JP4387676B2 - Power converter for wind power generation - Google Patents

Power converter for wind power generation Download PDF

Info

Publication number
JP4387676B2
JP4387676B2 JP2003066419A JP2003066419A JP4387676B2 JP 4387676 B2 JP4387676 B2 JP 4387676B2 JP 2003066419 A JP2003066419 A JP 2003066419A JP 2003066419 A JP2003066419 A JP 2003066419A JP 4387676 B2 JP4387676 B2 JP 4387676B2
Authority
JP
Japan
Prior art keywords
power
wind
generator
output
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003066419A
Other languages
Japanese (ja)
Other versions
JP2004274973A (en
Inventor
章 川口
一秋 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2003066419A priority Critical patent/JP4387676B2/en
Publication of JP2004274973A publication Critical patent/JP2004274973A/en
Application granted granted Critical
Publication of JP4387676B2 publication Critical patent/JP4387676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

【0001】
【発明の属する技術分野】
本発明は、風力発電用電力変換装置に関するものである。
【0002】
【従来の技術】
風力発電においては、その発電電力を電力系統に供給する場合に、供給する電力会社との契約により、最大発電電力が定められている。このため、発電電力を最大発電電力以下に抑制することは風力発電設備実現のための経済性等に大きく関わってくる。
【0003】
これに対し、従来の風力発電装置として、風力により発電を行う同期発電機と、同期発電機の発電電圧を制御するための電圧指令を出力する可変速コンバ−タ制御部と、前記電圧指令に基づいて前記同期発電機の発電電圧を制御する可変速コンバ−タとを具備し、前記可変速コンバ−タ制御部が、発電電力の目標値と前記同期発電機の発電した電力の発電電流及び発電電圧に基づいて、前記発電電圧が予め設定された電圧制限値以上の場合に、前記同期発電機に対して弱め界磁制御を行うように前記電圧指令を出力して、風車可変速運転範囲を拡大することを可能にしている(例えば、特許文献1参照)。
【0004】
また、他の従来の風力発電装置として、風車プロペラのピッチ(風に対するプロペラ羽根の迎え角度)を変化させるピッチ駆動装置と、風車プロペラの回転エネルギを電力エネルギに変換する誘導電動機とを備えた風力発電装置において、風速の検出値に基づき前記発電機出力の設定値を算出する発電機出力設定手段と、前記発電機出力の設定値と検出値との偏差に基づき前記発電機の2次側励磁電流値を制御する2次側励磁制御装置とを備え、風力エネルギの余剰分を回転エネルギとして貯え、風力エネルギの低下時に電力エネルギに変換して、発電機出力変動を抑制し、発電機出力及び電力系統に供給する電力を一定に保持し得るようにしている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開2002−233193号公報(第1頁、図1)
【0006】
【特許文献2】
特開2000−69797号公報(第1頁、図2)
【0007】
【発明が解決しようとする課題】
特許文献1に記載の従来技術は、同期発電機の発電電圧のみを一定値以下にする目的で同期発電機に対して弱め界磁制御を実行している。
【0008】
特許文献2に記載の従来技術は、風速の検出値に基づいて、ピッチを変化させることによる風車プロペラの機械的出力の制御と誘導電動機の2次側励磁電流値の制御とを行って誘導発電機の出力変動を抑制するようにしている。
【0009】
しかし、例えば、突風などにより、風車プロペラの回転速度が急激に変化した場合、ピッチ変化の応答速度が間に合わず、発電設備として許容される最大発電電力を超えてしまう恐れがある。短時間であれば、事実上の問題はないが、電力会社との契約によっては、発電電力が超過した際に、系統連系を遮断され、切り離されてしまう場合もある。一定期間の後、連系は再度許可されるが、その間、発電が行えず、発電効率を下げてしまう要因となる。
【0010】
また、十分な風速がある場合、即ち、風速が十分あり常に風車プロペラからの機械的入力が最大発電電力以上にある場合、最大発電電力制御が有効に機能すれば、風力発電の大きな弱点の一つである風速の変化により発電電力が変化する点が大きく改善されることになるが、従来技術では、発電電力を一定に制御するのは困難である。
【0011】
本発明は、上記に鑑みてなされたもので、発電電力が最大発電電力を超える可能性がある場合に、交流電力の演算結果を基に発電機の界磁巻線電流を制御することで、発電電力を最大発電電力を超えない一定値に保持することができる風力発電用電力変換装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、風力タ−ビンで駆動される発電機の出力電力に基づいて得た交流電力を当該風力発電設備の発電電力として系統に供給する風力発電用電力変換装置であって、前記発電機としての同期発電機と、該同期発電機の出力電力を直流電力に変換するコンバ−タ手段と、該コンバ−タ手段で変換された前記直流電力を所定周波数の交流電力に変換するインバ−タ手段と、該インバ−タ手段で変換された前記交流電力を演算する電力演算手段と、前記発電電力が予め定められた最大発電電力を超える可能性がある場合には、交流電力の演算結果に基づいて当該発電電力が前記最大発電電力を超えないように前記同期発電機の界磁巻線電流を制御する制御手段とを有することを要旨とする。
【0013】
風速の上昇により風力タ−ビンからの機械的入力が増大して発電電力が最大発電電力を超える可能性がある場合に、インバ−タ手段で変換された交流電力の演算結果を基に発電機の界磁巻線電流を制御することで、交流電力、即ち発電電力を最大発電電力を超えない一定値に保持することが可能となる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1は、本発明の第1の実施の形態を示す図である。まず、本実施の形態の構成を説明する。風車(風力タ−ビン)で駆動される発電機には同期発電機が用いられている。以下、この風車で駆動される同期発電機を単に風力発電機1と言う。2は、その界磁巻線である。風力発電機1の出力線は、この風力発電機1の交流出力電力を一旦直流電力に変換するコンバ−タ装置11に接続され、コンバ−タ装置11の出力線は、その出力直流電力を所定周波数の交流電力に変換するインバ−タ装置12に接続されている。そして、このインバ−タ装置12の出力である交流電力を、当該風力発電設備の発電電力として系統14に供給するようになっている。また、コンバ−タ装置11で変換された直流電力の一部は界磁チョッパ装置13に入力され、界磁チョッパ装置13から出力される界磁巻線電流により界磁巻線2を駆動して風力発電機1の励磁を行うようになっている。
【0020】
風力発電機1の出力線には、第1の電圧検出装置21及び第1の電流検出装置22が設けられ、両検出装置21、22の検出出力はコンバ−タ制御回路31に入力されている。コンバ−タ制御回路31の制御信号出力はコンバ−タ装置11に入力され、コンバ−タ制御回路31によりコンバ−タ装置11の一連の動作を制御するようになっている。インバ−タ装置12の出力線には、第2の電圧検出装置24及び第2の電流検出装置25が設けられ、両検出装置24、25の検出出力は電力演算装置26に入力されている。電力演算装置26はインバ−タ装置12で変換された交流電力を演算する。電力演算装置26の演算信号出力は、インバ−タ制御回路32に入力され、インバ−タ制御回路32からの制御信号出力によりインバ−タ装置12の一連の動作を制御するようになっている。
【0021】
また、電力演算装置26で演算された交流電力と最大発電電力基準41との差分がとられ、この差分信号が電力リミット制御回路42に入力されている。電力リミット制御回路42は、この差分入力に基づいて界磁電流補正信号43を演算し、この界磁電流補正信号43がチョッパ制御回路33に入力されている。チョッパ制御回路33には、界磁電流補正信号43の他に、コンバ−タ制御回路31からの界磁電流指令信号44及び界磁チョッパ装置13の出力線に設けられた界磁巻線電流検出用の第3の電流検出装置23の検出出力が入力されている。チョッパ制御回路33は、これらの信号入力を基に界磁電流制御信号を演算し、その制御信号出力は、界磁チョッパ装置13に入力されている。
【0022】
次に、上述のように構成された風力発電用電力変換装置の動作を説明する。通常、風力発電機1の交流出力電力の周波数は、数Hzから十数Hzであり、その周波数は、風速により時々刻々変化する。そのため、風力発電機1の交流出力電力を当該風力発電設備の発電電力として直接系統14に供給することは困難である。そこで、風力発電機1の交流出力電力をコンバ−タ装置11で一旦直流電力に変換する。インバ−タ装置12は、一旦変換された直流電力を、系統14に当該風力発電設備の発電電力として供給するために、系統14と同等の周波数の交流電力に再度変換する。
【0023】
第1の電圧検出装置21は、風力発電機1の出力電圧の周波数と位相を検出し、コンバ−タ制御回路31は、その周波数(即ち、風車の回転数に比例した周波数となる)に応じた一定電力となるように、コンバ−タ装置11への入力電流を制御する。第1の電流検出装置22の検出出力は、入力電流制御に用いられる。このようにして、コンバ−タ装置11の一連の制御は、コンバ−タ制御回路31により実行される。
【0024】
インバ−タ装置12は、インバ−タ制御回路32により、風力発電機1の出力電力に基づく交流電力を系統14に出力するように制御される。通常は、インバ−タ制御回路32により、インバ−タ装置12の入力部分である直流回路の電圧が一定値となるように制御される。第2の電圧検出装置24、第2の電流検出装置25は、各々インバ−タ装置12の出力電圧、出力電流を計測し、電力演算装置26により、インバ−タ装置12の出力交流電力を演算する。この交流電力の演算信号は、インバ−タ制御回路32に入力され、インバ−タ装置12の出力交流電力の制御に用いられる。
【0025】
そして、さらに本実施の形態の風力発電用電力変換装置は、次のような制御動作を実行する。即ち、電力演算装置26の演算出力は、最大発電電力基準41との差分が演算され、風力発電設備として設定された発電電力以内であるか否かが判定される。また、この最大発電電力基準41は、発電デマンドなどにより規定される値でも構わない。その場合は、風力発電設備の発電出力は、予め設定されたデマンド値一定に制御されることになる。最大発電電力基準41との差分は、電力リミット制御回路42に入力され、インバ−タ装置12の出力交流電力が最大発電電力基準41を超える場合に、チョッパ制御回路33により界磁チョッパ装置13の界磁巻線電流を抑制し、風力発電機1の界磁巻線2の電流を抑制し、風力発電機1の出力電力を抑制する。
【0026】
上述したように、本実施の形態によれば、インバ−タ装置12の出力交流電力が最大発電電力基準41を超える場合に、風力発電機1の界磁巻線2の電流を抑制し、風力発電機1の出力電力を抑制する。この結果、風力発電設備としての発電電力が最大発電電力以内に抑制されるようになる。そして風力発電設備としての発電電力が許容最大発電量を超えることを理由に、系統14から強制的に切り離されることがなくなり、風力発電設備の発電効率を高めることが可能となる。また、最大電力リミットを、予め設定されるデマンド値などとすることで、風力発電を外部デマンドにより一定にコントロ−ルされる発電電源として使用することが可能となる。
【0027】
図2には、本発明の第2の実施の形態を示す。本実施の形態では、電力リミット制御回路42の出力信号が界磁電流補正信号リミッタ45に入力されている。また界磁電流補正信号リミッタ45には、コンバ−タ制御回路31で検出された風力発電機1の回転速度信号46が入力されている。界磁電流補正信号リミッタ45は、風力発電機1の回転速度に応じて界磁電流補正信号の信号レベルを変化させ、界磁巻線電流の過度の抑制を制限するものであり、界磁電流補正信号リミッタ45の出力は、界磁電流補正信号43としてチョッパ制御回路33に入力されている。それ以外の構成は、第1の実施の形態を示す図1と同等なので説明を省略する。
【0028】
電力リミット制御回路42は、インバ−タ装置12の出力交流電力が最大発電電力基準41を超える場合に、風力発電機1の界磁巻線2の電流を抑制し、風力発電機1の出力電力を抑制する。本実施の形態では、さらに、風力発電機1の回転速度により、界磁巻線2の電流値を抑制する限度を調整している。即ち、界磁巻線2の電流の抑制に限度を設け、無制限に界磁巻線2の電流が低減されることを防ぐものである。
【0029】
一般に、同期発電機では、第1の実施の形態のように、界磁巻線電流を抑制することにより、内部の誘起電圧を制御することができ、出力電力を制御することが可能である。しかしながら、一方で、同期発電機には電機子反作用があり、出力電流によっても内部誘起電圧の低下が起きる。したがって、界磁巻線電流を過度に抑制した場合、内部誘起電圧が低下し過ぎ、最悪の場合、乱調、脱調を起こす可能性がある。
【0030】
本実施の形態では、界磁電流補正信号リミッタ45により、界磁電流補正信号43に制限を設けることで、界磁巻線電流が過度に抑制されて同期発電機が乱調、脱調を起こすのを抑制することができる。
【0031】
上述したように、本実施の形態によれば、第1の実施の形態と同じく、風力発電設備の発電電力を一定値以下に抑制することができ、特に、電機子反作用の大きい高速回転領域で顕著な効果がある。
【0032】
【発明の効果】
以上説明したように、請求項記載の発明によれば、風速の上昇による風力タ−ビンからの機械的入力の増大等により、発電電力が最大発電電力を超える可能性がある場合に、交流電力の演算結果を基に発電機の界磁巻線電流を制御することで、発電電力を最大発電電力を超えない一定値に保持することができる。
請求項記載の発明によれば、特に、電機子反作用の大きい高速回転領域で、界磁巻線電流が過度に抑制されることで起きる乱調、脱調の発生を防止することができて、発電電力を最大発電電力を超えない一定値に保持することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である風力発電用電力変換装置のブロック図である。
【図2】本発明の第2の実施の形態のブロック図である。
【符号の説明】
1 風力発電機
2 界磁巻線
11 コンバ−タ装置
12 インバ−タ装置
14 系統
26 電力演算装置
33 チョッパ制御回路
41 最大発電電力基準
42 電力リミット制御回路
45 界磁電流補正信号リミッタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power converter for wind power generation.
[0002]
[Prior art]
In wind power generation, when the generated power is supplied to a power system, the maximum generated power is determined by a contract with a power company that supplies the power. For this reason, restraining the generated power below the maximum generated power greatly affects the economics for realizing the wind power generation facility.
[0003]
On the other hand, as a conventional wind power generator, a synchronous generator that generates power by wind power, a variable speed converter control unit that outputs a voltage command for controlling the generated voltage of the synchronous generator, and the voltage command A variable speed converter for controlling the generated voltage of the synchronous generator based on the variable speed converter control unit, the variable speed converter control unit, the target value of the generated power and the generated current of the power generated by the synchronous generator, Based on the generated voltage, when the generated voltage is equal to or higher than a preset voltage limit value, the voltage command is output so as to perform field weakening control on the synchronous generator, and the wind turbine variable speed operation range is expanded. (See, for example, Patent Document 1).
[0004]
As another conventional wind power generator, a wind turbine provided with a pitch drive device that changes the pitch of the wind turbine propeller (attack angle of the propeller blades with respect to the wind) and an induction motor that converts the rotational energy of the wind turbine propeller into electric energy. In the power generator, generator output setting means for calculating a set value of the generator output based on a detected value of wind speed, and secondary excitation of the generator based on a deviation between the set value of the generator output and the detected value A secondary-side excitation control device for controlling the current value, storing surplus wind energy as rotational energy, converting it to power energy when the wind energy decreases, suppressing generator output fluctuations, The power supplied to the power system can be kept constant (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP 2002-233193 A (first page, FIG. 1)
[0006]
[Patent Document 2]
Japanese Unexamined Patent Publication No. 2000-69797 (first page, FIG. 2)
[0007]
[Problems to be solved by the invention]
The prior art described in Patent Document 1 performs field-weakening control on the synchronous generator for the purpose of setting only the generated voltage of the synchronous generator below a certain value.
[0008]
In the prior art described in Patent Document 2, induction power generation is performed by controlling the mechanical output of the wind turbine propeller by changing the pitch and controlling the secondary excitation current value of the induction motor based on the detected value of the wind speed. The output fluctuation of the machine is suppressed.
[0009]
However, for example, when the rotational speed of the wind turbine propeller changes suddenly due to a gust of wind or the like, the response speed of the pitch change may not be in time, and the maximum generated power allowed for the power generation equipment may be exceeded. If it is a short time, there is no practical problem, but depending on the contract with the power company, when the generated power exceeds, the grid connection may be cut off and disconnected. After a certain period of time, interconnection is permitted again, but power generation cannot be performed during that period, which causes a decrease in power generation efficiency.
[0010]
In addition, if there is sufficient wind speed, that is, if the wind speed is sufficient and the mechanical input from the wind turbine propeller is always greater than or equal to the maximum generated power, if the maximum generated power control functions effectively, it is one of the major weak points of wind power generation. However, in the prior art, it is difficult to control the generated power to be constant.
[0011]
The present invention was made in view of the above, and when the generated power may exceed the maximum generated power, by controlling the field winding current of the generator based on the calculation result of the AC power, It aims at providing the power converter device for wind power generation which can hold | maintain generated electric power to the constant value which does not exceed maximum generated electric power.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is directed to wind power for supplying AC power obtained based on output power of a generator driven by a wind turbine as power generated by the wind power generation facility. A power converter for power generation, the synchronous generator as the generator , converter means for converting the output power of the synchronous generator into DC power, and the DC power converted by the converter means Inverter means for converting the AC power into AC power of a predetermined frequency, power calculation means for calculating the AC power converted by the inverter means, and the possibility that the generated power exceeds a predetermined maximum generated power And a control means for controlling the field winding current of the synchronous generator so that the generated power does not exceed the maximum generated power based on the calculation result of AC power. .
[0013]
When the mechanical input from the wind turbine increases due to the increase in wind speed and the generated power may exceed the maximum generated power, the generator is based on the calculation result of the AC power converted by the inverter means. By controlling the field winding current, the AC power, that is, the generated power can be maintained at a constant value that does not exceed the maximum generated power.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a diagram showing a first embodiment of the present invention. First, the configuration of the present embodiment will be described. A synchronous generator is used as a generator driven by a windmill (wind turbine). Hereinafter, the synchronous generator driven by the windmill is simply referred to as the wind power generator 1. Reference numeral 2 denotes the field winding. The output line of the wind power generator 1 is connected to a converter device 11 that once converts the AC output power of the wind power generator 1 into DC power, and the output line of the converter device 11 outputs the output DC power to a predetermined value. It is connected to an inverter device 12 that converts it into AC power having a frequency. And the alternating current power which is the output of this inverter apparatus 12 is supplied to the system | strain 14 as the generated power of the said wind power generation equipment. Part of the DC power converted by the converter device 11 is input to the field chopper device 13, and the field winding 2 is driven by the field winding current output from the field chopper device 13. The wind power generator 1 is excited.
[0020]
The output line of the wind power generator 1 is provided with a first voltage detection device 21 and a first current detection device 22, and detection outputs of both the detection devices 21 and 22 are input to the converter control circuit 31. . The control signal output of the converter control circuit 31 is input to the converter device 11, and the converter control circuit 31 controls a series of operations of the converter device 11. The output line of the inverter device 12 is provided with a second voltage detection device 24 and a second current detection device 25, and the detection outputs of both the detection devices 24, 25 are input to the power calculation device 26. The power calculation device 26 calculates the AC power converted by the inverter device 12. A calculation signal output of the power calculation device 26 is input to the inverter control circuit 32, and a series of operations of the inverter device 12 is controlled by a control signal output from the inverter control circuit 32.
[0021]
Further, the difference between the AC power calculated by the power calculation device 26 and the maximum generated power reference 41 is taken, and this difference signal is input to the power limit control circuit 42. The power limit control circuit 42 calculates a field current correction signal 43 based on this difference input, and this field current correction signal 43 is input to the chopper control circuit 33. In addition to the field current correction signal 43, the chopper control circuit 33 includes a field current command signal 44 from the converter control circuit 31 and field winding current detection provided on the output line of the field chopper device 13. The detection output of the third current detection device 23 is input. The chopper control circuit 33 calculates a field current control signal based on these signal inputs, and the control signal output is input to the field chopper device 13.
[0022]
Next, the operation of the wind power generation power converter configured as described above will be described. Usually, the frequency of the AC output power of the wind power generator 1 is several Hz to several tens of Hz, and the frequency changes every moment depending on the wind speed. Therefore, it is difficult to supply the AC output power of the wind power generator 1 directly to the grid 14 as the generated power of the wind power generation facility. Therefore, the AC output power of the wind power generator 1 is once converted into DC power by the converter device 11. The inverter device 12 converts the once converted DC power into AC power having the same frequency as that of the grid 14 in order to supply the grid 14 as generated power of the wind power generation facility.
[0023]
The first voltage detection device 21 detects the frequency and phase of the output voltage of the wind power generator 1, and the converter control circuit 31 responds to the frequency (that is, a frequency proportional to the rotational speed of the windmill). The input current to the converter device 11 is controlled so that the constant power is obtained. The detection output of the first current detection device 22 is used for input current control. In this way, a series of control of the converter device 11 is executed by the converter control circuit 31.
[0024]
The inverter device 12 is controlled by the inverter control circuit 32 to output AC power based on the output power of the wind power generator 1 to the grid 14. Usually, the inverter control circuit 32 controls the voltage of the DC circuit, which is the input part of the inverter device 12, to be a constant value. The second voltage detection device 24 and the second current detection device 25 respectively measure the output voltage and output current of the inverter device 12 and calculate the output AC power of the inverter device 12 by the power calculation device 26. To do. This AC power calculation signal is input to the inverter control circuit 32 and used to control the output AC power of the inverter device 12.
[0025]
And the power converter device for wind power generation of this Embodiment performs the following control operations further. That is, the difference between the calculated output of the power calculation device 26 and the maximum generated power reference 41 is calculated, and it is determined whether it is within the generated power set as the wind power generation facility. The maximum generated power reference 41 may be a value defined by a power generation demand or the like. In that case, the power generation output of the wind power generation facility is controlled to be a constant demand value set in advance. The difference from the maximum generated power reference 41 is input to the power limit control circuit 42. When the output AC power of the inverter device 12 exceeds the maximum generated power reference 41, the chopper control circuit 33 causes the field chopper device 13 to The field winding current is suppressed, the current of the field winding 2 of the wind power generator 1 is suppressed, and the output power of the wind power generator 1 is suppressed.
[0026]
As described above, according to the present embodiment, when the output AC power of the inverter device 12 exceeds the maximum generated power reference 41, the current of the field winding 2 of the wind power generator 1 is suppressed, and the wind power The output power of the generator 1 is suppressed. As a result, the generated power as the wind power generation facility is suppressed within the maximum generated power. And it is no longer forcibly disconnected from the grid 14 because the generated power as the wind power generation facility exceeds the allowable maximum power generation amount, and the power generation efficiency of the wind power generation facility can be increased. Further, by setting the maximum power limit to a demand value set in advance, wind power generation can be used as a power generation power source that is controlled by an external demand.
[0027]
FIG. 2 shows a second embodiment of the present invention. In the present embodiment, the output signal of the power limit control circuit 42 is input to the field current correction signal limiter 45. Further, the rotation speed signal 46 of the wind power generator 1 detected by the converter control circuit 31 is input to the field current correction signal limiter 45. The field current correction signal limiter 45 changes the signal level of the field current correction signal in accordance with the rotational speed of the wind power generator 1 to limit excessive suppression of the field winding current. The output of the correction signal limiter 45 is input to the chopper control circuit 33 as the field current correction signal 43. Since other configurations are the same as those in FIG. 1 showing the first embodiment, the description thereof is omitted.
[0028]
The power limit control circuit 42 suppresses the current of the field winding 2 of the wind power generator 1 and the output power of the wind power generator 1 when the output AC power of the inverter device 12 exceeds the maximum generated power reference 41. Suppress. In the present embodiment, the limit for suppressing the current value of the field winding 2 is further adjusted by the rotational speed of the wind power generator 1. That is, a limit is imposed on the suppression of the current of the field winding 2 to prevent the current of the field winding 2 from being reduced without limitation.
[0029]
Generally, in the synchronous generator, as in the first embodiment, by suppressing the field winding current, the internal induced voltage can be controlled and the output power can be controlled. However, on the other hand, the synchronous generator has an armature reaction, and the internal induced voltage is lowered by the output current. Therefore, when the field winding current is excessively suppressed, the internal induced voltage is excessively lowered, and in the worst case, there is a possibility of causing turbulence and step-out.
[0030]
In the present embodiment, the field current correction signal 43 is limited by the field current correction signal limiter 45, so that the field winding current is excessively suppressed, causing the synchronous generator to be distorted or stepped out. Can be suppressed.
[0031]
As described above, according to the present embodiment, as in the first embodiment, the generated power of the wind power generation facility can be suppressed to a certain value or less, particularly in a high-speed rotation region where the armature reaction is large. There is a remarkable effect.
[0032]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the generated power may exceed the maximum generated power due to an increase in mechanical input from the wind turbine due to an increase in wind speed, the AC By controlling the field winding current of the generator based on the calculation result of the power, the generated power can be held at a constant value that does not exceed the maximum generated power.
According to the invention of claim 2 , in particular, in the high-speed rotation region where the armature reaction is large, it is possible to prevent the occurrence of turbulence and step-out caused by excessively suppressing the field winding current, The generated power can be maintained at a constant value that does not exceed the maximum generated power.
[Brief description of the drawings]
FIG. 1 is a block diagram of a power converter for wind power generation according to a first embodiment of the present invention.
FIG. 2 is a block diagram of a second exemplary embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wind generator 2 Field winding 11 Converter apparatus 12 Inverter apparatus 14 System | strain 26 Electric power calculation apparatus 33 Chopper control circuit 41 Maximum generated power reference 42 Power limit control circuit 45 Field current correction signal limiter

Claims (1)

風力タ−ビンで駆動される発電機の出力電力に基づいて得た交流電力を当該風力発電設備の発電電力として系統に供給する風力発電用電力変換装置であって、前記発電機としての同期発電機と、該同期発電機の出力電力を直流電力に変換するコンバ−タ手段と、該コンバ−タ手段で変換された前記直流電力を所定周波数の交流電力に変換するインバ−タ手段と、該インバ−タ手段で変換された前記交流電力を演算する電力演算手段と、前記発電電力が予め定められた最大発電電力を超える可能性がある場合には、交流電力の演算結果に基づいて当該発電電力が前記最大発電電力を超えないように前記同期発電機の界磁巻線電流を制御する制御手段とを有することを特徴とする風力発電用電力変換装置。A power conversion device for wind power generation that supplies AC power obtained based on output power of a generator driven by a wind turbine to a system as power generation power of the wind power generation facility, the synchronous power generation as the generator And converter means for converting the output power of the synchronous generator into DC power, inverter means for converting the DC power converted by the converter means into AC power of a predetermined frequency, In the case where there is a possibility that the generated power exceeds the predetermined maximum generated power, the power calculating means for calculating the AC power converted by the inverter means, the power generation based on the calculation result of the AC power And a control means for controlling a field winding current of the synchronous generator so that the electric power does not exceed the maximum generated electric power.
JP2003066419A 2003-03-12 2003-03-12 Power converter for wind power generation Expired - Fee Related JP4387676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066419A JP4387676B2 (en) 2003-03-12 2003-03-12 Power converter for wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066419A JP4387676B2 (en) 2003-03-12 2003-03-12 Power converter for wind power generation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009172365A Division JP4864124B2 (en) 2009-07-23 2009-07-23 Power converter for wind power generation

Publications (2)

Publication Number Publication Date
JP2004274973A JP2004274973A (en) 2004-09-30
JP4387676B2 true JP4387676B2 (en) 2009-12-16

Family

ID=33127146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066419A Expired - Fee Related JP4387676B2 (en) 2003-03-12 2003-03-12 Power converter for wind power generation

Country Status (1)

Country Link
JP (1) JP4387676B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038966A (en) * 2011-08-09 2013-02-21 Japan Radio Co Ltd Power supply unit

Also Published As

Publication number Publication date
JP2004274973A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3918837B2 (en) Wind power generator
WO2010134171A1 (en) Wind turbine generator and control method thereof
EP2403128B1 (en) Wind power converter system with grid side reactive power control
KR100667232B1 (en) Variable speed wind turbine generator
KR101253854B1 (en) Wind power generation system, and its control method
EP2697902B1 (en) System and method for fast start-up of an induction motor
JP4898230B2 (en) Wind power generation system operation control method and apparatus
AU2020455056B2 (en) Low-voltage ride-through control method and system for wind turbine generator
JP2006296200A (en) Operating instruction of wind power station, and wind power arrangement
JP2009027766A (en) Power converter of duplex feeding winding type induction generator
JP2011176956A (en) Wind power generation system and control method of the same
EP3382198A1 (en) Method of adjusting wind turbine power take-off
JP4449775B2 (en) Secondary excitation power converter
JPH08322298A (en) Wind power generating apparatus
EP3358179A1 (en) Method of adjusting wind turbine power take-off
US6684639B2 (en) Combustion turbine power generation system and method of controlling the same
JP3884260B2 (en) Wind power generator
JP4387676B2 (en) Power converter for wind power generation
JP4386068B2 (en) Wind power generator, control method for wind power generator, control device
JP4398440B2 (en) Wind power generator
JP4864124B2 (en) Power converter for wind power generation
JP2007244199A (en) Wind-power generation apparatus
JP2000069797A (en) Wind power generator
JP3741384B2 (en) Synchronous machine thyristor start controller
JP2005006421A (en) Generating set

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Ref document number: 4387676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees