JP4398440B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP4398440B2
JP4398440B2 JP2006168646A JP2006168646A JP4398440B2 JP 4398440 B2 JP4398440 B2 JP 4398440B2 JP 2006168646 A JP2006168646 A JP 2006168646A JP 2006168646 A JP2006168646 A JP 2006168646A JP 4398440 B2 JP4398440 B2 JP 4398440B2
Authority
JP
Japan
Prior art keywords
power
rotational speed
wind
speed
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006168646A
Other languages
Japanese (ja)
Other versions
JP2006271199A (en
Inventor
輝 菊池
基生 二見
康之 杉浦
直志 菅原
晃一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006168646A priority Critical patent/JP4398440B2/en
Publication of JP2006271199A publication Critical patent/JP2006271199A/en
Application granted granted Critical
Publication of JP4398440B2 publication Critical patent/JP4398440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

本発明は風車により駆動される同期発電機の出力変動を抑制する風力発電装置に関する。   The present invention relates to a wind turbine generator that suppresses output fluctuations of a synchronous generator driven by a windmill.

従来の風力発電システムを説明する。風車は同期発電機に接続され、風のエネルギーによって風車が回転し、風車が同期発電機を駆動することで同期発電機が発電する。同期発電機の出力する交流電力は順変換器により直流電力に変換され、さらに逆変換器により商用周波数の交流電力に変換されて電力系統に供給される。一例として、特開平2000−345952号公報にこのような構成の風力発電システムが記載されている。   A conventional wind power generation system will be described. The windmill is connected to a synchronous generator, the windmill rotates by wind energy, and the synchronous generator generates electricity when the windmill drives the synchronous generator. The AC power output from the synchronous generator is converted into DC power by a forward converter, and further converted into AC power of commercial frequency by an inverse converter and supplied to the power system. As an example, Japanese Patent Laid-Open No. 2000-345952 discloses a wind power generation system having such a configuration.

一方、風力発電システムは風速の変動に大きく影響され、風速変動に起因する出力変動は電力系統の周波数や電圧を変動させ、電力系統に悪影響を与えることになるため、風力発電システムを導入する場合にはこうした出力変動を抑制することが必須となる。   On the other hand, wind power generation systems are greatly influenced by fluctuations in wind speed, and output fluctuations caused by wind speed fluctuations will fluctuate the frequency and voltage of the power system and adversely affect the power system. Therefore, it is essential to suppress such output fluctuations.

そこで、近年の風車では風車のブレードの角度を風速に応じて変化させることにより、風車への機械的入力を調節するピッチ制御を行うことで、風速変動に起因する出力変動を抑制する方法が採られる。また、更に順変換器による同期発電機の出力制御も合わせて行われる。   Therefore, in recent wind turbines, a method of suppressing output fluctuations caused by wind speed fluctuations by performing pitch control that adjusts the mechanical input to the wind turbines by changing the angle of the wind turbine blades according to the wind speed is adopted. It is done. Further, synchronous generator output control by a forward converter is also performed.

しかしながら、上記従来技術では高応答に出力変動を抑制しながら高効率に発電することが困難となる。これは、風車には風速毎に最も効率良く風のエネルギーを受けることのできる回転数が存在するために、最大の効率を得るためには風速を検出し、その風速に応じて風車の回転数を制御する必要があるためである。   However, it is difficult for the above prior art to generate power with high efficiency while suppressing output fluctuation with high response. This is because the wind turbine has a rotational speed at which the wind energy can be received most efficiently at each wind speed. Therefore, in order to obtain the maximum efficiency, the wind speed is detected, and the rotational speed of the wind turbine is determined according to the wind speed. This is because it is necessary to control.

本発明の目的は、風速の弱いときは回転速度を優先して制御することで高効率な運転を行い、風速の強いときは同期発電機の出力する有効電力を優先して制御することで風速変動に起因する出力変動を抑制する風力発電装置を提供することにある。   The object of the present invention is to perform high-efficiency operation by controlling the rotational speed with priority when the wind speed is weak, and control the wind power by prioritizing the effective power output from the synchronous generator when the wind speed is strong. It is providing the wind power generator which suppresses the output fluctuation | variation resulting from a fluctuation | variation.

上記目的を達成するために、本発明では、風車の軸に接続された同期発電機と、前記同期発電機の固定子に接続された前記同期発電機の可変周波数の発電電力を直流電力に変換する変換器と、前記変換器と電力系統との間に接続された前記直流電力を固定周波数の交流電力に変換して電力系統に供給する逆変換器とを備えた風力発電装置において、風車の回転速度を検出する回転速度検出手段と、風速を検出する風速検出器からの検出値に基づいて効率的な回転速度を求める回転速度指令演算手段と、該回転速度指令演算器からの回転速度指令と前記回転速度検出器の回転速度とから有効電力指令を求める回転速度制御手段と、該回転速度制御器からの有効電力指令と前記同期発電機からの有効電力とから前記同期発電機の出力を制御する電力制御手段とを備え、風速の状態に応じて、前記回転速度制御手段の制御ゲインを調整することで、前記風車の回転速度を優先して制御するか、前記同期発電機の出力する有効電力を優先して制御することを特徴とする。   In order to achieve the above object, according to the present invention, a synchronous generator connected to a wind turbine shaft and variable frequency generated power of the synchronous generator connected to a stator of the synchronous generator are converted into DC power. A wind turbine generator comprising: a converter that converts the DC power connected between the converter and the power system into AC power having a fixed frequency and supplies the AC power to the power system. Rotation speed detection means for detecting the rotation speed, rotation speed command calculation means for obtaining an efficient rotation speed based on a detection value from the wind speed detector for detecting the wind speed, and a rotation speed command from the rotation speed command calculator Rotation speed control means for obtaining an active power command from the rotation speed of the rotation speed detector, and the output of the synchronous generator from the active power command from the rotation speed controller and the active power from the synchronous generator. Electricity to control Control means, and by adjusting the control gain of the rotational speed control means according to the wind speed state, the rotational speed of the windmill is controlled with priority, or the effective power output from the synchronous generator is It is characterized by priority control.

本発明によれば、回転速度制御器の制御ゲインを調節することで、風車の回転速度を優先する運転を行うか、同期発電機の出力する有効電力を優先して制御するかが切替可能になり、風速の弱いときは同期発電機の回転速度を優先して制御することで高効率な運転を行い、風速の強いときは同期発電機の出力する有効電力を優先して制御することで風速変動に起因する出力変動を抑制することができる効果がある。   According to the present invention, by adjusting the control gain of the rotational speed controller, it is possible to switch between the operation that prioritizes the rotational speed of the windmill or the active power that is output from the synchronous generator. Therefore, when the wind speed is low, high-efficiency operation is performed by controlling the rotation speed of the synchronous generator with priority, and when the wind speed is strong, the effective power output by the synchronous generator is prioritized and controlled. There is an effect of suppressing output fluctuation caused by fluctuation.

以下、本発明に掛かる一実施例を図面に基づいて説明する。図1は本発明実施例の全体構成を示す。   An embodiment according to the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of an embodiment of the present invention.

図1において、同期発電機2の回転子は風車1の軸に接続されており、風車1が風のエネルギーにより回転すると、同期発電機2は風車1の回転速度に応じた可変周波数の交流電力を発生する。   In FIG. 1, the rotor of the synchronous generator 2 is connected to the shaft of the windmill 1, and when the windmill 1 is rotated by wind energy, the synchronous generator 2 is AC power having a variable frequency corresponding to the rotational speed of the windmill 1. Is generated.

同期発電機2の固定子には順変換器3が接続されており、同期発電機2の発生する可変周波数の交流電力は順変換器3により直流電力に変換される。順変換器3は直流コンデンサ4を介し、逆変換器5に直流で接続されており、逆変換器5は順変換器3から送られる直流電力を固定周波数の交流電力に変換する。逆変換器5は系統連系用変圧器6を介して電力系統に接続されており、固定周波数の交流電力を電力系統に供給する。   A forward converter 3 is connected to the stator of the synchronous generator 2, and variable frequency AC power generated by the synchronous generator 2 is converted into DC power by the forward converter 3. The forward converter 3 is connected to the inverse converter 5 via a direct current capacitor 4 with a direct current, and the inverse converter 5 converts the direct current power sent from the forward converter 3 into alternating current power having a fixed frequency. The reverse converter 5 is connected to the power system via the grid interconnection transformer 6 and supplies AC power of a fixed frequency to the power system.

同期発電機2と順変換器3との間には電圧検出センサ7と電流検出センサ8が設置されており、電圧検出センサは同期発電機2の端子電圧を、電流検出センサ8は同期発電機2の固定子に流れる電流をそれぞれ検出する。検出された電圧、電流値は3相/2相変換器17によって有効分と無効分の2軸成分に変換される。   A voltage detection sensor 7 and a current detection sensor 8 are installed between the synchronous generator 2 and the forward converter 3. The voltage detection sensor is a terminal voltage of the synchronous generator 2, and the current detection sensor 8 is a synchronous generator. Each of the currents flowing through the two stators is detected. The detected voltage and current values are converted by the three-phase / two-phase converter 17 into a two-axis component of an effective component and an ineffective component.

有効電力検出器9は3相/2相変換器17の出力する2軸成分の信号に基づいて、同期発電機2の出力する有効電力を検出し、無効電力検出器10は3相/2相変換器17の出力する2軸成分の信号に基づいて、同期発電機2の出力する無効電力を検出する。回転速度検出器11は風車1の回転速度を検出する。   The active power detector 9 detects the active power output from the synchronous generator 2 based on the two-axis component signal output from the three-phase / two-phase converter 17, and the reactive power detector 10 is the three-phase / 2-phase. Based on the biaxial component signal output from the converter 17, the reactive power output from the synchronous generator 2 is detected. The rotational speed detector 11 detects the rotational speed of the windmill 1.

回転速度制御器12の入力は回転速度検出器11の検出する風車1の回転速度と回転速度指令の偏差であり、出力は順変換器3への有効電力指令となる。回転速度制御器12は例えば比例積分制御系により構成されている。回転速度指令は風速検出器21が風速を検出し、その検出値に基づいて回転速度指令演算器22は最も効率良く風のエネルギーを受けることのできる回転速度を求め、回転速度制御器12への回転速度指令として出力する。   The input of the rotational speed controller 12 is a deviation between the rotational speed of the windmill 1 detected by the rotational speed detector 11 and the rotational speed command, and the output is an active power command to the forward converter 3. The rotational speed controller 12 is configured by a proportional-integral control system, for example. As for the rotational speed command, the wind speed detector 21 detects the wind speed, and based on the detected value, the rotational speed command calculator 22 obtains the rotational speed at which the wind energy can be received most efficiently and supplies the rotational speed command to the rotational speed controller 12. Output as rotation speed command.

風車1の回転速度が回転速度指令よりも大きい場合には、回転速度制御器12の出力が大きくなり、これは順変換器3への有効電力指令が大きくなることであり、同期発電機2の出力する有効電力が大きくなる。   When the rotational speed of the windmill 1 is higher than the rotational speed command, the output of the rotational speed controller 12 is increased, which means that the active power command to the forward converter 3 is increased, and the synchronous generator 2 The effective power to be output increases.

この結果、風から風車1へ与えられる機械的入力よりも同期発電機2の出力する有効電力が大きくなると、入力が不足することになるが、入力の不足分は風車1のブレードに蓄えられた慣性エネルギーから補われることになるため、風車1の回転速度が低下し、回転速度指令に追従する。   As a result, when the active power output from the synchronous generator 2 becomes larger than the mechanical input given to the windmill 1 from the wind, the input becomes insufficient, but the input shortage is stored in the blade of the windmill 1. Since it is compensated from the inertial energy, the rotational speed of the windmill 1 decreases and follows the rotational speed command.

逆に風車1の回転速度が回転速度指令よりも小さい場合には回転速度制御器12の出力が小さくなり、これは順変換器3への有効電力指令が小さくなることであり、同期発電機2の出力する有効電力が小さくなる。   On the contrary, when the rotational speed of the windmill 1 is smaller than the rotational speed command, the output of the rotational speed controller 12 becomes small, which means that the active power command to the forward converter 3 becomes small, and the synchronous generator 2 The effective power output from the is reduced.

この結果、風から風車1へ与えられる機械的入力よりも同期発電機2の出力する有効電力が小さくなると入力が余剰することになるが、入力の余剰分は風車1のブレードに慣性エネルギーとして蓄えられることになり、風車1の回転速度が上昇し、回転速度指令に追従する。つまり、同期発電機2の出力の増減に応じて風車1の回転速度を制御することができる。   As a result, when the effective power output from the synchronous generator 2 becomes smaller than the mechanical input given from the wind to the wind turbine 1, the input becomes surplus, but the surplus input is stored as inertia energy in the blade of the wind turbine 1. As a result, the rotational speed of the windmill 1 increases and follows the rotational speed command. That is, the rotational speed of the windmill 1 can be controlled according to the increase or decrease of the output of the synchronous generator 2.

図2に示す風車1の回転速度と風からの機械的入力の関係から分かるように、風車1には風速毎に最も効率良く風のエネルギーを受けることのできる回転速度が存在する。つまり、最大の効率を得ようとすると風車1は風速によって回転速度を変える必要がある。従って、風速検出器21が風速を検出し、その検出値に基づいて回転速度指令演算器22は最も効率良く風のエネルギーを受けることのできる回転速度を求め、回転速度制御器12への回転速度指令として出力する。この回転速度指令に基づいて風車1が運転すると、効率良く風のエネルギーを受けることが可能となる。   As can be seen from the relationship between the rotational speed of the windmill 1 and the mechanical input from the wind shown in FIG. 2, the windmill 1 has a rotational speed at which wind energy can be received most efficiently for each wind speed. That is, in order to obtain the maximum efficiency, the windmill 1 needs to change the rotation speed depending on the wind speed. Therefore, the wind speed detector 21 detects the wind speed, and based on the detected value, the rotational speed command calculator 22 obtains the rotational speed at which the wind energy can be received most efficiently, and the rotational speed to the rotational speed controller 12 is obtained. Output as a command. When the windmill 1 is operated based on this rotational speed command, it becomes possible to receive wind energy efficiently.

有効電力制御器13の入力は回転速度制御器12の出力する有効電力指令と有効電力検出器9の検出する有効電力検出値の偏差であり、出力は順変換器3への電流指令の有効分となる。無効電力制御器14の入力は外部より与えられる無効電力指令と無効電力検出器10の検出する無効電力検出値の偏差であり、出力は順変換器3への電流指令の無効分となる。   The input of the active power controller 13 is a deviation between the active power command output from the rotation speed controller 12 and the detected active power value detected by the active power detector 9, and the output is an effective component of the current command to the forward converter 3. It becomes. The input of the reactive power controller 14 is a deviation between the reactive power command given from the outside and the reactive power detection value detected by the reactive power detector 10, and the output is the reactive part of the current command to the forward converter 3.

有効電力制御器13及び無効電力制御器14はいずれも例えば比例積分制御系により構成され、有効電力指令と有効電力検出値の偏差及び無効電力指令と無効電力検出値の偏差が零になるように順変換器3への電流指令を決定する。なお、無効電力と有効電力は独立に制御することが可能であり、例えば無効電力指令を零に設定すると、順変換器3は力率1で運転されることとなる。   Both the active power controller 13 and the reactive power controller 14 are configured by, for example, a proportional integral control system so that the deviation between the active power command and the active power detection value and the deviation between the reactive power command and the reactive power detection value become zero. A current command to the forward converter 3 is determined. The reactive power and the active power can be controlled independently. For example, when the reactive power command is set to zero, the forward converter 3 is operated at a power factor of 1.

また、無効電力指令を調整することで同期発電機2の端子電圧を制御することが可能であり、同期発電機2の回転速度が上昇した場合にも同期発電機2の端子電圧を低く抑えられる等のメリットがある。   In addition, the terminal voltage of the synchronous generator 2 can be controlled by adjusting the reactive power command, and the terminal voltage of the synchronous generator 2 can be kept low even when the rotational speed of the synchronous generator 2 increases. There are merits such as.

電流制御器15への入力は3相/2相変換器18の出力する2軸成分の電流検出値と有効電力制御器13の出力する順変換器3への電流指令における有効分、及び無効電力制御器14の出力する順変換器3への電流指令の無効分であり、出力は順変換器3への出力電圧指令となる。電流制御器15は例えば比例積分制御系により構成され、電流検出値と電流指令の偏差が零になるように順変換器3への出力電圧指令を決定する。   The input to the current controller 15 includes the current detected value of the biaxial component output from the three-phase / two-phase converter 18, the effective amount in the current command to the forward converter 3 output from the active power controller 13, and reactive power This is an invalid portion of the current command to the forward converter 3 output from the controller 14, and the output is an output voltage command to the forward converter 3. The current controller 15 is configured by, for example, a proportional-integral control system, and determines an output voltage command to the forward converter 3 so that the deviation between the detected current value and the current command becomes zero.

図1では省略してあるが、実際は図3に示すように電流の有効分を制御する有効電流制御器19、及び電流の無効分を制御する無効電流制御器20から電流制御器15は構成される。電流制御器15の出力する順変換器3への出力電圧指令は2軸成分の電圧指令であるので、2相/3相変換器18によって3相の電圧指令に変換される。   Although omitted in FIG. 1, the current controller 15 is actually composed of an active current controller 19 that controls an effective amount of current and a reactive current controller 20 that controls an ineffective portion of current as shown in FIG. 3. The Since the output voltage command to the forward converter 3 output from the current controller 15 is a voltage command of a two-axis component, it is converted into a three-phase voltage command by the two-phase / three-phase converter 18.

パルス発生器16は、2相/3相変換器18の出力する順変換器3への3相出力電圧指令に基づいて、PWM(Pulse Width Modulation)により順変換器3へのゲートパルス信号を出力する。順変換器3はゲートパルス信号を受け、IGBT等のスイッチング素子が高速にスイッチングを行うことで、順変換器3は指令に応じた電圧を出力することになる。   The pulse generator 16 outputs a gate pulse signal to the forward converter 3 by PWM (Pulse Width Modulation) based on the three-phase output voltage command to the forward converter 3 output from the two-phase / three-phase converter 18. To do. The forward converter 3 receives a gate pulse signal, and a switching element such as an IGBT performs switching at high speed, so that the forward converter 3 outputs a voltage corresponding to the command.

以上のような制御系の構成により、風車1の回転速度の制御や同期発電機2の出力する有効電力及び無効電力の制御が可能となる。ここで、回転速度制御器12の制御ゲインを高く設定すると、順変換器3への有効電力指令の変化速度が上昇するのに伴い、風車1の回転速度の制御応答が上がる。但し、順変換器3への有効電力指令の変化が大きくなるために、同期発電機2の出力する有効電力の変動は大きくなる。この時の風車1における回転速度及び同期発電機2の出力する有効電力の波形例を図4に示す。   With the configuration of the control system as described above, it is possible to control the rotational speed of the windmill 1 and to control the active power and reactive power output from the synchronous generator 2. Here, when the control gain of the rotational speed controller 12 is set high, the control response of the rotational speed of the windmill 1 increases as the changing speed of the active power command to the forward converter 3 increases. However, since the change of the active power command to the forward converter 3 becomes large, the fluctuation of the active power output from the synchronous generator 2 becomes large. FIG. 4 shows a waveform example of the rotational speed of the wind turbine 1 at this time and the active power output from the synchronous generator 2.

図4に示すように、風車1の回転速度の変動は小さく抑えられるが、同期発電機2の出力する有効電力が大きく変動することになる。逆に、回転速度制御器12の制御ゲインを低く設定すると、順変換器3への有効電力指令の変化速度が低下するのに伴い、風車1の回転速度の制御応答が下がる。但し、順変換器3への有効電力指令の変化が小さくなるために、同期発電機2の出力する有効電力の変動は小さくなる。この時の風車1における回転速度及び同期発電機2の出力する有効電力の波形例を図5に示す。   As shown in FIG. 4, although the fluctuation | variation of the rotational speed of the windmill 1 is restrained small, the active electric power which the synchronous generator 2 outputs changes a lot. Conversely, when the control gain of the rotational speed controller 12 is set low, the rotational speed control response of the windmill 1 decreases as the change speed of the active power command to the forward converter 3 decreases. However, since the change in the active power command to the forward converter 3 is small, the variation in the active power output from the synchronous generator 2 is small. FIG. 5 shows a waveform example of the rotational speed of the windmill 1 at this time and the active power output from the synchronous generator 2.

図5に示すように、風車1の回転速度の変動は大きくなるが、同期発電機2の出力する有効電力の変動は小さく抑えることができる。即ち、回転速度制御器12の制御ゲインを調節することで、風車1の回転速度を優先して制御するか、同期発電機2の出力する有効電力を優先して制御するかが調節可能となる。   As shown in FIG. 5, although the fluctuation | variation of the rotational speed of the windmill 1 becomes large, the fluctuation | variation of the active electric power which the synchronous generator 2 outputs can be suppressed small. That is, by adjusting the control gain of the rotation speed controller 12, it is possible to adjust whether the rotation speed of the wind turbine 1 is controlled with priority or the active power output from the synchronous generator 2 is controlled with priority. .

図6に風速と発電出力の関係を示す。風のエネルギーは風速の3乗に比例するので、風速が増加するにつれて発電出力も増加する。一方で、風速が定格を越えると風車1はピッチ制御を行うことで、ブレードが受ける風のエネルギーを逃がすことで、発電出力を一定に保つようにする。ここで、風車1は定格風速未満では効率を優先するために、回転速度を優先して制御する。一方、定格風速以上では変動の少ない一定の出力を得るために、有効電力を優先して制御する。   FIG. 6 shows the relationship between the wind speed and the power generation output. Since the wind energy is proportional to the cube of the wind speed, the power generation output increases as the wind speed increases. On the other hand, when the wind speed exceeds the rating, the wind turbine 1 performs pitch control, thereby releasing the wind energy received by the blades, thereby keeping the power generation output constant. Here, in order to give priority to efficiency when the wind turbine 1 is less than the rated wind speed, the wind speed is controlled with priority on the rotational speed. On the other hand, in order to obtain a constant output with little fluctuation above the rated wind speed, the active power is controlled with priority.

従って、風速検出器21の検出する風速に応じて回転速度制御器12の制御ゲインを切りかえることになる。即ち、定格風速未満では制御ゲインを高く、定格風速以上では制御ゲインを低く設定する。また、回転速度制御器12の制御ゲインを変化させると、それに応じて回転速度制御器12の制御応答速度が変化することになる。   Therefore, the control gain of the rotational speed controller 12 is switched according to the wind speed detected by the wind speed detector 21. That is, the control gain is set high when the wind speed is lower than the rated wind speed, and is set low when the wind speed is higher than the rated wind speed. Further, when the control gain of the rotation speed controller 12 is changed, the control response speed of the rotation speed controller 12 is changed accordingly.

回転速度制御器12の出力する有効電力指令に応じて、有効電力制御器13が有効電流指令を決定することから、回転速度制御器12の制御応答速度は有効電力制御器13の制御応答速度よりも遅く設定する必要がある。通常、回転速度制御器12の制御応答速度が有効電力制御器13の制御応答速度における約5〜300倍の間に入るような範囲に設定される。   Since the active power controller 13 determines the active current command according to the active power command output from the rotation speed controller 12, the control response speed of the rotation speed controller 12 is greater than the control response speed of the active power controller 13. Need to set too late. Usually, the control response speed of the rotation speed controller 12 is set to a range that is between about 5 to 300 times the control response speed of the active power controller 13.

以上のように、風車1の回転速度及び同期発電機2の出力する有効電力を制御することが可能であり、定格風速未満では同期発電機2の回転速度を優先して制御することで高効率な運転を行い、定格風速以上では同期発電機2の出力する有効電力を優先して制御することで風速変動に起因する出力変動を抑制することが可能となる。   As described above, it is possible to control the rotational speed of the wind turbine 1 and the effective power output from the synchronous generator 2. If the wind speed is lower than the rated wind speed, the rotational speed of the synchronous generator 2 is preferentially controlled to achieve high efficiency. When the wind speed is higher than the rated wind speed, it is possible to suppress the output fluctuation caused by the wind speed fluctuation by controlling the active power output from the synchronous generator 2 with priority.

また、風車の回転速度を検出する回転速度検出器と、風速を検出する風速検出器からの検出値に基づいて効率的な回転速度を求める回転速度指令演算器とを備え、回転速度検出器からの回転速度と回転速度指令演算器とからの回転速度の差分を回転速度制御器に入力し、回転速度制御器からの有効電力指令と同期発電機からの有効電力との差分を入力した電力制御器を備え、電力制御器は有効電力指令に従って同期発電機の出力を制御し、同期発電機の出力の増減に応じて、風車1の回転速度を制御することができる。つまり、風車1の回転速度の制御は同期発電機により制御されるので、風車1の機構及び制御を簡素化できる。   In addition, a rotation speed detector for detecting the rotation speed of the windmill and a rotation speed command calculator for obtaining an efficient rotation speed based on a detection value from the wind speed detector for detecting the wind speed are provided. The difference between the rotation speed of the motor and the rotation speed command calculator is input to the rotation speed controller, and the difference between the active power command from the rotation speed controller and the effective power from the synchronous generator is input. The power controller can control the output of the synchronous generator according to the active power command, and can control the rotational speed of the windmill 1 according to the increase or decrease of the output of the synchronous generator. That is, since the rotational speed of the windmill 1 is controlled by the synchronous generator, the mechanism and control of the windmill 1 can be simplified.

本発明を適用した風力発電装置の構成図。The block diagram of the wind power generator to which this invention is applied. 回転速度と機械的入力の関係を示す特性図。The characteristic view which shows the relationship between a rotational speed and mechanical input. 図1に使用した電流制御器の詳細図。FIG. 2 is a detailed view of a current controller used in FIG. 1. 回転速度を優先して制御する場合の波形例を示す特性図。The characteristic view which shows the example of a waveform in the case of controlling by giving priority to rotation speed. 有効電力を優先して制御する場合の波形例を示す特性図。The characteristic view which shows the example of a waveform in the case of controlling with priority on active power. 風速と発電出力の関係を示す特性図。The characteristic view which shows the relationship between a wind speed and electric power generation output.

符号の説明Explanation of symbols

1…風車、2…同期発電機、3…順変換器、4…直流コンデンサ、5…逆変換器、6…系統連系用変圧器、7…電圧検出センサ、8…電流検出センサ、9…有効電力検出器、10…無効電力検出器、11…回転速度検出器、12…回転速度制御器、13…有効電力制御器、14…無効電力制御器、15…電流制御器、16…パルス発生器、17…3相/2相変換器、18…2相/3相変換器、19…有効電流制御器、20…無効電流制御器、21…風速検出器、22…回転速度指令演算器。   DESCRIPTION OF SYMBOLS 1 ... Windmill, 2 ... Synchronous generator, 3 ... Forward converter, 4 ... DC capacitor, 5 ... Reverse converter, 6 ... Transformer for grid connection, 7 ... Voltage detection sensor, 8 ... Current detection sensor, 9 ... Active power detector, 10 ... Reactive power detector, 11 ... Rotational speed detector, 12 ... Rotational speed controller, 13 ... Active power controller, 14 ... Reactive power controller, 15 ... Current controller, 16 ... Pulse generation 17 ... 3-phase / 2-phase converter, 18 ... 2-phase / 3-phase converter, 19 ... active current controller, 20 ... reactive current controller, 21 ... wind speed detector, 22 ... rotational speed command calculator.

Claims (2)

風車の軸に接続された同期発電機と、前記同期発電機の固定子に接続された前記同期発電機の可変周波数の発電電力を直流電力に変換する変換器と、前記変換器と電力系統との間に接続された前記直流電力を固定周波数の交流電力に変換して電力系統に供給する逆変換器とを備えた風力発電装置において、
風車の回転速度を検出する回転速度検出手段と、風速を検出する風速検出器からの検出値に基づいて効率的な回転速度を求める回転速度指令演算手段と、該回転速度指令演算器からの回転速度指令と前記回転速度検出器の回転速度とから有効電力指令を求める回転速度制御手段と、該回転速度制御器からの有効電力指令と前記同期発電機からの有効電力とから前記同期発電機の出力を制御する電力制御手段とを備え、
風速の状態に応じて、前記回転速度制御手段の制御ゲインを調整することで、前記風車の回転速度を優先して制御するか、前記同期発電機の出力する有効電力を優先して制御することを特徴とする風力発電装置。
A synchronous generator connected to the shaft of the wind turbine, a converter for converting the variable frequency generated power of the synchronous generator connected to a stator of the synchronous generator into DC power, the converter and the power system, In a wind turbine generator comprising an inverse converter that converts the DC power connected between two to a fixed frequency AC power and supplies the power to the power system,
Rotational speed detecting means for detecting the rotational speed of the windmill, rotational speed command calculating means for obtaining an efficient rotational speed based on a detection value from the wind speed detector for detecting the wind speed, and rotation from the rotational speed command calculator Rotational speed control means for obtaining an active power command from the speed command and the rotational speed of the rotational speed detector, the active power command from the rotational speed controller and the active power from the synchronous generator Power control means for controlling the output,
By controlling the control gain of the rotational speed control means according to the state of the wind speed, the rotational speed of the windmill is controlled with priority or the active power output by the synchronous generator is controlled with priority. Wind power generator characterized by.
前記回転速度指令演算手段の制御ゲインは所定の風速に基づいて切り替えることを特徴とする請求項1に記載の風力発電装置。   The wind power generator according to claim 1, wherein the control gain of the rotation speed command calculating means is switched based on a predetermined wind speed.
JP2006168646A 2006-06-19 2006-06-19 Wind power generator Expired - Lifetime JP4398440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168646A JP4398440B2 (en) 2006-06-19 2006-06-19 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168646A JP4398440B2 (en) 2006-06-19 2006-06-19 Wind power generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001317922A Division JP3884260B2 (en) 2001-10-16 2001-10-16 Wind power generator

Publications (2)

Publication Number Publication Date
JP2006271199A JP2006271199A (en) 2006-10-05
JP4398440B2 true JP4398440B2 (en) 2010-01-13

Family

ID=37206547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168646A Expired - Lifetime JP4398440B2 (en) 2006-06-19 2006-06-19 Wind power generator

Country Status (1)

Country Link
JP (1) JP4398440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718251B (en) * 2010-01-21 2012-10-31 李金芬 Adjustable vane of wind catching face of wind power generation impeller and vane adjustment method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156029B2 (en) 2009-05-20 2013-03-06 三菱重工業株式会社 Wind power generator and control method thereof
KR101564978B1 (en) * 2014-07-15 2015-11-02 전북대학교산학협력단 Method for adaptive inertial control in a wind turbine
CN105827166A (en) * 2016-03-24 2016-08-03 苏州合欣美电子科技有限公司 Wind power motor regulation and control system based on frequency conversion speed regulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257925A (en) * 1975-11-06 1977-05-12 Fuji Electric Co Ltd Fan-driven generator
JPS58197522A (en) * 1982-05-13 1983-11-17 Meidensha Electric Mfg Co Ltd Controlling method of hydraulic turbine generator
US4700081A (en) * 1986-04-28 1987-10-13 United Technologies Corporation Speed avoidance logic for a variable speed wind turbine
JP3911598B2 (en) * 1997-01-13 2007-05-09 株式会社日立製作所 AC excitation type generator motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718251B (en) * 2010-01-21 2012-10-31 李金芬 Adjustable vane of wind catching face of wind power generation impeller and vane adjustment method thereof

Also Published As

Publication number Publication date
JP2006271199A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP3918837B2 (en) Wind power generator
JP4898230B2 (en) Wind power generation system operation control method and apparatus
Cardenas et al. Control of a switched reluctance generator for variable-speed wind energy applications
JP4007268B2 (en) Wind power generator
JP5470091B2 (en) Wind power generation system and control method thereof
WO2010134171A1 (en) Wind turbine generator and control method thereof
JP4831843B2 (en) Wind power generator and output control method thereof
KR102050174B1 (en) How to adjust wind turbine power draw
JP4398440B2 (en) Wind power generator
JP3884260B2 (en) Wind power generator
KR102048164B1 (en) How to adjust wind turbine power draw
JP4092949B2 (en) Wind power generator equipped with secondary battery, converter control device, and power converter control method
US6834502B2 (en) Combustion turbine power generation system and method of controlling the same
JP6559563B2 (en) Output control device for wind power generation
JP4683012B2 (en) Wind power generator
JP4386068B2 (en) Wind power generator, control method for wind power generator, control device
JP2003134892A (en) Wind-power generator and method of wind power generation
JP3978126B2 (en) Wind power generation system with secondary battery
Li et al. Research of switched reluctance wind power generator system based on variable generation voltage converter
JP2007159311A (en) Power generating apparatus
JP2024042342A (en) Control device
Koch et al. Direct scalar torque control for wind turbine with permanent magnet synchronous generator
JP2006121803A (en) Control device of fluid generator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4