CN117332602B - A method and device for simulating primary frequency modulation of a wind turbine generator - Google Patents
A method and device for simulating primary frequency modulation of a wind turbine generator Download PDFInfo
- Publication number
- CN117332602B CN117332602B CN202311353815.3A CN202311353815A CN117332602B CN 117332602 B CN117332602 B CN 117332602B CN 202311353815 A CN202311353815 A CN 202311353815A CN 117332602 B CN117332602 B CN 117332602B
- Authority
- CN
- China
- Prior art keywords
- wind turbine
- preset
- rotor
- output power
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000014509 gene expression Effects 0.000 claims abstract description 143
- 238000004088 simulation Methods 0.000 claims abstract description 33
- 230000008859 change Effects 0.000 claims description 62
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 238000013016 damping Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 7
- 238000010248 power generation Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000013256 coordination polymer Substances 0.000 claims 1
- 230000007246 mechanism Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000003062 neural network model Methods 0.000 description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/06—Wind turbines or wind farms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
本申请提供了一种风力发电机一次调频模拟方法及装置,其中,该方法包括:获取控制风力发电机执行一次调频的参考输出功率变化量;依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式,所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式;将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以对风力发电机进行一次调频模拟。
The present application provides a method and device for simulating primary frequency modulation of a wind turbine, wherein the method comprises: obtaining a reference output power variation for controlling the wind turbine to perform primary frequency modulation; constructing a preset state space expression corresponding to the preset wind speed interval based on a relationship between the electromagnetic torque of the wind turbine and the electromagnetic torque variable in a preset wind speed interval, in combination with a double-mass model and a variable pitch model of the wind turbine, wherein the preset state space expression is used to characterize the relationship between the preset state variable of the wind turbine and the reference output power variation in the preset wind speed interval; determining a target state space expression corresponding to the target wind speed interval based on a target wind speed interval to which the current wind speed belongs; substituting the reference output power variation into the target state space expression, and calculating the preset state variable of the primary frequency modulation, so as to perform primary frequency modulation simulation on the wind turbine.
Description
技术领域Technical Field
本申请涉及风力发电技术领域,尤其涉及一种风力发电机一次调频模拟方法及装置。The present application relates to the technical field of wind power generation, and in particular to a method and device for simulating primary frequency modulation of a wind turbine.
背景技术Background Art
对变速的风电机组而言,目前对风机进行一次调频响应的建模方法包括两类:基于输入-输出数据驱动的“黑箱模型”和基于机理分析的“白箱建模”。其中,黑箱模型依靠指定的输入输出特征,需要大量的输入输出数据,可通过机器学习算法便能实现对机组结构动态特性的高精度表征。但该方法的参数物理意义解释性较差,对输入数据精度和数量有较强的依赖性。白箱模型中GH Bladed和FAST等风机的代表性仿真软件中虽然含有高阶非线性动态的高保真模型,但其模型过于复杂不适应于控制器的设计,而大多基于小信号推导的风机一次调频响应的白箱机理模型对调频指令的输入信号具有严格要求,而且不适用于实际复杂工况时机理参数发生变化的情况。For variable-speed wind turbines, the current modeling methods for the primary frequency modulation response of wind turbines include two categories: "black box model" driven by input-output data and "white box modeling" based on mechanism analysis. Among them, the black box model relies on the specified input and output characteristics and requires a large amount of input and output data. It can achieve high-precision characterization of the dynamic characteristics of the unit structure through machine learning algorithms. However, the physical meaning of the parameters of this method is poorly interpretable and has a strong dependence on the accuracy and quantity of input data. Although the representative simulation software of wind turbines such as GH Bladed and FAST in the white box model contains high-fidelity models of high-order nonlinear dynamics, their models are too complex to be suitable for controller design. Most white box mechanism models of the primary frequency modulation response of wind turbines based on small signal derivation have strict requirements on the input signal of the frequency modulation command, and are not suitable for situations where the mechanism parameters change during actual complex working conditions.
发明内容Summary of the invention
有鉴于此,本申请的目的在于至少提供一种风力发电机一次调频模拟方法及装置,通过将风力发电机的一次调频时的功率变化量转换成与预设状态参数相关在不同风速区间下分别对应的状态空间表达式,以此将功率变化量转变成与预设状态参数相关的线性表达,从而在接收到发电机的输出功率的参考输出功率变化量时,依据当前风速所属的风速区间对应的状态空间表达式,计算出个预设状态参数,从而风力发电机按照计算出的预设状态参数模拟运行,以模拟风力发电机一次调频,以此解决现有技术中需要大量的数据进行一次调频模拟以及构建的模型过于复杂的技术问题,达到了提高对风力发电机进行一次调频模拟效率的技术效果。In view of this, the purpose of the present application is to at least provide a method and device for simulating the primary frequency modulation of a wind turbine, by converting the power change during the primary frequency modulation of the wind turbine into a state space expression corresponding to the preset state parameters in different wind speed ranges, so as to convert the power change into a linear expression related to the preset state parameters, so that when the reference output power change of the output power of the generator is received, a preset state parameter is calculated according to the state space expression corresponding to the wind speed range to which the current wind speed belongs, so that the wind turbine is simulated to operate according to the calculated preset state parameters to simulate the primary frequency modulation of the wind turbine, thereby solving the technical problems in the prior art that a large amount of data is required for primary frequency modulation simulation and the constructed model is too complicated, and the technical effect of improving the efficiency of primary frequency modulation simulation of the wind turbine is achieved.
本申请主要包括以下几个方面:This application mainly includes the following aspects:
第一方面,本申请实施例提供一种风力发电机一次调频模拟方法,所述方法包括:获取控制风力发电机执行一次调频的参考输出功率变化量;依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式,所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式;将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以对风力发电机进行一次调频模拟。In a first aspect, an embodiment of the present application provides a method for simulating primary frequency regulation of a wind turbine, the method comprising: obtaining a reference output power change for controlling the wind turbine to perform primary frequency regulation; constructing a preset state space expression corresponding to the preset wind speed range based on a relationship between the electromagnetic torque of the wind turbine and the electromagnetic torque variable in a preset wind speed range, in combination with a double-mass model and a variable pitch model of the wind turbine, the preset state space expression being used to characterize the relationship between the preset state variables of the wind turbine and the reference output power change in the preset wind speed range; determining a target state space expression corresponding to the target wind speed range based on the target wind speed range to which the current wind speed belongs; substituting the reference output power change into the target state space expression, and calculating the preset state variables of the primary frequency regulation to perform primary frequency regulation simulation on the wind turbine.
可选地,所述预设风速区间包括第一预设区间和第二预设区间,所述第一预设区间的上限值等于所述第二预设区间的下限值,所述预设状态空间表达式包括所述第一预设区间对应的第一状态空间表达式和所述第二预设区间对应的第二状态空间表达式,所述目标风速区间为所述第一预设区间与所述第二预设区间中的一个,所述目标状态空间表达式为第一状态空间表达式和第二状态空间表达式中的一个,其中,所述预设风速区间为所述第一预设区间时,所述第一状态空间表达式用于表征在仅改变风力发电机的电磁转矩时风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;所述预设风速区间为所述第二预设区间时,所述第二状态空间表达式用于表征在仅改变风力发电机的桨距角时风力发电机的预设状态变量与所述参考输出功率变化量之间的关系。Optionally, the preset wind speed interval includes a first preset interval and a second preset interval, the upper limit value of the first preset interval is equal to the lower limit value of the second preset interval, the preset state space expression includes a first state space expression corresponding to the first preset interval and a second state space expression corresponding to the second preset interval, the target wind speed interval is one of the first preset interval and the second preset interval, and the target state space expression is one of the first state space expression and the second state space expression, wherein, when the preset wind speed interval is the first preset interval, the first state space expression is used to characterize the relationship between the preset state variables of the wind turbine and the reference output power change when only the electromagnetic torque of the wind turbine is changed; when the preset wind speed interval is the second preset interval, the second state space expression is used to characterize the relationship between the preset state variables of the wind turbine and the reference output power change when only the pitch angle of the wind turbine is changed.
可选地,通过以下方式构建所述预设风速区间对应的预设状态空间表达式:依据风机叶片气动转矩公式,构建气动转矩与多个预设参数相关的线性公式,每个预设参数为所述风机叶片气动转矩公式中的参数且在发电过程中产生变化的参数;依据风力发电机的电磁转矩与参考电磁转矩之间的关系式,结合所述线性公式、风力发电机的双质块模型与变桨距模型,构建风力发电机的标准状态空间表达式,所述标准状态空间表达式用于表征风力发电机的预设状态参数与所述多个预设参数分别对应的变化量之间的关系式以及风力发电机的输出功率与初始输出功率之间的关系式,所述预设状态参数为在发电过程中产生变化的参数;其中,在仅改变风力发电机的电磁转矩时,所述第一状态空间表达式通过所述电磁转矩与所述参考输出功率变化量相关的关系式、所述标准状态空间表达式和在桨距角参考值为零时的所述变桨距模型中的桨距角一阶惯性环节表达式进行构建;在仅改变风力发电机的桨距角时,所述第二状态空间表达式通过桨距角导数与所述参考输出功率变化量相关的关系式、所述标准状态空间表达式、输出功率与初始输出功率相关的关系式和在电磁转矩变量为零时的电磁转矩与参考电磁转矩之间的关系表达式进行构建。Optionally, a preset state space expression corresponding to the preset wind speed interval is constructed in the following manner: based on the aerodynamic torque formula of the wind turbine blade, a linear formula related to the aerodynamic torque and multiple preset parameters is constructed, each preset parameter is a parameter in the aerodynamic torque formula of the wind turbine blade and a parameter that changes during the power generation process; based on the relationship between the electromagnetic torque of the wind turbine and the reference electromagnetic torque, in combination with the linear formula, the dual-mass model and the variable pitch model of the wind turbine, a standard state space expression of the wind turbine is constructed, the standard state space expression is used to characterize the relationship between the preset state parameters of the wind turbine and the changes corresponding to the multiple preset parameters, as well as the relationship between the output power of the wind turbine and the initial output power. The preset state parameter is a parameter that changes during the power generation process; wherein, when only the electromagnetic torque of the wind turbine is changed, the first state space expression is constructed by the relationship between the electromagnetic torque and the reference output power change, the standard state space expression and the first-order inertia link expression of the pitch angle in the variable pitch model when the pitch angle reference value is zero; when only the pitch angle of the wind turbine is changed, the second state space expression is constructed by the relationship between the pitch angle derivative and the reference output power change, the standard state space expression, the relationship between the output power and the initial output power and the relationship between the electromagnetic torque and the reference electromagnetic torque when the electromagnetic torque variable is zero.
可选地,通过以下公式构建气动转矩与多个预设参数相关的线性公式:Optionally, a linear formula relating the pneumatic torque to a plurality of preset parameters is constructed by the following formula:
Tr=a×ωr+b×β+c×V+dT r = a×ω r + b×β+c×V+d
其中,Pr为风力发电机的风机气动功率,ρ为空气密度,R为风力发电机的风机转子半径,V为风速,CP(λ,β)为风能利用系数,λ是风机转子的叶尖速比,β是桨距角,ωr为风机转子转速,Tr为风力发电机的气动转矩,ωr、β和V均为预设参数,a为ωr对应的系数,b为β对应的系数,c为V对应的系数,d为所述线性公式的常数项。Among them, P r is the aerodynamic power of the wind turbine, ρ is the air density, R is the radius of the wind turbine rotor, V is the wind speed, C P (λ, β) is the wind energy utilization coefficient, λ is the tip speed ratio of the wind turbine rotor, β is the pitch angle, ω r is the wind turbine rotor speed, Tr is the aerodynamic torque of the wind turbine, ω r , β and V are all preset parameters, a is the coefficient corresponding to ω r , b is the coefficient corresponding to β, c is the coefficient corresponding to V, and d is the constant term of the linear formula.
