JP4449775B2 - Secondary excitation power converter - Google Patents

Secondary excitation power converter Download PDF

Info

Publication number
JP4449775B2
JP4449775B2 JP2005039941A JP2005039941A JP4449775B2 JP 4449775 B2 JP4449775 B2 JP 4449775B2 JP 2005039941 A JP2005039941 A JP 2005039941A JP 2005039941 A JP2005039941 A JP 2005039941A JP 4449775 B2 JP4449775 B2 JP 4449775B2
Authority
JP
Japan
Prior art keywords
power converter
excitation
power
generator
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005039941A
Other languages
Japanese (ja)
Other versions
JP2006230085A (en
Inventor
雅哉 一瀬
基生 二見
貢 松竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005039941A priority Critical patent/JP4449775B2/en
Priority to ES200600015A priority patent/ES2310432B2/en
Priority to CNB2006100058116A priority patent/CN100463356C/en
Publication of JP2006230085A publication Critical patent/JP2006230085A/en
Application granted granted Critical
Publication of JP4449775B2 publication Critical patent/JP4449775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、電力系統の擾乱により二次励磁発電機の二次巻線に発生する過電流が電力変換装置に流れ込むことを抑制する、二次巻線の交流励磁用電力変換装置とそれを用いた発電装置に関する。   The present invention relates to a power converter for AC excitation of a secondary winding that suppresses an overcurrent generated in the secondary winding of a secondary excitation generator from flowing into the power converter due to disturbance of the power system, and to use the same. Related to the power generator.

発電装置に用いられる二次励磁発電機(巻線形誘導発電機)は、電力変換器で回転子巻線をすべり周波数で励磁することで、固定子側に系統周波数と同じ周波数の交流電圧を出力することができ、回転数を可変にできるとともに電力変換器の容量を発電機の容量にくらべて小さくできる利点がある。   The secondary excitation generator (winding induction generator) used in the power generator generates an AC voltage with the same frequency as the system frequency on the stator side by exciting the rotor winding with a power converter at a slip frequency. There is an advantage that the rotational speed can be made variable and the capacity of the power converter can be made smaller than the capacity of the generator.

電力系統の地絡事故などで電圧低下が発生すると、二次励磁発電機は事故点に電流を供給しようと動作する。このとき、二次側巻線に過大な電流が誘起され、二次側に接続した励磁用電力変換器に過大な電流が流れるため、それに耐えられるように電力変換器の素子容量を発電機定格と同程度またはそれ以上に大きくするか、二次巻線を短絡する交流リアクトルを設置する等の方法が用いられている。また、特許文献1には瞬時流入電力量に応じてオンする電力変換手段並列数を変更することが開示されている。   When a voltage drop occurs due to a power system ground fault or the like, the secondary excitation generator operates to supply current to the point of the accident. At this time, an excessive current is induced in the secondary winding, and an excessive current flows in the excitation power converter connected to the secondary side. For example, a method such as installing an AC reactor that shortens the secondary winding or the like is used. Patent Document 1 discloses changing the parallel number of power conversion means to be turned on according to the instantaneous inflow power amount.

特開平11−18486号公報((0004)段落の記載。)Japanese Patent Laid-Open No. 11-18486 (described in paragraph (0004))

交流リアクトルで二次巻線を短絡する場合には、電力変換器が一旦停止するので、再起動して再び電力を供給するために時間がかかる。また、電力変換器の容量を大きくするということは、システムのコストアップとなり、二次励磁形発電機を用いたシステムの特徴が損なわれる。また、交流リアクトルで二次巻線を短絡する場合には電力変換器は一旦停止して過大電流が除去されてから短絡回路を開放して再起動するため、再び電力を供給するために時間がかかる。   When the secondary winding is short-circuited by the AC reactor, the power converter is temporarily stopped, so it takes time to restart and supply power again. In addition, increasing the capacity of the power converter increases the cost of the system and impairs the characteristics of the system using the secondary excitation generator. In addition, when the secondary winding is short-circuited by an AC reactor, the power converter is temporarily stopped and the excessive current is removed, and then the short-circuit is opened and restarted. Therefore, it takes time to supply power again. Take it.

本発明の目的は、二次励磁形発電機の励磁用電力変換器を系統事故や系統擾乱により発生する過電流からの保護と電力変換器の運転継続とを両立できる二次励磁用電力変換装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary excitation power converter capable of achieving both protection from overcurrent caused by a system fault or system disturbance and continued operation of the power converter for the excitation power converter of the secondary excitation generator. Is to provide.

本発明は、系統擾乱時に二次励磁発電機の二次巻線に発生する過電流を電力変換器に流さないようにするため、電力変換器と並列にリアクトルを介して整流装置を設置し、二次巻線から流れ込む過電流を整流装置に分流し、電力変換器へ流れ込む量を小さくする。   In order to prevent the overcurrent generated in the secondary winding of the secondary excitation generator from flowing through the power converter when the system is disturbed, the present invention installs a rectifier through a reactor in parallel with the power converter, The overcurrent flowing from the secondary winding is shunted to the rectifier, and the amount flowing into the power converter is reduced.

本発明の電力変換装置は、系統擾乱時に二次励磁発電機の二次巻線に発生する過電流を電力変換器に流さないようにするため電力変換器の電流容量を小さくできる。   The power converter of the present invention can reduce the current capacity of the power converter in order to prevent the overcurrent generated in the secondary winding of the secondary excitation generator from flowing through the power converter when the system is disturbed.

本発明では、二次励磁発電機の励磁用電力変換器を系統擾乱による過電流から保護し、更に運転継続を実現するために、過電流処理装置である整流装置のインピーダンスを低くした。以下、本発明の詳細を図面を用いながら説明する。   In the present invention, the excitation power converter of the secondary excitation generator is protected from overcurrent due to system disturbance, and the impedance of the rectifier, which is an overcurrent processing device, is lowered in order to continue operation. The details of the present invention will be described below with reference to the drawings.

図1は、本実施例の装置構成を示す単線結線図である。ここでは風力発電装置の場合で説明するが、風車101以外の動力源を用いる場合にも適用できる。   FIG. 1 is a single-line connection diagram showing a device configuration of the present embodiment. Here, the case of a wind turbine generator will be described, but the present invention can also be applied to the case of using a power source other than the wind turbine 101.

まず、発電電力を出力する電気配線および装置について説明する。風力用の発電機Genは、二次励磁発電機(巻線形誘導発電機)であって、この発電機Genの固定子側(一次側)の3相交流出力は、外部信号によって開閉可能な電磁接触器CTT1の二次側に接続される。また電磁接触器CTT1の一次側は、電磁接触器CTT2の一次側および遮断器BRの二次側に接続される。遮断器BRの一次側は図示しない電力系統に接続される。   First, an electrical wiring and device for outputting generated power will be described. The wind power generator Gen is a secondary excitation generator (winding induction generator), and the three-phase AC output on the stator side (primary side) of the generator Gen is an electromagnetic that can be opened and closed by an external signal. Connected to the secondary side of the contactor CTT1. The primary side of the magnetic contactor CTT1 is connected to the primary side of the magnetic contactor CTT2 and the secondary side of the circuit breaker BR. The primary side of the circuit breaker BR is connected to a power system (not shown).

遮断器BRは、例えば、電流過大で遮断器を開放し電流を遮断する機能を具備し、遮断器BRが投入されると風力発電装置の制御装置CTRLに電源が供給される。系統事故時にも制御装置CTRLに電力を供給するために無停電電源装置などの電池装置を用いる。   The circuit breaker BR has, for example, a function of opening the circuit breaker and cutting off the current when the current is excessive, and when the circuit breaker BR is turned on, power is supplied to the control device CTRL of the wind turbine generator. A battery device such as an uninterruptible power supply is used to supply power to the control device CTRL even when a system failure occurs.

また、電磁接触器CTT2の二次側は、デルタ結線されたコンデンサCnおよびリアクトルLnを介して連系用の電力変換器CNVの交流出力端に接続する。一方、連系用の電力変換器CNVの直流出力端は、直流の平滑コンデンサCdを介して励磁用の電力変換器INVの直流出力端子に接続する。   In addition, the secondary side of the magnetic contactor CTT2 is connected to the AC output terminal of the power converter CNV for interconnection via a delta-connected capacitor Cn and a reactor Ln. On the other hand, the DC output terminal of the interconnection power converter CNV is connected to the DC output terminal of the excitation power converter INV via a DC smoothing capacitor Cd.

連系用の電力変換器CNVおよび励磁用の電力変換器INVは、例えば半導体の電力スイッチング素子(サイリスタ、GTO、IGBT、パワーMOSFET)を用いて構成されており、それぞれ、交流を直流に変換または直流を交流に変換する機能を備える。   The power converter CNV for interconnection and the power converter INV for excitation are configured using, for example, semiconductor power switching elements (thyristors, GTOs, IGBTs, power MOSFETs), and each converts AC to DC or It has a function to convert direct current to alternating current.

励磁用の電力変換器INVの交流出力端子は、リアクトルLrおよびコンデンサCrを介して発電機Genの二次側巻線端子に接続される。   The AC output terminal of the power converter INV for excitation is connected to the secondary winding terminal of the generator Gen via the reactor Lr and the capacitor Cr.

また、前記励磁用電力変換装置と並列に、リアクトルLxを介して整流装置RECを発電機Genの二次側巻線端子に接続する。この整流装置RECはその直流部分を前記電力変換器INVの直流部分、例えば平滑コンデンサCdに接続し、さらに、電力半導体スイッチと抵抗とを備えたエネルギー消費装置LODにも接続する。以下の説明では整流装置RECがダイオード整流器を備えた場合を述べるが、ダイオード整流器に限らず、半導体の電力スイッチング素子(サイリスタ、GTO、IGBT、パワーMOSFET)を用いても良い。また、本実施例では、発電機Genの回転子は、直接あるいはギアなどを介して風車101に接続されており、風車の回転に伴って回転するが、揚水発電などの水車や、ガスエンジンなどの内燃機、フライホイールなどの動力で回転する場合も同様である。   The rectifier REC is connected to the secondary winding terminal of the generator Gen via the reactor Lx in parallel with the excitation power converter. The rectifier REC is connected to the DC portion of the power converter INV, for example, the smoothing capacitor Cd, and further connected to an energy consuming device LOD having a power semiconductor switch and a resistor. In the following description, the case where the rectifier REC includes a diode rectifier will be described. However, the semiconductor rectifier is not limited to a diode rectifier, and a semiconductor power switching element (thyristor, GTO, IGBT, power MOSFET) may be used. Further, in this embodiment, the rotor of the generator Gen is connected to the windmill 101 directly or via a gear or the like, and rotates with the rotation of the windmill. The same applies to the case of rotating with the power of the internal combustion machine, flywheel or the like.

次に、発電電力を制御するための配線および装置について説明する。遮断器BRの一次側の三相電圧および三相電流は、それぞれ電圧センサPTs、電流センサCTsによりその値を低い電圧の信号Vs、Isに変換され、前記低電圧の信号が制御装置CTRLに入力される。   Next, wiring and devices for controlling the generated power will be described. The three-phase voltage and three-phase current on the primary side of the circuit breaker BR are converted into low voltage signals Vs and Is by the voltage sensor PTs and current sensor CTs, respectively, and the low voltage signal is input to the control device CTRL. Is done.

また、電磁接触器CTT1の二次側、すなわち電磁接触器CTT1と発電機固定子との間の電圧は、電圧センサPTgによりその値を低電圧の信号Vgに変換され制御装置CTRLに入力される。また、電磁接触器CTT2の二次側、すなわち電磁接触器CTT2と電力変換器CNVの間の三相電流は、電流センサCTnによりその値を低電圧の信号Inに変換され、前記低電圧の信号が制御装置CTRLに入力される。   Further, the voltage on the secondary side of the magnetic contactor CTT1, that is, the voltage between the magnetic contactor CTT1 and the generator stator, is converted into a low voltage signal Vg by the voltage sensor PTg and input to the control device CTRL. . Further, the secondary side of the magnetic contactor CTT2, that is, the three-phase current between the magnetic contactor CTT2 and the power converter CNV is converted into a low voltage signal In by the current sensor CTn, and the low voltage signal Is input to the control device CTRL.

また、発電機Genの回転数および位置を、位置検出器(例えばエンコーダ102)により検出し、位相信号PLr(パルス列)を制御装置CTRLに入力する。   Further, the rotational speed and position of the generator Gen are detected by a position detector (for example, the encoder 102), and the phase signal PLr (pulse train) is input to the control device CTRL.

また、前記電力変換器CNV、INVの直流部に接続された平滑コンデンサCdの電圧は、図示しない電圧センサにより、低い電圧の信号Edcに変換され、この信号Edcを制御装置CTRLに入力する。   Further, the voltage of the smoothing capacitor Cd connected to the DC sections of the power converters CNV and INV is converted into a low voltage signal Edc by a voltage sensor (not shown), and this signal Edc is input to the control device CTRL.

次に、図2を用いて制御装置CTRLの機能について説明する。制御装置CTRLは、電磁接触器CTT1、CTT2や電力変換器INV、CNV、エネルギー消費装置LODを信号Sg1、Sg2、Pulse_inv、Pulse_cnv、Pulse_LODで制御する。   Next, functions of the control device CTRL will be described with reference to FIG. The control device CTRL controls the electromagnetic contactors CTT1, CTT2, the power converters INV, CNV, and the energy consuming device LOD with signals Sg1, Sg2, Pulse_inv, Pulse_cnv, Pulse_LOD.

連系用の電力変換器CNVは、風力発電装置が運転中かつ発電機Genが電磁接触器CTT1にて電力系統に接続される前から後まで、平滑コンデンサCdの直流電圧Edcを一定に制御する直流電圧制御および系統無効電力零(力率1)制御を行う。従って、励磁用の電力変換器INVが直流電力を使用した結果直流電圧が低下すれば、連系用の電力変換器CNVは電力系統から電力を取り出して直流電圧を平滑コンデンサCdに充電して一定に保つように動作し、逆に励磁用の電力変換器INVが平滑コンデンサCdを充電して平滑コンデンサCd両端の直流電圧が上昇する場合には、連系用の電力変換器CNVは直流電力を交流電力に変換して放電し、直流電圧を一定に保つように動作する。   The grid-connected power converter CNV controls the DC voltage Edc of the smoothing capacitor Cd to be constant from when the wind turbine generator is in operation and before and after the generator Gen is connected to the power system by the electromagnetic contactor CTT1. DC voltage control and zero system reactive power (power factor 1) control are performed. Accordingly, if the DC voltage drops as a result of the use of the DC power by the excitation power converter INV, the interconnection power converter CNV takes out the power from the power system and charges the DC voltage to the smoothing capacitor Cd to make it constant. On the other hand, when the excitation power converter INV charges the smoothing capacitor Cd and the DC voltage across the smoothing capacitor Cd rises, the interconnection power converter CNV generates DC power. It converts to AC power and discharges, and operates to keep the DC voltage constant.

まず電力変換器CNVの制御について詳細に説明する。前記交流電圧検出値Vsは、3相2相変換器32trsに入力される。また、前記3相2相変換器32trsの出力VαとVβは位相検出器THDETに入力される。前記位相検出器THDETは、系統の電圧に追従する位相信号THsを、例えば位相同期ループ(PLL:Phase Locked Loop)方式で演算し、前記位相信号THsを3相2相座標変換器32dqtrsおよび前記2相3相座標変換器dq23trsに出力する。前記直流電圧指令値Erefと前記直流電圧検出値Edcは、例えば比例積分制御器により構成された直流電圧調整器DCAVRに入力される。直流電圧調整器DCAVRは、入力された指令値と検出値との偏差が零になるように、出力のd軸電流指令値(有効分電流指令値)Idnstrを調整し、電流調整器1−ACRに出力する。   First, the control of the power converter CNV will be described in detail. The AC voltage detection value Vs is input to the three-phase / two-phase converter 32trs. The outputs Vα and Vβ of the three-phase / two-phase converter 32trs are input to the phase detector THDET. The phase detector THDET calculates a phase signal THs that follows the voltage of the system by, for example, a phase locked loop (PLL) system, and the phase signal THs is calculated using the three-phase two-phase coordinate converter 32dqtrs and the 2 Output to the phase / three-phase coordinate converter dq23trs. The DC voltage command value Eref and the DC voltage detection value Edc are input to a DC voltage regulator DCAVR constituted by, for example, a proportional integration controller. The DC voltage regulator DCAVR adjusts the output d-axis current command value (effective current command value) Idnstr so that the deviation between the input command value and the detected value becomes zero, and the current regulator 1-ACR Output to.

3相2相座標変換器32dqtrsは入力された電流Inから(数1)式に示した変換式を用いて、d軸電流検出値Idn(有効分電流)とq軸電流検出値Iqn(無効分電流)を演算し、d軸電流検出値Idnを電流調整器1−ACRに、q軸電流検出値Iqnを電流調整器2−ACRに出力する。   The three-phase / two-phase coordinate converter 32dqtrs uses the conversion formula shown in the formula (1) from the input current In, and detects the d-axis current detection value Idn (effective current) and the q-axis current detection value Iqn (invalidity). Current) is calculated, and the d-axis current detection value Idn is output to the current regulator 1-ACR, and the q-axis current detection value Iqn is output to the current regulator 2-ACR.

Figure 0004449775
Figure 0004449775

前記電流調整器1−ACRは、前記d軸電流指令値Idnstrと前記d軸電流検出値Idnの偏差を零にするように出力のd軸電圧指令値Vdn0を調整し、加算器301に出力する。同様に、前記電流調整器2−ACRは、前記q軸電流指令値(力率1の場合は指令値=0)と前記q軸電流検出値Iqnの偏差を零にするように出力のq軸電圧指令値Vqn0を調整し、加算器302に出力する。ここで前記電流調整器1−ACR、2−ACRは例えば比例積分制御器により構成できる。   The current adjuster 1-ACR adjusts the output d-axis voltage command value Vdn0 so that the deviation between the d-axis current command value Idnstr and the d-axis current detection value Idn is zero, and outputs it to the adder 301. . Similarly, the current regulator 2-ACR outputs the q-axis of the output so that the deviation between the q-axis current command value (command value = 0 when the power factor is 1) and the q-axis current detection value Iqn is zero. Voltage command value Vqn0 is adjusted and output to adder 302. Here, the current regulators 1-ACR and 2-ACR can be constituted by, for example, a proportional integral controller.

電圧座標変換器dqtrsは入力された前記電圧Vsのα成分Vαとβ成分Vβから(数2)式に示した変換式を用いて、d軸電圧検出値(系統電圧ベクトルに一致する位相成分)Vdsとq軸電圧検出値(前記d軸電圧検出値Vdsと直交する成分)Vqsを演算し、それぞれを前記加算器301、302に出力する。   The voltage coordinate converter dqtrs detects the d-axis voltage (phase component that matches the system voltage vector) using the conversion equation shown in the equation (2) from the α component Vα and β component Vβ of the input voltage Vs. Vds and a q-axis voltage detection value (component orthogonal to the d-axis voltage detection value Vds) Vqs are calculated and output to the adders 301 and 302, respectively.

前記加算器301は、前記d軸電圧指令値Vdn0と前記d軸電圧検出値Vdsを加算して2相3相座標変換器dq23trsに出力する。同様に前記加算器302は、前記q軸電圧指令値Vqn0と前記q軸電圧検出値Vqsを加算して2相3相座標変換器dq23trsに出力する。   The adder 301 adds the d-axis voltage command value Vdn0 and the d-axis voltage detection value Vds and outputs the result to the two-phase / three-phase coordinate converter dq23trs. Similarly, the adder 302 adds the q-axis voltage command value Vqn0 and the q-axis voltage detection value Vqs and outputs the result to the two-phase / three-phase coordinate converter dq23trs.

前記2相3相座標変換器dq23trsは、前記位相信号Thsと、前記各加算器の結果Vdn、Vqnを入力し、(数3)式および(数4)式に示した変換式により前記変換器の出力する電圧指令値Vun、Vvn、Vwnを演算し、PWM演算器PWMnに出力する。   The two-phase / three-phase coordinate converter dq23trs receives the phase signal Ths and the results Vdn and Vqn of the adders, and converts the converter according to the conversion formulas shown in the formulas (3) and (4). The voltage command values Vun, Vvn, and Vwn output from are calculated and output to the PWM calculator PWMn.

Figure 0004449775
Figure 0004449775

Figure 0004449775
Figure 0004449775

Figure 0004449775
Figure 0004449775

前記PWM演算器PWMnは、入力された電圧指令Vun、Vvn、Vwnからパルス幅変調方式により前記電力変換器CNVを構成するn個の電力半導体素子をオン・オフするゲート信号Pulse_cnvを演算し、前記電力変換器CNVに出力する。   The PWM calculator PWMn calculates a gate signal Pulse_cnv for turning on / off n power semiconductor elements constituting the power converter CNV by a pulse width modulation method from input voltage commands Vun, Vvn, Vwn, and Output to the power converter CNV.

次に、電力変換器INVの制御について説明する。発電機の回転数および位置を示す位相信号PLrは、回転位相検出器ROTDETに入力される。回転位相検出器ROTDETは、位相信号のパルスPLrを計数して位相信号に換算するとともに、位相信号を一回転に一回のパルス(例えばABZ方式のエンコーダではZ相パルス)で0にリセットし、オーバーフローしない0から360度の位相信号RTHを加算器303に出力する。   Next, control of the power converter INV will be described. A phase signal PLr indicating the rotational speed and position of the generator is input to the rotational phase detector ROTETET. The rotational phase detector ROTDET counts the phase signal pulse PLr and converts it to a phase signal, and resets the phase signal to 0 with one pulse per rotation (for example, a Z-phase pulse in an ABZ encoder) A phase signal RTH of 0 to 360 degrees that does not overflow is output to the adder 303.

位相信号RTHと同期制御器SYNCの出力位相信号LTHは加算器303で加算されて位相信号THとなり、位相信号THは前記位相信号THsとともに励磁位相演算器SLDETに入力される。   The phase signal RTH and the output phase signal LTH of the synchronous controller SYNC are added by the adder 303 to become the phase signal TH, and the phase signal TH is input to the excitation phase calculator SLDET together with the phase signal THs.

前記励磁位相演算器SLDETは、前記位相信号THとTHsを減算(THr=THs−TH)し、さらに発電機の極対数倍して発電機の回転子の電気角周波数の位相信号THrを出力する。   The excitation phase calculator SLDET subtracts the phase signals TH and THs (THr = THs−TH), further multiplies the number of pole pairs of the generator, and outputs a phase signal THr of the electrical angular frequency of the generator rotor. .

電力演算器PQCALは、システム電流Isを前記(数1)式に示した変換式により検出した系統電圧のU相ベクトルと同じ向きであるd軸電流Idsと、系統電圧のU相ベクトルと直行するq軸電流Iqsと、前記d軸電圧検出値Vdsと、q軸電圧検出値Vqsとを入力し、(数5)式により、システムの有効電力Psと無効電力Qsを演算する。   The power calculator PQCAL orthogonally intersects the d-axis current Ids that is in the same direction as the U-phase vector of the system voltage detected by the conversion formula shown in the equation (1) with the system current Is and the U-phase vector of the system voltage. The q-axis current Iqs, the d-axis voltage detection value Vds, and the q-axis voltage detection value Vqs are input, and the active power Ps and the reactive power Qs of the system are calculated according to the equation (5).

Figure 0004449775
Figure 0004449775

有効電力調整器APRは、有効電力Psと風力発電装置の出力電力指令Prefを入力し、前記電力指令値Prefと前記電力検出値Psの偏差を零にするように出力のトルク電流指令値Iq0を出力する。   The active power adjuster APR receives the active power Ps and the output power command Pref of the wind turbine generator, and sets the output torque current command value Iq0 so that the deviation between the power command value Pref and the detected power value Ps is zero. Output.

また、無効電力調整器AQRは、無効電力Qsと風力発電装置の出力電力指令Qrefを入力し、前記電力指令値Qrefと前記電力検出値Qsの偏差を零にするように出力の励磁電流指令値Id0を出力する。ここで前記電力調整器APR、無効電力調整器AQRは例えば比例積分器により構成できる。   The reactive power adjuster AQR receives the reactive power Qs and the output power command Qref of the wind turbine generator, and outputs an exciting current command value so that the deviation between the power command value Qref and the detected power value Qs becomes zero. Id0 is output. Here, the power regulator APR and the reactive power regulator AQR can be constituted by, for example, a proportional integrator.

前記電力調整器APR、無効電力調整器AQRの各出力の電流指令値であるトルク電流指令値Iq0および励磁電流指令値Id0は切り換え器SWに入力される。   A torque current command value Iq0 and an excitation current command value Id0, which are current command values of the outputs of the power regulator APR and reactive power regulator AQR, are input to the switch SW.

切り換え器SWは前記有効電力調整器APRおよび無効電力調整器AQRの出力を使用するか、または、トルク電流指令値Iq0に零を、励磁電流指令値Id0に電圧調整器の出力を使用するかを決定する。ここで、切り換え器SWは電磁接触器CTT1が投入される前、すなわち発電機固定子電圧を系統電圧に同期させる電圧同期運転時には、トルク電流指令値Iq0に零、励磁電流指令値Id0に電圧調整器の出力を使用し、電磁接触器CTT1を投入してからは有効電力調整器APRおよび無効電力調整器AQRの出力を使用することを選択する。   Whether the switch SW uses the outputs of the active power regulator APR and the reactive power regulator AQR, or uses zero for the torque current command value Iq0 and the output of the voltage regulator for the excitation current command value Id0. decide. Here, the switch SW adjusts the voltage to the torque current command value Iq0 to zero and the voltage to the excitation current command value Id0 before the electromagnetic contactor CTT1 is turned on, that is, during voltage synchronous operation in which the generator stator voltage is synchronized with the system voltage. The output of the active power adjuster APR and the reactive power adjuster AQR are selected to be used after the electromagnetic contactor CTT1 is turned on.

ここで、電圧調整器AVRについて説明する。電圧調整器AVRは、発電機固定子電圧Vgの振幅値Vgpkをフィードバック値とし、系統電圧Vsの振幅値にフィルタを掛けた値Vsrefを指令値として入力し、発電機固定子電圧Vgの振幅値と前記指令値の偏差を零にする出力の励磁電流指令値Id1を前記切り換え器SWに出力する。ここで電圧調整器AVRは例えば比例積分制御器により構成できる。この電圧調整器AVRは、電磁接触器CTT1が開状態で動作させ、系統電圧の振幅値に発電機Genの固定子電圧の振幅値を一致させるため、電力変換器INVから発電機Genの二次側に流す励磁電流指令値を演算する働きをもつ。   Here, the voltage regulator AVR will be described. The voltage regulator AVR inputs a value Vsref obtained by filtering the amplitude value Vgpk of the generator stator voltage Vg as a feedback value and a filter applied to the amplitude value of the system voltage Vs, and the amplitude value of the generator stator voltage Vg. The excitation current command value Id1 is output to the switch SW so that the deviation of the command value becomes zero. Here, the voltage regulator AVR can be constituted by, for example, a proportional integration controller. This voltage regulator AVR is operated with the magnetic contactor CTT1 in an open state, so that the amplitude value of the stator voltage of the generator Gen matches the amplitude value of the system voltage. It has a function to calculate the excitation current command value that flows to the side.

3相2相座標変換器32dqtrsは入力された電流Irおよびロータの位相THrから(数6)式に示した変換式を用いて、d軸電流検出値Idr(励磁電流成分)とq軸電流検出値Iqr(トルク電流成分)を演算し、d軸電流検出値Idrを電流調整器4−ACRに、q軸電流検出値Iqrを電流調整器3−ACRに出力する。   The three-phase two-phase coordinate converter 32dqtrs detects the d-axis current detection value Idr (excitation current component) and the q-axis current detection from the input current Ir and the phase THr of the rotor using the conversion equation shown in the equation (6). The value Iqr (torque current component) is calculated, and the d-axis current detection value Idr is output to the current regulator 4-ACR, and the q-axis current detection value Iqr is output to the current regulator 3-ACR.

Figure 0004449775
Figure 0004449775

前記電流調整器4−ACRは、前記d軸電流指令値Id1またはId0と前記d軸電流検出値Idrの偏差を零にするように出力のd軸電圧指令値Vdrを調整する。同様に、前記電流調整器3−ACRは、前記q軸電流指令値Iq1またはIq0と前記q軸電流検出値Iqrの偏差を零にするように出力のq軸電圧指令値Vqrを調整する。ここで前記電流調整器は例えば比例積分器により構成できる。   The current regulator 4-ACR adjusts the output d-axis voltage command value Vdr so that the deviation between the d-axis current command value Id1 or Id0 and the d-axis current detection value Idr is zero. Similarly, the current regulator 3-ACR adjusts the output q-axis voltage command value Vqr so that the deviation between the q-axis current command value Iq1 or Iq0 and the q-axis current detection value Iqr becomes zero. Here, the current regulator can be constituted by a proportional integrator, for example.

前記d軸電圧指令値Vdrと前記q軸電圧検出値Vqrは2相3相座標変換器dq23trsに入力され、前記2相3相座標変換器dq23trsは、前記位相信号THrと、前記各入力値から、(数7)式および(数8)式に示した変換式により前記変換器dq23trsの出力する電圧指令値Vur、Vvr、Vwrを演算し、PWM演算器PWMrに出力する。   The d-axis voltage command value Vdr and the q-axis voltage detection value Vqr are input to a two-phase / three-phase coordinate converter dq23trs, and the two-phase / three-phase coordinate converter dq23trs receives the phase signal THr and the input values. The voltage command values Vur, Vvr, and Vwr output from the converter dq23trs are calculated by the conversion formulas shown in (Expression 7) and (Expression 8), and output to the PWM calculator PWMr.

Figure 0004449775
Figure 0004449775

Figure 0004449775
Figure 0004449775

前記PWM演算器PWMrは、入力された電圧指令Vur、Vvr、Vwrからパルス幅変調方式により前記電力変換器INVを構成するm個の半導体素子をオン・オフするゲート信号Pulse_invを演算し、前記電力変換器INVに出力する。   The PWM calculator PWMr calculates a gate signal Pulse_inv for turning on / off m semiconductor elements constituting the power converter INV by a pulse width modulation method from input voltage commands Vur, Vvr, Vwr, and the power Output to converter INV.

同期制御器SYNCは、二つの機能を持つ。一つは固定子電圧の振幅値を系統電圧の振幅値に合わせるための電圧指令値を演算する機能、二つ目は系統に接続する前の固定子電圧の位相を系統電圧の位相に合わせるための位相補正値LTHを演算する機能である。   The synchronous controller SYNC has two functions. One is a function to calculate the voltage command value for adjusting the amplitude value of the stator voltage to the amplitude value of the system voltage, and the second is to match the phase of the stator voltage before connection to the system to the phase of the system voltage. This is a function for calculating the phase correction value LTH.

まず、一つ目の機能である振幅同期について説明する。電圧振幅を同期させるために、前記VαとVβの2乗和の平方根から系統電圧の振幅値Vspkを演算し、演算した振幅値に一次遅れフィルタなどでリップル分を除いて前記電圧調整器の電圧指令値Vsrefとして用いる。同様に、固定子電圧Vgpkもα成分とβ成分から求まり、前記電圧調整器のフィードバック値Vgpkに用いるとともに、振幅同期判定にも使用する。振幅同期判定は、前記電圧指令値Vsrefと電圧振幅Vgpkを比較し、差がある所定以内にあるときに振幅が同期したと判定する。   First, amplitude synchronization, which is the first function, will be described. In order to synchronize the voltage amplitude, an amplitude value Vspk of the system voltage is calculated from the square root of the square sum of Vα and Vβ, and a ripple is removed from the calculated amplitude value by a first-order lag filter or the like. Used as the command value Vsref. Similarly, the stator voltage Vgpk is also obtained from the α component and the β component, and is used for the feedback value Vgpk of the voltage regulator and for the amplitude synchronization determination. In the amplitude synchronization determination, the voltage command value Vsref and the voltage amplitude Vgpk are compared, and it is determined that the amplitude is synchronized when the difference is within a predetermined range.

次に、二つ目の機能である位相同期について説明する。位相同期機能は、前記系統電圧の位相と固定子電圧の位相を一致させるため、その位相差を計算する。この位相差をそのまま位相補正値LTHとして出力すると発電機の固定子電圧の位相が急激に変化するので、位相差にリミッタ付き積分器を入れ、積分器の出力を位相補正値LTHとして出力する。位相補正値LTHは回転位相RTHに加減算され回転位相THが求まる。   Next, the second function, phase synchronization, will be described. The phase synchronization function calculates the phase difference in order to match the phase of the system voltage and the phase of the stator voltage. If this phase difference is output as it is as the phase correction value LTH, the phase of the stator voltage of the generator changes abruptly. Therefore, an integrator with a limiter is inserted into the phase difference, and the output of the integrator is output as the phase correction value LTH. The phase correction value LTH is added to or subtracted from the rotational phase RTH to obtain the rotational phase TH.

ここで、前記励磁位相THrは、前述したように系統電圧位相THsから回転位相THを減じて求められ、いわゆるすべり周波数と呼ばれる。従って、電力変換器INVが位相信号THrの位相で励磁すると、固定子角周波数ω1は、系統電圧の角周波数ω0に一致し(ω0=ω1)、位相も位相補正値LTHにより一致する。   Here, the excitation phase THr is obtained by subtracting the rotation phase TH from the system voltage phase THs as described above, and is called a so-called slip frequency. Therefore, when the power converter INV is excited with the phase of the phase signal THr, the stator angular frequency ω1 matches the angular frequency ω0 of the system voltage (ω0 = ω1), and the phase also matches the phase correction value LTH.

同期制御器SYNCは、前記電圧と位相が一致したとき、システム制御器SYSに同期信号SYNを送る。このシステム制御器SYSは、同期信号SYNを受け取ると、切り換え器SWおよび電磁接触器CTT1を動作させる信号Sg0、Sg1を出力する。位相差がおおむね一致して同期判定フラグSYNが出力されると、システム制御器SYSは制御切り換え信号Sg0を切り換え器SWに送るとともに、電磁接触器CTT1に閉指令を出力する。   The synchronization controller SYNC sends a synchronization signal SYN to the system controller SYS when the phase matches the voltage. When the system controller SYS receives the synchronization signal SYN, the system controller SYS outputs signals Sg0 and Sg1 for operating the switch SW and the magnetic contactor CTT1. When the phase differences are substantially coincident and the synchronization determination flag SYN is output, the system controller SYS sends a control switching signal Sg0 to the switch SW and outputs a close command to the electromagnetic contactor CTT1.

次に系統擾乱が発生した時の前記整流装置RECに関して説明する。系統電圧が低下したとき、誘起電圧と系統電圧の電圧差ΔVにより電流がΔI増加する。このとき、二次励磁発電機の巻数比をaとすると、二次巻線にはΔI/aの電流が増加する。このΔI/aの電流が大きいとき、二次巻線には過大な電流が流れることになる。   Next, the rectifier REC when a system disturbance occurs will be described. When the system voltage decreases, the current increases by ΔI due to the voltage difference ΔV between the induced voltage and the system voltage. At this time, if the turn ratio of the secondary excitation generator is a, the current of ΔI / a increases in the secondary winding. When the current of ΔI / a is large, an excessive current flows through the secondary winding.

二次側には、電力変換器と整流装置RECとがそれぞれリアクトルLr、Lxを介して接続されているので、Lrに流れる電流Icと、Lxに流れる電流Ixは、(数9)式と(数10)式とで表され、リアクトルLr、LxのインピーダンスZLr、ZLxの比で分流される。この時の擾乱による過大な電流は、一次側(固定子)に流れる事故電流の直流成分と逆相成分に起因し、巻線側には交流電流となって現れることから、リアクトルLr、Lxによって、二次側の電力変換器と整流装置RECのインピーダンスを相違させることができる。ここで、整流装置側のリアクトルLxのインピーダンスZLxを電力変換器側のリアクトルLrのインピーダンスZLrと同じかこれより小さくすると過電流の保護に効果的である。整流装置REC側に分流する電流が、好ましくは、発電機Genの定格出力電流から電力変換器の出力電流を差し引いた値より大きく、定格出力電流の85%以下、より好ましくは50%以下になるように、整流装置側のリアクトルLxのインピーダンスZLxと電力変換器側のリアクトルLrのインピーダンスZLrの比を設定する。   Since the power converter and the rectifier REC are connected to the secondary side via the reactors Lr and Lx, respectively, the current Ic flowing through Lr and the current Ix flowing through Lx are expressed by the following equation (9): (10) is divided by the ratio of the impedances ZLr and ZLx of the reactors Lr and Lx. The excessive current due to the disturbance at this time is caused by the DC component and the negative phase component of the accident current flowing on the primary side (stator), and appears as an AC current on the winding side. Therefore, the reactors Lr and Lx The impedances of the secondary power converter and the rectifier REC can be made different. Here, if the impedance ZLx of the reactor Lx on the rectifier side is the same as or smaller than the impedance ZLr of the reactor Lr on the power converter side, it is effective in protecting overcurrent. The current shunted to the rectifier REC side is preferably larger than the value obtained by subtracting the output current of the power converter from the rated output current of the generator Gen, and is 85% or less, more preferably 50% or less of the rated output current. Thus, the ratio of the impedance ZLx of the reactor Lx on the rectifier side and the impedance ZLr of the reactor Lr on the power converter side is set.

Figure 0004449775
Figure 0004449775

Figure 0004449775
Figure 0004449775

このように分流された電流は、直流部分の平滑コンデンサCdとコンデンサCxとを充電し、直流電圧を上昇させる。直流電圧が上昇すると整流器や電力変換器を構成する素子やコンデンサが絶縁破壊を起こすので、直流電圧が所定値、例えば通常時の110%、を超えた際にエネルギー消費装置LODを動作させる。   The current thus shunted charges the smoothing capacitor Cd and the capacitor Cx in the DC portion, and increases the DC voltage. When the DC voltage rises, the elements and capacitors constituting the rectifier and the power converter cause dielectric breakdown, so that the energy consuming apparatus LOD is operated when the DC voltage exceeds a predetermined value, for example, 110% of the normal time.

エネルギー消費装置LODを動作させて直流電圧を所定値以下に制御するため、第二の直流電圧指令値Eref_0Vと検出値Edcの偏差を、減算器304で検出する。偏差が負、すなわち直流電圧が指令値よりも大きい時に偏差を出力し、偏差が正、すなわち直流電圧が指令値よりも小さい時に出力を零にするリミッタLIMを用いて、直流電圧調整器DCAVR2の入力とする。   In order to operate the energy consuming apparatus LOD to control the DC voltage to be equal to or lower than a predetermined value, the subtractor 304 detects the deviation between the second DC voltage command value Eref_0V and the detected value Edc. When the deviation is negative, that is, when the DC voltage is larger than the command value, the deviation is output, and when the deviation is positive, that is, when the DC voltage is smaller than the command value, the limiter LIM that makes the output zero is used. As input.

前記直流電圧調整器DCAVR2は、直流電圧が指令値よりも大きい時のみ前記エネルギー消費装置LODを動作させるべく、スイッチング素子をオンオフするための指令値DUTYを演算し、前記指令値により前記スイッチング素子をオンオフするためのパルス指令値Pulse_LODを前記エネルギー消費装置LODに出力する。   The DC voltage regulator DCAVR2 calculates a command value DUTY for turning on / off the switching element so that the energy consuming device LOD is operated only when the DC voltage is larger than the command value, and the switching element is turned on by the command value. A pulse command value Pulse_LOD for turning on / off is output to the energy consuming apparatus LOD.

前記エネルギー消費装置LODは、例えば、電力半導体スイッチング素子と直列に抵抗器Rを接続して構成し、スイッチング素子がオンの間、直流電圧の電力を抵抗Rで消費するように動作する。このようにエネルギー消費装置LODを動作させることで、直流電圧は所定値以下に保たれることになる。   The energy consuming apparatus LOD is configured by connecting a resistor R in series with a power semiconductor switching element, for example, and operates so that the power of the DC voltage is consumed by the resistor R while the switching element is on. By operating the energy consuming apparatus LOD in this way, the DC voltage is kept below a predetermined value.

また、整流装置RECとエネルギー消費装置LODとを電力変換器側に並列に設置する構成とし、電力変換器の直流出力部分、例えば平滑コンデンサCdに整流装置RECの直流部分を接続する端子を配置することで、単数あるいは複数の、整流装置RECとエネルギー消費装置LODとを必要な容量だけ配置できる。この場合、低いインピーダンスで直流部分に接続するためには、バスバーを用いて接続するとよい。   Further, the rectifier REC and the energy consuming device LOD are installed in parallel on the power converter side, and a terminal for connecting the DC portion of the rectifier REC to the DC output portion of the power converter, for example, the smoothing capacitor Cd is arranged. Thus, one or a plurality of rectifiers REC and energy consuming devices LOD can be arranged in a necessary capacity. In this case, in order to connect to the direct current portion with low impedance, it is preferable to connect using a bus bar.

以上のように、本実施例ではリアクトルLxの値を変えて回転子に整流装置を接続し、整流装置RECの直流部分を電力変換装置の直流部分に接続したので、回転子に発生する過電流の大部分を整流装置側に流すことができ、電力変換装置側に流れ込む電流を小さくできる。従って、電力変換器の電流容量を小さくする効果がある。また、本実施例では電力変換器の過電流を抑制できるので、電力変換器のゲート信号を停止させる必要がなく、電力変換器の運転を継続できる。   As described above, in this embodiment, the value of the reactor Lx is changed and the rectifier is connected to the rotor, and the direct current portion of the rectifier REC is connected to the direct current portion of the power converter, so that the overcurrent generated in the rotor Most of the current can flow to the rectifier side, and the current flowing into the power converter side can be reduced. Therefore, there is an effect of reducing the current capacity of the power converter. Moreover, since the overcurrent of a power converter can be suppressed in a present Example, it is not necessary to stop the gate signal of a power converter, and the driving | operation of a power converter can be continued.

また、本実施例では、整流装置の直流側にエネルギー消費装置LODを設置し、過電流による直流電圧の上昇時に動作させるので、直流電圧の過電圧から機器を保護できる。また、整流装置RECを並列に設置する構成としたので、系統事故時の過電流発生時に運転継続を望まれるシステムや、運転後の電力出力を早く行うことを望まれるシステムには別置きで増設により対応でき、必要ない場合は設置しないなどの構成に柔軟に対応できる。   Further, in this embodiment, the energy consuming device LOD is installed on the direct current side of the rectifier, and is operated when the direct current voltage rises due to overcurrent, so that the device can be protected from the overvoltage of the direct current voltage. In addition, since the rectifier REC is installed in parallel, it is installed separately for systems that want to continue operation when an overcurrent occurs in a system fault or systems that want to quickly output power after operation. It can respond flexibly to configurations such as not installing it when it is not necessary.

実施例1の発電装置の回路構成の説明図である。It is explanatory drawing of the circuit structure of the electric power generating apparatus of Example 1. FIG. 実施例1の発電装置の制御装置の制御ブロック図である。It is a control block diagram of the control apparatus of the electric power generating apparatus of Example 1. FIG.

符号の説明Explanation of symbols

101…風車、102…エンコーダ、201…積分器、Gen…二次励磁発電機、CTT1、CTT2…電磁接触器、INV、CNV…電力変換器、REC…整流装置、LOD…エネルギー消費装置、BR…遮断器、CTRL…制御装置。

DESCRIPTION OF SYMBOLS 101 ... Windmill, 102 ... Encoder, 201 ... Integrator, Gen ... Secondary excitation generator, CTT1, CTT2 ... Electromagnetic contactor, INV, CNV ... Power converter, REC ... Rectifier, LOD ... Energy consumption device, BR ... Circuit breaker, CTRL ... Control device.

Claims (12)

固定子側を電力系統に接続した二次励磁発電機の二次巻線を交流励磁する交流励磁用電力変換器と、該交流励磁用電力変換器の制御装置とを備えた二次励磁用電力変換装置において、
前記交流励磁用電力変換器が、励磁用の第1の電力変換器と連系用の第2の電力変換器とを備え、該第1の電力変換器の直流側と第2の電力変換器の直流側とが接続し、
前記第1の電力変換器の交流側が第1のインピーダンスを介して前記二次励磁発電機の二次巻線に接続しており、
前記第1の電力変換器と第2の電力変換器の直流接続部分に直流側を並列に接続し、前記二次励磁発電機の二次巻線に第2のインピーダンスを介して交流側が接続した整流装置を備えたことを特徴とする二次励磁用電力変換装置。
Secondary excitation power comprising an AC excitation power converter for exciting the secondary winding of the secondary excitation generator with the stator side connected to the power system, and a control device for the AC excitation power converter In the conversion device,
The AC excitation power converter includes a first power converter for excitation and a second power converter for interconnection, the DC side of the first power converter and the second power converter. Connected to the DC side of
The AC side of the first power converter is connected to the secondary winding of the secondary excitation generator via a first impedance;
The DC side is connected in parallel to the DC connection portion of the first power converter and the second power converter, and the AC side is connected to the secondary winding of the secondary excitation generator via a second impedance. A power conversion device for secondary excitation, comprising a rectifier.
請求項1に記載の二次励磁用電力変換装置において、前記第1のインピーダンスと第2のインピーダンスとがリアクトルであることを特徴とする二次励磁用電力変換装置。   2. The secondary excitation power converter according to claim 1, wherein the first impedance and the second impedance are reactors. 3. 請求項1に記載の二次励磁用電力変換装置において、前記第1のインピーダンスの値が第2のインピーダンスより大きいことを特徴とする二次励磁用電力変換装置。   2. The secondary excitation power converter according to claim 1, wherein the value of the first impedance is larger than the second impedance. 3. 請求項1に記載の二次励磁用電力変換装置において、前記整流装置がダイオード整流装置であることを特徴とする二次励磁用電力変換装置。   2. The secondary excitation power converter according to claim 1, wherein the rectifier is a diode rectifier. 3. 請求項1に記載の二次励磁用電力変換装置において、前記整流装置の直流側にエネルギー消費手段を接続したことを特徴とする二次励磁用電力変換装置。   2. The secondary excitation power converter according to claim 1, wherein an energy consuming means is connected to the DC side of the rectifier. 請求項5に記載の二次励磁用電力変換装置において、
前記制御装置が、前記エネルギー消費手段を用いて前記整流装置の直流側電圧を所定値以下に制御することを特徴とする二次励磁用電力変換装置。
In the secondary excitation power converter according to claim 5,
The said control apparatus controls the direct current | flow side voltage of the said rectifier to below predetermined value using the said energy consumption means, The power conversion apparatus for secondary excitation characterized by the above-mentioned.
請求項1に記載の二次励磁用電力変換装置において、
前記交流励磁用電力変換器が、前記二次励磁発電機の二次巻線に前記第2のインピーダンスを介してダイオード整流器の交流側を接続する端子と、前記第1の電力変換器の直流側と第2の電力変換器の直流側を接続した直流部分に前記ダイオード整流器の直流側を接続する端子とを備えることを特徴とする電力変換装置。
In the secondary excitation power converter according to claim 1,
The AC excitation power converter includes a terminal for connecting the AC side of the diode rectifier to the secondary winding of the secondary excitation generator via the second impedance, and the DC side of the first power converter. And a terminal for connecting the DC side of the diode rectifier to a DC portion where the DC side of the second power converter is connected.
固定子側を電力系統に接続した二次励磁発電機と、該二次励磁発電機の二次巻線を交流励磁する交流励磁用電力変換器と、該交流励磁用電力変換器の制御装置とを備えた二次励磁発電装置において、
前記交流励磁用電力変換器が、励磁用の第1の電力変換器と連系用の第2の電力変換器とを備え、該第1の電力変換器の直流側と第2の電力変換器の直流側とが接続し、
前記第1の電力変換器の交流側が第1のリアクトルを介して前記二次励磁発電機の二次巻線に接続しており、
前記第1の電力変換器と第2の電力変換器の直流接続部分に直流側を並列に接続し、前記二次励磁発電機の二次巻線に第2のリアクトルを介して交流側が接続した整流装置を備え、
前記第1のリアクトルのインピーダンスが、前記第2のリアクトルのインピーダンスより大きいことを特徴とする二次励磁発電装置。
A secondary excitation generator having a stator side connected to the power system, an AC excitation power converter for exciting the secondary winding of the secondary excitation generator, and a control device for the AC excitation power converter; In the secondary excitation power generator with
The AC excitation power converter includes a first power converter for excitation and a second power converter for interconnection, the DC side of the first power converter and the second power converter. Connected to the DC side of
The AC side of the first power converter is connected to the secondary winding of the secondary excitation generator via a first reactor,
The direct current side is connected in parallel to the direct current connection portion of the first power converter and the second power converter, and the alternating current side is connected to the secondary winding of the secondary excitation generator via a second reactor. With a rectifier,
The secondary excitation power generator characterized by the impedance of said 1st reactor being larger than the impedance of said 2nd reactor.
請求項8に記載の二次励磁発電装置において、前記整流装置がダイオード整流器であることを特徴とする二次励磁発電装置。   The secondary excitation power generator according to claim 8, wherein the rectifier is a diode rectifier. 請求項9に記載の二次励磁発電装置において、
前記交流励磁用電力変換器が、前記二次励磁発電機の二次巻線に前記第2のリアクトルを介してダイオード整流器の交流側を接続する端子と、前記第1の電力変換器の直流側と第2の電力変換器の直流側を接続した直流部分に前記ダイオード整流器の直流側を接続する端子とを備えることを特徴とする二次励磁発電装置。
In the secondary excitation power generator according to claim 9,
The AC excitation power converter includes a terminal for connecting the AC side of the diode rectifier to the secondary winding of the secondary excitation generator via the second reactor, and the DC side of the first power converter. And a terminal for connecting the direct current side of the diode rectifier to a direct current portion connecting the direct current side of the second power converter.
請求項8に記載の二次励磁発電装置において、前記整流装置の直流側に半導体スイッチング素子と抵抗とを備えたエネルギー消費手段を接続したことを特徴とする二次励磁発電装置。   9. The secondary excitation power generator according to claim 8, wherein an energy consuming means including a semiconductor switching element and a resistor is connected to the DC side of the rectifier. 風車によって駆動される回転子と電力系統に接続した固定子とを備える二次励磁発電機と、該二次励磁発電機の二次巻線を交流励磁する交流励磁用電力変換器と、該交流励磁用電力変換器の制御装置とを備えた二次励磁風力発電装置において、
前記交流励磁用電力変換器が、励磁用の第1の電力変換器と連系用の第2の電力変換器とを備え、該第1の電力変換器の直流側と第2の電力変換器の直流側とが接続し、
前記第1の電力変換器の交流側が第1のリアクトルを介して前記二次励磁発電機の二次巻線に接続しており、
前記第1の電力変換器と第2の電力変換器の直流接続部分に直流側を並列に接続し、前記二次励磁発電機の二次巻線に第2のリアクトルを介して交流側が接続した整流装置を備え、
該整流装置の直流側に半導体スイッチング素子と抵抗とを備えたエネルギー消費手段を接続し、
前記第1のリアクトルのインピーダンスが、前記第2のリアクトルのインピーダンスより大きいことを特徴とする二次励磁風力発電装置。
A secondary excitation generator comprising a rotor driven by a windmill and a stator connected to the power system, an AC excitation power converter for AC excitation of the secondary winding of the secondary excitation generator, and the AC In the secondary excitation wind power generator equipped with a control device for the excitation power converter,
The AC excitation power converter includes a first power converter for excitation and a second power converter for interconnection, the DC side of the first power converter and the second power converter. Connected to the DC side of
The AC side of the first power converter is connected to the secondary winding of the secondary excitation generator via a first reactor,
The direct current side is connected in parallel to the direct current connection portion of the first power converter and the second power converter, and the alternating current side is connected to the secondary winding of the secondary excitation generator via a second reactor. With a rectifier,
Connecting an energy consuming means comprising a semiconductor switching element and a resistor to the DC side of the rectifier;
The secondary excitation wind power generator characterized by the impedance of said 1st reactor being larger than the impedance of said 2nd reactor.
JP2005039941A 2005-02-17 2005-02-17 Secondary excitation power converter Expired - Fee Related JP4449775B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005039941A JP4449775B2 (en) 2005-02-17 2005-02-17 Secondary excitation power converter
ES200600015A ES2310432B2 (en) 2005-02-17 2006-01-04 CONVERSION DEVICE FOR GENERATOR DOUBLE POWERED.
CNB2006100058116A CN100463356C (en) 2005-02-17 2006-01-10 Power conversion device for secondary excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039941A JP4449775B2 (en) 2005-02-17 2005-02-17 Secondary excitation power converter

Publications (2)

Publication Number Publication Date
JP2006230085A JP2006230085A (en) 2006-08-31
JP4449775B2 true JP4449775B2 (en) 2010-04-14

Family

ID=36923602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039941A Expired - Fee Related JP4449775B2 (en) 2005-02-17 2005-02-17 Secondary excitation power converter

Country Status (3)

Country Link
JP (1) JP4449775B2 (en)
CN (1) CN100463356C (en)
ES (1) ES2310432B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736871B2 (en) * 2006-03-10 2011-07-27 株式会社日立製作所 Power converter for secondary excitation power generation system
JP5198791B2 (en) * 2007-05-07 2013-05-15 株式会社日立製作所 Wind power generation system, control method therefor, and wind power plant using the same
JP4501958B2 (en) 2007-05-09 2010-07-14 株式会社日立製作所 Wind power generation system and control method thereof
JP2008301584A (en) 2007-05-30 2008-12-11 Hitachi Ltd Wind turbine generator system and control method for power converter
JP2008306776A (en) 2007-06-05 2008-12-18 Hitachi Ltd Wind power generation system and control method thereof
JP4834691B2 (en) * 2008-05-09 2011-12-14 株式会社日立製作所 Wind power generation system
JP2010136515A (en) * 2008-12-04 2010-06-17 Hitachi Ltd Wind turbine generator system
WO2010082317A1 (en) 2009-01-14 2010-07-22 東芝三菱電機産業システム株式会社 Protection circuit used in wind power generation system including double-fed induction generator
JP2013081347A (en) * 2011-10-04 2013-05-02 Fujita Yasohito Generator of electromagnetic induction application type and electrostatic induction application type

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
JP3788925B2 (en) * 2001-10-16 2006-06-21 株式会社日立製作所 Wind power generator using permanent magnet type synchronous generator and its starting method
JP3974373B2 (en) * 2001-10-25 2007-09-12 株式会社日立製作所 Wind power generator and wind power generation method
WO2003065567A1 (en) * 2002-01-29 2003-08-07 Vestas Wind Systems A/S Circuit to be used in a wind power plant
US7411309B2 (en) * 2003-05-02 2008-08-12 Xantrex Technology Inc. Control system for doubly fed induction generator

Also Published As

Publication number Publication date
ES2310432B2 (en) 2010-07-05
CN1822491A (en) 2006-08-23
ES2310432A1 (en) 2009-01-01
CN100463356C (en) 2009-02-18
JP2006230085A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4736871B2 (en) Power converter for secondary excitation power generation system
JP4269941B2 (en) Wind power generator and control method thereof
US7952214B2 (en) Wind power generation system and method of controlling power converter
JP4449775B2 (en) Secondary excitation power converter
JP4845904B2 (en) Wind power generation system
JP4561518B2 (en) A power generation apparatus using an AC excitation synchronous generator and a control method thereof.
US8350397B2 (en) Current source converter-based wind energy system
US8129851B2 (en) Wind power generation system and control method thereof
JP4834691B2 (en) Wind power generation system
US7569944B2 (en) Wind power generation system and operating method thereof
JP5486949B2 (en) Wind power generation system
JP5470091B2 (en) Wind power generation system and control method thereof
US20080001411A1 (en) Variable speed wind power generation system
JP4899800B2 (en) Wind turbine generator, wind turbine generator system and power system controller
JP5429265B2 (en) Wind power generator
JP2010035418A (en) Method for controlling wind power generation system
JP2007089399A (en) Wind power apparatus
JP2012170305A (en) Wind generator system
JP2007236192A (en) Wind turbine generator system and its control method
EP3267576B1 (en) Controller and generator-motor starting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees