JP3788925B2 - Wind power generator using permanent magnet type synchronous generator and its starting method - Google Patents

Wind power generator using permanent magnet type synchronous generator and its starting method Download PDF

Info

Publication number
JP3788925B2
JP3788925B2 JP2001317928A JP2001317928A JP3788925B2 JP 3788925 B2 JP3788925 B2 JP 3788925B2 JP 2001317928 A JP2001317928 A JP 2001317928A JP 2001317928 A JP2001317928 A JP 2001317928A JP 3788925 B2 JP3788925 B2 JP 3788925B2
Authority
JP
Japan
Prior art keywords
generator
speed
converter
estimator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001317928A
Other languages
Japanese (ja)
Other versions
JP2003134890A (en
Inventor
輝 菊池
基生 二見
康之 杉浦
直志 菅原
晃一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001317928A priority Critical patent/JP3788925B2/en
Publication of JP2003134890A publication Critical patent/JP2003134890A/en
Application granted granted Critical
Publication of JP3788925B2 publication Critical patent/JP3788925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は永久磁石型同期発電機を用いた風力発電装置とその始動方法の改良に関する。
【0002】
【従来の技術】
風力発電システムでは、例えば特開2000−345952号公報に開示されているように、風のエネルギーによって回転する風車が同期発電機に接続され、風車が同期発電機を駆動することで同期発電機が発電する。同期発電機の出力する交流電力は順変換器(第1の変換器)により直流電力に変換され、さらに逆変換器(第2の変換器)により商用周波数の交流電力に変換され、電力系統に供給される。
【0003】
一方、永久磁石型同期機を可変速駆動するためには、発電機速度センサが必要であり、従来は回転子の絶対位置が検出できるパルスエンコーダやレゾルバなどの回転子位置検出器を用いることが一般的である。一例として、特開2000−205002号公報にレゾルバを用いた電動機の制御システムが記載されている。なお、同期電動機のセンサレスベクトル制御においては、例えば、特開平9−191698号公報や特開2001−178174号公報等に見られるように、端子電圧や電流等の電気量から磁極位置情報を演算することが知られている。
【0004】
【発明が解決しようとする課題】
風力発電においても、コスト低減、省スペースの要求から発電機速度センサを用いない可変速駆動制御方式とすることが望ましいが、上記従来技術ではこうした要求に対応することができない。また、風車においては、発電機は風車のタワーの上に位置するナセル内に設置されるために発電機速度センサから制御装置までの距離が長くなることから、発電機速度センサと制御装置を結ぶ信号線にノイズが入りやすく、こうしたノイズ対策も必要となる。
【0005】
本発明は、永久磁石型同期発電機を用いた風力発電装置において、発電機速度センサを用いることなく発電機を可変速駆動することを目的とする。
【0006】
【課題を解決するための手段】
本発明はその一面において、風車の軸に永久磁石型同期発電機の回転子が接続され、この発電機の固定子巻線に第1の変換器が接続された風力発電システムにおいて、同期発電機の端子電圧を検出する端子電圧検出器及び発電機の固定子巻線に流れる電流を検出する電流検出器と、前記第1の変換器の動作中に前記端子電圧検出値及び電流検出値に基づいて発電機の速度を推定する第1の速度推定器と、前記第1の変換器の停止中に前記端子電圧検出値に基づいて発電機の速度を推定する第2の速度推定器を備えることを特徴とする。
【0007】
このように構成することによって、発電機速度センサを用いることなく、風車に接続された同期発電機を可変速駆動することができ、永久磁石型同期発電機を用いた風力発電装置のコスト低減と省スペース化を図ることができる。
【0008】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて説明する。図1は、本発明による永久磁石型同期発電機を用いた風力発電装置の一実施例の全体構成を示す。図1において、永久磁石型同期発電機2の回転子は風車1の軸に接続されており、風車1が風のエネルギーにより回転すると、同期発電機2は風車1の回転速度に応じた可変周波数の交流電力を発生する。同期発電機2の固定子巻線には順変換器(第1の変換器)3が接続されており、同期発電機2の発生する可変周波数の交流電力は順変換器3により直流電力に変換される。順変換器3は直流コンデンサ4を介し、逆変換器(第2の変換器)5に直流で接続されており、逆変換器5は順変換器3から送られる直流電力を固定周波数の交流電力に変換する。逆変換器5は系統連系用変圧器6を介して電力系統に接続されており、固定周波数の交流電力を電力系統に供給する。
【0009】
同期発電機2と順変換器3の間には発電機端子電圧検出器7と発電機電流検出器8が設置されており、発電機端子電圧検出器7は同期発電機2の固定子巻線の端子電圧を検出し、発電機電流検出器8は同期発電機2の固定子巻線に流れる電流を検出する。検出された電圧、電流値は3相/2相変換器9によって有効分と無効分の2軸成分に変換される。
【0010】
第1の発電機速度推定器10は3相/2相変換器9の出力する2軸成分の電圧及び電流信号に基づいて同期発電機2の速度を推定する。発電機速度の推定方法はいくつか提案されており、例えば前述した特開2001−178174号公報には、回転子上に任意に設定されたγ−δ座標系と回転子の磁極上に設定されたd−q座標系とのずれ角を推定して、γ−δ座標系の位置を補正しながらγ−δ座標系上に発生する発電機誘起電圧εγ、εδを推定して、推定した発電機誘起電圧から発電機速度を推定するという方法が示されている。第1の発電機速度推定器10は例えばこのような手法を適用することで構成することができる。
【0011】
速度制御器11の入力は、発電機速度指令と、スイッチ15を介して与えられる発電機の推定速度であり、その出力は順変換器3の電流指令となる。同期発電機2の推定速度が速度指令よりも大きい場合には、速度制御器11は出力する電流指令の有効分を大きくする。この結果、同期発電機2の出力する有効電力が大きくなり、風から風車1へ与えられる機械的入力よりも同期発電機2の出力する有効電力が大きくなり、入力の不足分は風車1のブレードに蓄えられた慣性エネルギーから補われることになるため、発電機速度指令に追従して風車1の回転速度が低下する。逆に、同期発電機2の推定速度が速度指令よりも小さい場合には、速度制御器11は出力する電流指令の有効分を小さくする。この結果、同期発電機2の出力する有効電力が小さくなり、風から風車1へ与えられる機械的入力よりも同期発電機2の出力する有効電力が小さくなり、入力の余剰分は風車1のブレードに慣性エネルギーとして蓄えられることになるため、発電機速度指令に追従して風車1の回転速度が上昇する。
【0012】
電流制御器12への入力は、3相/2相変換器9の出力する2軸成分の電流検出値と速度制御器11の出力する順変換器3への電流指令であり、出力は順変換器3への電圧指令となる。電流制御器12は電流検出値と電流指令の偏差が零になるように順変換器3への電圧指令を決定する。スイッチ16は運転状態によって切り替えるスイッチであり、通常運転時には▲1▼が選択されて、電流制御器12の出力する電圧指令を出力する。スイッチ16の出力する順変換器3への電圧指令は2軸成分の電圧指令であるので、2相/3相変換器13によって3相の電圧指令に変換される。
【0013】
パルス発生器14は、2相/3相変換器13の出力する順変換器3への3相電圧指令に基づいて、PWM(Pulse Width Modulation)により順変換器3へのゲートパルス信号を出力する。順変換器3はゲートパルス信号を受け、IGBT等のスイッチング素子の高速スイッチングにより、順変換器3は指令に応じた交流端子電圧を出力することになる。この結果、風力に余力があれば系統への出力電力を増やし、風力が不足すれば出力電力を減らして、発電機2は、発電機速度指令に追従することになる。
【0014】
電圧速度変換器17は、後述するように、発電機端子電圧検出器7で検出した発電機端子電圧から発電機速度を求める。磁極位置推定器18は、3相2相変換器9の出力する電圧、電流検出値から同期発電機の回転子磁極位置を推定する。同期機の磁極位置推定については、例えば前記特開平9−191698号公報に、回転子上に任意に設定したγ−δ座標系と回転子の磁極上に設定したd−q座標系とのずれ角θeを推定して、そのずれ角を補正することで磁極位置の検出を行うことが開示されている。
【0015】
次に本装置における始動方法について説明する。まず、運転指令として通常始動指令あるいは自己始動指令のいずれかが外部から与えられる。通常始動指令はある程度風が吹いている場合に選択する指令であり、自己始動指令は無風又は微風の場合に選択する指令である。同期発電機2の発電機誘起電圧は発電機速度に比例するために、無風時や微風時には発電機端子電圧検出器7の検出する発電機端子電圧検出値は零又は微小値となる。このような時には発電機速度の推定が困難な場合があり、発電機速度が推定できない場合には、同期発電機2を可変速駆動することができない。そこで、無風時や微風時には同期発電機2を電動機として駆動して、同期発電機2の発電機速度が推定できるところまで速度を上げてから、発電機速度を推定するという方法を採っている。この場合、自己始動指令が与えられ、同期発電機2を電動機として加速駆動してから発電機速度の推定を行い、推定が完了すると通常運転動作に入る。
【0016】
一方、通常始動指令が与えられると、同期発電機2の発電機速度の推定を行い、推定が完了すると通常運転動作に入る。
【0017】
また、自己始動を行う場合の加速駆動は始動時の発電機速度によって2種類の加速駆動方法のいずれかを選択する。一つは始動時の発電機速度が極めて低い場合で、この場合はまず同期発電機2の固定子巻線を一定期間直流励磁する。この直流励磁により同期発電機2の磁極位置を指定した位置に固定し、その後同期発電機2の固定子巻線に掛かる電圧と周波数の比が一定になる交流電圧と周波数で励磁し、時間の経過と伴にこの励磁周波数を上昇させて、同期発電機2をその位置から加速駆動する。
【0018】
もう一つは始動時の発電機速度がある程度高い場合で、この場合は前者のような加速駆動を行うことはできない。この速度範囲で同期発電機2の固定子巻線を直流励磁すると、同期発電機2に急激なブレーキを掛けることになり、風車1のブレード等の損傷を招く恐れがある。そこで、この場合は発電機速度の推定の判定条件を緩くして、推定の精度を若干落とした状態で発電機速度の推定を行う。そして、暫定的に発電機速度の推定を行った状態で同期発電機2を加速駆動する。
【0019】
以下に、自己始動方式について更に詳細に説明する。自己始動には2種類の加速駆動方法があり、いずれを選ぶべきかを判定するために、始動時に発電機速度を求める必要がある。しかし、始動時には発電機速度の推定が困難な訳であり、次のような方法により発電機速度を求める。なお、簡単のために円筒型同期発電機について述べるが、突極型同期発電機についても同様である。同期発電機のd軸同期リアクタンスをXd、固定子巻線抵抗をR、発電機誘起電圧をE、発電機端子電圧をV、発電機電流をIとすると、(1)式が成り立つ。ただし、ここでは発電機誘起電圧E、発電機端子電圧Vは相電圧とする。
【0020】
E=V+(R+jXd)・I………………………………………………(1)
また、発電機誘起電圧定数をKe、発電機速度をωとすると、発電機誘起電圧をEは(2)式で表すことができる。
【0021】
E=Ke・ω…………………………………………………………………(2)
更に、始動時には順変換器3のゲートはブロックされているために発電機電流Iは零であり、この時(1)式、(2)式より(3)式が成り立つ。
【0022】
V=Ke・ω…………………………………………………………………(3)
すなわち、発電機電流が零の場合には発電機端子電圧Vと発電機速度ωは比例することが分かる。つまり、同期発電機2の発電機端子電圧Vを検出すれば発電機速度ωを求めることが可能となる。そこで、始動時には同期発電機2の発電機端子電圧検出値Vから発電機速度ωを求めるために、スイッチ15は▲3▼が選択され、第2の発電機速度推定器(電圧速度変換器)17を用いて発電機速度ωを求める。電圧速度変換器17は、発電機端子電圧検出器7の検出した発電機端子電圧検出値Vに発電機誘起電圧定数Keで決まるゲインを掛けて発電機速度ωを求める。
【0023】
図2は、本発明の一実施例による発電機速度が低い場合の自己始動の動作説明図である。この図を参照しながら、自己始動において始動時の発電機速度が低い場合の動作について説明する。この場合、スイッチ15は▲2▼が、スイッチ16は▲2▼が選択され、同期発電機2の発電機速度は自己始動速度指令から与えられ、順変換器3への電圧指令は自己始動電圧指令から与えられる。次に順変換器3のゲートのブロック解除が行われ、同期発電機2の固定子巻線を直流励磁するモードに入ると、自己始動電圧指令は直流励磁電圧に相当する指令を与え、自己始動速度指令は零を一定期間出力する。そして、回転子を所定の角度位置に固定する直流励磁が終了すると、自己始動電圧指令と自己始動速度指令を一定の比を保ちながら大きくしていき、同期発電機2の固定子巻線に加わる電圧と周波数の比が一定になるような電圧と周波数で励磁して、時間の経過とともに励磁周波数を上昇させて、同期発電機2を同期電動機として加速駆動することができ、この場合には同期機ながら回転子の角度位置は必要ない。なお、同期発電機2は自己始動速度指令に追従するため、自己始動速度指令を発電機速度として用いている。やがて、同期発電機2の速度が上昇し、予め設定した値以上の速度になると、発電機の磁極位置と速度の正確な推定を行うために、順変換器3のゲートをブロックする。更に、スイッチ15は▲3▼が、スイッチ16は▲1▼が選択される。そして、同期発電機2のフリーラン状態で、磁極位置推定器18で同期発電機の磁極位置の推定を行う。このとき同時に第2の速度推定器17により発電機速度の推定を行う。1〜2秒で推定が完了すると順変換器3はゲートのブロック解除を行う。更に、スイッチ15は▲1▼が、スイッチ16は▲1▼が選択され、通常運転での加速動作に入る。この通常運転中は、第1の速度推定器10による速度の推定と、磁極位置推定器18による磁極位置の推定を常に行いながら運転する。
【0024】
図3は、本発明の一実施例による発電機速度がある程度高い場合の自己始動の動作説明図である。この図を参照しながら、自己始動において始動時の発電機速度がある程度高い場合の動作について説明する。この場合、スイッチ15は▲3▼が、スイッチ16は▲1▼が選択される。そして、発電機磁極位置の推定の判定条件を緩くし、推定の精度を若干落とした状態で磁極位置の推定を行う。例えば、前述特開平9−191698号公報における磁極位置の推定手法で、ずれ角θeの許容値を比較的大きなθ1に選ぶことで、比較的に粗い磁極位置の推定を行う。同時に、第2の発電機速度推定器による速度の推定を行う。これらは判定条件がクリアされるまで続けられる。そして、発電機速度と磁極位置の推定が暫定的に完了すると、順変換器3のゲートのブロック解除を行う。更に、スイッチ15は▲1▼が、スイッチ16は▲1▼が選択され、比較的粗い磁極位置の推定のままで暫定的に通常運転動作に入る。そして、発電機速度指令を徐々に大きくしていくことで、同期発電機2を加速駆動する。やがて、同期発電機2の速度が上昇し、予め設定した値以上の速度になると、発電機の磁極位置と速度の正確な推定を行うために、順変換器3のゲートをブロックする。更に、スイッチ15は▲3▼が、スイッチ16は▲1▼が選択される。そして、同期発電機2のフリーラン状態で磁極位置推定器18で同期発電機の磁極位置の推定を行う。このときの磁極位置の推定の判定条件は厳しくし、推定の精度を上げた状態で磁極位置の推定を行う。例えば、前述特開平9−191698号公報の磁極位置推定において、ずれ角θeの許容値を比較的小さなθ2(θ2<θ1)に選ぶことで、比較的緻密な磁極位置の推定を行う。同時に第2の速度推定器17により発電機速度の推定を行う。推定が完了すると順変換器3はゲートのブロック解除を行う。更に、スイッチ15は▲1▼が、スイッチ16は▲1▼が選択され、通常運転での加速動作に入る。この通常運転中は、第1の速度推定器10による速度の推定と、磁極位置推定器18による磁極位置の推定を常に行いながら運転する。
【0025】
以上の実施例においては、風車1の軸に永久磁石型同期発電機2の回転子が接続され、前記発電機2の固定子巻線には第1の変換器3が接続され、この第1の変換器は電力系統に接続された第2の変換器5と直流4で接続され、前記発電機2の発電電力を直流電力に変換し、前記第2の変換器5で固定周波数の交流電力に変換する風力発電装置において、前記固定子巻線の端子電圧を検出する電圧検出器7と、前記固定子巻線に流れる電流を検出する電流検出器8と、前記第1の変換器3の動作中に検出された端子電圧及び電流に基づいて前記発電機2の速度を推定する第1の速度推定器10と、前記第1の変換器3の停止中に前記電圧検出値に基いて前記発電機2の速度を推定する第2の速度推定器17と、始動時に前記第2の速度推定器17により前記発電機2の速度を推定する手段と、この推定速度が予定値未満のとき前記発電機2の固定子巻線を前記第1の変換器3を用いて一定期間直流励磁する手段と、その後前記発電機2の固定子巻線を電圧と周波数の比が一定で次第に増加する交流で励磁して前記発電機2を加速させるように前記第1の変換器3を制御する自己始動制御手段と、前記始動時の前記第2の速度推定器17の推定速度が予定値以上のとき前記第1の変換器3を動作させ前記第1の速度推定器10による推定速度を速度指令に追従させて発電機2を加速させる速度制御器11と、前記それぞれの加速後に、前記第1の変換器3を停止させて前記第2の速度推定器17の出力に基き前記発電機2の速度を推定する手段と、その後、前記第1の変換器3を再起動させ、前記第1の速度推定器10の出力を速度指令に追従させ前記発電機を再加速させるように前記第1の変換器を制御する手段を備えている。
【0026】
このような始動方式をとることで、風がある程度吹いている場合だけでなく、無風又は微風の場合にも発電機速度センサを用いることなく永久磁石型同期発電機を用いた風力発電装置を可変速駆動することが可能となり、コスト低減及び省スペース化を図ることができる。
【0027】
【発明の効果】
本発明によれば、永久磁石型同期発電機を用いた風力発電装置において、発電機速度センサを用いることなく同期発電機を可変速駆動することができる。
【図面の簡単な説明】
【図1】本発明による永久磁石型同期発電機を用いた風力発電装置の一実施例の全体構成図。
【図2】本発明の一実施例による発電機速度が低い場合の自己始動の動作説明図。
【図3】本発明の一実施例による速度がある程度高い場合の自己始動の動作説明図。
【符号の説明】
1…風車、2…永久磁石型同期発電機、3…第1の変換器(順変換器)、4…直流コンデンサ、5…第2の変換器(逆変換器)、6…系統連系用変圧器、7…発電機端子電圧検出器、8…発電機電流検出器、9…3相/2相変換器、10…第1の発電機速度推定器、11…速度制御器、12…電流制御器、13…2相/3相変換器、14…パルス発生器、15、16…スイッチ、17…第2の発電機速度推定器(電圧速度変換器)、18…磁極位置推定器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wind power generator using a permanent magnet type synchronous generator and an improvement of a starting method thereof.
[0002]
[Prior art]
In a wind power generation system, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-345595, a wind turbine that rotates by wind energy is connected to a synchronous generator, and the wind turbine drives the synchronous generator so that the synchronous generator is Generate electricity. The AC power output from the synchronous generator is converted to DC power by a forward converter (first converter), and further converted to AC power at a commercial frequency by an inverse converter (second converter). Supplied.
[0003]
On the other hand, in order to drive a permanent magnet type synchronous machine at a variable speed, a generator speed sensor is required. Conventionally, a rotor position detector such as a pulse encoder or a resolver that can detect the absolute position of the rotor is used. It is common. As an example, Japanese Patent Laid-Open No. 2000-205002 describes a motor control system using a resolver. In sensorless vector control of a synchronous motor, for example, as shown in Japanese Patent Application Laid-Open Nos. 9-191698 and 2001-178174, magnetic pole position information is calculated from electric quantities such as terminal voltage and current. It is known.
[0004]
[Problems to be solved by the invention]
In wind power generation as well, it is desirable to adopt a variable speed drive control system that does not use a generator speed sensor because of cost reduction and space saving requirements, but the above prior art cannot meet such demands. Further, in the windmill, since the generator is installed in the nacelle located on the tower of the windmill, the distance from the generator speed sensor to the control device becomes long, so the generator speed sensor and the control device are connected. Noise is likely to enter the signal line, and such noise countermeasures are also required.
[0005]
It is an object of the present invention to drive a generator at a variable speed without using a generator speed sensor in a wind power generator using a permanent magnet type synchronous generator.
[0006]
[Means for Solving the Problems]
In one aspect of the present invention, in a wind power generation system in which a rotor of a permanent magnet type synchronous generator is connected to a shaft of a windmill and a first converter is connected to a stator winding of the generator, the synchronous generator A terminal voltage detector for detecting a terminal voltage of the current detector, a current detector for detecting a current flowing in a stator winding of the generator, and the terminal voltage detection value and the current detection value during operation of the first converter A first speed estimator for estimating the speed of the generator and a second speed estimator for estimating the speed of the generator based on the detected terminal voltage while the first converter is stopped. It is characterized by.
[0007]
By configuring in this way, the synchronous generator connected to the windmill can be driven at a variable speed without using a generator speed sensor, and the cost reduction of the wind power generator using the permanent magnet type synchronous generator can be achieved. Space can be saved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of an embodiment of a wind turbine generator using a permanent magnet type synchronous generator according to the present invention. In FIG. 1, the rotor of the permanent magnet type synchronous generator 2 is connected to the shaft of the windmill 1, and when the windmill 1 is rotated by wind energy, the synchronous generator 2 has a variable frequency corresponding to the rotational speed of the windmill 1. Generates AC power. A forward converter (first converter) 3 is connected to the stator winding of the synchronous generator 2, and variable frequency AC power generated by the synchronous generator 2 is converted into DC power by the forward converter 3. Is done. The forward converter 3 is connected to a reverse converter (second converter) 5 via a direct current capacitor 4 in a direct current, and the reverse converter 5 converts the direct current power sent from the forward converter 3 into alternating current power having a fixed frequency. Convert to The reverse converter 5 is connected to the power system via the grid interconnection transformer 6 and supplies AC power of a fixed frequency to the power system.
[0009]
A generator terminal voltage detector 7 and a generator current detector 8 are installed between the synchronous generator 2 and the forward converter 3, and the generator terminal voltage detector 7 is a stator winding of the synchronous generator 2. The generator current detector 8 detects the current flowing through the stator winding of the synchronous generator 2. The detected voltage and current values are converted by the three-phase / two-phase converter 9 into two-axis components for an effective component and an invalid component.
[0010]
The first generator speed estimator 10 estimates the speed of the synchronous generator 2 based on the voltage and current signals of the two-axis components output from the three-phase / two-phase converter 9. Several methods for estimating the generator speed have been proposed. For example, in Japanese Patent Laid-Open No. 2001-178174 described above, a γ-δ coordinate system arbitrarily set on the rotor and the magnetic pole of the rotor are set. Estimating the deviation angle from the dq coordinate system and correcting the position of the γ-δ coordinate system while estimating the generator induced voltages εγ and εδ generated on the γ-δ coordinate system, A method of estimating the generator speed from the machine induced voltage is shown. The first generator speed estimator 10 can be configured by applying such a method, for example.
[0011]
The input of the speed controller 11 is a generator speed command and an estimated speed of the generator given via the switch 15, and its output is a current command for the forward converter 3. When the estimated speed of the synchronous generator 2 is larger than the speed command, the speed controller 11 increases the effective amount of the current command to be output. As a result, the effective power output from the synchronous generator 2 is increased, the effective power output from the synchronous generator 2 is larger than the mechanical input given from the wind to the wind turbine 1, and the shortage of the input is the blade of the wind turbine 1. Therefore, the rotational speed of the windmill 1 decreases following the generator speed command. Conversely, when the estimated speed of the synchronous generator 2 is smaller than the speed command, the speed controller 11 decreases the effective amount of the current command to be output. As a result, the effective power output from the synchronous generator 2 becomes smaller, the effective power output from the synchronous generator 2 becomes smaller than the mechanical input given to the wind turbine 1 from the wind, and the surplus of the input is the blade of the wind turbine 1 Therefore, the rotational speed of the windmill 1 increases following the generator speed command.
[0012]
The input to the current controller 12 is the current detection value of the biaxial component output from the three-phase / two-phase converter 9 and the current command to the forward converter 3 output from the speed controller 11, and the output is forward converted. This is a voltage command to the device 3. The current controller 12 determines the voltage command to the forward converter 3 so that the deviation between the detected current value and the current command becomes zero. The switch 16 is a switch that is switched depending on the operation state. During normal operation, {circle over (1)} is selected and a voltage command output from the current controller 12 is output. Since the voltage command to the forward converter 3 output from the switch 16 is a voltage command of a two-axis component, it is converted into a three-phase voltage command by the two-phase / three-phase converter 13.
[0013]
The pulse generator 14 outputs a gate pulse signal to the forward converter 3 by PWM (Pulse Width Modulation) based on the three-phase voltage command to the forward converter 3 output from the 2-phase / 3-phase converter 13. . The forward converter 3 receives the gate pulse signal, and the forward converter 3 outputs an AC terminal voltage according to the command by high-speed switching of a switching element such as an IGBT. As a result, the generator 2 follows the generator speed command by increasing the output power to the grid if there is surplus wind power, and decreasing the output power if the wind power is insufficient.
[0014]
The voltage speed converter 17 calculates | requires a generator speed from the generator terminal voltage detected with the generator terminal voltage detector 7, so that it may mention later. The magnetic pole position estimator 18 estimates the rotor magnetic pole position of the synchronous generator from the voltage and current detection values output from the three-phase two-phase converter 9. Regarding the estimation of the magnetic pole position of the synchronous machine, for example, in Japanese Patent Application Laid-Open No. 9-191698, the deviation between the γ-δ coordinate system arbitrarily set on the rotor and the dq coordinate system set on the magnetic pole of the rotor. It is disclosed that the magnetic pole position is detected by estimating the angle θe and correcting the deviation angle.
[0015]
Next, a starting method in this apparatus will be described. First, either a normal start command or a self-start command is given from the outside as an operation command. The normal start command is a command that is selected when a certain amount of wind is blowing, and the self-start command is a command that is selected when there is no wind or a light wind. Since the generator induced voltage of the synchronous generator 2 is proportional to the generator speed, the generator terminal voltage detection value detected by the generator terminal voltage detector 7 is zero or a minute value when there is no wind or a slight wind. In such a case, it may be difficult to estimate the generator speed. If the generator speed cannot be estimated, the synchronous generator 2 cannot be driven at a variable speed. In view of this, a method is adopted in which the synchronous generator 2 is driven as an electric motor when there is no wind or light wind, the speed is increased to a point where the generator speed of the synchronous generator 2 can be estimated, and then the generator speed is estimated. In this case, a self-start command is given, and the generator speed is estimated after the synchronous generator 2 is accelerated and driven as an electric motor. When the estimation is completed, the normal operation is started.
[0016]
On the other hand, when the normal start command is given, the generator speed of the synchronous generator 2 is estimated, and when the estimation is completed, the normal operation is started.
[0017]
In addition, for the acceleration driving in the case of performing self-starting, one of two types of acceleration driving methods is selected according to the generator speed at the time of starting. One is when the generator speed at the start is extremely low. In this case, the stator winding of the synchronous generator 2 is first DC-excited for a certain period. By this direct current excitation, the magnetic pole position of the synchronous generator 2 is fixed at a designated position, and thereafter, excitation is performed with an alternating voltage and frequency at which the ratio of the voltage and the frequency applied to the stator winding of the synchronous generator 2 becomes constant. The excitation frequency is increased with the lapse of time, and the synchronous generator 2 is accelerated from that position.
[0018]
The other is when the generator speed at the start is somewhat high. In this case, acceleration driving like the former cannot be performed. When the stator winding of the synchronous generator 2 is DC-excited in this speed range, the synchronous generator 2 is suddenly braked, which may cause damage to the blades of the windmill 1 and the like. Accordingly, in this case, the generator speed is estimated with a slightly reduced estimation accuracy and the estimation speed is slightly reduced. Then, the synchronous generator 2 is accelerated and driven in a state where the generator speed is temporarily estimated.
[0019]
Hereinafter, the self-starting method will be described in more detail. There are two types of acceleration drive methods for self-starting, and it is necessary to determine the generator speed at the start-up in order to determine which one should be selected. However, it is difficult to estimate the generator speed at the start, and the generator speed is obtained by the following method. For simplicity, a cylindrical synchronous generator will be described, but the same applies to a salient pole synchronous generator. When the d-axis synchronous reactance of the synchronous generator is Xd, the stator winding resistance is R, the generator induced voltage is E, the generator terminal voltage is V, and the generator current is I, equation (1) is established. However, here, the generator induced voltage E and the generator terminal voltage V are phase voltages.
[0020]
E = V + (R + jXd) · I ……………………………………………… (1)
Further, when the generator induced voltage constant is Ke and the generator speed is ω, the generator induced voltage E can be expressed by equation (2).
[0021]
E = Ke · ω ………………………………………………………………… (2)
Further, since the gate of the forward converter 3 is blocked at the time of starting, the generator current I is zero. At this time, the expression (3) is established from the expressions (1) and (2).
[0022]
V = Ke · ω ………………………………………………………………… (3)
That is, it can be seen that when the generator current is zero, the generator terminal voltage V and the generator speed ω are proportional. That is, if the generator terminal voltage V of the synchronous generator 2 is detected, the generator speed ω can be obtained. Therefore, at the time of starting, in order to obtain the generator speed ω from the detected generator terminal voltage V of the synchronous generator 2, the switch 15 is selected as (3), and the second generator speed estimator (voltage speed converter) is selected. 17 is used to determine the generator speed ω. The voltage speed converter 17 determines the generator speed ω by multiplying the detected generator terminal voltage value V detected by the generator terminal voltage detector 7 by a gain determined by the generator induced voltage constant Ke.
[0023]
FIG. 2 is an explanatory diagram of self-starting operation when the generator speed is low according to an embodiment of the present invention. The operation when the generator speed at the start is low in the self-start will be described with reference to this figure. In this case, (2) is selected for the switch 15 and (2) is selected for the switch 16, the generator speed of the synchronous generator 2 is given from the self-starting speed command, and the voltage command to the forward converter 3 is the self-starting voltage. Given from the directive. Next, when the gate of the forward converter 3 is unblocked and the stator winding of the synchronous generator 2 enters a DC excitation mode, the self-start voltage command gives a command corresponding to the DC excitation voltage, and the self-start The speed command outputs zero for a certain period. When the DC excitation for fixing the rotor at a predetermined angular position is completed, the self-starting voltage command and the self-starting speed command are increased while maintaining a constant ratio and applied to the stator winding of the synchronous generator 2 The synchronous generator 2 can be accelerated and driven as a synchronous motor by exciting with a voltage and a frequency so that the ratio of the voltage and the frequency becomes constant and increasing the excitation frequency with the passage of time. However, the angular position of the rotor is not necessary. Since the synchronous generator 2 follows the self-starting speed command, the self-starting speed command is used as the generator speed. Eventually, when the speed of the synchronous generator 2 increases and reaches a speed higher than a preset value, the gate of the forward converter 3 is blocked in order to accurately estimate the magnetic pole position and speed of the generator. Further, (3) is selected for the switch 15 and (1) is selected for the switch 16. Then, in the free-running state of the synchronous generator 2, the magnetic pole position estimator 18 estimates the magnetic pole position of the synchronous generator. At the same time, the generator speed is estimated by the second speed estimator 17. When the estimation is completed in 1 to 2 seconds, the forward converter 3 unblocks the gate. Further, the switch 15 is selected as (1) and the switch 16 is selected as (1), and the acceleration operation in the normal operation is started. During this normal operation, the operation is performed while always estimating the speed by the first speed estimator 10 and estimating the magnetic pole position by the magnetic pole position estimator 18.
[0024]
FIG. 3 is a diagram for explaining the self-starting operation when the generator speed is high to some extent according to one embodiment of the present invention. With reference to this figure, the operation when the generator speed at the time of starting is somewhat high in self-starting will be described. In this case, (3) is selected for the switch 15 and (1) is selected for the switch 16. Then, the judgment condition for estimating the generator magnetic pole position is relaxed, and the magnetic pole position is estimated with the estimation accuracy slightly reduced. For example, a relatively coarse magnetic pole position is estimated by selecting the allowable value of the deviation angle θe to be relatively large θ1 by the magnetic pole position estimation method described in Japanese Patent Laid-Open No. 9-191698. At the same time, the speed is estimated by the second generator speed estimator. These continue until the judgment condition is cleared. When the estimation of the generator speed and the magnetic pole position is temporarily completed, the gate of the forward converter 3 is unblocked. Further, the switch 15 is selected as (1) and the switch 16 is selected as (1), and the normal operation is temporarily entered while the relatively rough magnetic pole position is estimated. Then, the synchronous generator 2 is accelerated and driven by gradually increasing the generator speed command. Eventually, when the speed of the synchronous generator 2 increases and reaches a speed higher than a preset value, the gate of the forward converter 3 is blocked in order to accurately estimate the magnetic pole position and speed of the generator. Further, (3) is selected for the switch 15 and (1) is selected for the switch 16. Then, the magnetic pole position of the synchronous generator 2 is estimated by the magnetic pole position estimator 18 in the free running state of the synchronous generator 2. The judgment conditions for estimating the magnetic pole position at this time are strict, and the magnetic pole position is estimated with the estimation accuracy improved. For example, in the magnetic pole position estimation described in Japanese Patent Laid-Open No. 9-191698, a relatively fine magnetic pole position is estimated by selecting a relatively small allowable angle θe (θ2 <θ1). At the same time, the generator speed is estimated by the second speed estimator 17. When the estimation is completed, the forward converter 3 unblocks the gate. Further, the switch 15 is selected as (1) and the switch 16 is selected as (1), and the acceleration operation in the normal operation is started. During this normal operation, the operation is performed while always estimating the speed by the first speed estimator 10 and estimating the magnetic pole position by the magnetic pole position estimator 18.
[0025]
In the above embodiment, the rotor of the permanent magnet type synchronous generator 2 is connected to the shaft of the wind turbine 1, and the first converter 3 is connected to the stator winding of the generator 2. The converter is connected to the second converter 5 connected to the power system with a DC 4, converts the generated power of the generator 2 into DC power, and the second converter 5 uses the fixed frequency AC power. In the wind power generation apparatus that converts the voltage into the wind turbine generator, the voltage detector 7 that detects the terminal voltage of the stator winding, the current detector 8 that detects the current flowing through the stator winding, and the first converter 3 A first speed estimator 10 for estimating the speed of the generator 2 based on the terminal voltage and current detected during operation, and the voltage detection value based on the detected voltage value while the first converter 3 is stopped. A second speed estimator 17 for estimating the speed of the generator 2 and the second speed estimator at the start Means for estimating the speed of the generator 2 by means of 7 and means for direct current excitation of the stator winding of the generator 2 for a certain period of time using the first converter 3 when this estimated speed is less than a predetermined value; Then, self-starting control for controlling the first converter 3 so as to accelerate the generator 2 by exciting the stator winding of the generator 2 with an alternating current having a constant voltage-frequency ratio and gradually increasing. And when the estimated speed of the second speed estimator 17 at the start is equal to or higher than a predetermined value, the first converter 3 is operated so that the estimated speed by the first speed estimator 10 follows the speed command. A speed controller 11 for accelerating the generator 2 and after each acceleration, the first converter 3 is stopped and the speed of the generator 2 is determined based on the output of the second speed estimator 17. Means for estimating and then restarting the first converter 3 And a means for controlling the first transducer so as to re-accelerate the generator to follow the output of the first speed estimator 10 to the speed command.
[0026]
By adopting such a starting method, a wind power generator using a permanent magnet type synchronous generator can be used not only when the wind is blowing to some extent but also when there is no wind or light wind without using a generator speed sensor. It is possible to drive at a variable speed, thereby reducing costs and saving space.
[0027]
【The invention's effect】
According to the present invention, in a wind turbine generator using a permanent magnet type synchronous generator, the synchronous generator can be driven at a variable speed without using a generator speed sensor.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an embodiment of a wind power generator using a permanent magnet type synchronous generator according to the present invention.
FIG. 2 is an explanatory diagram of self-starting operation when the generator speed is low according to an embodiment of the present invention.
FIG. 3 is an operation explanatory view of self-starting when the speed is high to some extent according to one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Windmill, 2 ... Permanent magnet type synchronous generator, 3 ... 1st converter (forward converter), 4 ... DC capacitor, 5 ... 2nd converter (reverse converter), 6 ... For grid connection Transformer, 7 ... Generator terminal voltage detector, 8 ... Generator current detector, 9 ... 3-phase / 2-phase converter, 10 ... First generator speed estimator, 11 ... Speed controller, 12 ... Current Controller, 13 ... 2-phase / 3-phase converter, 14 ... Pulse generator, 15, 16 ... Switch, 17 ... Second generator speed estimator (voltage speed converter), 18 ... Magnetic pole position estimator.

Claims (8)

風車の軸に永久磁石型同期発電機の回転子が接続され、前記発電機の固定子巻線には第1の変換器が接続され、この第1の変換器は電力系統に接続された第2の変換器と直流で接続され、前記発電機の発電電力を直流電力に変換し、前記第2の変換器で固定周波数の交流電力に変換する風力発電装置において、前記固定子巻線の端子電圧を検出する電圧検出器と、前記固定子巻線に流れる電流を検出する電流検出器と、前記第1の変換器の動作中に検出された端子電圧及び電流に基づいて前記発電機の速度を推定する第1の速度推定器と、前記第1の変換器の停止中に前記電圧検出値に基いて前記発電機の速度を推定する第2の速度推定器を備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置。A rotor of a permanent magnet type synchronous generator is connected to the shaft of the windmill, a first converter is connected to the stator winding of the generator, and the first converter is connected to a power system. In the wind power generator connected to the converter of No. 2 by DC and converting the electric power generated by the generator into DC electric power and converting the electric power to the fixed frequency AC electric power by the second converter, the terminal of the stator winding A voltage detector for detecting a voltage; a current detector for detecting a current flowing through the stator winding; and a speed of the generator based on a terminal voltage and a current detected during operation of the first converter. And a second speed estimator for estimating the speed of the generator based on the detected voltage value while the first converter is stopped. Wind power generator using a permanent magnet type synchronous generator. 請求項1において、前記第2の速度推定器は、前記端子電圧検出値に予め設定した定数を掛けた値を発電機速度と推定することを特徴とする永久磁石型同期発電機を用いた風力発電装置。2. The wind power using a permanent magnet type synchronous generator according to claim 1, wherein the second speed estimator estimates a value obtained by multiplying the terminal voltage detection value by a preset constant as a generator speed. Power generation device. 請求項1において、前記発電機速度が予め設定した値未満のとき、前記発電機の固定子巻線を前記第1の変換器を用いて直流励磁する手段と、その後電圧と周波数がそれらの比を一定に保ちつつ次第に増加する交流で前記固定子巻線を励磁して前記発電機を加速させるように前記第1の変換器を制御する手段と、この励磁周波数又は前記第1の発電機速度推定器による推定速度が予定値に達したとき前記第1の変換器を停止させ、前記第2の速度推定器の出力に基き前記発電機の速度を推定する手段を備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置。2. The means for direct current excitation of the stator winding of the generator using the first converter when the generator speed is less than a preset value, and then the voltage and frequency are compared to each other. Means for controlling the first converter so as to accelerate the generator by exciting the stator winding with a gradually increasing alternating current while maintaining the constant, and the excitation frequency or the first generator speed. And a means for stopping the first converter when the estimated speed by the estimator reaches a predetermined value and estimating the speed of the generator based on the output of the second speed estimator. Wind power generator using a permanent magnet type synchronous generator. 請求項1において、始動時に前記第2の速度推定器により前記発電機の速度を推定する手段と、この推定速度が予定値以上のとき、前記第1の変換器を動作させ前記第1の速度推定器の推定速度を速度指令に追従させて前記発電機を加速させる速度制御器と、前記第1の速度推定器の推定速度が予定値に達したとき前記第1の変換器を停止させ前記第2の速度推定器の出力に基き前記発電機の速度を推定する手段を備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置。2. The means according to claim 1, wherein the second speed estimator estimates the speed of the generator at start-up, and when the estimated speed is greater than or equal to a predetermined value, the first converter is operated to operate the first speed. A speed controller for accelerating the generator by following an estimated speed of the estimator according to a speed command, and stopping the first converter when the estimated speed of the first speed estimator reaches a predetermined value; A wind power generator using a permanent magnet synchronous generator, characterized by comprising means for estimating the speed of the generator based on the output of a second speed estimator. 請求項3又は4において、前記の加速後に、前記第2の速度推定器の出力に基き前記発電機の速度を推定した後に、前記第1の変換器を再起動させ、前記第1の速度推定器の出力を速度指令に追従させ前記発電機を再加速させるように前記第1の変換器を制御する手段を備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置。5. The first speed estimation according to claim 3, wherein after the acceleration, after estimating the speed of the generator based on the output of the second speed estimator, the first converter is restarted. A wind power generator using a permanent magnet type synchronous generator, comprising means for controlling the first converter so that the output of the generator follows a speed command and re-accelerates the generator. 風車の軸に永久磁石型同期発電機の回転子が接続され、前記発電機の固定子巻線には第1の変換器が接続され、この第1の変換器は電力系統に接続された第2の変換器と直流で接続され、前記発電機の発電電力を直流電力に変換し、前記第2の変換器で固定周波数の交流電力に変換する風力発電装置において、前記固定子巻線の端子電圧を検出する電圧検出器と、前記固定子巻線に流れる電流を検出する電流検出器と、前記第1の変換器の動作中に検出された端子電圧及び電流に基づいて前記発電機の速度を推定する第1の速度推定器と、前記第1の変換器の停止中に前記電圧検出値に基いて前記発電機の速度を推定する第2の速度推定器と、始動時に前記第2の速度推定器により前記発電機の速度を推定する手段と、この推定速度が予定値未満のとき前記発電機の固定子巻線を前記第1の変換器を用いて一定期間直流励磁する手段と、その後前記発電機の固定子巻線を電圧と周波数の比が一定で次第に増加する交流で励磁して前記発電機を加速させるように前記第1の変換器を制御する自己始動制御手段と、前記始動時の前記第2の速度推定器の推定速度が予定値以上のとき前記第1の変換器を動作させ前記第1の速度推定器による推定速度を速度指令に追従させて発電機を加速させる速度制御器と、前記それぞれの加速後に、前記第1の変換器を停止させて前記第2の速度推定器の出力に基き前記発電機の速度を推定する手段と、その後、前記第1の変換器を再起動させ、前記第1の速度推定器の出力を速度指令に追従させ前記発電機を再加速させるように前記第1の変換器を制御する手段を備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置。A rotor of a permanent magnet type synchronous generator is connected to the shaft of the windmill, a first converter is connected to the stator winding of the generator, and the first converter is connected to a power system. In the wind power generator connected to the converter of No. 2 by DC and converting the electric power generated by the generator into DC electric power and converting the electric power to the fixed frequency AC electric power by the second converter, the terminal of the stator winding A voltage detector for detecting a voltage; a current detector for detecting a current flowing through the stator winding; and a speed of the generator based on a terminal voltage and a current detected during operation of the first converter. A first speed estimator that estimates the generator speed, a second speed estimator that estimates the speed of the generator based on the detected voltage value while the first converter is stopped, and the second speed estimator at start-up. Means for estimating the speed of the generator by means of a speed estimator; Means for DC excitation of the generator stator winding for a period of time using the first converter when full, and then the generator winding of the generator gradually increases with a constant voltage to frequency ratio. Self-starting control means for controlling the first converter to accelerate the generator by exciting with alternating current; and when the estimated speed of the second speed estimator at the time of starting is equal to or higher than a predetermined value, the first A speed controller for operating the first converter to cause the speed estimated by the first speed estimator to follow the speed command and to accelerate the generator, and after each acceleration, stop the first converter. Means for estimating the speed of the generator based on the output of the second speed estimator, and then restarting the first converter and causing the output of the first speed estimator to follow the speed command; Control the first converter to re-accelerate the generator A wind power generator using a permanent magnet type synchronous generator characterized by comprising means. 風車の軸に永久磁石型同期発電機の回転子が接続され、前記発電機の固定子巻線には第1の変換器が接続され、この第1の変換器は電力系統に接続された第2の変換器と直流で接続され、前記発電機の発電電力を直流電力に変換し、前記第2の変換器で固定周波数の交流電力に変換する風力発電装置の始動方法において、始動時の前記発電機が予定の速度未満のとき前記発電機の固定子巻線を直流励磁するステップと、前記固定子巻線を電圧と周波数の比がほぼ一定で増加する交流で励磁して前記発電機を加速させるステップと、この加速中の励磁周波数に基いて発電機速度を推定するステップと、この速度推定値が予定速度に達したとき前記第1の変換器を停止させてフリーラン状態とし前記端子電圧からその速度を推定するステップと、この推定完了後に前記第1の変換器を再起動させるステップと、発電機の出力電圧と出力電流に基いてその速度を推定しながらこの推定速度が速度指令に追従するように前記第1の変換器を制御して前記発電機を更に加速させるステップを備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置の始動方法。A rotor of a permanent magnet type synchronous generator is connected to the shaft of the windmill, a first converter is connected to the stator winding of the generator, and the first converter is connected to a power system. In the starting method of the wind power generator, which is connected to the converter of No. 2 by direct current, converts the generated power of the generator into direct current power, and converts it into alternating current power of a fixed frequency by the second converter. A step of direct current exciting the stator winding of the generator when the generator is less than a predetermined speed, and exciting the stator with an alternating current in which the ratio of voltage to frequency is substantially constant and increasing. A step of accelerating, a step of estimating a generator speed based on the excitation frequency during the acceleration, and when the estimated speed reaches a predetermined speed, the first converter is stopped to be in a free-run state. Estimating the speed from the voltage, and Restarting the first converter after completing the estimation, and estimating the speed based on the output voltage and output current of the generator so that the estimated speed follows the speed command. A method for starting a wind power generator using a permanent magnet type synchronous generator, comprising the step of further accelerating the generator by controlling a generator. 風車の軸に永久磁石型同期発電機の回転子が接続され、前記発電機の固定子巻線には第1の変換器が接続され、この第1の変換器は電力系統に接続された第2の変換器と直流で接続され、前記発電機の発電電力を直流電力に変換し、前記第2の変換器で固定周波数の交流電力に変換する風力発電装置の始動方法において、始動時に前記固定子巻線の端子電圧により前記発電機の速度を推定するステップと、この推定速度が予定の速度以上のとき前記第1の変換器を起動し前記端子電圧と前記固定子巻線の電流とから求めた発電機の推定速度を速度指令に追従させるように前記発電機を加速させるステップと、この推定速度が予定速度に達したとき前記第1の変換器を停止させてフリーラン状態とし前記固定子巻線の端子電圧からその速度を推定するステップと、この推定完了後に前記第1の変換器を再起動させ前記端子電圧と固定子巻線の電流に基いてその速度を推定しながらこの推定速度が速度指令に追従するように前記第1の変換器を制御して前記発電機を更に加速させるステップを備えたことを特徴とする永久磁石型同期発電機を用いた風力発電装置の始動方法。A rotor of a permanent magnet type synchronous generator is connected to the shaft of the windmill, a first converter is connected to the stator winding of the generator, and the first converter is connected to a power system. In the starting method of the wind power generator, which is connected to the converter 2 by DC, converts the generated power of the generator into DC power, and converts it into AC power of a fixed frequency by the second converter, From the step of estimating the speed of the generator from the terminal voltage of the child winding, and starting the first converter when the estimated speed is equal to or higher than the predetermined speed, the terminal voltage and the current of the stator winding A step of accelerating the generator so that the estimated speed of the determined generator follows a speed command; and when the estimated speed reaches a predetermined speed, the first converter is stopped to be in a free-run state and the fixed Estimating the speed from the terminal voltage of the slave winding And after the estimation is completed, the first converter is restarted, and the estimated speed follows the speed command while estimating the speed based on the terminal voltage and the current of the stator winding. A method for starting a wind power generator using a permanent magnet synchronous generator, comprising the step of controlling the converter 1 to further accelerate the generator.
JP2001317928A 2001-10-16 2001-10-16 Wind power generator using permanent magnet type synchronous generator and its starting method Expired - Lifetime JP3788925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317928A JP3788925B2 (en) 2001-10-16 2001-10-16 Wind power generator using permanent magnet type synchronous generator and its starting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317928A JP3788925B2 (en) 2001-10-16 2001-10-16 Wind power generator using permanent magnet type synchronous generator and its starting method

Publications (2)

Publication Number Publication Date
JP2003134890A JP2003134890A (en) 2003-05-09
JP3788925B2 true JP3788925B2 (en) 2006-06-21

Family

ID=19135724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317928A Expired - Lifetime JP3788925B2 (en) 2001-10-16 2001-10-16 Wind power generator using permanent magnet type synchronous generator and its starting method

Country Status (1)

Country Link
JP (1) JP3788925B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269941B2 (en) * 2004-01-08 2009-05-27 株式会社日立製作所 Wind power generator and control method thereof
JP4449775B2 (en) * 2005-02-17 2010-04-14 株式会社日立製作所 Secondary excitation power converter
JP2008011607A (en) * 2006-06-28 2008-01-17 Hitachi Ltd Speed-variable wind turbine power generation system
JP5190879B2 (en) * 2008-07-22 2013-04-24 国立大学法人 琉球大学 Wind power generator output power fluctuation control device
JP2010074920A (en) * 2008-09-17 2010-04-02 Toshiba Corp Controller for wind power generation system
AU2012358974B2 (en) * 2011-12-19 2016-11-10 Ensync, Inc. System and method for low speed control of polyphase AC machine
CN102969963A (en) * 2012-12-12 2013-03-13 北京动力机械研究所 Self-started motor system of micro gas turbine
CN105024599A (en) * 2015-08-10 2015-11-04 华北电力大学(保定) Wave energy power generation system maximum power tracking device and control method

Also Published As

Publication number Publication date
JP2003134890A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP3695342B2 (en) Electric motor control device
US5461293A (en) Rotor position detector
US7339344B2 (en) Self tuning method and apparatus for permanent magnet sensorless control
US5384527A (en) Rotor position detector with back EMF voltage estimation
EP2020745B1 (en) Engine start system with a regulated permanent magnet machine
Xu et al. Implementation and experimental investigation of sensorless control schemes for PMSM in super-high variable speed operation
CN100461611C (en) Method and system for starting a sensorless motor
TW201830846A (en) System and method for starting synchronous motors
JP4406552B2 (en) Electric motor control device
JP2007531478A (en) Sensorless control method and apparatus for motor drive system
EP1792392A1 (en) Power converter controlling apparatus and method applying a fault protection scheme in a motor drive system
CN107241046B (en) A kind of starting method of the BLDC motor of position-sensor-free
WO2008147016A1 (en) Motor driver system and method for controlling motor driver
JP2015158189A (en) Supercharger and ship
EP2840701B1 (en) Sensing PM electrical machine position
JP3397013B2 (en) Control device for synchronous motor
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
JP3788925B2 (en) Wind power generator using permanent magnet type synchronous generator and its starting method
JP4542797B2 (en) Control device for synchronous machine
JP2007282367A (en) Motor driving controller
JP4826550B2 (en) Turbocharger control system with electric motor
JP2010226827A (en) Motor control drive device and motor start positioning method
JP3472533B2 (en) Motor control device
JP2001268962A (en) Method and apparatus for sensorless control on sr motor
Dianov et al. Sensorless vector controlled drive for reciprocating compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R151 Written notification of patent or utility model registration

Ref document number: 3788925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350