可选地,所述风力发电机的电磁转矩与参考电磁转矩之间的关系式为:Optionally, the relationship between the electromagnetic torque of the wind turbine and the reference electromagnetic torque is:
其中,Tg为发电机转子的电磁转矩;为发电机转子的电磁转矩的导数;τg为发电机常数;Tref为风力发电机的参考电磁转矩;Where, Tg is the electromagnetic torque of the generator rotor; is the derivative of the electromagnetic torque of the generator rotor; τ g is the generator constant; T ref is the reference electromagnetic torque of the wind generator;
通过以下公式表示所述双质块模型:The dual mass model is represented by the following formula:
其中,Jr为风力发电机的风机转子的转动惯量;Jg为风力发电机的发电机转子的转动惯量;Tshaft为风机转子与发电机转子之间的等效中间轴转矩;Tr为风力发电机的气动转矩;Tg为发电机转子的电磁转矩;θr为风机转子的角位移;θg是发电机转子的角位移;θ为风机转子和发电机转子之间的角位移差;ωr为风机转子的角速度;是风机转子的角速度的导数;ωg是发电机转子的角速度;是发电机转子的角速度的导数;Ng为齿轮箱变速比;A为等效中间轴的刚度系数;B为等效中间轴的阻尼系数;Wherein, Jr is the moment of inertia of the fan rotor of the wind turbine; Jg is the moment of inertia of the generator rotor of the wind turbine; Tshaft is the equivalent intermediate shaft torque between the fan rotor and the generator rotor; Tr is the aerodynamic torque of the wind turbine; Tg is the electromagnetic torque of the generator rotor; θr is the angular displacement of the fan rotor; θg is the angular displacement of the generator rotor; θ is the angular displacement difference between the fan rotor and the generator rotor; ωr is the angular velocity of the fan rotor; is the derivative of the angular velocity of the fan rotor; ω g is the angular velocity of the generator rotor; is the derivative of the angular velocity of the generator rotor; Ng is the gear ratio of the gearbox; A is the stiffness coefficient of the equivalent intermediate shaft; B is the damping coefficient of the equivalent intermediate shaft;
通过以下公式表示所述变桨距模型:The variable pitch model is expressed by the following formula:
ωref=Kw×(Pg,0+ΔPref)ω ref =K w ×(P g,0 +ΔP ref )
其中,为变桨距模型的一阶桨距角导数,所述变桨距模型是含有限幅和限速的一阶惯性环节;τβ为一阶惯性环节的时间常数;βref为桨距角参考值;β为桨距角;KP为所述一阶惯性环节的比例系数;ωr为风机转子的角速度;ωref为风机转子的参考角速度;KI为所述一阶惯性环节的积分系数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;KW为风机转子的角速度与输出功率之间的比例系数;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量;in, is the first-order pitch angle derivative of the variable pitch model, and the variable pitch model is a first-order inertia link with amplitude limiting and speed limiting; τ β is the time constant of the first-order inertia link; β ref is the pitch angle reference value; β is the pitch angle; K P is the proportional coefficient of the first-order inertia link; ω r is the angular velocity of the fan rotor; ω ref is the reference angular velocity of the fan rotor; K I is the integral coefficient of the first-order inertia link; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; K W is the proportionality coefficient between the angular velocity of the wind turbine rotor and the output power; P g,0 is the initial output power of the generator rotor of the wind turbine; ΔP ref is the reference output power change of the generator rotor;
所述风力发电机的标准状态空间表达式为:The standard state space expression of the wind turbine is:
ΔPg=Pg-Pg.0 ΔP g = P g - P g.0
其中,a为风机转子的角速度对应的系数,b为桨距角对应的系数,c为风速对应的系数,d为所述线性公式的常数项;Pg为风力发电机的发电机转子的输出功率;ΔPg为风力发电机的发电机转子的输出功率变化量;为风机转子和发电机转子之间的角位移差的导数,ωr、ωg、θ、φ、β和Tg为预设状态参数。Wherein, a is the coefficient corresponding to the angular velocity of the wind turbine rotor, b is the coefficient corresponding to the pitch angle, c is the coefficient corresponding to the wind speed, and d is the constant term of the linear formula; Pg is the output power of the generator rotor of the wind turbine; ΔPg is the output power change of the generator rotor of the wind turbine; is the derivative of the angular displacement difference between the wind turbine rotor and the generator rotor, and ω r , ω g , θ, φ, β and T g are preset state parameters.
可选地,所述电磁转矩与所述参考输出功率变化量相关的关系式为:Optionally, the relationship between the electromagnetic torque and the reference output power variation is:
其中,Tg为发电机转子的电磁转矩;为发电机转子的电磁转矩的导数;τg为发电机常数;Tref为风力发电机的参考电磁转矩;K为电磁转矩与输出功率之间的比例系数;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量;Where, Tg is the electromagnetic torque of the generator rotor; is the derivative of the electromagnetic torque of the generator rotor; τ g is the generator constant; T ref is the reference electromagnetic torque of the wind generator; K is the proportionality coefficient between the electromagnetic torque and the output power; P g,0 is the initial output power of the generator rotor of the wind generator; ΔP ref is the reference output power change of the generator rotor;
所述风力发电机的输出功率与电磁矩阵变量相关的关系式为:The relationship between the output power of the wind turbine and the electromagnetic matrix variables is:
Pg=η×Tg×ωg=Pg.0+η×Tg.0×Δωg+η×ΔTg×ωg.0 P g =η×T g ×ω g =P g.0 +η×T g.0 ×Δω g +η×ΔT g ×ω g.0
Δωg=ωg-ωg.0 Δω g =ω g -ω g.0
ΔTg=Tg-Tg.0 ΔT g = T g - T g.0
其中,η为发电机效率;ωg是发电机转子的角速度;Tg.0为发电机转子的初始电磁转矩;Δωg为发电机转子的角速度变化量;ΔTg为发电机转子的电磁转矩变化量;ωg.0为发电机转子的初始角速度;Wherein, η is the generator efficiency; ω g is the angular velocity of the generator rotor; T g.0 is the initial electromagnetic torque of the generator rotor; Δω g is the change in angular velocity of the generator rotor; ΔT g is the change in electromagnetic torque of the generator rotor; ω g.0 is the initial angular velocity of the generator rotor;
在桨距角变量为零时的所述变桨距模型中的桨距角一阶惯性环节表达式为:The expression of the first-order inertia link of the pitch angle in the variable pitch model when the pitch angle variable is zero is:
其中,βref为桨距角参考值,取值为零;为变桨距模型的一阶桨距角导数,所述变桨距模型是含有限幅和限速的一阶惯性环节;τβ为一阶惯性环节的时间常数;β为桨距角;Wherein, β ref is the pitch angle reference value, which is zero; is the first-order pitch angle derivative of the variable pitch model, wherein the variable pitch model is a first-order inertia link containing amplitude limitation and speed limitation; τ β is the time constant of the first-order inertia link; β is the pitch angle;
所述第一状态空间表达式为:The first state space expression is:
其中,a为风机转子的角速度对应的系数,b为桨距角对应的系数,c为风速对应的系数,d为所述线性公式的常数项;ωr为风机转子的角速度;是风机转子的角速度的导数;ωg是发电机转子的角速度;是发电机转子的角速度的导数;θ为风机转子和发电机转子之间的角位移差;为风机转子和发电机转子之间的角位移差的导数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;V0为初始风速;Jr为风力发电机的风机转子的转动惯量;Jg为风力发电机的发电机转子的转动惯量;Ng为齿轮箱变速比;A为等效中间轴的刚度系数;B为等效中间轴的阻尼系数。Wherein, a is the coefficient corresponding to the angular velocity of the wind turbine rotor, b is the coefficient corresponding to the pitch angle, c is the coefficient corresponding to the wind speed, and d is the constant term of the linear formula; ω r is the angular velocity of the wind turbine rotor; is the derivative of the angular velocity of the fan rotor; ω g is the angular velocity of the generator rotor; is the derivative of the angular velocity of the generator rotor; θ is the angular displacement difference between the fan rotor and the generator rotor; is the derivative of the angular displacement difference between the fan rotor and the generator rotor; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; V0 is the initial wind speed; Jr is the moment of inertia of the wind turbine rotor; Jg is the moment of inertia of the generator rotor of the wind turbine; Ng is the gearbox speed ratio; A is the stiffness coefficient of the equivalent intermediate shaft; B is the damping coefficient of the equivalent intermediate shaft.
可选地,所述桨距角导数与所述参考输出功率变化量相关的关系式为:Optionally, the relationship between the pitch angle derivative and the reference output power variation is:
其中,为变桨距模型的一阶桨距角导数,所述变桨距模型是含有限幅和限速的一阶惯性环节;τβ为一阶惯性环节的时间常数;β为桨距角;KP为所述一阶惯性环节的比例系数;ωr为风机转子的角速度;KI为所述一阶惯性环节的积分系数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;KW为风机转子的角速度与输出功率之间的比例系数;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量;in, is the first-order pitch angle derivative of the variable pitch model, and the variable pitch model is a first-order inertia link with amplitude limitation and speed limitation; τ β is the time constant of the first-order inertia link; β is the pitch angle; K P is the proportional coefficient of the first-order inertia link; ω r is the angular velocity of the fan rotor; K I is the integral coefficient of the first-order inertia link; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; K W is the proportionality coefficient between the angular velocity of the wind turbine rotor and the output power; P g,0 is the initial output power of the generator rotor of the wind turbine; ΔP ref is the reference output power change of the generator rotor;
所述输出功率与初始输出功率相关的关系式为:The relationship between the output power and the initial output power is:
其中,Pg为风力发电机的发电机转子的输出功率;η为发电机效率;ωg为发电机转子的角速度;Pg.0为风力发电机的发电机转子的初始输出功率;ωg.0为发电机转子的初始角速度;Wherein, Pg is the output power of the generator rotor of the wind turbine; η is the generator efficiency; ωg is the angular velocity of the generator rotor; Pg.0 is the initial output power of the generator rotor of the wind turbine; ωg.0 is the initial angular velocity of the generator rotor;
在电磁转矩变量为零时的电磁转矩与参考电磁转矩之间的关系表达式为:The relationship between the electromagnetic torque and the reference electromagnetic torque when the electromagnetic torque variable is zero is expressed as:
其中,Tg为发电机转子的电磁转矩;为发电机转子的电磁转矩的导数;τg为发电机常数;Tg.0为发电机转子的初始电磁转矩;ωg.0为发电机转子的初始角速度;Where, Tg is the electromagnetic torque of the generator rotor; is the derivative of the electromagnetic torque of the generator rotor; τ g is the generator constant; T g.0 is the initial electromagnetic torque of the generator rotor; ω g.0 is the initial angular velocity of the generator rotor;
所述第二状态空间表达式为:The second state space expression is:
其中,a为风机转子的角速度对应的系数,b为桨距角对应的系数,c为风速对应的系数,d为所述线性公式的常数项;ωr为风机转子的角速度;是风机转子的角速度的导数;ωg是发电机转子的角速度;是发电机转子的角速度的导数;θ为风机转子和发电机转子之间的角位移差;为风机转子和发电机转子之间的角位移差的导数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;V0为初始风速;Jr为风力发电机的风机转子的转动惯量;Jg为风力发电机的发电机转子的转动惯量;Ng为齿轮箱变速比;A为等效中间轴的刚度系数;B为等效中间轴的阻尼系数。Wherein, a is the coefficient corresponding to the angular velocity of the wind turbine rotor, b is the coefficient corresponding to the pitch angle, c is the coefficient corresponding to the wind speed, and d is the constant term of the linear formula; ω r is the angular velocity of the wind turbine rotor; is the derivative of the angular velocity of the fan rotor; ω g is the angular velocity of the generator rotor; is the derivative of the angular velocity of the generator rotor; θ is the angular displacement difference between the fan rotor and the generator rotor; is the derivative of the angular displacement difference between the fan rotor and the generator rotor; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; V0 is the initial wind speed; Jr is the moment of inertia of the wind turbine rotor; Jg is the moment of inertia of the generator rotor of the wind turbine; Ng is the gearbox speed ratio; A is the stiffness coefficient of the equivalent intermediate shaft; B is the damping coefficient of the equivalent intermediate shaft.
第二方面,本申请实施例还提供一种风力发电机一次调频模拟装置,所述装置包括:获取模块,用于获取控制风力发电机执行一次调频的参考输出功率变化量;构建模块,用于依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式,所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;确定模块,用于依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式;计算模块,用于将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以对风力发电机进行一次调频模拟。In a second aspect, an embodiment of the present application further provides a wind turbine primary frequency modulation simulation device, the device comprising: an acquisition module for acquiring a reference output power change for controlling the wind turbine to perform primary frequency modulation; a construction module for constructing a preset state space expression corresponding to the preset wind speed range based on a relationship between the electromagnetic torque of the wind turbine and the electromagnetic torque variable in a preset wind speed range, in combination with a double-mass model and a variable pitch model of the wind turbine, wherein the preset state space expression is used to characterize the relationship between the preset state variables of the wind turbine and the reference output power change in the preset wind speed range; a determination module for determining a target state space expression corresponding to the target wind speed range based on the target wind speed range to which the current wind speed belongs; and a calculation module for substituting the reference output power change into the target state space expression to calculate the preset state variables of the primary frequency modulation, so as to perform a primary frequency modulation simulation on the wind turbine.
第三方面,本申请实施例还提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过所述总线进行通信,所述机器可读指令被所述处理器运行时执行上述第一方面或第一方面中任一种可能的实施方式中所述的风力发电机一次调频模拟方法的步骤。In a third aspect, an embodiment of the present application further provides an electronic device, comprising: a processor, a memory and a bus, wherein the memory stores machine-readable instructions executable by the processor, and when the electronic device is running, the processor and the memory communicate through the bus, and the machine-readable instructions are executed by the processor to execute the steps of the wind turbine primary frequency regulation simulation method described in the first aspect or any possible implementation manner of the first aspect.
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述第一方面或第一方面中任一种可能的实施方式中所述的风力发电机一次调频模拟方法的步骤。In a fourth aspect, an embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored. When the computer program is executed by a processor, the steps of the wind turbine primary frequency regulation simulation method described in the first aspect or any possible implementation manner of the first aspect are executed.
本申请实施例提供的一种风力发电机一次调频模拟方法及装置,该方法包括:获取控制风力发电机执行一次调频的参考输出功率变化量;依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式,所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式;将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以控制风力发电机进行一次调频。通过将风力发电机的一次调频时的功率变化量转换成与预设状态参数相关在不同风速区间下分别对应的状态空间表达式,以此将功率变化量转变成与预设状态参数相关的线性表达,从而在接收到发电机的输出功率的参考输出功率变化量时,依据当前风速所属的风速区间对应的状态空间表达式,计算出个预设状态参数,从而风力发电机按照计算出的预设状态参数模拟运行,以模拟风力发电机一次调频,以此解决现有技术中需要大量的数据进行一次调频模拟以及构建的模型过于复杂的技术问题,达到了提高对风力发电机进行一次调频模拟效率的技术效果。A method and device for simulating primary frequency modulation of a wind turbine provided in an embodiment of the present application, the method comprising: obtaining a reference output power variation for controlling the wind turbine to perform primary frequency modulation; constructing a preset state space expression corresponding to the preset wind speed interval based on a relationship between the electromagnetic torque of the wind turbine and the electromagnetic torque variable in a preset wind speed interval, in combination with a double-mass model and a variable pitch model of the wind turbine, wherein the preset state space expression is used to characterize the relationship between the preset state variable of the wind turbine and the reference output power variation in the preset wind speed interval; determining a target state space expression corresponding to the target wind speed interval based on a target wind speed interval to which a current wind speed belongs; substituting the reference output power variation into the target state space expression, and calculating the preset state variable for primary frequency modulation to control the wind turbine to perform primary frequency modulation. The power variation during the primary frequency modulation of the wind turbine is converted into a state space expression corresponding to the preset state parameters in different wind speed ranges, thereby converting the power variation into a linear expression related to the preset state parameters. When the reference output power variation of the output power of the generator is received, a preset state parameter is calculated according to the state space expression corresponding to the wind speed range to which the current wind speed belongs. The wind turbine is simulated to operate according to the calculated preset state parameters to simulate the primary frequency modulation of the wind turbine, thereby solving the technical problems in the prior art of requiring a large amount of data for primary frequency modulation simulation and the overly complex model to be constructed, thereby achieving the technical effect of improving the efficiency of primary frequency modulation simulation of the wind turbine.
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, preferred embodiments are specifically cited below and described in detail with reference to the attached drawings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required for use in the embodiments will be briefly introduced below. It should be understood that the following drawings only show certain embodiments of the present application and therefore should not be regarded as limiting the scope. For ordinary technicians in this field, other related drawings can be obtained based on these drawings without paying creative work.
图1示出了本申请实施例所提供的一种风力发电机一次调频模拟方法的流程图。FIG1 shows a flow chart of a method for simulating primary frequency regulation of a wind turbine provided in an embodiment of the present application.
图2示出了本申请实施例所提供的一种风力发电机一次调频模拟装置的功能模块图。FIG2 shows a functional module diagram of a wind turbine primary frequency regulation simulation device provided in an embodiment of the present application.
图3示出了本申请实施例所提供的一种电子设备的结构示意图。FIG3 shows a schematic structural diagram of an electronic device provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解,本申请中的附图仅起到说明和描述的目的,并不用于限定本申请的保护范围。另外,应当理解,示意性的附图并未按实物比例绘制。本申请中使用的流程图示出了根据本申请的一些实施例实现的操作。应当理解,流程图的操作可以不按顺序实现,没有逻辑的上下文关系的步骤可以反转顺序或者同时实施。此外,本领域技术人员在本申请内容的指引下,可以向流程图添加一个或多个其他操作,也可以从流程图中移除一个或多个操作。To make the purpose, technical scheme and advantages of the embodiments of the present application clearer, the technical scheme in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. It should be understood that the drawings in the present application only serve the purpose of explanation and description and are not used to limit the scope of protection of the present application. In addition, it should be understood that the schematic drawings are not drawn in real proportion. The flowchart used in this application shows the operations implemented according to some embodiments of the present application. It should be understood that the operations of the flowchart can be implemented out of sequence, and the steps without logical context can be reversed in order or implemented simultaneously. In addition, those skilled in the art, under the guidance of the content of the present application, can add one or more other operations to the flowchart, or remove one or more operations from the flowchart.
另外,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的全部其他实施例,都属于本申请保护的范围。In addition, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. The components of the embodiments of the present application described and shown in the drawings here can be arranged and designed in various configurations. Therefore, the following detailed description of the embodiments of the present application provided in the drawings is not intended to limit the scope of the application claimed for protection, but merely represents the selected embodiments of the present application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without making creative work belong to the scope of protection of the present application.
现有技术中,通过基于输入-输出数据驱动的“黑箱模型”来预测在输出功率变化时,发电机的各项数据应如何变化,该预测方式需要大量的数据;或者通过基于机理分析的“白箱建模”来预测在输出功率变化时,发电机的各项数据应如何变化,该预测方式的模型较为复杂,应用的难度较大。In the prior art, a "black box model" driven by input-output data is used to predict how the various data of the generator should change when the output power changes. This prediction method requires a large amount of data; or a "white box modeling" based on mechanism analysis is used to predict how the various data of the generator should change when the output power changes. The model of this prediction method is relatively complex and difficult to apply.
基于此,本申请实施例提供了一种风力发电机一次调频模拟方法及装置,通过将风力发电机的一次调频时的功率变化量转换成与预设状态参数相关在不同风速区间下分别对应的状态空间表达式,以此将功率变化量转变成与预设状态参数相关的线性表达,从而在接收到发电机的输出功率的参考输出功率变化量时,依据当前风速所属的风速区间对应的状态空间表达式,计算出个预设状态参数,从而风力发电机按照计算出的预设状态参数模拟运行,以模拟风力发电机一次调频,以此解决现有技术中需要大量的数据进行一次调频模拟以及构建的模型过于复杂的技术问题,达到了提高对风力发电机进行一次调频模拟效率的技术效果,具体如下:Based on this, the embodiment of the present application provides a method and device for simulating primary frequency modulation of a wind turbine generator, by converting the power variation during the primary frequency modulation of the wind turbine generator into state space expressions corresponding to preset state parameters in different wind speed intervals, so as to convert the power variation into a linear expression related to the preset state parameters, so that when receiving the reference output power variation of the output power of the generator, a preset state parameter is calculated according to the state space expression corresponding to the wind speed interval to which the current wind speed belongs, so that the wind turbine generator simulates operation according to the calculated preset state parameters to simulate the primary frequency modulation of the wind turbine generator, thereby solving the technical problems in the prior art that a large amount of data is required for primary frequency modulation simulation and the constructed model is too complex, and the technical effect of improving the efficiency of primary frequency modulation simulation of the wind turbine generator is achieved, which is as follows:
请参阅图1,图1为本申请实施例所提供的一种风力发电机一次调频模拟方法的流程图。如图1所示,本申请实施例提供的风力发电机一次调频模拟方法,包括以下步骤:Please refer to Figure 1, which is a flow chart of a wind turbine primary frequency modulation simulation method provided in an embodiment of the present application. As shown in Figure 1, the wind turbine primary frequency modulation simulation method provided in an embodiment of the present application includes the following steps:
S101:获取控制风力发电机执行一次调频的参考输出功率变化量。S101: Obtaining a reference output power variation for controlling a wind turbine generator to perform a frequency modulation.
参考输出功率变化量ΔPref是在风力发电机的初始输出功率Pg.0的基础上的变化量,变化之后的输出功率Pg=Pg.0±ΔPref。参考输出功率变化量指的是风力发电机在理论上的变换量,而实际输出功率变化量等于参考输出功率变化量。The reference output power variation ΔP ref is the variation based on the initial output power P g.0 of the wind turbine generator, and the output power after the variation P g = P g.0 ± ΔP ref . The reference output power variation refers to the theoretical transformation amount of the wind turbine generator, and the actual output power variation is equal to the reference output power variation.
在获取控制风力发电机执行一次调频的参考输出功率变化量之前,风力发电机处于稳态状态,此时风力发电机的初始风机转子转速为ωr.0,风力发电机的初始电磁转矩为Tg.0,输出的初始电磁功率Pg,0与初始电磁功率参考值Pref,0相等,此时的风速为初始风速V0。Before obtaining the reference output power variation for controlling the wind turbine to perform a frequency modulation, the wind turbine is in a steady state. At this time, the initial wind turbine rotor speed of the wind turbine is ω r.0 , the initial electromagnetic torque of the wind turbine is T g.0 , the output initial electromagnetic power P g,0 is equal to the initial electromagnetic power reference value Pref,0 , and the wind speed at this time is the initial wind speed V 0 .
在电网的频率发生变化,或电网输出的电压不稳定时,需要调节风力发电机的输出功率,此时会向风力发电机发送执行一次调频的参考输出功率变化量ΔPref,且会告知是增加ΔPref或减少ΔPref,以使风力发电机基于ΔPref进行调整,使得风力发电机重新进入稳态状态。When the frequency of the power grid changes, or the voltage output by the power grid is unstable, the output power of the wind turbine needs to be adjusted. At this time, a reference output power change ΔP ref for performing a frequency modulation will be sent to the wind turbine, and it will be informed whether to increase ΔP ref or decrease ΔP ref , so that the wind turbine can make adjustments based on ΔP ref , so that the wind turbine can re-enter a steady state.
S102:依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式。S102: Based on the relationship between the electromagnetic torque and the electromagnetic torque variable of the wind turbine in the preset wind speed range, combined with the double-mass model and the variable pitch model of the wind turbine, a preset state space expression corresponding to the preset wind speed range is constructed.
所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系。The preset state space expression is used to characterize the relationship between the preset state variable of the wind turbine generator and the reference output power variation in a preset wind speed range.
所述预设风速区间包括第一预设区间和第二预设区间,所述第一预设区间的上限值等于所述第二预设区间的下限值,所述预设状态空间表达式包括所述第一预设区间对应的第一状态空间表达式和所述第二预设区间对应的第二状态空间表达式。The preset wind speed interval includes a first preset interval and a second preset interval, the upper limit value of the first preset interval is equal to the lower limit value of the second preset interval, and the preset state space expression includes a first state space expression corresponding to the first preset interval and a second state space expression corresponding to the second preset interval.
其中,所述预设风速区间为所述第一预设区间时,所述第一状态空间表达式用于表征在仅改变风力发电机的电磁转矩时风力发电机的预设状态变量与所述参考输出功率变化量之间的关系。所述预设风速区间为所述第二预设区间时,所述第二状态空间表达式用于表征在仅改变风力发电机的桨距角时风力发电机的预设状态变量与所述参考输出功率变化量之间的关系。Wherein, when the preset wind speed interval is the first preset interval, the first state space expression is used to characterize the relationship between the preset state variable of the wind turbine and the reference output power change when only the electromagnetic torque of the wind turbine is changed. When the preset wind speed interval is the second preset interval, the second state space expression is used to characterize the relationship between the preset state variable of the wind turbine and the reference output power change when only the pitch angle of the wind turbine is changed.
其中,所述第一预设区间的上限值与所述第二预设区间的下限值是额定风速,当风力发电机的当前风速为额定风速Vrated时,通过改变风力发电机的电磁转矩或桨距角均可以改变风力发电机输出功率,因此可将额定风速归入第一预设区间或第二预设区间。Among them, the upper limit value of the first preset interval and the lower limit value of the second preset interval are the rated wind speed. When the current wind speed of the wind turbine is the rated wind speed V rated , the output power of the wind turbine can be changed by changing the electromagnetic torque or pitch angle of the wind turbine. Therefore, the rated wind speed can be classified into the first preset interval or the second preset interval.
示例性的,第一预设区间为大于最低运行风速Vmin至小于额定风速Vrated的开区间,第二预设区间为大于或者等于额定风速至小于最高运行风速Vmax的左闭右开区间,即第一预设区间为(Vmin,Vrated)、第二预设区间为[Vrated,Vmax);或者,第一预设区间为大于最低运行风速Vmin至小于或等于额定风速Vrated的左开右闭区间,第二预设区间为大于额定风速至小于最高运行风速Vmax的开区间,即第一预设区间为(Vmin,Vrated]、第二预设区间为(Vrated,Vmax)。额定风速Vrated可根据风力发电机的型号进行确定,一般设置为11.4米每秒。Exemplarily, the first preset interval is an open interval greater than the minimum operating wind speed V min and less than the rated wind speed V rated , and the second preset interval is a left-closed and right-open interval greater than or equal to the rated wind speed and less than the maximum operating wind speed V max , that is, the first preset interval is (V min , V rated ), and the second preset interval is [V rated , V max ); or, the first preset interval is a left-open and right-closed interval greater than the minimum operating wind speed V min and less than or equal to the rated wind speed V rated , and the second preset interval is an open interval greater than the rated wind speed and less than the maximum operating wind speed V max , that is, the first preset interval is (V min , V rated ], and the second preset interval is (V rated , V max ). The rated wind speed V rated can be determined according to the model of the wind turbine, and is generally set to 11.4 meters per second.
在当前风速小于或等于最低运行风速Vmin时,或在当前风速大于或等于最高运行风速Vmax时,风力发电机停止工作。When the current wind speed is less than or equal to the minimum operating wind speed V min , or when the current wind speed is greater than or equal to the maximum operating wind speed V max , the wind turbine stops working.
也就是说,在当前风速属于第一预设区间时,通过改变风力发电机的电磁转矩,来使得风力发电机的输出功率改变参考输出功率变化量;在当前风速属于第二预设区间时,通过改变风力发电机的桨距角,来使得风力发电机的输出功率改变参考输出功率变化量。That is to say, when the current wind speed belongs to the first preset range, the output power of the wind generator is changed by the reference output power change by changing the electromagnetic torque of the wind generator; when the current wind speed belongs to the second preset range, the output power of the wind generator is changed by changing the pitch angle of the wind generator.
通过以下方式构建所述预设风速区间对应的预设状态空间表达式:The preset state space expression corresponding to the preset wind speed range is constructed in the following way:
依据风机叶片气动转矩公式,构建气动转矩与多个预设参数相关的线性公式,每个预设参数为所述风机叶片气动转矩公式中的参数且在发电过程中产生变化的参数;According to the aerodynamic torque formula of the fan blade, a linear formula related to the aerodynamic torque and a plurality of preset parameters is constructed, each preset parameter being a parameter in the aerodynamic torque formula of the fan blade and a parameter that changes during the power generation process;
通过以下公式构建气动转矩与多个预设参数相关的线性公式:The linear equation that relates the aerodynamic torque to several preset parameters is constructed using the following formula:
Tr=a×ωr+b×β+c×V+d(4)T r =a×ω r +b×β+c×V+d(4)
公式(1)至(4)中,Pr为风力发电机的风机气动功率,ρ为空气密度,R为风力发电机的风机转子半径,V为风速,CP(λ,β)为风能利用系数,λ是风机转子的叶尖速比,β是桨距角,ωr为风机转子转速,Tr为风力发电机的气动转矩,ωr、β和V均为预设参数,a为ωr对应的系数,b为β对应的系数,c为V对应的系数,d为所述线性公式的常数项。In formulas (1) to (4), Pr is the aerodynamic power of the wind turbine, ρ is the air density, R is the radius of the wind turbine rotor, V is the wind speed, Cp (λ, β) is the wind energy utilization coefficient, λ is the tip speed ratio of the wind turbine rotor, β is the pitch angle, ωr is the wind turbine rotor speed, Tr is the aerodynamic torque of the wind turbine, ωr , β and V are all preset parameters, a is the coefficient corresponding to ωr , b is the coefficient corresponding to β, c is the coefficient corresponding to V, and d is the constant term of the linear formula.
其中,CP(λ,β)是关于叶尖速比和桨距角之间的高阶非线性函数。也就是说,结合公式(3)可知,气动系统中的Tr是关于ωr、β和V的高度非线性函数,难以用简单的数学模型进行描述。进而,可通过线性化的方式来进行简化。本文选用PWA模型(Piece Wise Affine,分段仿射),通过划分不同的运行工况,利用线性模型来近似表征气动功率的非线性特性,进而得到公式(4)。Among them, C P (λ, β) is a high-order nonlinear function between the tip speed ratio and the pitch angle. In other words, combined with formula (3), it can be seen that T r in the aerodynamic system is a highly nonlinear function of ω r , β and V, which is difficult to describe with a simple mathematical model. Then, it can be simplified by linearization. This paper selects the PWA model (Piece Wise Affine) to divide different operating conditions and use a linear model to approximate the nonlinear characteristics of aerodynamic power, thereby obtaining formula (4).
本申请划分的不同的运行工况分为当前风速属于第一预设区间或属于第二预设区间,在当前风速属于第一预设区间时,通过第一预设区间对应的第一状态空间表达式来预测在输出功率改变参考输出功率变化量时的各项预设状态参数;在当前风速属于第二预设区间时,通过第二预设区间对应的第二状态空间表达式来预测在输出功率改变参考输出功率变化量时的各项预设状态参数。The different operating conditions divided in the present application are divided into the current wind speed belonging to the first preset interval or the second preset interval. When the current wind speed belongs to the first preset interval, the first state space expression corresponding to the first preset interval is used to predict the various preset state parameters when the output power changes by the reference output power change amount; when the current wind speed belongs to the second preset interval, the second state space expression corresponding to the second preset interval is used to predict the various preset state parameters when the output power changes by the reference output power change amount.
依据风力发电机的电磁转矩与参考电磁转矩之间的关系式,结合所述线性公式、风力发电机的双质块模型与变桨距模型,构建风力发电机的标准状态空间表达式。According to the relationship between the electromagnetic torque of the wind turbine and the reference electromagnetic torque, combined with the linear formula, the double-mass model and the variable pitch model of the wind turbine, a standard state space expression of the wind turbine is constructed.
所述标准状态空间表达式用于表征风力发电机的预设状态参数与所述多个预设参数分别对应的变化量之间的关系式以及风力发电机的输出功率与初始输出功率之间的关系式,所述预设状态参数为在发电过程中产生变化的参数。The standard state space expression is used to characterize the relationship between the preset state parameters of the wind turbine and the changes corresponding to the multiple preset parameters, as well as the relationship between the output power of the wind turbine and the initial output power. The preset state parameters are parameters that change during the power generation process.
由于发电机的电磁暂态过程通常也仅为毫秒级,故可将发电机系统中发电机和变频器组成的变频驱动模型由一阶线性环节准确代替近似。Since the electromagnetic transient process of the generator is usually only in the millisecond level, the variable frequency drive model consisting of the generator and the inverter in the generator system can be accurately replaced by a first-order linear link.
进而,所述风力发电机的电磁转矩与参考电磁转矩之间的关系式为:Furthermore, the relationship between the electromagnetic torque of the wind turbine and the reference electromagnetic torque is:
公式(5)中,Tg为发电机转子的电磁转矩;为发电机转子的电磁转矩的导数;τg为发电机常数;Tref为风力发电机的参考电磁转矩,即理论上风力发电机的电磁转矩。而在实际变换之后的风力发电机的电磁转矩等于参考电池转矩。In formula (5), Tg is the electromagnetic torque of the generator rotor; is the derivative of the electromagnetic torque of the generator rotor; τ g is the generator constant; T ref is the reference electromagnetic torque of the wind generator, that is, the electromagnetic torque of the wind generator in theory. After the actual transformation, the electromagnetic torque of the wind generator is equal to the reference battery torque.
由于电磁转矩与输出功率之间成比例关系,且参考输出功率Pref=ΔPref+Pg.0,其中,ΔPref为参考输出功率变化量,Pg.0为初始输出功率。Since the electromagnetic torque is proportional to the output power, and the reference output power Pref = ΔPref + Pg.0 , wherein ΔPref is the reference output power variation, and Pg.0 is the initial output power.
进而,参考电磁转矩与参考输出功率变化量之间的表达式为:Furthermore, the expression between the reference electromagnetic torque and the reference output power change is:
Tref=K×Pref=K×ΔPref+K×Pg.0(6)T ref =K×P ref =K×ΔP ref +K×P g.0 (6)
公式(6)中,Tref为发电机转子的参考电磁转矩;K为电磁转矩与输出功率之间的比例系数;Pref为参考输出功率;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量。In formula (6), T ref is the reference electromagnetic torque of the generator rotor; K is the proportionality coefficient between the electromagnetic torque and the output power; Pref is the reference output power; Pg,0 is the initial output power of the generator rotor of the wind turbine; ΔP ref is the reference output power change of the generator rotor.
将公式(6)代入公式(5)中可得,所述电磁转矩与所述参考输出功率变化量相关的关系式为:Substituting formula (6) into formula (5), the relationship between the electromagnetic torque and the reference output power change is:
公式(7)中,Tg为发电机转子的电磁转矩;为发电机转子的电磁转矩的导数;τg为发电机常数;Tref为风力发电机的参考电磁转矩;K为电磁转矩与输出功率之间的比例系数;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量。In formula (7), Tg is the electromagnetic torque of the generator rotor; is the derivative of the electromagnetic torque of the generator rotor; τ g is the generator constant; T ref is the reference electromagnetic torque of the wind generator; K is the proportional coefficient between the electromagnetic torque and the output power; P g,0 is the initial output power of the generator rotor of the wind generator; ΔP ref is the reference output power change of the generator rotor.
通过以下公式表示所述双质块模型:The dual mass model is represented by the following formula:
公式(8)中,Jr为风力发电机的风机转子的转动惯量;Jg为风力发电机的发电机转子的转动惯量;Tshaft为风机转子与发电机转子之间的等效中间轴转矩;Tr为风力发电机的气动转矩;Tg为发电机转子的电磁转矩;θr为风机转子的角位移;θg是发电机转子的角位移;θ为风机转子和发电机转子之间的角位移差;ωr为风机转子的角速度;是风机转子的角速度的导数;ωg是发电机转子的角速度;是发电机转子的角速度的导数;Ng为齿轮箱变速比;A为等效中间轴的刚度系数;B为等效中间轴的阻尼系数。In formula (8), J r is the moment of inertia of the fan rotor of the wind turbine; J g is the moment of inertia of the generator rotor of the wind turbine; T shaft is the equivalent intermediate shaft torque between the fan rotor and the generator rotor; Tr is the aerodynamic torque of the wind turbine; T g is the electromagnetic torque of the generator rotor; θ r is the angular displacement of the fan rotor; θ g is the angular displacement of the generator rotor; θ is the angular displacement difference between the fan rotor and the generator rotor; ω r is the angular velocity of the fan rotor; is the derivative of the angular velocity of the fan rotor; ω g is the angular velocity of the generator rotor; is the derivative of the angular velocity of the generator rotor; Ng is the gear ratio of the gearbox; A is the stiffness coefficient of the equivalent intermediate shaft; B is the damping coefficient of the equivalent intermediate shaft.
进而,对θ求导可得:Then, taking the derivative of θ, we can get:
双质块模型是将风力发电机的风机转子产生的机械能先传递给齿轮箱的低速轴,再经由齿轮箱的变速作用后由高速轴传递给发电机转子部分,以此实现转动风机转子来带动发电机转子的运动,从而将风能转换为电能。The double-mass model is a method in which the mechanical energy generated by the wind turbine rotor is first transmitted to the low-speed shaft of the gearbox, and then transmitted to the generator rotor by the high-speed shaft after the speed change of the gearbox, so as to realize the movement of the generator rotor by rotating the wind turbine rotor, thereby converting wind energy into electrical energy.
通过以下公式表示所述变桨距模型:The variable pitch model is expressed by the following formula:
公式(10),为变桨距模型的一阶桨距角导数,所述变桨距模型是含有限幅和限速的一阶惯性环节;τβ为一阶惯性环节的时间常数;βref为桨距角参考值;β为桨距角。Formula (10), is the first-order pitch angle derivative of the variable pitch model, and the variable pitch model is a first-order inertia link containing amplitude limitation and speed limitation; τ β is the time constant of the first-order inertia link; β ref is the pitch angle reference value; β is the pitch angle.
风机转子的角速度与风机转子的参考角速度之间的表达式为:The expression between the angular velocity of the fan rotor and the reference angular velocity of the fan rotor is:
βref=KP×(ωr-ωref)+KI×∫(ωr-ωref)=KP×(ωr-ωref)+KI×φ (11)β ref =K P ×(ω r -ω ref )+K I ×∫(ω r -ω ref ) =K P ×(ω r -ω ref )+K I ×φ (11)
公式(11)中,KP为所述一阶惯性环节的比例系数;ωr为风机转子的角速度;ωref为风机转子的参考角速度;KI为所述一阶惯性环节的积分系数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;KW为风机转子的角速度与输出功率之间的比例系数。In formula (11), K P is the proportional coefficient of the first-order inertia link; ω r is the angular velocity of the fan rotor; ω ref is the reference angular velocity of the fan rotor; K I is the integral coefficient of the first-order inertia link; is the derivative of φ, which is the difference between the angular velocity of the fan rotor and the reference angular velocity of the fan rotor; K W is the proportional coefficient between the angular velocity of the fan rotor and the output power.
也就是说,为了写成线性表达式,从而设置φ=∫(ωr-ωref),进而得到:That is, to write it as a linear expression, we set φ = ∫ (ω r - ω ref ), and then we get:
参考角速度与参考输出功率变化量之间的表达式为:The expression between the reference angular velocity and the reference output power change is:
ωref=KW×(Pg,0+ΔPref) (13)ω ref =K W ×(P g,0 +ΔP ref ) (13)
公式(13)中,ωref为风机转子的参考角速度;KW为风机转子的角速度与输出功率之间的比例系数;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量。In formula (13), ω ref is the reference angular velocity of the wind turbine rotor; K W is the proportionality coefficient between the angular velocity of the wind turbine rotor and the output power; P g,0 is the initial output power of the generator rotor of the wind turbine; ΔP ref is the reference output power change of the generator rotor.
将公式(11)和(13)代入公式(10)中可得变桨距模型的一阶桨距角导数与参考输出功率变化量之间的表达式:Substituting formulas (11) and (13) into formula (10) yields the expression between the first-order pitch angle derivative of the variable pitch model and the reference output power change:
公式(14)中,KP为所述一阶惯性环节的比例系数;ωr为风机转子的角速度;ωref为风机转子的参考角速度;KI为所述一阶惯性环节的积分系数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;KW为风机转子的角速度与输出功率之间的比例系数;Pg,0为风力发电机的发电机转子的初始输出功率;ΔPref为发电机转子的参考输出功率变化量。In formula (14), K P is the proportional coefficient of the first-order inertia link; ω r is the angular velocity of the fan rotor; ω ref is the reference angular velocity of the fan rotor; K I is the integral coefficient of the first-order inertia link; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; K W is the proportionality coefficient between the angular velocity of the wind turbine rotor and the output power; P g,0 is the initial output power of the generator rotor of the wind turbine; ΔP ref is the reference output power change of the generator rotor.
结合公式(5)、公式(8)、公式(9)、公式(10)和公式(12)可得风力发电机的标准状态空间表达式。Combining formula (5), formula (8), formula (9), formula (10) and formula (12), the standard state space expression of the wind turbine can be obtained.
所述风力发电机的标准状态空间表达式为:The standard state space expression of the wind turbine is:
公式(15)中,a为风机转子的角速度对应的系数,b为桨距角对应的系数,c为风速对应的系数,d为所述线性公式的常数项;Pg为风力发电机的发电机转子的输出功率;ΔPg为风力发电机的发电机转子的输出功率变化量;为风机转子和发电机转子之间的角位移差的导数;ωr、ωg、θ、φ、β和Tg为预设状态参数。In formula (15), a is the coefficient corresponding to the angular velocity of the wind turbine rotor, b is the coefficient corresponding to the pitch angle, c is the coefficient corresponding to the wind speed, and d is the constant term of the linear formula; Pg is the output power of the generator rotor of the wind turbine; ΔPg is the output power change of the generator rotor of the wind turbine; is the derivative of the angular displacement difference between the wind turbine rotor and the generator rotor; ω r , ω g , θ, φ, β and T g are preset state parameters.
也就是说,将每个预设状态参数对应的导数写成状态空间表达式的形式,以使各个预设状态参数对应的导数与预设参数(此时的预设参数为ωref、βref、Tref)有关。That is, the derivative corresponding to each preset state parameter is written in the form of a state space expression, so that the derivative corresponding to each preset state parameter is related to the preset parameter (the preset parameters in this case are ω ref , β ref , T ref ).
其中,在仅改变风力发电机的电磁转矩时,所述第一状态空间表达式通过所述电磁转矩与所述参考输出功率变化量相关的关系式、所述标准状态空间表达式和在桨距角参考值为零时的所述变桨距模型中的桨距角一阶惯性环节表达式进行构建。Among them, when only the electromagnetic torque of the wind turbine is changed, the first state space expression is constructed by the relationship between the electromagnetic torque and the reference output power change, the standard state space expression and the first-order inertia link expression of the pitch angle in the variable pitch model when the pitch angle reference value is zero.
也就是说,在当前风速属于第一预设区间时,仅改变风力发电机的电磁转矩,而无需改变桨距角,进而βref的取值为0,且与风机转子的参考角速度ωref也无关。That is to say, when the current wind speed belongs to the first preset interval, only the electromagnetic torque of the wind generator is changed without changing the pitch angle, so the value of β ref is 0 and has nothing to do with the reference angular velocity ω ref of the wind turbine rotor.
此时,所述风力发电机的输出功率与电磁矩阵变量相关的关系式为:At this time, the relationship between the output power of the wind turbine and the electromagnetic matrix variable is:
Pg=η×Tg×ωg=Pg.0+η×Tg.0×Δωg+η×ΔTg×ωg.0(16)P g =η×T g ×ω g =P g.0 +η×T g.0 ×Δω g +η×ΔT g ×ω g.0 (16)
Δωg=ωg-ωg.0 (17)Δω g =ω g -ω g.0 (17)
ΔTg=Tg-Tg.0 (18)ΔT g = T g - T g.0 (18)
公式(16)至(18)中,η为发电机效率;ωg是发电机转子的角速度;Tg.0为发电机转子的初始电磁转矩;Δωg为发电机转子的角速度变化量,且;ΔTg为发电机转子的电磁转矩变化量;ωg.0为发电机转子的初始角速度。In formulas (16) to (18), η is the generator efficiency; ω g is the angular velocity of the generator rotor; T g.0 is the initial electromagnetic torque of the generator rotor; Δω g is the change in angular velocity of the generator rotor, and; ΔT g is the change in electromagnetic torque of the generator rotor; ω g.0 is the initial angular velocity of the generator rotor.
Pg.0=η×Tg.0×ωg.0 (19)P g.0 = η×T g.0 ×ω g.0 (19)
将公式(17)和(18)代入公式(16)中可得:Substituting formula (17) and (18) into formula (16), we can obtain:
Pg=Pg.0+η×Tg.0×ωg+η×Tg×ωg.0-2×η×Tg.0×ωg.0 P g =P g.0 +η×T g.0 ×ω g +η×T g ×ω g.0 -2×η×T g.0 ×ω g.0
=-Pg.0+η×Tg.0×ωg+η×Tg×ωg.0 (20)=-P g.0 +η×T g.0 ×ω g +η×T g ×ω g.0 (20)
进而,ΔPg=Pg-Pg.0=-2×Pg.0+η×Tg.0×ωg+η×Tg×ωg.0。Furthermore, ΔP g =P g -P g.0 =-2×P g.0 +η×T g.0 ×ω g +η×T g ×ω g.0 .
在桨距角变量为零时的所述变桨距模型中的桨距角一阶惯性环节表达式为:The expression of the first-order inertia link of the pitch angle in the variable pitch model when the pitch angle variable is zero is:
公式(21)中,βref为桨距角参考值,取值为零;为变桨距模型的一阶桨距角导数,所述变桨距模型是含有限幅和限速的一阶惯性环节;τβ为一阶惯性环节的时间常数;β为桨距角。In formula (21), β ref is the pitch angle reference value, which is zero; is the first-order pitch angle derivative of the variable pitch model, and the variable pitch model is a first-order inertia link containing amplitude limitation and speed limitation; τ β is the time constant of the first-order inertia link; β is the pitch angle.
进而,结合公式(7)、公式(15)、公式(20)和公式(21)可得所述第一状态空间表达式:Furthermore, by combining formula (7), formula (15), formula (20) and formula (21), the first state space expression can be obtained:
公式(22)中,a为风机转子的角速度对应的系数,b为桨距角对应的系数,c为风速对应的系数,d为所述线性公式的常数项;ωr为风机转子的角速度;是风机转子的角速度的导数;ωg是发电机转子的角速度;是发电机转子的角速度的导数;θ为风机转子和发电机转子之间的角位移差;为风机转子和发电机转子之间的角位移差的导数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;V0为初始风速;Jr为风力发电机的风机转子的转动惯量;Jg为风力发电机的发电机转子的转动惯量;Ng为齿轮箱变速比;A为等效中间轴的刚度系数;B为等效中间轴的阻尼系数。In formula (22), a is the coefficient corresponding to the angular velocity of the wind turbine rotor, b is the coefficient corresponding to the pitch angle, c is the coefficient corresponding to the wind speed, and d is the constant term of the linear formula; ω r is the angular velocity of the wind turbine rotor; is the derivative of the angular velocity of the fan rotor; ω g is the angular velocity of the generator rotor; is the derivative of the angular velocity of the generator rotor; θ is the angular displacement difference between the fan rotor and the generator rotor; is the derivative of the angular displacement difference between the fan rotor and the generator rotor; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; V0 is the initial wind speed; Jr is the moment of inertia of the wind turbine rotor; Jg is the moment of inertia of the generator rotor of the wind turbine; Ng is the gearbox speed ratio; A is the stiffness coefficient of the equivalent intermediate shaft; B is the damping coefficient of the equivalent intermediate shaft.
初始风速可以理解为在获取控制风力发电机执行一次调频的参考输出功率变化量之前,风力发电机处于稳态情况下的风速。在仅改变风力发电机的桨距角时,所述第二状态空间表达式通过桨距角导数与所述参考输出功率变化量相关的关系式、所述标准状态空间表达式、输出功率与初始电磁转矩相关的关系式和在电磁转矩变量为零时的电磁转矩与参考电磁转矩之间的关系表达式进行构建。The initial wind speed can be understood as the wind speed of the wind turbine in a steady state before obtaining the reference output power variation for controlling the wind turbine to perform a frequency modulation. When only the pitch angle of the wind turbine is changed, the second state space expression is constructed by the relationship between the pitch angle derivative and the reference output power variation, the standard state space expression, the relationship between the output power and the initial electromagnetic torque, and the relationship between the electromagnetic torque and the reference electromagnetic torque when the electromagnetic torque variable is zero.
也就是说,在当前风速属于第二预设区间时,仅通过改变桨距角来实现输出功率的改变。That is to say, when the current wind speed belongs to the second preset interval, the output power is changed only by changing the pitch angle.
在当前风速属于第二预设区间时,风力发电机处于限功率状态,电磁转矩保持初始值不变,进而, When the current wind speed belongs to the second preset interval, the wind turbine generator is in a power-limited state, and the electromagnetic torque remains unchanged at the initial value.
所述输出功率与初始输出功率相关的关系式为:The relationship between the output power and the initial output power is:
公式(23)中,Pg为风力发电机的发电机转子的输出功率;η为发电机效率;ωg为发电机转子的角速度;Pg.0为风力发电机的发电机转子的初始输出功率;ωg.0为发电机转子的初始角速度。In formula (23), Pg is the output power of the generator rotor of the wind turbine; η is the generator efficiency; ωg is the angular velocity of the generator rotor; Pg.0 is the initial output power of the generator rotor of the wind turbine; ωg.0 is the initial angular velocity of the generator rotor.
在电磁转矩变量为零时的电磁转矩与参考电磁转矩之间的关系表达式为:The relationship between the electromagnetic torque and the reference electromagnetic torque when the electromagnetic torque variable is zero is expressed as:
公式(24)中,Tg为发电机转子的电磁转矩;为发电机转子的电磁转矩的导数;τg为发电机常数;Tg.0为发电机转子的初始电磁转矩;ωg.0为发电机转子的初始角速度。In formula (24), Tg is the electromagnetic torque of the generator rotor; is the derivative of the electromagnetic torque of the generator rotor; τ g is the generator constant; T g.0 is the initial electromagnetic torque of the generator rotor; ω g.0 is the initial angular velocity of the generator rotor.
结合公式(12)、公式(13)、公式(14)、公式(23)和公式(24)得到所述第二状态空间表达式:Combining formula (12), formula (13), formula (14), formula (23) and formula (24), the second state space expression is obtained:
公式(25)中,a为风机转子的角速度对应的系数,b为桨距角对应的系数,c为风速对应的系数,d为所述线性公式的常数项;ωr为风机转子的角速度;是风机转子的角速度的导数;ωg是发电机转子的角速度;是发电机转子的角速度的导数;θ为风机转子和发电机转子之间的角位移差;为风机转子和发电机转子之间的角位移差的导数;为φ的导数,是风机转子的角速度与风机转子的参考角速度之差;V0为初始风速;Jr为风力发电机的风机转子的转动惯量;Jg为风力发电机的发电机转子的转动惯量;Ng为齿轮箱变速比;A为等效中间轴的刚度系数;B为等效中间轴的阻尼系数。In formula (25), a is the coefficient corresponding to the angular velocity of the wind turbine rotor, b is the coefficient corresponding to the pitch angle, c is the coefficient corresponding to the wind speed, and d is the constant term of the linear formula; ω r is the angular velocity of the wind turbine rotor; is the derivative of the angular velocity of the fan rotor; ω g is the angular velocity of the generator rotor; is the derivative of the angular velocity of the generator rotor; θ is the angular displacement difference between the fan rotor and the generator rotor; is the derivative of the angular displacement difference between the fan rotor and the generator rotor; is the derivative of φ, which is the difference between the angular velocity of the wind turbine rotor and the reference angular velocity of the wind turbine rotor; V0 is the initial wind speed; Jr is the moment of inertia of the wind turbine rotor; Jg is the moment of inertia of the generator rotor of the wind turbine; Ng is the gearbox speed ratio; A is the stiffness coefficient of the equivalent intermediate shaft; B is the damping coefficient of the equivalent intermediate shaft.
S103:依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式。S103: Determine a target state space expression corresponding to the target wind speed interval according to the target wind speed interval to which the current wind speed belongs.
所述目标风速区间为所述第一预设区间与所述第二预设区间中的一个,所述目标状态空间表达式为第一状态空间表达式和第二状态空间表达式中的一个。The target wind speed interval is one of the first preset interval and the second preset interval, and the target state space expression is one of the first state space expression and the second state space expression.
当前风速可以理解为在获取控制风力发电机执行一次调频的参考输出功率变化量时的风速。The current wind speed may be understood as the wind speed when obtaining the reference output power variation for controlling the wind turbine generator to perform a frequency modulation.
进而,在当前风速属于第一预设区间时,则目标风速区间为第一预设区间,进而确定目标状态空间表达式为第一状态空间表达式,即在仅改变风力发电机的电磁转矩时,确定参考输出功率变化量与各个预设状态变量之间的状态空间表达式。Furthermore, when the current wind speed belongs to the first preset interval, the target wind speed interval is the first preset interval, and the target state space expression is determined to be the first state space expression, that is, when only the electromagnetic torque of the wind generator is changed, the state space expression between the reference output power change and each preset state variable is determined.
在当前风速属于第二预设区间时,则目标风速区间为第二预设区间,进而确定目标状态空间表达式为第二状态空间表达式,即在仅改变风力发电机的桨距角时,确定参考输出功率变化量与各个预设状态变量之间的状态空间表达式。When the current wind speed belongs to the second preset interval, the target wind speed interval is the second preset interval, and then the target state space expression is determined to be the second state space expression, that is, when only the pitch angle of the wind turbine is changed, the state space expression between the reference output power change and each preset state variable is determined.
S104:将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以对风力发电机进行一次调频模拟。S104: Substituting the reference output power variation into the target state space expression, calculating a preset state variable of a primary frequency modulation, so as to perform a primary frequency modulation simulation on the wind turbine generator.
从而,在确定目标状态空间表达式之后,将参考输出功率变化量代入目标状态空间表达式,以此确定各个预设状态变量的取值,从而控制风力发电机按照计算出的预设状态变量进行模拟,以模拟出风力发电机一次调频。Therefore, after determining the target state space expression, the reference output power change is substituted into the target state space expression to determine the value of each preset state variable, thereby controlling the wind turbine to simulate according to the calculated preset state variables to simulate the primary frequency modulation of the wind turbine.
示例性的,还可以将第一状态空间表达式简化为:Exemplarily, the first state space expression can also be simplified as:
其中,x=[ωr ωg θ φ β Tg]T,u=ΔPref,v=[V0Pg.0]T,y=ΔPg,F1=-2×Pg.0。in, x=[ω r ω g θ φ β T g ] T , u=ΔP ref , v=[V 0 P g.0 ] T , y=ΔP g , F 1 = -2×P g.0 .
示例性的,还可以将第二状态空间表达式简化为:Exemplarily, the second state space expression can also be simplified as:
其中,x=[ωrωgθφβTg]T,u=Δpref,v=[V0pg.0]T,y=ΔPg,F2=-Pg.0。in, x=[ω r ω g θφβT g ] T , u=Δp ref , v=[V 0 p g.0 ] T , y=ΔP g , F2 = -Pg.0 .
进而,将同时考虑到低阶机理模型对于复杂非线性的逼近程度有限,因此可引入神经网络算法对机理模型偏差进行补偿,神经网络模型用于预测第一补偿和第二补偿,基于神经网络模型的状态空间表达式为:Furthermore, considering that the low-order mechanism model has a limited degree of approximation to complex nonlinearity, a neural network algorithm can be introduced to compensate for the deviation of the mechanism model. The neural network model is used to predict the first compensation and the second compensation. The state space expression based on the neural network model is:
公式(27)中,Ai、Bi、Ci、Di、Ei、Fi对应第一状态空间表达式或第二状态空间表达式,f为第一补偿,g为第二补偿。In formula (27), Ai , Bi , Ci , Di , Ei , and Fi correspond to the first state space expression or the second state space expression, f is the first compensation, and g is the second compensation.
也就是说,将基于输入-输出数据驱动的“黑箱模型”或基于机理分析的“白箱建模”预测出与第一状态空间表达式或第二状态空间表达式中的预测出的作差,得到第一差值;将基于输入-输出数据驱动的“黑箱模型”或基于机理分析的“白箱建模”预测出y与第一状态空间表达式或第二状态空间表达式中的预测出的y作差,得到第二差值,进而,将每次通过第一状态空间表达式或第二状态空间表达式中的预测出的和y作为样本数据,将对应的第一差值和第二差值作为标签训练神经网络模型,从而使得神经网络模型可以预测出第一差值和第二差值,也就是说,预测出第一补偿与第二补偿,进而无需使用“黑箱模型”或“白箱建模”,就可以得到较为准确的和y,以此得到较为准确的x=[ωrωgθφβTg]T。That is, the “black box model” driven by input-output data or the “white box modeling” based on mechanism analysis predicts The predicted value in the first state space expression or the second state space expression is subtract the predicted y from the first state space expression or the second state space expression to obtain a second difference; subtract the predicted y from the "black box model" driven by input-output data or the "white box modeling" based on mechanism analysis to obtain a second difference, and then and y as sample data, and use the corresponding first difference and second difference as labels to train the neural network model, so that the neural network model can predict the first difference and the second difference, that is, predict the first compensation and the second compensation, and then get a more accurate result without using "black box model" or "white box modeling". and y, so as to obtain a more accurate x = [ω r ω g θφβT g ] T .
由于上述连续的状态空间方程中的系统状态量可观测,因此可基于风力发电机实际工作域内的运行数据,完成上述状态空间方程式中风机机理参数与PWA模型中数据参数的联合辨识,也就是说,等效中间轴的刚度系数A、等效中间轴的阻尼系数B等系数可能会由于使用年限等导致取值不准,从而通过联合辨识,便于得到更加准确的A、B,使得计算出的预设状态变量更加准确,从而实现多个子模型的子区域暂态特性逼近系统全局的非线性暂态特性。Since the system state quantities in the above continuous state-space equations are observable, the joint identification of the wind turbine mechanism parameters in the above state-space equations and the data parameters in the PWA model can be completed based on the operating data in the actual working domain of the wind turbine. In other words, the stiffness coefficient A of the equivalent intermediate shaft, the damping coefficient B of the equivalent intermediate shaft and other coefficients may have inaccurate values due to the age of use, etc., so through joint identification, it is convenient to obtain more accurate A and B, making the calculated preset state variables more accurate, thereby achieving the sub-regional transient characteristics of multiple sub-models approaching the global nonlinear transient characteristics of the system.
基于同一申请构思,本申请实施例中还提供了与上述实施例提供的风力发电机一次调频模拟方法对应的风力发电机一次调频模拟装置,由于本申请实施例中的装置解决问题的原理与本申请上述实施例的风力发电机一次调频模拟方法相似,因此装置的实施可以参见方法的实施,重复之处不再赘述。Based on the same application concept, the embodiment of the present application also provides a wind turbine primary frequency regulation simulation device corresponding to the wind turbine primary frequency regulation simulation method provided in the above embodiment. Since the principle of solving the problem by the device in the embodiment of the present application is similar to the wind turbine primary frequency regulation simulation method in the above embodiment of the present application, the implementation of the device can refer to the implementation of the method, and the repeated parts will not be repeated.
如图2所示,图2为本申请实施例提供的一种风力发电机一次调频模拟装置的功能模块图。风力发电机一次调频模拟装置10包括:获取模块101、构建模块102、确定模块103和计算模块104。As shown in Figure 2, Figure 2 is a functional module diagram of a wind turbine primary frequency regulation simulation device provided in an embodiment of the present application. The wind turbine primary frequency regulation simulation device 10 includes: an acquisition module 101, a construction module 102, a determination module 103 and a calculation module 104.
获取模块101,用于获取控制风力发电机执行一次调频的参考输出功率变化量;构建模块102,用于依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式,所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;确定模块103,用于依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式;计算模块104,用于将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以对风力发电机进行一次调频模拟。An acquisition module 101 is used to acquire a reference output power variation for controlling a wind turbine to perform a primary frequency modulation; a construction module 102 is used to construct a preset state space expression corresponding to the preset wind speed interval based on a relationship between the electromagnetic torque of the wind turbine and the electromagnetic torque variable in a preset wind speed interval, in combination with a double-mass model and a variable pitch model of the wind turbine, wherein the preset state space expression is used to characterize the relationship between the preset state variable of the wind turbine and the reference output power variation in the preset wind speed interval; a determination module 103 is used to determine a target state space expression corresponding to the target wind speed interval according to the target wind speed interval to which the current wind speed belongs; and a calculation module 104 is used to substitute the reference output power variation into the target state space expression to calculate the preset state variable for a primary frequency modulation, so as to perform a primary frequency modulation simulation on the wind turbine.
基于同一申请构思,参见图3所示,为本申请实施例提供的一种电子设备的结构示意图,电子设备20包括:处理器201、存储器202和总线203,所述存储器202存储有所述处理器201可执行的机器可读指令,当电子设备20运行时,所述处理器201与所述存储器202之间通过所述总线203进行通信,所述机器可读指令被所述处理器201运行时执行如上述实施例中任一所述的风力发电机一次调频模拟方法的步骤。Based on the same application concept, referring to FIG3 , which is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application, the electronic device 20 comprises: a processor 201, a memory 202 and a bus 203, wherein the memory 202 stores machine-readable instructions executable by the processor 201, and when the electronic device 20 is running, the processor 201 communicates with the memory 202 through the bus 203, and the machine-readable instructions are executed by the processor 201 when running, as in the steps of the primary frequency modulation simulation method of a wind turbine as described in any of the above embodiments.
具体地,所述机器可读指令被所述处理器201执行时可以执行如下处理:获取控制风力发电机执行一次调频的参考输出功率变化量;依据风力发电机的电磁转矩与电磁转矩变量在预设风速区间对应的关系式,结合风力发电机的双质块模型与变桨距模型,构建所述预设风速区间对应的预设状态空间表达式,所述预设状态空间表达式用于表征在预设风速区间下风力发电机的预设状态变量与所述参考输出功率变化量之间的关系;依据当前风速所属的目标风速区间,确定所述目标风速区间对应的目标状态空间表达式;将所述参考输出功率变化量代入所述目标状态空间表达式,计算出一次调频的预设状态变量,以对风力发电机进行一次调频模拟。Specifically, when the machine-readable instructions are executed by the processor 201, the following processing can be performed: obtaining a reference output power change for controlling the wind turbine to perform a single frequency modulation; constructing a preset state space expression corresponding to the preset wind speed range based on the relationship between the electromagnetic torque and the electromagnetic torque variable of the wind turbine in the preset wind speed range, combined with the double-mass model and the variable pitch model of the wind turbine, the preset state space expression is used to characterize the relationship between the preset state variables of the wind turbine and the reference output power change in the preset wind speed range; determining a target state space expression corresponding to the target wind speed range based on the target wind speed range to which the current wind speed belongs; substituting the reference output power change into the target state space expression, and calculating the preset state variables for a single frequency modulation to perform a single frequency modulation simulation on the wind turbine.
基于同一申请构思,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述实施例提供的风力发电机一次调频模拟方法的步骤。Based on the same application concept, an embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored. When the computer program is executed by a processor, the steps of the wind turbine primary frequency modulation simulation method provided in the above embodiment are executed.
具体地,所述存储介质能够为通用的存储介质,如移动磁盘、硬盘等,所述存储介质上的计算机程序被运行时,能够执行上述风力发电机一次调频模拟方法,通过将风力发电机的一次调频时的功率变化量转换成与预设状态参数相关在不同风速区间下分别对应的状态空间表达式,以此将功率变化量转变成与预设状态参数相关的线性表达,从而在接收到发电机的输出功率的参考输出功率变化量时,依据当前风速所属的风速区间对应的状态空间表达式,计算出个预设状态参数,从而风力发电机按照计算出的预设状态参数模拟运行,以模拟风力发电机一次调频,以此解决现有技术中需要大量的数据进行一次调频模拟以及构建的模型过于复杂的技术问题,达到了提高对风力发电机进行一次调频模拟效率的技术效果,以及达到了简化模型的技术效果。Specifically, the storage medium can be a general storage medium, such as a mobile disk, a hard disk, etc. When the computer program on the storage medium is run, the above-mentioned wind turbine primary frequency modulation simulation method can be executed, by converting the power change during the primary frequency modulation of the wind turbine into a state space expression corresponding to the preset state parameters in different wind speed intervals, so as to convert the power change into a linear expression related to the preset state parameters, so that when the reference output power change of the output power of the generator is received, a preset state parameter is calculated according to the state space expression corresponding to the wind speed interval to which the current wind speed belongs, so that the wind turbine is simulated according to the calculated preset state parameters to simulate the primary frequency modulation of the wind turbine, thereby solving the technical problems in the prior art that a large amount of data is required for primary frequency modulation simulation and the constructed model is too complicated, and the technical effect of improving the efficiency of primary frequency modulation simulation of the wind turbine is achieved, as well as the technical effect of simplifying the model.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应所述理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, the specific working process of the system and device described above can refer to the corresponding process in the aforementioned method embodiment, and will not be repeated here. In the several embodiments provided in the present application, it should be understood that the disclosed system, device and method can be implemented in other ways. The device embodiments described above are merely schematic. For example, the division of the units is only a logical function division. There may be other division methods in actual implementation. For example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some communication interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random AccessMemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a non-volatile computer-readable storage medium that is executable by a processor. Based on this understanding, the technical solution of the present application, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), disk or optical disk and other media that can store program codes.
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific implementations of the present application, but the protection scope of the present application is not limited thereto. Any person skilled in the art who is familiar with the present technical field can easily think of changes or substitutions within the technical scope disclosed in the present application, which should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311353815.3A CN117332602B (en) | 2023-10-18 | 2023-10-18 | A method and device for simulating primary frequency modulation of a wind turbine generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311353815.3A CN117332602B (en) | 2023-10-18 | 2023-10-18 | A method and device for simulating primary frequency modulation of a wind turbine generator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117332602A CN117332602A (en) | 2024-01-02 |
CN117332602B true CN117332602B (en) | 2024-04-19 |
Family
ID=89275318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311353815.3A Active CN117332602B (en) | 2023-10-18 | 2023-10-18 | A method and device for simulating primary frequency modulation of a wind turbine generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117332602B (en) |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010071159A (en) * | 2008-09-17 | 2010-04-02 | Univ Of Ryukyus | Device for smoothing electric power generated by wind power generation using wind mill and storage battery |
EP2520800A1 (en) * | 2011-05-02 | 2012-11-07 | Kabushiki Kaisha Toshiba | Wind power generation system and control method for the same |
JP2012222868A (en) * | 2011-04-05 | 2012-11-12 | Mitsubishi Electric Corp | Controller for electric generator |
EP2541050A2 (en) * | 2011-06-28 | 2013-01-02 | Gamesa Innovation & Technology, S.L. | A method for the identification of the drive train main frequency in a wind turbine |
EP2922168A1 (en) * | 2014-03-18 | 2015-09-23 | Korea Electronics Technology Institute | Control method for a plurality of generators and system |
WO2017000569A1 (en) * | 2015-06-30 | 2017-01-05 | 中船重工(重庆)海装风电设备有限公司 | Equivalent variable pitch differential control method and apparatus |
CN107846030A (en) * | 2017-11-02 | 2018-03-27 | 河海大学 | A kind of double-fed fan motor field frequencies range control method for considering optimal rotor inertia kinetic energy |
CN109274106A (en) * | 2018-09-16 | 2019-01-25 | 天津大学 | Smart grid frequency control method based on electric vehicle cluster |
CN110048440A (en) * | 2019-05-29 | 2019-07-23 | 国网陕西省电力公司电力科学研究院 | A kind of wind power generating set participates in the control method and model of primary frequency regulation of power network |
WO2019148771A1 (en) * | 2018-01-31 | 2019-08-08 | 北京金风科创风电设备有限公司 | Method and apparatus for primary frequency control of wind power generator |
CN112117768A (en) * | 2020-03-26 | 2020-12-22 | 广西大学 | Wind generating set subsection frequency modulation control method based on power tracking curve switching |
CN112682254A (en) * | 2020-12-21 | 2021-04-20 | 北京华能新锐控制技术有限公司 | Fan active power tracking method based on dynamic multi-model predictive controller |
CN113031440A (en) * | 2021-03-02 | 2021-06-25 | 中南大学 | Wind turbine variable pitch control method based on feedback linearization and prediction control |
WO2021164112A1 (en) * | 2020-02-18 | 2021-08-26 | 山东大学 | Frequency control method and system during using wind farm as black-start power source by means of optimal configuration of energy storage |
CN113629728A (en) * | 2021-07-13 | 2021-11-09 | 南京理工大学 | Wind turbine generator droop control method based on execution dependency heuristic dynamic programming |
CN113708389A (en) * | 2021-09-10 | 2021-11-26 | 国网湖南省电力有限公司 | Wind power plant primary frequency modulation model parameter identification method and system based on actual power response |
CN113809760A (en) * | 2021-09-24 | 2021-12-17 | 国网江苏省电力有限公司电力科学研究院 | Control method and device for wind power plant participating in secondary frequency modulation of power grid |
WO2022036787A1 (en) * | 2020-08-21 | 2022-02-24 | 西安热工研究院有限公司 | Method for improving wind power grid-connected primary frequency modulation performance by utilizing adaptive virtual parameters |
CN115102193A (en) * | 2022-08-04 | 2022-09-23 | 东南大学溧阳研究院 | System frequency secondary falling event prediction method considering wind power participation frequency modulation |
CN116565898A (en) * | 2023-07-04 | 2023-08-08 | 昆明理工大学 | An Adaptive Control Method Based on Wind Speed Prediction for Wind-storage Combined with Primary Frequency Regulation |
CN116780635A (en) * | 2023-07-18 | 2023-09-19 | 南方电网科学研究院有限责任公司 | Simulation method and device for wind driven generator of power distribution network, electronic equipment and storage medium |
-
2023
- 2023-10-18 CN CN202311353815.3A patent/CN117332602B/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010071159A (en) * | 2008-09-17 | 2010-04-02 | Univ Of Ryukyus | Device for smoothing electric power generated by wind power generation using wind mill and storage battery |
JP2012222868A (en) * | 2011-04-05 | 2012-11-12 | Mitsubishi Electric Corp | Controller for electric generator |
EP2520800A1 (en) * | 2011-05-02 | 2012-11-07 | Kabushiki Kaisha Toshiba | Wind power generation system and control method for the same |
EP2541050A2 (en) * | 2011-06-28 | 2013-01-02 | Gamesa Innovation & Technology, S.L. | A method for the identification of the drive train main frequency in a wind turbine |
EP2922168A1 (en) * | 2014-03-18 | 2015-09-23 | Korea Electronics Technology Institute | Control method for a plurality of generators and system |
WO2017000569A1 (en) * | 2015-06-30 | 2017-01-05 | 中船重工(重庆)海装风电设备有限公司 | Equivalent variable pitch differential control method and apparatus |
CN107846030A (en) * | 2017-11-02 | 2018-03-27 | 河海大学 | A kind of double-fed fan motor field frequencies range control method for considering optimal rotor inertia kinetic energy |
WO2019148771A1 (en) * | 2018-01-31 | 2019-08-08 | 北京金风科创风电设备有限公司 | Method and apparatus for primary frequency control of wind power generator |
CN109274106A (en) * | 2018-09-16 | 2019-01-25 | 天津大学 | Smart grid frequency control method based on electric vehicle cluster |
CN110048440A (en) * | 2019-05-29 | 2019-07-23 | 国网陕西省电力公司电力科学研究院 | A kind of wind power generating set participates in the control method and model of primary frequency regulation of power network |
WO2021164112A1 (en) * | 2020-02-18 | 2021-08-26 | 山东大学 | Frequency control method and system during using wind farm as black-start power source by means of optimal configuration of energy storage |
CN112117768A (en) * | 2020-03-26 | 2020-12-22 | 广西大学 | Wind generating set subsection frequency modulation control method based on power tracking curve switching |
WO2022036787A1 (en) * | 2020-08-21 | 2022-02-24 | 西安热工研究院有限公司 | Method for improving wind power grid-connected primary frequency modulation performance by utilizing adaptive virtual parameters |
CN112682254A (en) * | 2020-12-21 | 2021-04-20 | 北京华能新锐控制技术有限公司 | Fan active power tracking method based on dynamic multi-model predictive controller |
CN113031440A (en) * | 2021-03-02 | 2021-06-25 | 中南大学 | Wind turbine variable pitch control method based on feedback linearization and prediction control |
CN113629728A (en) * | 2021-07-13 | 2021-11-09 | 南京理工大学 | Wind turbine generator droop control method based on execution dependency heuristic dynamic programming |
CN113708389A (en) * | 2021-09-10 | 2021-11-26 | 国网湖南省电力有限公司 | Wind power plant primary frequency modulation model parameter identification method and system based on actual power response |
CN113809760A (en) * | 2021-09-24 | 2021-12-17 | 国网江苏省电力有限公司电力科学研究院 | Control method and device for wind power plant participating in secondary frequency modulation of power grid |
CN115102193A (en) * | 2022-08-04 | 2022-09-23 | 东南大学溧阳研究院 | System frequency secondary falling event prediction method considering wind power participation frequency modulation |
CN116565898A (en) * | 2023-07-04 | 2023-08-08 | 昆明理工大学 | An Adaptive Control Method Based on Wind Speed Prediction for Wind-storage Combined with Primary Frequency Regulation |
CN116780635A (en) * | 2023-07-18 | 2023-09-19 | 南方电网科学研究院有限责任公司 | Simulation method and device for wind driven generator of power distribution network, electronic equipment and storage medium |
Non-Patent Citations (5)
Title |
---|
Primary frequency regulation of the hybrid power system by deloaded PMSG-based offshore wind farm using centralised droop controller;Jahan E等;The Journal of Engineering;20191231;全文 * |
双馈风电机组参与电网一次调频的多风速段综合控制及变参数整定;陈斌;王德林;张俊武;范林源;李颖颖;康积涛;;电工电能新技术;20180516(第11期);全文 * |
数据驱动的风电场全工况非线性调频动态建模;胡阳 等;电力系统自动化;20230810;全文 * |
海上风电机组的模型设计与动态仿真研究;刘洋;周东阳;王承文;曹军;王友超;严祺慧;;船舶工程;20200715(第S1期);全文 * |
采用半自由工况点和分块优化策略的大惯量风力发电系统模型预测控制;孟洪民;刘吉臻;张江昆;林忠伟;;华北电力大学学报(自然科学版);20170730(第04期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN117332602A (en) | 2024-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fuglsang et al. | Optimization method for wind turbine rotors | |
CN105179164B (en) | Wind-energy changing system sliding-mode control and device based on T-S fuzzy models | |
US11713747B2 (en) | Wind turbine control method | |
Shirazi et al. | Wind turbine integrated structural and LPV control design for improved closed-loop performance | |
CN116011300B (en) | Whole-process numerical simulation method of wind-wave combined energy obtaining device | |
CN113994087A (en) | Method and system for controlling the quantity of a wind turbine by selecting a controller via machine learning | |
WO2019201404A1 (en) | A method and a system for designing a foundation for a wind turbine | |
CN112682254B (en) | Draught fan active power tracking method based on dynamic multi-model predictive controller | |
CN117332602B (en) | A method and device for simulating primary frequency modulation of a wind turbine generator | |
CN109991851B (en) | Distributed economic model prediction control method applied to large-scale wind power plant | |
CN111027169A (en) | An improved observation method for equivalent wind speed of wind turbine wheel surface | |
CN110929405A (en) | An electro-pneumatic dynamic analysis method considering wind turbines and gas turbines | |
CN117811012A (en) | Modeling method and device for doubly-fed wind power active support primary frequency modulation and related equipment | |
CN107979112A (en) | A kind of blower control method, system, terminal and readable storage medium storing program for executing | |
Wang et al. | Turbulence intensity identification and load reduction of wind turbine under extreme turbulence | |
Lupton et al. | Improved linearised models of wind turbine aerodynamics and control system dynamics using harmonic linearisation | |
CN116816597A (en) | Control method and system of wind turbine generator, electronic equipment and storage medium | |
CN116498499A (en) | Wind turbine generator wake flow calculation method, system, equipment and medium | |
Wiens et al. | Holistic simulation of wind turbines with fully aero-elastic and electrical model | |
CN115306634A (en) | A two-degree-of-freedom wind turbine active power control method | |
CN115657464A (en) | Design method of intelligent nonlinear robust controller of diesel generating set | |
JP6976899B2 (en) | Wind farm and its operation method and control device | |
Zierath et al. | Comparison and field test validation of various multibody codes for wind turbine modelling | |
CN116151130B (en) | Wind power plant maximum frequency damping coefficient calculation method, device, equipment and medium | |
CN111222718A (en) | Maximum power point tracking method and device of wind energy conversion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |