JP2010071159A - Device for smoothing electric power generated by wind power generation using wind mill and storage battery - Google Patents

Device for smoothing electric power generated by wind power generation using wind mill and storage battery Download PDF

Info

Publication number
JP2010071159A
JP2010071159A JP2008238478A JP2008238478A JP2010071159A JP 2010071159 A JP2010071159 A JP 2010071159A JP 2008238478 A JP2008238478 A JP 2008238478A JP 2008238478 A JP2008238478 A JP 2008238478A JP 2010071159 A JP2010071159 A JP 2010071159A
Authority
JP
Japan
Prior art keywords
storage battery
wind
wind power
pitch angle
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008238478A
Other languages
Japanese (ja)
Inventor
Tomonobu Senju
智信 千住
Yasuro Kikunaga
康朗 菊永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus NUC
Original Assignee
University of the Ryukyus NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus NUC filed Critical University of the Ryukyus NUC
Priority to JP2008238478A priority Critical patent/JP2010071159A/en
Publication of JP2010071159A publication Critical patent/JP2010071159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for smoothing electric power generated by wind power generation using a wind mill and a storage battery, suppressing variation in output power supplied to a system by the lower-capacity storage battery, in a wind power generation system provided with the wind mill and storage battery. <P>SOLUTION: In a wind power generation device including a wind power generator 1 controlling a pitch angle, the storage battery 4, an output terminal 2, and a control device, with respect to wind speed fluctuation, the pitch angle of the wind power generator 1 is controlled so that a variation in electricity caused by low-frequency fluctuation of not more than an optional frequency is suppressed, and the pitch angle of the wind power generator 1 and the charging/discharging of the storage battery 4 are controlled so that generated power supplied to the output terminal 2 and the remaining amount of energy of the storage battery become constant by compensating high-frequency fluctuation of not less than the optional frequency only by the charging/discharging of the storage battery 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、風力発電システムの系統出力電力を平滑化する風力発電電力平滑化装置に関し、特に風車と蓄電池を協調的に利用して系統に出力される電力を平滑化する風車と蓄電池による風力発電電力平滑化装置に関する。   The present invention relates to a wind power generation smoothing device that smoothes system output power of a wind power generation system, and in particular, wind power generation by a wind turbine and a storage battery that uses a wind turbine and a storage battery in a coordinated manner to smooth the power output to the system. The present invention relates to a power smoothing device.

近年、地球温暖化防止や化石燃料資源枯渇の観点から、風力エネルギーや太陽光エネルギーを利用する自然エネルギー発電設備が電力系統に多数接続されるようになってきた。
風力発電は、非枯渇性のクリーンエネルギーである風力エネルギーを利用した発電システムとして、世界各地で盛んに建設が行われている。また、離島や限られた地域内に電力を供給する小規模な配電網であるマイクログリッドに分散型電源として風力発電システムを配備することが検討されている。
In recent years, from the viewpoint of global warming prevention and depletion of fossil fuel resources, a large number of natural energy power generation facilities using wind energy and solar energy have been connected to the power system.
Wind power generation is being actively built around the world as a power generation system that uses wind energy, which is non-depleting clean energy. In addition, it is considered to deploy a wind power generation system as a distributed power source in a microgrid, which is a small-scale power distribution network that supplies power to a remote island or a limited area.

しかし、自然エネルギーは不規則に変動するため、自然エネルギー発電設備を電力系統に導入すると、電力系統周波数や系統電圧が変動することになる。特に、風力エネルギーは不規則であり、風力発電機出力電力は風速の3乗に比例して大きく変動するため、系統周波数も乱れやすい。マイクログリッドに導入した場合、電力系統の規模が小さいため、系統への影響がより顕著になる。
需要者からは電力品質を保持する要求があるので、風力発電設備を導入した電力系統も、系統周波数や系統電圧を一定に維持する必要がある。
However, since natural energy fluctuates irregularly, when a natural energy power generation facility is introduced into a power system, the power system frequency and the system voltage will fluctuate. In particular, the wind energy is irregular, and the output power of the wind power generator fluctuates greatly in proportion to the third power of the wind speed, so that the system frequency is likely to be disturbed. When installed in a microgrid, the scale of the power system is small, so the effect on the system becomes more prominent.
Since there is a demand from the consumer to maintain the power quality, the power system in which the wind power generation facility is introduced needs to maintain the system frequency and system voltage constant.

風力変動による発電量の変動を補償するために、従来から風力発電システムに蓄電池を挿入して系統出力変動を抑制する方法が考案されている。近年、NaS電池などを使用した蓄電池システムが注目されている。蓄電池システムを風力発電設備に併設することにより、電力系統に悪影響を及ぼさない電力変動まで平滑化し、系統への連系容量を増加することができる。また、蓄電池のエネルギー密度は高くなりつつあるので、設置面積の制約が小さくなれば風力発電設備への併設が容易となる。しかし、蓄電池を併設することで設備コストが増加し、蓄電池の性能が劣化することで維持費も必要となる。   In order to compensate for fluctuations in the amount of power generated due to fluctuations in wind power, a method has been devised that suppresses fluctuations in system output by inserting a storage battery into a wind power generation system. In recent years, storage battery systems using NaS batteries and the like have attracted attention. By installing the storage battery system in the wind power generation facility, it is possible to smooth the power fluctuation that does not adversely affect the power system and increase the interconnection capacity to the system. In addition, since the energy density of the storage battery is increasing, it is easy to install it in the wind power generation facility if the restriction on the installation area is reduced. However, the installation cost increases due to the addition of the storage battery, and the maintenance cost is also required due to the deterioration of the performance of the storage battery.

例えば、特許文献1には、レーザ式風向風速計を備えた風力発電機と蓄電池を併用して系統への出力変動を抑制する風力発電システムが開示されている。
特許文献1に開示された発明は、レーザ式風向風速計により風車に到達する前の風を観測し、それに応じて風車のピッチ角を予測制御して風車の発電量を最適化すると共に、風車の発電量に合わせて蓄電池の充放電量を制御し、系統へ供給する電力量を平準化するものである。
For example, Patent Literature 1 discloses a wind power generation system that suppresses output fluctuations to the system by using a wind power generator equipped with a laser-type anemometer and a storage battery in combination.
The invention disclosed in Patent Document 1 observes the wind before reaching the windmill with a laser-type anemometer and optimizes the power generation amount of the windmill by predicting and controlling the pitch angle of the windmill accordingly. The amount of power supplied to the system is leveled by controlling the charge / discharge amount of the storage battery according to the amount of power generated.

しかし、特許文献1に記載の技術を含む従来型の風車・蓄電池連携システムでは、風力の低下時にも継続的に電力を供給するためには、大容量の蓄電池が必要になる。蓄電池は頻繁に充放電を繰り返すことによって蓄電効率や寿命が低下するため、大容量の蓄電池は導入コストのみでなく維持コストも高額になるため、容量の小さい蓄電池でも十分に系統供給電力を平準化することができる風力発電システムが求められている。   However, in the conventional windmill / storage battery cooperation system including the technology described in Patent Document 1, a large-capacity storage battery is required to continuously supply power even when wind power decreases. Storage batteries are repeatedly charged and discharged frequently, resulting in reduced storage efficiency and longevity.Large-capacity storage batteries are not only expensive to introduce, but are also expensive to maintain. There is a need for a wind power generation system that can do this.

特開2004−301116号公報JP 2004-301116 A

そこで、本発明が解決しようとする課題は、風車と蓄電池を備えた風力発電システムにおいて、小容量の蓄電池で系統へ供給する出力電力の変動を抑制することができる風車と蓄電池による風力発電電力平滑化装置を提供することである。   Therefore, the problem to be solved by the present invention is to smooth the wind power generated by a wind turbine and a storage battery that can suppress fluctuations in output power supplied to the system with a small capacity storage battery in the wind power generation system including the wind turbine and the storage battery. It is to provide a device.

上記課題を解決するため、本発明の風車と蓄電池による風力発電電力平滑化装置は、ピッチ角制御が可能な風力発電機、蓄電池、出力端子、制御装置を備え、風速変動に対し、所定の周波数以下の低周波変動による発電量変動を抑制するように風力発電機のピッチ角を制御し、かかる周波数以上の高周波変動を蓄電池の充放電動作のみで補償して、出力端子に供給する発電電力が一定となるよう、風力発電機のピッチ角および蓄電池の充放電動作を制御することを特徴とする。本発明装置は、風速変動から生じる発電電力変動を低周波域と高周波域で分担して抑制する。   In order to solve the above problems, a wind power generation smoothing device using a windmill and a storage battery according to the present invention includes a wind generator capable of pitch angle control, a storage battery, an output terminal, and a control device, and has a predetermined frequency against wind speed fluctuations. The pitch angle of the wind power generator is controlled so as to suppress the power generation fluctuation due to the following low frequency fluctuations, and the generated power supplied to the output terminal is compensated only by the charge / discharge operation of the storage battery for the high frequency fluctuations above the frequency. The pitch angle of the wind power generator and the charge / discharge operation of the storage battery are controlled so as to be constant. The device according to the present invention controls and suppresses generated power fluctuations caused by wind speed fluctuations in a low frequency range and a high frequency range.

本発明の風力発電電力平滑化装置は、出力端子を電力系統に接続して使用する。風力発電機の発電電力は風速の3乗に比例して非線形的に変動するが、本発明の風力発電電力平滑化装置では、風力の変動を風車ブレードのピッチ角制御と蓄電池の充放電動作とを協調的に作用させて発電量の変動を平滑化し、安定した電力を系統に供給する。   The wind power generation smoothing device of the present invention is used by connecting the output terminal to the power system. The generated power of the wind power generator fluctuates nonlinearly in proportion to the cube of the wind speed. However, in the wind power generation smoothing device of the present invention, the wind power fluctuation is controlled by the pitch angle control of the windmill blade and the charge / discharge operation of the storage battery. Are coordinated to smooth out fluctuations in the amount of power generation and supply stable power to the grid.

風車ブレードのピッチ角を制御することで風力変動の低周波成分による発電量の変動を抑制し、高周波成分に対してはピッチ角追従を行わず発電量の変動を蓄電池の充放電動作で補償する。これにより、風力発電機側では高周波域の変動に対して動作しないため、ピッチ角の急激で頻繁な制御動作が不要になって風車ブレードに与える機械的ストレスが軽減される。また、低周波変動はピッチ角制御により抑制するため、蓄電池は変動幅が大きい低周波変動を補償する必要がないので蓄電池のkWh容量を小さくすることができる。   By controlling the pitch angle of the windmill blade, the fluctuation of the power generation due to the low frequency component of the wind fluctuation is suppressed, and the fluctuation of the power generation is compensated by the charge / discharge operation of the storage battery without following the pitch angle for the high frequency component. . As a result, since the wind power generator does not operate with respect to a change in a high frequency range, a sharp and frequent control operation of the pitch angle becomes unnecessary, and mechanical stress applied to the wind turbine blade is reduced. Further, since the low frequency fluctuation is suppressed by the pitch angle control, the storage battery does not need to compensate for the low frequency fluctuation having a large fluctuation range, so that the kWh capacity of the storage battery can be reduced.

蓄電池のエネルギー残存量を制御入力に加えてエネルギー残存量が一定になるように風力発電機のピッチ角を制御すると、蓄電池のエネルギー残存量が十分なときはピッチ角を大きくして発電量を抑制することで過剰充電を抑止することができるため、さらに蓄電池の電力容量を小さくすることができる。   If the wind energy generator pitch angle is controlled so that the remaining energy of the storage battery is added to the control input so that the remaining energy becomes constant, if the remaining energy of the storage battery is sufficient, the pitch angle is increased to suppress the power generation amount. By doing so, since overcharge can be suppressed, the power capacity of the storage battery can be further reduced.

本発明の風力発電電力平滑化装置は、H∞制御により風力発電機のピッチ角と蓄電池の充放電動作の操作量を算出すれば、追従性やパラメータ変動に対するロバスト性が向上し、全周波数帯にわたってピッチ角制御と充放電動作の操作量を極小化することができる。   When the wind power generator smoothing device of the present invention calculates the pitch angle of the wind power generator and the operation amount of the charge / discharge operation of the storage battery by H∞ control, the followability and robustness to parameter fluctuations are improved, and the entire frequency band In addition, the operation amount of the pitch angle control and the charge / discharge operation can be minimized.

以下、図面を用い実施例に基づいて本発明の風車と蓄電池による風力発電電力平滑化装置を詳細に説明する。
図1は本実施例の風力発電電力平滑化装置の概要を示す構成図である。風力発電機1を電力系統に接続される出力端子2の配線に双方向インバータ3と蓄電池4が並列に挿入されている。出力端子2は電力系統に。風力発電機1の発電電力Pと蓄電池4の充放電電力Pから合成した出力電力Pが電力系統に出力される。双方向インバータ3はPWM方式によって制御される。
Hereinafter, the wind power generation smoothing apparatus by the windmill and storage battery of this invention is demonstrated in detail based on an Example using drawing.
FIG. 1 is a configuration diagram showing an outline of a wind power generation smoothing device of the present embodiment. A bidirectional inverter 3 and a storage battery 4 are inserted in parallel in the wiring of the output terminal 2 that connects the wind power generator 1 to the power system. Output terminal 2 for power system. Output power P c synthesized from charge-discharge electric power P b of generated power P g and the storage battery 4 of the wind power generator 1 is output to the power grid. The bidirectional inverter 3 is controlled by the PWM method.

風力発電機1は、ピッチ角制御可能な風車ブレードと、堅牢、安価なかご型誘導発電機で構成され、ピッチ角は発電電力が定格電力を超えないように制御されるが、図2に示すピッチ角制御則で運転されるものとする。また、蓄電池4は風力発電機1の発電量Pが過剰な時は充電動作により電力を吸収し、風力発電機1の発電量Pが不足する時は放電動作により電力を放出して、出力端子2から系統に供給する電力Pを平滑化する。 The wind power generator 1 includes a windmill blade capable of controlling the pitch angle and a rugged and inexpensive squirrel-cage induction generator. The pitch angle is controlled so that the generated power does not exceed the rated power, as shown in FIG. It shall be operated with the pitch angle control law. Also, the storage battery 4 when excess power generation amount P g of the wind power generator 1 will absorb power by the charging operation, when the power generation amount P g of the wind power generator 1 is insufficient to release the power by the discharge operation, The power Pc supplied from the output terminal 2 to the system is smoothed.

風力発電機1の発電量は下式のモデルで表現される。
風速Vwが与えられたとき、風車から取り出しうる風車出力Pwは下の式で与えられる。
The power generation amount of the wind power generator 1 is expressed by the following model.
When the wind speed Vw is given, the wind turbine output Pw that can be taken out from the wind turbine is given by the following equation.

(1) Pw(Vw,β,ωw)=Cp(λ,β)Vw3ρA/2
ここで、ρ:空気密度、A:風車の回転断面積、Cpはピッチ角βとブレードの先端速度比λ=Rω/Vw(R:風車の半径、ω:風車の回転角速度)によって近似される出力係数である。風車の角速度ωは、Jを風車の慣性モーメントとして下の風車の動特性式で与えられる。
(1) Pw (Vw, β, ωw) = Cp (λ, β) Vw3ρA / 2
Here, ρ is the air density, A is the rotational cross-sectional area of the windmill, and Cp is approximated by the pitch angle β and the blade tip speed ratio λ = Rω / Vw (R: the radius of the windmill, ω: the rotational angular speed of the windmill). Output coefficient. The angular velocity ω of the windmill is given by the dynamic characteristic equation of the windmill below, where J is the moment of inertia of the windmill.

(2) ω2=∫2/J・(Pw−Pg)dt
風力発電機としてかご型誘導発電機を用い、すべりsが与えられたときの発電電力Pgは次の式で与えられる。
(3) Pg=−3V2s(1+s)R2/{(R2−sR1)2+s2(X1+X2)2}
ここで、V:相電圧、R1:固定子抵抗、R2:回転子抵抗、X1:固定子リアクタンス、X2:回転子リアクタンスである。
(2) ω2 = ∫2 / J · (Pw−Pg) dt
A squirrel-cage induction generator is used as the wind power generator, and the generated power Pg when the slip s is given is given by the following equation.
(3) Pg = -3V2s (1 + s) R2 / {(R2-sR1) 2 + s2 (X1 + X2) 2}
Here, V: phase voltage, R1: stator resistance, R2: rotor resistance, X1: stator reactance, X2: rotor reactance.

蓄電池4の動作は図3に示すモデルで表される。制御装置より、指令充放電電力PBが与えられたとき、時定数TB=0.5sの一次遅れの伝達関数1/(TBs+1)により蓄電池4および双方向インバータ3の動作遅れを模擬し、充放電電力PBを得る。また、充放電電力PBの積分より蓄電池4のエネルギー残存量ξを計算する。放電動作を正、充電動作を負としているため符号を逆にする。 The operation of the storage battery 4 is represented by the model shown in FIG. When the command charge / discharge power PB * is given from the control device, the operation delay of the storage battery 4 and the bidirectional inverter 3 is simulated by the transfer function 1 / (TBs + 1) of the primary delay of the time constant TB = 0.5 s. Discharge power PB is obtained. Further, the remaining amount of energy ξ of the storage battery 4 is calculated from the integration of the charge / discharge power PB. Since the discharging operation is positive and the charging operation is negative, the sign is reversed.

本実施例の風力発電電力平滑化装置は、ピッチ角制御と蓄電池の充放電電力制御による系統への出力電力Pの平滑化と、蓄電池4のエネルギー残存量ξの一定制御の両立をH∞制御により実現する。 The wind power generation smoothing device of the present embodiment achieves both H∞ with smoothing of the output power Pc to the system by pitch angle control and charge / discharge power control of the storage battery and constant control of the remaining energy ξ of the storage battery 4. Realized by control.

Pを対象とする開ループのプラント、Kを制御器、W1、W2を重み関数とし、図4で示される閉ループシステムにおいて、下の(4)式を設計仕様とするH制御器を設計する。制御の目的は、外乱抑制と追従性を補償する感度関数S=(I+PK)−1、モデルのパラメータ変動に対するロバスト性を扱う相補感度関数T=PKSとを最小化することである。 In the closed-loop system shown in FIG. 4, an H controller having the following equation (4) as a design specification is designed in an open-loop plant for P, K as a controller, and W1 and W2 as weight functions. . The purpose of the control is to minimize the sensitivity function S = (I + PK) −1 that compensates for disturbance suppression and tracking, and the complementary sensitivity function T = PKS that handles robustness against parameter variations in the model.

ここで、γはH∞ノルムの境界である。 Here, γ is the boundary of the H∞ norm.

感度関数Sは外乱に対する応答性(感度)および追従特性にかかわり、Tはロバスト安定性にかかわる。ロバスト安定性とは、シミュレーションモデルが不正確であった場合や設定したパラメータが変動した場合にも、システムの安定性を失わないための、不確かさに対する強度をいう。
追従特性にかかわる感度関数Sは低周波域でより小さくし、ロバスト安定性にかかわる相補感度関数Tはむだ時間などのダイナミクスの影響が相対的に大きくなる高周波域でより小さくすることで、全周波数帯にわたってシステムを安定化させることができる。
The sensitivity function S is related to the response (sensitivity) to the disturbance and the tracking characteristic, and T is related to the robust stability. Robust stability refers to the strength against uncertainty so that the stability of the system is not lost even when the simulation model is inaccurate or the set parameters fluctuate.
By making the sensitivity function S related to the tracking characteristic smaller in the low frequency range, the complementary sensitivity function T related to the robust stability is made smaller in the high frequency range where the influence of dynamics such as dead time becomes relatively large. The system can be stabilized over the belt.

したがって、周波数関数Wを低周波域でゲインが大きくなるようにし、周波数関数Wを高周波域でゲインが大きくなるようにして、Sには低周波域で大きなペナルティが、Tには高周波域で大きなペナルティが課せられるよう設計し、(4)式を満たすように制御を行う。(4)式はこれらの混合感度問題の設計仕様を表している。
外乱wと制御量zの間の重み関数を含んだ閉ループ伝達関数に対して、内部安定にするH∞制御器はLMI(線形行列不等式)アプローチを用いることで設計できる。
Therefore, the frequency function W 1 as the gain is increased in a low frequency band, the frequency function W 2 as the gain increases in the high frequency band, the S significant penalty in the low frequency range, the T RF band The system is designed so that a large penalty is imposed, and control is performed so as to satisfy equation (4). Equation (4) represents the design specifications for these mixed sensitivity problems.
For a closed loop transfer function including a weighting function between the disturbance w and the control amount z, an H∞ controller for internal stabilization can be designed by using an LMI (linear matrix inequality) approach.

風力発電機はピッチ角β、風速Vw、回転角速度ωのパラメータにより強い非線形性を持つが、動作点近傍においては線形性を持つものとして、図5に示す線形化モデルを利用する。ピッチ角β、風速Vwから発電電力Pまでの応答を一次遅れ系で近似している。図5に示すモデルは動作点近傍以外の広範囲な領域では大きな線形化誤差を持つが、線形化誤差をパラメータ変動と捉え、ロバスト安定性を十分保つように重み関数を選択して設計することで制御性能を確保している。 The wind power generator has a strong non-linearity depending on the parameters of the pitch angle β, the wind speed Vw, and the rotational angular speed ω, but uses the linearization model shown in FIG. 5 as having a linearity in the vicinity of the operating point. Pitch angle β, and the response from the wind speed Vw to the generated power P g is approximated by a first-order lag system. The model shown in FIG. 5 has a large linearization error in a wide range other than the vicinity of the operating point. However, the linearization error is regarded as a parameter variation, and the weight function is selected and designed so as to maintain sufficient robust stability. Control performance is secured.

図6に示すように、本実施例の風力発電電力平滑化装置のH制御器は、風車と蓄電池を一つの制御器で制御する集中制御器とすることができる。風力発電機の発電電力Pg、蓄電池のエネルギー残存量ξ、合成出力電力Pcを制御器に入力し、ピッチ角指令値βCMD、蓄電池の充放電電力指令値PBを得る。なお、ピッチ角を高周波帯域で動作させないようにプレフィルタを用いる。これにより、周波数領域における風力発電機と蓄電池の分担をより円滑に行うことができる。 As shown in FIG. 6, the H∞ controller of the wind power generation smoothing device of the present embodiment can be a centralized controller that controls the windmill and the storage battery with a single controller. The generated power Pg of the wind power generator, the remaining energy ξ of the storage battery, and the combined output power Pc are input to the controller to obtain the pitch angle command value βCMD and the charge / discharge power command value PB * of the storage battery. A prefilter is used so that the pitch angle is not operated in a high frequency band. Thereby, the sharing of the wind power generator and the storage battery in the frequency domain can be performed more smoothly.

図7は平滑化指令値から発電電力変動Pgまでの特異値プロット、図8は蓄電池のエネルギー残存量指令値(50%一定)からエネルギー残存量ξまでの特異値プロット、図9は合成出力電力にかかる特異値プロットである。図7〜9では、H∞制御器がある場合を実線で、制御器がない場合を点線で示してある。図7の点線のグラフを注目すると、ピッチ角目標値から発電電力変動までのループでは0.1rad/s以下の低周波数成分において積分特性を有することが分かる。図8の点線グラフから、蓄電池のエネルギー残存量指令値からエネルギー残存量までのループでは積分動作となっている。また、図9における点線グラフから、混合出力電力ループでは1rad/s付近に高ゲインが確認される。
これらの結果から、H∞制御器の設計では、積分特性をなくし、高ゲインを除去するように、重みを選択した。
7 is a singular value plot from the smoothing command value to the generated power fluctuation Pg, FIG. 8 is a singular value plot from the remaining battery energy command value (constant 50%) to the remaining energy ξ, and FIG. 9 is the combined output power. It is a singular value plot concerning. 7-9, the case where there is an H∞ controller is shown by a solid line, and the case where there is no controller is shown by a dotted line. When attention is paid to the dotted line graph in FIG. 7, it can be seen that the loop from the target pitch angle value to the fluctuation of the generated power has an integral characteristic at a low frequency component of 0.1 rad / s or less. From the dotted line graph of FIG. 8, the integration operation is performed in the loop from the remaining energy command value of the storage battery to the remaining energy amount. Further, from the dotted line graph in FIG. 9, a high gain is confirmed in the vicinity of 1 rad / s in the mixed output power loop.
From these results, in the design of the H∞ controller, the weight was selected so as to eliminate the integral characteristic and remove the high gain.

本実施例において、制御モデルを用い、LMIアプローチにより求めた重み関数は以下の通りである。
(5) W11=0.0214/(s2+0.0304s+0.00294)
W12=0.16/(s+0.001)
W13=61.8312/(s+0.6183)
W21=(0.0105s−0.0016)/(s+97.5197)
W22=(0.0193s−0.2041)/(s+8390.5)
W23=(0.0064s+0.0365)/(s+5646.2)
In this embodiment, the weight function obtained by the LMI approach using the control model is as follows.
(5) W11 = 0.0214 / (s2 + 0.0304s + 0.00294)
W12 = 0.16 / (s + 0.001)
W13 = 61.8312 / (s + 0.6183)
W21 = (0.0105s-0.0016) / (s + 97.5197)
W22 = (0.0193s−0.2041) / (s + 8390.5)
W23 = (0.0064s + 0.0365) / (s + 5646.2)

図10と図11はそれぞれ、感度関数の重みW11〜W13と相補感度関数の重みW21〜W23の特異値プロットである。感度関数は、風力発電機側で低周波成分の変動を抑制し、蓄電池で高周波成分の変動と蓄電池のエネルギー残存量を一定になるように設定した。相補感度関数は、ロバスト性を得るために高周波域までゲインを高く設定している。   10 and 11 are singular value plots of sensitivity function weights W11 to W13 and complementary sensitivity function weights W21 to W23, respectively. The sensitivity function was set so that the fluctuation of the low frequency component was suppressed on the wind power generator side, and the fluctuation of the high frequency component and the remaining energy of the storage battery were made constant in the storage battery. In the complementary sensitivity function, the gain is set high up to a high frequency region in order to obtain robustness.

図7〜9における実線のグラフは、(5)式のW11〜W23を用いたH∞制御器を適用した場合の特異値プロットである。
図7では、H∞制御器を適用することで積分動作を除去することができ、低周波数成分で変動を抑制する特性となっていることが示されている。図8では、低周波数成分のゲイン特性が改善されて、エネルギー残存量一定制御が達成されることが分かる。また図9からは、低周波数領域における高ゲインを除去し、高周波数成分の変動まで抑制されるように改善されていることが確認できる。
このように、図7〜9により、制御器無しの場合は、低周波数域でゲインが0dB以上の積分特性を示すのに対し、H∞制御器を使用した場合、全領域にわたって積分動作が除去できており、H∞制御器が低周波数成分での安定化に効果的であることがわかる。
The solid line graphs in FIGS. 7 to 9 are singular value plots when the H∞ controller using W11 to W23 in the equation (5) is applied.
FIG. 7 shows that the integration operation can be removed by applying the H∞ controller, and the characteristics are such that the fluctuation is suppressed by the low frequency component. In FIG. 8, it can be seen that the gain characteristic of the low frequency component is improved and the residual energy constant control is achieved. Moreover, it can be confirmed from FIG. 9 that the high gain in the low frequency region is removed and the high frequency component fluctuation is suppressed.
As shown in FIGS. 7 to 9, when no controller is used, the integral characteristic with a gain of 0 dB or more is shown in the low frequency region, whereas when the H∞ controller is used, the integral operation is removed over the entire region. It can be seen that the H∞ controller is effective for stabilization at low frequency components.

図12〜図17は、本実施例の風力発電電力平滑化装置のH∞制御器の効果を従来手法と比較したシミュレーション結果を説明する図面である。図中、実線が本実施例に用いたH制御器による制御結果であり、破線は比較対象とする従来手法による制御結果である。図18は比較に用いた従来手法を表すブロック図である。
図18に表すように、PI制御器は風力発電機と蓄電池をそれぞれ別の制御器で制御する。蓄電池のPI制御器では、蓄電池のエネルギー残存量制御のためにξとPcについて各指令値との差を算出しその和を偏差eとして入力する、2入力1出力の構成としている。
12-17 is a figure explaining the simulation result which compared the effect of the Hinfinity controller of the wind power generator smoothing apparatus of a present Example with the conventional method. In the figure, the solid line is the control result by the H∞ controller used in this embodiment, and the broken line is the control result by the conventional method to be compared. FIG. 18 is a block diagram showing a conventional method used for comparison.
As shown in FIG. 18, the PI controller controls the wind power generator and the storage battery with separate controllers. The PI controller of the storage battery has a 2-input 1-output configuration in which the difference between the command values for ξ and Pc is calculated and the sum is input as the deviation e for controlling the remaining energy of the storage battery.

風力発電機と蓄電池の制御器の制御則は下の式で表される。
(6) u(t)=KPe(t)+KI∫0te(τ)dτ+KDde(t)/dt
ここで、u:制御量、e:偏差であり、KP、KI、KDはそれぞれ比例、積分、微分ゲインである。使用したパラメータは図19のPI制御パラメータの表に示す通りである。PI制御器パラメータは限界感度法に従ってチューニングを行ったものである。微分ゲインは0とした。なお、従来手法では、高周波数成分を削除するプレフィルタを適用していない。
The control law of the wind power generator and storage battery controller is expressed by the following equation.
(6) u (t) = KPe (t) + KI∫0te (τ) dτ + KDde (t) / dt
Here, u: control amount, e: deviation, and KP, KI, and KD are proportional, integral, and differential gains, respectively. The parameters used are as shown in the PI control parameter table of FIG. PI controller parameters are tuned according to the limit sensitivity method. The differential gain was 0. In the conventional method, a pre-filter that deletes high frequency components is not applied.

シミュレーションで用いた風車、誘導発電機、選択した動作点のパラメータは、図20のシミュレーションパラメータの表に示すとおりである。
図12は本シミュレーションで風力発電機に与えた風速の変化を示す図面である。なお、本シミュレーションで与える風速は、動作点として選択した8m/sから増加し、10m/s前後を中心に変動している。また、発電電力、合成出力電力の平滑化に用いる指令値は発電電力の動作点Pg0の96.5kWで一定とした。
The parameters of the wind turbine, induction generator, and selected operating point used in the simulation are as shown in the simulation parameter table of FIG.
FIG. 12 is a drawing showing changes in wind speed given to the wind power generator in this simulation. Note that the wind speed given in this simulation increases from 8 m / s selected as the operating point, and fluctuates around 10 m / s. Further, power generation, command value used for the smoothing of the combined output power is constant at 96.5kW operating point P g0 generated power.

図13は本シミュレーションで得られたピッチ角変動を示すグラフである。本実施例のH制御器によれば、従来手法のPI制御器に比べて微小変動が減少していることがわかる。PI制御器を用いると微小変動が発生するが、微小変動を抑制するために比例ゲインをこれ以上小さく設定すると発電電力変動が増大することになる。本発明の方法では、プレフィルタおよびH制御の重み関数により高周波数成分の変動に対するピッチ角制御を抑止しているため微小変動は減少する。また、ピッチ角の急激で頻繁な動作を行わないため、風車ブレードにかかる機械的なストレスを軽減することができる。 FIG. 13 is a graph showing the pitch angle variation obtained in this simulation. According to the H∞ controller of the present embodiment, it can be seen that minute fluctuations are reduced as compared with the conventional PI controller. When the PI controller is used, minute fluctuations occur. However, if the proportional gain is set smaller than this in order to suppress the minute fluctuations, the generated power fluctuations increase. In the method of the present invention, since the pitch angle control for the fluctuation of the high frequency component is suppressed by the weighting function of the prefilter and the H∞ control, the minute fluctuation is reduced. In addition, since the pitch angle is abrupt and frequent operation is not performed, mechanical stress applied to the wind turbine blade can be reduced.

また、図14は、発電電力変動の推移を表すグラフである。図14より、風力発電機の発電電力変動はH制御器を用いた場合の方が大きくなっている。これは、ピッチ角が風速の高周波変動に対して低い感度になっているためである。この発電電力変動は電力系統にそのまま出力されないので問題とならない。
図15から図17は蓄電池出力、エネルギー残存量、合成出力電力の推移を表すグラフである。蓄電池出力は発電電力変動を抑制するように出力している。図15から図17を見ると、PI制御器を用いたときは、エネルギー残存量制御が達成されているが合成出力電力の変動が大きく、平滑化が十分に達成されていない。一方、H制御器では蓄電池からの出力が風車発電電力の変動を補償して合成出力電力を平滑化していることがわかる。また、蓄電池の制御性能が改善され、合成出力電力が十分に平滑化されていることが確認できる。
FIG. 14 is a graph showing changes in generated power fluctuations. From FIG. 14, the generated power fluctuation of the wind power generator is larger when the H∞ controller is used. This is because the pitch angle has low sensitivity to high-frequency fluctuations in wind speed. This generated power fluctuation does not cause a problem because it is not directly output to the power system.
15 to 17 are graphs showing transitions of the storage battery output, the remaining energy amount, and the combined output power. The output of the storage battery is output so as to suppress the generated power fluctuation. From FIG. 15 to FIG. 17, when the PI controller is used, the residual energy control is achieved, but the fluctuation of the combined output power is large, and the smoothing is not sufficiently achieved. On the other hand, in the H∞ controller, it can be seen that the output from the storage battery smoothes the combined output power by compensating for fluctuations in the wind turbine generated power. Further, it can be confirmed that the control performance of the storage battery is improved and the combined output power is sufficiently smoothed.

このように、本実施例の風力発電電力平滑化装置によれば、風速の変動による風力発電機の発電量変動を蓄電池の充放電動作で補償して系統に供給する合成出力電力を平滑化するとともに、風速変動の高周波成分に対する感度を下げることで急激なピッチ角制御を抑止し、風車ブレードにかかる機械的ストレスを軽減することができる。   Thus, according to the wind power generation smoothing device of the present embodiment, the combined output power supplied to the system is smoothed by compensating for the power generation amount variation of the wind power generator due to the wind speed variation by the charge / discharge operation of the storage battery. At the same time, by reducing the sensitivity to the high-frequency component of the wind speed fluctuation, abrupt pitch angle control can be suppressed, and mechanical stress applied to the windmill blade can be reduced.

また、蓄電池容量への影響を確認するため、別の風速変動を風速外乱として与えたシミュレーションの結果を図21から図25および図26から図30に示す。図中点線は従来の蓄電池制御、実線は本発明の調和制御の結果を示す。
図21から図25は風速がうねる場合を想定した第2のシミュレーション結果を表し、図21は外乱として与える風速を示し、図22はシミュレーションの結果である風車ブレードのピッチ角、図23は風車発電量、図24は蓄電池の出力電力、図25は蓄電池のエネルギー残存量を示す。
風車に与える風速パターンは、動作点である8m/sから下降し後に上昇するよう設定してある。従来手法の制御は、蓄電池のみで平滑化を達成するもので、図18に示す分散型PI制御器の蓄電池側の伝達関数Kpibを用いている。合成出力電力の平滑化に用いる指令値は、風速から得られる最大発電電力に時定数100sのLPF(低域フィルタ)を用いて算定される。
Moreover, in order to confirm the influence on storage battery capacity, the result of the simulation which gave another wind speed fluctuation | variation as a wind speed disturbance is shown in FIGS. 21-25 and FIGS. 26-30. In the figure, the dotted line indicates the result of the conventional storage battery control, and the solid line indicates the result of the harmonization control of the present invention.
21 to 25 show the second simulation result assuming the case where the wind speed swells, FIG. 21 shows the wind speed given as a disturbance, FIG. 22 shows the pitch angle of the windmill blade as the simulation result, and FIG. 23 shows the windmill power generation. FIG. 24 shows the output power of the storage battery, and FIG. 25 shows the remaining energy of the storage battery.
The wind speed pattern given to the windmill is set to descend from the operating point of 8 m / s and then rise. The control of the conventional method achieves smoothing with only the storage battery, and uses the transfer function Kpib on the storage battery side of the distributed PI controller shown in FIG. The command value used for smoothing the combined output power is calculated using an LPF (low-pass filter) having a time constant of 100 s for the maximum generated power obtained from the wind speed.

シミュレーション結果では、風速が8m/sから下降する局面では、H制御と従来手法ともに、最大電力を発電するためピッチ角が10度に固定され、合成出力電力の不足分を補完して出力の平滑化を行うため蓄電池が放電している。したがって、蓄電池のエネルギー残存量は単調に減少する。
反対に、風速が上昇して8m/sを超えると、従来手法ではエネルギー残存量が50%を超えて増加しているのに対し、H制御ではエネルギー残存量を50%に維持するために、ピッチ角制御を行って発電電力を制御しており、これにより蓄電池エネルギー残存量の増加を抑制している。したがって、蓄電池の容量を低減することができる。
このように、本実施例の風力発電電力平滑化装置によれば、蓄電池のエネルギー残存量に応じて風力発電機のピッチ角を制御することで、合成出力電力の平滑化と同時に蓄電池のエネルギー残存量の一定制御を行うことができる。
The simulation results show that when the wind speed drops from 8 m / s, the pitch angle is fixed at 10 degrees to generate the maximum power for both H∞ control and the conventional method. The storage battery is discharged for smoothing. Therefore, the remaining amount of energy of the storage battery decreases monotonously.
On the other hand, when the wind speed increases and exceeds 8 m / s, the remaining energy increases by more than 50% in the conventional method, whereas in H control, the remaining energy is maintained at 50%. Then, the pitch angle control is performed to control the generated power, thereby suppressing an increase in the remaining amount of storage battery energy. Therefore, the capacity of the storage battery can be reduced.
Thus, according to the wind power generation smoothing device of the present embodiment, by controlling the pitch angle of the wind power generator according to the remaining amount of energy of the storage battery, the remaining energy of the storage battery is simultaneously smoothed with the combined output power. A constant amount control can be performed.

また、図26から図30は、風速が上昇傾向の変動を示す場合を想定した第3のシミュレーションの結果で、10分間の変化を表す。図26は外乱として与える風速、図27は風車ブレードのピッチ角、図28は風車発電量、図29は蓄電池の出力電力、図30は蓄電池のエネルギー残存量を示す。
図27から、蓄電池のみの制御では風速が定格風速を超えたときにピッチ角が動作していることが分かる。本発明の制御器を用いることで、図28に示すように、発電電力が指令値に追従するようにピッチ角が制御されて、図29に示すように、蓄電池出力において低周波数成分の変動が抑制される。この結果、図30に示すように、エネルギー残存量が一定に制御される。これにより、蓄電池の容量低減が図れることが分かる。
FIG. 26 to FIG. 30 show the change for 10 minutes as a result of the third simulation assuming the case where the wind speed shows a fluctuation in the upward trend. 26 shows the wind speed given as a disturbance, FIG. 27 shows the pitch angle of the windmill blade, FIG. 28 shows the wind turbine power generation, FIG. 29 shows the output power of the storage battery, and FIG. 30 shows the remaining energy of the storage battery.
From FIG. 27, it can be seen that the pitch angle operates when the wind speed exceeds the rated wind speed in the control of only the storage battery. By using the controller of the present invention, as shown in FIG. 28, the pitch angle is controlled so that the generated power follows the command value, and as shown in FIG. It is suppressed. As a result, as shown in FIG. 30, the residual energy amount is controlled to be constant. Thereby, it turns out that the capacity | capacitance reduction of a storage battery can be aimed at.

以上のように、本実施例の風車と蓄電池による風力発電電力平滑化装置によれば、風車のピッチ角と蓄電池の充放電動作をH制御器により協調的に制御することで、系統に出力する電力の平滑化、ピッチ角動作を低周波数化することによる風車ブレードへの機械的ストレスの軽減、蓄電池エネルギー残存量を一定制御することによる蓄電池容量の軽減を達成している。 As described above, according to the wind power generation smoothing device using the windmill and the storage battery of the present embodiment, the pitch angle of the windmill and the charge / discharge operation of the storage battery are cooperatively controlled by the H∞ controller, and output to the system. The smoothing of electric power, the reduction of the mechanical stress on the windmill blade by lowering the pitch angle operation, and the reduction of the storage battery capacity by constant control of the remaining amount of storage battery energy are achieved.

なお、PID制御器によっても、風速の高周波成分をプレフィルタにより消去することで、ピッチ角の急激な変動を抑止し、ブレードにかかる機械的ストレスを軽減することができる。また、風車発電量の変動に応じて蓄電池の充放電動作を制御することで、合成出力電力を平準化することができる。この場合、H制御器に比べて制御性能は劣るものの、同様に風車ブレードへの機械的ストレスの軽減と、系統に出力する電力の平滑化を同時に達成することができる。 It should be noted that the PID controller can also eliminate the high-frequency component of the wind speed by the pre-filter, thereby suppressing a rapid change in pitch angle and reducing mechanical stress on the blade. Further, the combined output power can be leveled by controlling the charging / discharging operation of the storage battery according to the fluctuation of the wind turbine power generation amount. In this case, although the control performance is inferior to that of the H∞ controller, it is possible to simultaneously reduce the mechanical stress on the wind turbine blade and smooth the power output to the system.

本発明の1実施例における風力発電電力平滑化装置の概要を示す構成図である。It is a block diagram which shows the outline | summary of the wind power generation electric power smoothing apparatus in one Example of this invention. 本実施例におけるピッチ角制御則を示すグラフである。It is a graph which shows the pitch angle control law in a present Example. 本実施例における蓄電器の動作を表すブロック線図である。It is a block diagram showing operation | movement of the electrical storage apparatus in a present Example. シミュレーションに用いる閉ループシステムのブロック線図である。It is a block diagram of a closed loop system used for simulation. 風力発電機の線形化モデルを示すブロック線図である。It is a block diagram which shows the linearization model of a wind generator. 重み関数の特異値プロットである。It is a singular value plot of the weight function. ピッチ角目標値から発電電力変動ΔPgまでの特異値プロットである。It is a singular value plot from pitch angle target value to generated electric power fluctuation (DELTA) Pg. 蓄電池のエネルギー残存量指令値からエネルギー残存量までの特異値プロットである。It is a singular value plot from the remaining energy command value of the storage battery to the remaining energy. 制御器の制御構造を示すブロック線図である。It is a block diagram which shows the control structure of a Hinfinity controller. 重み関数の特異値プロットである。It is a singular value plot of the weight function. 合成出力電力にかかる特異値プロットである。It is a singular value plot concerning synthetic output power. シミュレーションで与える風速を示すグラフである。It is a graph which shows the wind speed given by simulation. シミュレーションによるピッチ角応答を示すグラフである。It is a graph which shows the pitch angle response by simulation. シミュレーションによる風力発電電力応答を示すグラフである。It is a graph which shows the wind power generation electric power response by simulation. シミュレーションによる蓄電池出力応答を示すグラフである。It is a graph which shows the storage battery output response by simulation. シミュレーションによるエネルギー残存量の推移を示すグラフである。It is a graph which shows transition of the energy remaining amount by simulation. シミュレーションによる合成出力電力の推移を示すグラフである。It is a graph which shows transition of synthetic output electric power by simulation. シミュレーションに用いたPID制御器のブロック線図である。It is a block diagram of the PID controller used for simulation. シミュレーションに用いたPID制御器のパラメータ表である。It is a parameter table of the PID controller used for simulation. シミュレーションパラメータの表である。It is a table | surface of a simulation parameter. 第2のシミュレーションで与える風速を示すグラフである。It is a graph which shows the wind speed given by the 2nd simulation. 第2のシミュレーションによるピッチ角応答を示すグラフである。It is a graph which shows the pitch angle response by the 2nd simulation. 第2のシミュレーションによる風力発電電力を示すグラフである。It is a graph which shows the wind power generation electric power by a 2nd simulation. 第2のシミュレーションによる蓄電池出力を示すグラフである。It is a graph which shows the storage battery output by a 2nd simulation. 第2のシミュレーションによるエネルギー残存量の推移を示すグラフである。It is a graph which shows transition of the amount of remaining energy by the 2nd simulation. 第3のシミュレーションで与える風速を示すグラフである。It is a graph which shows the wind speed given by the 3rd simulation. 第3のシミュレーションによるピッチ角応答を示すグラフである。It is a graph which shows the pitch angle response by the 3rd simulation. 第3のシミュレーションによる風力発電電力を示すグラフである。It is a graph which shows the wind power generation electric power by a 3rd simulation. 第3のシミュレーションによる蓄電池出力を示すグラフである。It is a graph which shows the storage battery output by a 3rd simulation. 第3のシミュレーションによるエネルギー残存量の推移を示すグラフである。It is a graph which shows transition of the amount of remaining energy by the 3rd simulation.

符号の説明Explanation of symbols

1 風力発電機
2 出力端子
3 PWMインバータ
4 蓄電池
DESCRIPTION OF SYMBOLS 1 Wind generator 2 Output terminal 3 PWM inverter 4 Storage battery

Claims (3)

ピッチ角制御が可能な風力発電機、蓄電池、出力端子、制御装置を備える風力発電電力平滑化装置であって、該制御装置は、風速変動に対し、所定の周波数以下の低周波変動による発電量変動を抑制するように前記風力発電機のピッチ角を調整し、前記周波数以上の高周波変動を前記蓄電池の放充電動作のみで補償して、前記出力端子に供給する発電電力が一定となるように制御することを特徴とする風車と蓄電池による風力発電電力平滑化装置。   A wind power generation smoothing device including a wind power generator capable of pitch angle control, a storage battery, an output terminal, and a control device, wherein the control device generates power generated by low frequency fluctuations below a predetermined frequency with respect to wind speed fluctuations. The pitch angle of the wind power generator is adjusted so as to suppress fluctuations, and high-frequency fluctuations greater than or equal to the frequency are compensated only by the charge / discharge operation of the storage battery so that the generated power supplied to the output terminal is constant. A wind-generated power smoothing device using a windmill and a storage battery. さらに、前記蓄電池のエネルギー残存量が一定になるように前記風力発電機のピッチ角を制御することを特徴とする請求項1に記載の風車と蓄電池による風力発電電力平滑化装置。   Furthermore, the wind power generator smoothing device by the windmill and storage battery of Claim 1 which controls the pitch angle of the said wind power generator so that the energy residual amount of the said storage battery may become fixed. 前記制御装置がH∞制御により前記風力発電機のピッチ角と前記蓄電池の放充電動作を協調的に操作することを特徴とする請求項1または2に記載の風車と蓄電池による風力発電電力平滑化装置。   3. The wind power generation smoothing by the windmill and the storage battery according to claim 1, wherein the control device cooperatively operates a pitch angle of the wind power generator and a discharging / charging operation of the storage battery by H∞ control. apparatus.
JP2008238478A 2008-09-17 2008-09-17 Device for smoothing electric power generated by wind power generation using wind mill and storage battery Pending JP2010071159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238478A JP2010071159A (en) 2008-09-17 2008-09-17 Device for smoothing electric power generated by wind power generation using wind mill and storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238478A JP2010071159A (en) 2008-09-17 2008-09-17 Device for smoothing electric power generated by wind power generation using wind mill and storage battery

Publications (1)

Publication Number Publication Date
JP2010071159A true JP2010071159A (en) 2010-04-02

Family

ID=42203184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238478A Pending JP2010071159A (en) 2008-09-17 2008-09-17 Device for smoothing electric power generated by wind power generation using wind mill and storage battery

Country Status (1)

Country Link
JP (1) JP2010071159A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001713A1 (en) * 2011-06-30 2013-01-03 パナソニック株式会社 Control device designing method, and control device
WO2013060013A1 (en) * 2011-10-28 2013-05-02 General Electric Company Blade pitch system for a wind turbine generator and method of operating the same
WO2013140635A1 (en) 2012-03-19 2013-09-26 株式会社協和コンサルタンツ Wind power generation system
WO2014073030A1 (en) * 2012-11-06 2014-05-15 株式会社日立製作所 Electricity generation system and wind-powered electricity generation system
JP2015090145A (en) * 2013-11-07 2015-05-11 株式会社日本製鋼所 Wind power generator, method for restricting fluctuation of wind power generator and program for restricting fluctuation of wind power generator
US9196011B2 (en) 2012-04-06 2015-11-24 International Business Machines Corporation Smoothing power output from a wind farm
DE202018005659U1 (en) 2018-04-16 2019-02-06 Universität Stuttgart Körperschaft des öffentlichen Rechts Wind energy plant with thermo-mechanical energy storage and energy conversion system for climate-neutral, environmentally friendly and energy self-sufficient operation of a sauna system
CN117332602A (en) * 2023-10-18 2024-01-02 华北电力大学 Primary frequency modulation simulation method and device for wind driven generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303403A (en) * 1992-04-27 1993-11-16 Mitsubishi Heavy Ind Ltd Automatic control design device
JPH1150945A (en) * 1997-08-04 1999-02-23 Mitsubishi Heavy Ind Ltd Method for controlling power generating amount of wind power generator
JP2003333752A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Wind turbine power generator having secondary battery
JP2004052649A (en) * 2002-07-19 2004-02-19 Meidensha Corp Output power smoothing control device of wind power generator
JP2004187431A (en) * 2002-12-05 2004-07-02 Hitachi Ltd Wind turbine generator system equipped with secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303403A (en) * 1992-04-27 1993-11-16 Mitsubishi Heavy Ind Ltd Automatic control design device
JPH1150945A (en) * 1997-08-04 1999-02-23 Mitsubishi Heavy Ind Ltd Method for controlling power generating amount of wind power generator
JP2003333752A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Wind turbine power generator having secondary battery
JP2004052649A (en) * 2002-07-19 2004-02-19 Meidensha Corp Output power smoothing control device of wind power generator
JP2004187431A (en) * 2002-12-05 2004-07-02 Hitachi Ltd Wind turbine generator system equipped with secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013001713A1 (en) * 2011-06-30 2015-02-23 パナソニック株式会社 Control device design method and control device
CN103004052A (en) * 2011-06-30 2013-03-27 松下电器产业株式会社 Control device designing method, and control device
WO2013001713A1 (en) * 2011-06-30 2013-01-03 パナソニック株式会社 Control device designing method, and control device
US9158300B2 (en) 2011-06-30 2015-10-13 Panasonic Corporation Method for designing a control apparatus and control apparatus
WO2013060013A1 (en) * 2011-10-28 2013-05-02 General Electric Company Blade pitch system for a wind turbine generator and method of operating the same
WO2013140635A1 (en) 2012-03-19 2013-09-26 株式会社協和コンサルタンツ Wind power generation system
KR20140108724A (en) 2012-03-19 2014-09-12 가부시키가이샤 교와 컨설턴츠 Wind power generation system
US9196011B2 (en) 2012-04-06 2015-11-24 International Business Machines Corporation Smoothing power output from a wind farm
US9208529B2 (en) 2012-04-06 2015-12-08 International Business Machines Corporation Smoothing power output from a wind farm
WO2014073030A1 (en) * 2012-11-06 2014-05-15 株式会社日立製作所 Electricity generation system and wind-powered electricity generation system
JP2015090145A (en) * 2013-11-07 2015-05-11 株式会社日本製鋼所 Wind power generator, method for restricting fluctuation of wind power generator and program for restricting fluctuation of wind power generator
DE202018005659U1 (en) 2018-04-16 2019-02-06 Universität Stuttgart Körperschaft des öffentlichen Rechts Wind energy plant with thermo-mechanical energy storage and energy conversion system for climate-neutral, environmentally friendly and energy self-sufficient operation of a sauna system
CN117332602A (en) * 2023-10-18 2024-01-02 华北电力大学 Primary frequency modulation simulation method and device for wind driven generator
CN117332602B (en) * 2023-10-18 2024-04-19 华北电力大学 Primary frequency modulation simulation method and device for wind driven generator

Similar Documents

Publication Publication Date Title
KR101119460B1 (en) Power accumulator and hybrid distributed power supply system
Satpathy et al. Control scheme for a stand-alone wind energy conversion system
Abdeltawab et al. Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints
JP4715624B2 (en) Power stabilization system, power stabilization control program, and power stabilization control method
Howlader et al. A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system
JP2010071159A (en) Device for smoothing electric power generated by wind power generation using wind mill and storage battery
EP2722521B1 (en) Power output control device, method and program for wind farm
US9518559B2 (en) Output control device, method and program for wind farm
EP3018787B1 (en) Microgrid control device and control method therefor
US20150008743A1 (en) Power Supply System
US20150381089A1 (en) Power plant &amp; energy storage system for provision of grid ancillary services
CN105186554A (en) Overrunning virtual synchronous generator (VSG+) method with rotary inertia and damping self-optimization-trending
JP2008182859A (en) Hybrid system, wind power generating system, power control device for wind power generating device and storage device
CA2790222A1 (en) Method for operating a wind farm, wind farm controller and wind farm
CN103986190A (en) Wind and solar storage combining power generation system smooth control method based on power generation power curves
CN107453410A (en) The double-fed blower fan of load disturbance participates in wind bavin microgrid frequency modulation control method
CN114286892A (en) Fast frequency support from wind turbine systems
CN109659961B (en) Dynamic power system load frequency coordination method based on frequency division control
JP2009174329A (en) Electric system frequency control device using natural energy power generation facility
Nguyen et al. Power management approach to minimize battery capacity in wind energy conversion systems
Mendis et al. Remote area power supply system: an integrated control approach based on active power balance
Hemmati et al. Decentralized frequency-voltage control and stability enhancement of standalone wind turbine-load-battery
Yoo et al. Frequency stability support of a DFIG to improve the settling frequency
US20130144450A1 (en) Generator system
Howlader et al. A fuzzy control strategy for power smoothing and grid dynamic response enrichment of a grid‐connected wind energy conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507