制御回路46からの電流指令は2相3相座標変換回路56で3相に変換される。電流制御回路57は3相に変換された電流指令とインバータ出力電流との偏差をPI演算してインバータ5の制御指令としてインバータのPWM回路へ出力し、発電機電圧一定制御を行う。
【0029】
このシステムによれば、誘導発電機の単独運転、電圧一定制御が行えるだけでなく、高調波、逆相分の影響も除去され、システム全体の性能が向上する。
【0030】
【発明の効果】
この発明は、上述のとおり構成されているので、次に記載する効果を奏する。
【0031】
(1)誘導発電機出力電圧を検出し、電圧偏差をPI演算した電流指令でインバータを制御しているので、発電機電圧一定制御ができる。
【0032】
(2)負荷の無効電流を検出してフィードフォワード補償を行っているので、発電機電圧一定制御の速応性が向上する。
【0033】
(3)高調波,逆相電流の補償をしているので、誘導発電機の発熱が抑制され、誘導発電機を小型軽量化することが可能となる。
【0034】
(4)上記(1)〜(3)の機能を1台のインバータ装置で行うことができ、コストパフォーマンスが非常に高い。
【0035】
(5)誘導発電機が単独運転できるので、同期発電機も電力系統も不要で、設備工事が著しく安価となる。
【図面の簡単な説明】
【図1】実施の形態にかかる誘導発電機電圧一定制御ブロック図。
【符号の説明】
1…誘導発電機
2…原動機
3…給電線
4…自己励磁用コンデンサ
5…誘導発電機電圧一定制御用インバータ
10…インバータの制御装置
12…発電機出力電圧実効値演算回路
14…誘導発電機一定制御回路
15…PI演算器
18…3相2相正相座標変換回路
19…3相2相逆相座標変換回路
21…逆相電流補償回路
23,24…ローパスフィルタ
25,29…逆相正相座標変換回路
33…高調波電流補償回路
35,36…ハイパスフィルタ
41…無効電流補償回路
42…ローパスフィルタ
46…インバータ直流電圧一定制御回路
47…PI演算器
56…2相3相座標変換回路
57…電流制御回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a voltage constant control method for an induction generator that operates independently.
[0002]
[Prior art]
The induction generator is driven by a prime mover such as a windmill, a water turbine, or an engine, and the excitation current of the induction generator and the delay current of the load are supplied from the outside. For this reason, induction generators are often operated in parallel with synchronous generators and power systems without being operated independently.
[0003]
As an independent operation method for an induction generator, there is a method in which a capacitor is installed at the output end of the induction generator, the induction generator is self-excited by a phase-advancing current flowing in the capacitor, and a voltage is established and then a load is applied. is there.
[0004]
[Problems to be solved by the invention]
In the independent operation of the induction generator, when the load is turned on and off, the induction generator voltage naturally changes. As a method of preventing this and suppressing voltage fluctuation and keeping it constant, there is a method of installing a self-excited inverter in parallel with the induction generator and performing a phase adjusting function operation.
[0005]
In this method, when the induction generator voltage drops, a phase advance current is supplied, and when the voltage rises, a phase delay current is supplied, and voltage control is performed by adjusting self-excitation of the induction generator. voltage constant control method of the induction generator according to has not been established.
[0006]
The present invention, after starting the induction generator with self-excitation by capacitor to suppress voltage variations caused by variations in the load, with keeping the voltage constant, the voltage constant of the induction generator that can enhance the performance of the entire system It is to provide a control method.
[0007]
[Means for Solving the Problems]
The voltage constant control method for an induction generator according to the present invention is a voltage constant control method for an induction generator that is operated independently , wherein a PWM inverter is installed in parallel with the induction generator, a voltage effective value of the induction generator is calculated, A PI calculation is performed on the deviation between the voltage setting value and the effective value of the generator, and the PWM inverter outputs a lag current if the voltage setting value is large and a lead current if the voltage setting value is low so that the voltage deviation is eliminated. Load current is converted into d, q2 axis two phase current by a three phase two phase positive phase coordinate conversion circuit, the load current is extracted by passing the d axis current through a low pass filter as a d axis DC component, and this reactive current The feedforward control of the inverter is compensated so as to compensate, the reactive current is compensated by the feedforward control faster than the feedback control response by the PI operation control, and the fluctuation of the induced voltage Shorten the transient response time, reduce the voltage fluctuation.
[0008]
Alternatively, the d- and q2-axis currents converted by the three-phase two-phase positive phase coordinate conversion circuit are respectively passed through a high-pass filter, and the load harmonic current is detected as the d and q-axis AC components, and this harmonic current is compensated. The inverter is controlled so that the generator load current is three-phase two-phase reverse-phase converted, the load negative-phase current is detected as the d and q-axis DC components through a low-pass filter, and the negative-phase current is compensated. By controlling the heat generation, the induction generator can be prevented from generating heat, and the induction generator can be reduced in size and the harmonic current can be prevented from flowing into the self-excitation capacitor of the induction generator.
[0009]
Or, in the constant voltage control method of the induction generator to islanding, induction generator to install the PWM inverter in parallel, the generator voltage constant deviation of the voltage effective value of the induction generator and the set value by PI calculation A d-axis current for control is obtained, and the generator load current is converted into d- and q-axis currents in reverse rotation coordinates by a three-phase two-phase reverse-phase coordinate conversion circuit, and 2 from each of the d and q-axis currents by a low-pass filter. The negative phase component of the phase is extracted, and the extracted negative phase component is converted into the negative phase current of the d and q axis normal rotation coordinates by the negative phase normal phase conversion circuit to obtain the d and q axis negative phase current. The current is converted into d- and q-axis currents by a three-phase, two-phase normal phase coordinate conversion circuit, and the d- and q-axis negative phase components extracted by the low-pass filter are subtracted from the d and q-axis currents, respectively, to include the reverse phase component. No d and q axis load current is calculated, and high pass is obtained from each of these d and q axis load currents Filter d, q-axis harmonic current is extracted, a DC component of the d-axis load current is extracted by a low-pass filter to obtain a d-axis reactive current, and a deviation between the DC voltage of the PWM inverter and the DC voltage set value is represented by PI Q-axis current for calculating and controlling DC voltage constant is obtained, and each of the d-axis current command and each q-axis current command is added, converted into three phases by a two-phase / three-phase conversion circuit, and used as a current command, so that the deviation of the current command and the PWM inverter output current is eliminated, delayed current the larger the said voltage setting value, by performing control for outputting the PWM inverter current advances a low, the voltage of the induction generator constant And
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a block diagram of constant voltage control of an induction generator that is operated independently. In the figure, 1 is an induction generator (hereinafter simply referred to as a generator), 2 is a prime mover for driving the generator, 3 is a power supply line from the generator 1 to the load, 4 is a capacitor for self-excitation of the generator, and 5 is power generation. A PWM inverter 10 for controlling the machine voltage at a constant is a control device 10 for controlling the inverter 5 by calculating a compensation current.
[0011]
Regarding the control device 10, 11 is a low-pass filter that extracts the fundamental voltage from the generator voltage detected by the voltage detector PT1, 12 is an effective value calculation circuit that calculates the effective value of the generator voltage from this fundamental wave voltage, 14 Is a constant generator voltage control circuit, which performs PI calculation on the deviation between the generator voltage effective value and the generator voltage set value from the setting device 13 and outputs a d-axis current command for constant voltage control, and this The limiter 16 limits the current command.
[0012]
Reference numeral 17 denotes a PLL circuit that detects a power supply angular frequency ω for each coordinate conversion circuit described later from the fundamental wave voltage extracted by the filter 11, and 18 denotes the total load current of the generator detected by the current detector CT1 in the d and q axis coordinates. A three-phase two-phase normal phase coordinate conversion circuit 19 for converting to a two-phase current, and 19 is a three-phase two-phase negative phase coordinate conversion circuit for converting the total load current of the generator into a two-phase negative phase current.
[0013]
Reference numeral 21 denotes a negative phase current compensation circuit for canceling the negative phase component of the load current, and extracts the direct current component (fundamental negative phase component) of the two-phase negative phase current converted by the three-phase two-phase negative phase coordinate conversion circuit 19. Low-pass filters 23 and 24, a negative-phase positive phase coordinate conversion circuit 25 that converts the extracted negative-phase component current into a positive phase and outputs a two-phase current command for negative-phase current compensation, and limits the current command. The limiters 26 and 27 are configured.
[0014]
29 is a negative phase normal phase coordinate conversion circuit that converts the negative phase current extracted by the low-pass filters 23 and 24 into a normal phase, and 31 and 32 are the current differences between the two phases of the coordinate conversion circuits 18 and 29, and the negative phase components are obtained. It is a subtractor that outputs the removed two-phase load current.
[0015]
Reference numeral 33 denotes a harmonic current compensation circuit for canceling harmonics of the load current, which extracts an AC component (harmonic component) of the two-phase current from the subtractors 31 and 32, and generates a two-phase current command for harmonic current compensation. , And limiters 37 and 38 for limiting the current command.
[0016]
Reference numeral 41 denotes a reactive current compensation circuit for canceling out the reactive component of the load current. The low-pass filter 42 extracts the DC component (ineffective component) of the d-axis current from the adder 31 and outputs a d-axis current command for reactive current compensation. The limiter 43 limits the current command.
[0017]
46 is a DC voltage constant control circuit for making the DC voltage of the inverter 5 constant. PI that calculates the deviation between the inverter DC voltage Vd and the DC voltage set value from the setting device 45 and outputs a q-axis current command for DC piezoelectric control. An arithmetic unit 47 is used.
[0018]
51 to 53 are harmonic current compensation circuit 33, reactive current compensation circuit 41, generator voltage constant control circuit 14, adder for adding each d-axis current command from negative phase current compensation circuit 21, and 54 and 55 are harmonics. An adder 56 for adding the q-axis current commands from the current compensation circuit 33, the DC voltage constant control circuit, and the negative-phase current compensation circuit 21 converts the added d and q-axis current commands into three phases. two-phase to three-phase coordinate converter 57 outputs a current control command to the deviation between the detected inverter output current in the 3-phase current command and the current detector CT2 to the PWM circuit 5 first inverter 5 by PI calculation inverter 5 is a current control circuit for PWM-controlling 5 .
[0019]
Next, the operation | movement of the principal part of the control apparatus 10 is demonstrated.
[0020]
(1) The generator voltage constant control circuit 14 performs a PI calculation so that the deviation between the generator voltage effective value obtained by the effective value calculation circuit 12 and the voltage setting value is zero, and d-axis current (invalid component current). Output as.
[0021]
Therefore, the inverter 5 outputs a lagging current (as viewed from the power source) if the voltage set value is larger so that the voltage deviation becomes 0, and if it is lower, outputs a leading current to keep the generator output voltage constant. Control.
[0022]
(2) The reactive current compensation circuit 41 is a d-axis current obtained by subtracting the reverse phase component from the d-axis current of the total load current converted by the three-phase two-phase normal phase coordinate conversion circuit 18 and removing the reverse phase component. The reactive current is extracted by the low-pass filter 42, and this is output as a d-axis reactive current command for feedforward control.
[0023]
Therefore, when there is a reactive current fluctuation in the load current, the inverter can be compensated for the reactive current faster by the feedforward control than the constant voltage control response of the feedback loop control, and the transient response of the voltage fluctuation of the generator 1 The time is shortened and the fluctuation range is also reduced.
[0024]
(3) The harmonic current compensation circuit 33 subtracts the two-phase negative phase current from the negative phase normal phase coordinate conversion circuit 29 from the two phase load current converted by the three phase two phase normal phase coordinate conversion circuit 18. Harmonic components are extracted by the high-pass filters 35 and 36 from the two-phase currents removed at 31 and 32, and are output as two-phase current commands for harmonic current compensation. Therefore, the inverter 5 compensates the harmonic current by the active filter function.
[0025]
This harmonic compensation does not control the output voltage of the generator 1, but by compensating for the harmonic current included in the load current, the harmonic current flowing through the generator 1 can be reduced and heat generation can be reduced. As a result, the generator 1 can be downsized. In addition, it is possible to prevent the harmonic current from flowing into the self-exciting capacitor 4.
[0026]
(4) The negative phase current compensation circuit 21 extracts a fundamental wave component of the negative phase currents of d and q2 axes obtained by converting the total load current by the three phase two phase negative phase coordinate conversion circuit by using a low-pass filter, and outputs the negative phase positive phase. The conversion circuit 25 converts the signal into a positive phase and outputs it as a current command for normal phase reverse phase compensation. Therefore, the inverter 5 cancels out the reverse phase of the load current and compensates for the reverse phase.
[0027]
It is necessary to remove the reverse phase current as well as the harmonic current. For this purpose, the anti-phase compensation circuit 21 is uniquely provided. This is because the high-pass filters 35 and 36 for harmonic compensation have a high cut-off frequency and thus cannot completely detect the reverse phase component. For this reason, the anti-phase current compensation circuit 21 obtains and outputs an anti-phase compensation current command, and cancels the anti-phase component input to the harmonic current compensation circuit 33 in advance. And subtractors 31 and 32 are provided.
[0028]
(5) Current commands from the generator constant control circuit 14, the current compensation circuits 21, 33, 41 and the DC voltage constant control circuit 46 are converted into three phases by the two-phase three-phase coordinate conversion circuit 56. The current control circuit 57 performs PI calculation on the deviation between the current command converted into the three phases and the inverter output current, and outputs it as a control command for the inverter 5 to the PWM circuit of the inverter to perform constant generator voltage control.
[0029]
According to this system, not only can the independent operation of the induction generator and constant voltage control be performed, but also the effects of harmonics and antiphase components are eliminated, and the performance of the entire system is improved.
[0030]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0031]
(1) Since the inverter is controlled by a current command obtained by detecting the induction generator output voltage and PI calculating the voltage deviation, the generator voltage constant control can be performed.
[0032]
(2) Since the reactive current of the load is detected and feedforward compensation is performed, the quick response of the generator voltage constant control is improved.
[0033]
(3) Since the harmonics and the reverse-phase current are compensated, heat generation of the induction generator is suppressed, and the induction generator can be reduced in size and weight.
[0034]
(4) The above functions (1) to (3) can be performed by one inverter device, and the cost performance is very high.
[0035]
(5) Since the induction generator can be operated independently, neither a synchronous generator nor an electric power system is required, and the installation work is remarkably inexpensive.
[Brief description of the drawings]
FIG. 1 is a block diagram of an induction generator voltage constant control according to an embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... induction generator 2 ... prime mover 3 ... feeder 4 ... self-excitation capacitor 5 ... induction generator voltage constant control inverter 10 ... inverter control device 12 ... generator output voltage effective value arithmetic circuit 14 ... induction generator constant Control circuit 15 ... PI calculator 18 ... 3-phase 2-phase normal phase coordinate conversion circuit 19 ... 3-phase 2-phase reverse-phase coordinate conversion circuit 21 ... Negative phase current compensation circuit 23, 24 ... Low-pass filter 25, 29 ... Negative phase normal phase Coordinate conversion circuit 33 ... harmonic current compensation circuit 35, 36 ... high-pass filter 41 ... reactive current compensation circuit 42 ... low-pass filter 46 ... inverter DC voltage constant control circuit 47 ... PI calculator 56 ... two-phase three-phase coordinate conversion circuit 57 ... Current control circuit.

Claims (3)

単独運転する誘導発電機の電圧一定制御方法において、
誘導発電機にPWMインバータを並列に設置し、
誘導発電機の電圧実効値を演算し、誘導発電機の電圧設定値と実効値の偏差をPI演算し、この電圧偏差が無くなるように、電圧設定値が大きければ遅れ電流、低ければ進み電流をPWMインバータが出力する制御を行うと共に、
発電機の負荷電流を3相2相正相座標変換回路でd,q2軸の2相電流に変換し、そのd軸電流をローパスフィルタを通しd軸直流分として負荷無効電流を抽出し、この無効電流を補償するようにインバータをフィードフォワード制御する、
ことを特徴とする誘導発電機の電圧一定制御方法。
In the voltage constant control method of the induction generator that operates independently ,
Install the PWM inverter in parallel with the induction generator ,
Calculate the effective voltage value of the induction generator, calculate the PI between the voltage setting value of the induction generator and the effective value, and calculate the lag current if the voltage setting value is large and the advance current if the voltage setting value is low so that this voltage deviation is eliminated. While performing the control that the PWM inverter outputs ,
The load current of the generator is converted into a d- and q2-axis two-phase current by a three-phase two-phase positive phase coordinate conversion circuit, and the d-axis current is passed through a low-pass filter to extract a load reactive current as a d-axis DC component, Feed-forward control of the inverter to compensate for this reactive current,
Voltage constant control method of the induction generator, characterized in that.
請求項1において、
前記3相2相正相座標変換回路で変換したd,q2軸の電流をそれぞれハイパスフィルタを通し、d,q軸交流分として負荷高調波電流を検出し、この高調波電流を補償するようにインバータを制御すると共に、
発電機負荷電流を3相2相逆相変換し、ローパスフィルタを通してd,q軸直流分として負荷逆相電流を検出し、この逆相電流を補償するようにインバータを制御する、
ことを特徴とする誘導発電機の電圧一定制御方法。
In claim 1,
The d- and q2-axis currents converted by the three-phase, two-phase positive phase coordinate conversion circuit are respectively passed through a high-pass filter, and the load harmonic current is detected as the d and q-axis AC components, and this harmonic current is compensated. While controlling the inverter,
Three-phase two-phase reverse phase conversion of the generator load current, the load negative phase current is detected as d and q axis DC components through a low-pass filter, and the inverter is controlled to compensate for this negative phase current.
Voltage constant control method of the induction generator, characterized in that.
単独運転する誘導発電機の電圧一定制御方法において、
誘導発電機にPWMインバータを並列に設置し、
誘導発電機の電圧実効値と設定値との偏差をPI演算して発電機電圧一定制御するためのd軸電流を得、
発電機負荷電流を3相2相逆相座標変換回路で逆回転座標のd,q軸電流に変換し、このd,q軸電流からそれぞれローパスフィルタで2相の逆相成分を抽出し、抽出した逆相成分を逆相正相変換回路で正相回転座標のd,q軸逆相電流を得、
発電機負荷電流を3相2相正相座標変換回路でd,q軸電流に変換し、このd,q軸電流からそれぞれ前記ローパスフィルタで抽出したd,q軸逆相成分を引いて逆相分を含まないd,q軸負荷電流を求め、
このd,q軸負荷電流からそれぞれハイパスフィルタを通してd,q軸高調波電流を抽出し、
前記逆相分を含まないd軸負荷電流からローパスフィルタでd軸無効電流を抽出し、
前記PWMインバータの直流電圧と直流電圧設定値との偏差をPI演算して直流電圧一定制御するためのq軸電流を得、
前記ハイパスフィルタで得られたd軸高調波電流と、前記ローパスフィルタで抽出し逆相正相変換したd軸逆相電流と、前記d軸無効電流と、前記発電機電圧一定制御するためのd軸電流とを加算し、前記ハイパスフィルタで得られたq軸高調波電流と、前記ローパスフィルタで抽出し逆相正相変換したq軸逆相電流と、直流電圧一定制御するためのq軸電流とを加算し、これら加算したd軸電流およびq軸電流を2相3相変換回路で3相に変換して電流指令とし、
この電流指令と前記PWMインバータ出力電流との偏差がなくなるように、前記電圧設定値が大きければ遅れ電流、低ければ進み電流をPWMインバータが出力する制御を行うことで、誘導発電機電圧を一定とすることを特徴とする誘導発電機の電圧一定制御方法。
In the voltage constant control method of the induction generator that operates independently ,
Install the PWM inverter in parallel with the induction generator ,
The deviation of the effective voltage value of the induction generator with a set value to obtain a d-axis current for the voltage constant control of the PI calculation to the generator,
The generator load current is converted into the d and q axis currents of the reverse rotation coordinates by the three-phase and two-phase inverse phase coordinate conversion circuit, and the two-phase anti-phase components are extracted from the d and q axis currents by the low-pass filter, respectively, and extracted. The d- and q-axis reversed-phase currents of the normal-phase rotation coordinates are obtained from the reversed-phase component by the reversed-phase normal-phase conversion circuit,
The generator load current is converted into d and q axis currents by a three-phase and two-phase normal phase coordinate conversion circuit, and the d and q axis negative phase components extracted by the low-pass filter are subtracted from the d and q axis currents, respectively. D and q axis load currents not including the minute are obtained,
The d and q axis harmonic currents are extracted from the d and q axis load currents through high-pass filters, respectively.
A d-axis reactive current is extracted by a low-pass filter from the d-axis load current not including the reverse phase component,
A q-axis current for constant control of the DC voltage is obtained by calculating the deviation between the DC voltage of the PWM inverter and the DC voltage setting value,
The d-axis harmonic current obtained by the high-pass filter, the d-axis negative-phase current extracted by the low-pass filter and subjected to reverse-phase normal phase conversion, the d-axis reactive current, and d for controlling the generator voltage constant. The q-axis harmonic current obtained by adding the shaft current, the q-axis harmonic current obtained by the high-pass filter, the q-axis reverse-phase current extracted by the low-pass filter and reversed-phase normal phase conversion, and the q-axis current for controlling the DC voltage constant Are added, and the added d-axis current and q-axis current are converted into three phases by a two-phase three-phase conversion circuit to obtain a current command,
So that the deviation of the current command and the PWM inverter output current is eliminated, delayed current the larger the said voltage setting value, by performing control for outputting the PWM inverter current advances A low, the voltage of the induction generator constant A constant voltage control method for an induction generator, characterized in that
JP26297397A 1997-09-29 1997-09-29 Constant voltage control method for induction generator Expired - Fee Related JP3793788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26297397A JP3793788B2 (en) 1997-09-29 1997-09-29 Constant voltage control method for induction generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26297397A JP3793788B2 (en) 1997-09-29 1997-09-29 Constant voltage control method for induction generator

Publications (2)

Publication Number Publication Date
JPH11103600A JPH11103600A (en) 1999-04-13
JP3793788B2 true JP3793788B2 (en) 2006-07-05

Family

ID=17383129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26297397A Expired - Fee Related JP3793788B2 (en) 1997-09-29 1997-09-29 Constant voltage control method for induction generator

Country Status (1)

Country Link
JP (1) JP3793788B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805186B2 (en) * 2007-02-26 2011-11-02 財団法人電力中央研究所 Power conversion system control method and power conversion system using the control method
JP5488880B2 (en) * 2009-09-25 2014-05-14 富士電機株式会社 Winding induction machine controller
CN106532705B (en) * 2015-12-31 2021-03-19 安徽一天电能质量技术有限公司 Three-phase four-wire system APF calculation method under multi-synchronous rotating coordinate system
JP6798248B2 (en) * 2016-10-25 2020-12-09 富士電機株式会社 Power converter
WO2018122982A1 (en) * 2016-12-27 2018-07-05 川崎重工業株式会社 Power generation system and method for controlling same
CN108879782B (en) * 2018-08-01 2021-11-30 国网重庆市电力公司电力科学研究院 Grid-connected inverter optimization control method based on dual-filtering power grid voltage feedforward

Also Published As

Publication number Publication date
JPH11103600A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP5542609B2 (en) Reactive power compensator
JP5003819B2 (en) System stabilization device
US20050195624A1 (en) Method and arrangement in connection with network inverter
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
JP2005045849A (en) Wind power generator
JPH08163782A (en) Power system stabilizer
JP3411462B2 (en) Control device for power converter
JP2575500B2 (en) Three-phase converter
Wu et al. Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of DFIG-DC system
JP3798894B2 (en) Harmonic compensation method
CN107611998B (en) Method and device for restraining sub-synchronous resonance of power grid based on STATCOM dual channels
JP2009106017A (en) Active filter function device
JP3793788B2 (en) Constant voltage control method for induction generator
JP2011211875A (en) System interconnection inverter device
JP2004052649A (en) Output power smoothing control device of wind power generator
JPH11143562A (en) Controller for active filter device
JP3112386B2 (en) Reactive power generator
JP3323759B2 (en) Pulse width modulation converter device
JP2009100618A (en) Uninterruptible power supply unit
JPH09215197A (en) Active filter device
JP2004159416A (en) Unbalance compensator for three phase-two phase converter
JPH10201099A (en) Active filter
JPH0522938A (en) Controlling circuit for power conversion system
JP3309894B2 (en) Control method of self-excited var compensator
CN110061641B (en) Power grid environment energy front-end control system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees