JP4134386B2 - Composite material for PTC thermistor, manufacturing method thereof, and use thereof - Google Patents
Composite material for PTC thermistor, manufacturing method thereof, and use thereof Download PDFInfo
- Publication number
- JP4134386B2 JP4134386B2 JP20008398A JP20008398A JP4134386B2 JP 4134386 B2 JP4134386 B2 JP 4134386B2 JP 20008398 A JP20008398 A JP 20008398A JP 20008398 A JP20008398 A JP 20008398A JP 4134386 B2 JP4134386 B2 JP 4134386B2
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- ptc thermistor
- metal
- ptc
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Glass Compositions (AREA)
- Thermistors And Varistors (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、導電性または半導性の複合材料に関するもので、また正の抵抗温度特性(以下PTCR特性という)を有する複合材料に関するものである。
【0002】
【従来の技術】
PTCサーミスタ材料は、正の抵抗温度特性を示す材料として、モーター起動素子、ヒーター素子、温度補償素子として広く利用されている。代表的な材料としては、チタン酸バリウムを主成分として、Bi、Sb、TaまたはLaなどの希土類元素などのうち少なくとも一種類を含有させた、チタン酸バリウム系半導体磁器材料が知られている。この材料のPTCR特性は、Heywangモデルによるとキュリー点での誘電率の急激な減少により、粒界障壁ポテンシャルが増大するためと説明されている。
【0003】
【発明が解決しようとする課題】
しかしながら、大電流が流れる保護回路素子として利用する場合、定常状態において比抵抗が十分に低いことが要求されるが、実用化されているチタン酸バリウム系半導体材料の比抵抗値は10Ωcmと高く、そのため大電力では使用できないという欠点があった。また、チタン酸バリウム系材料を改良したものとして、例えば特開昭60−59702号公報にBaPbO3にソルダーガラスを添加したPTCサーミスタが開示されている。このPTC材料は10-2〜10-4Ωcmほどの室温抵抗率を示し、動作温度は約750℃である。しかし、室温抵抗率は低抵抗ではあるが、添加したガラスの影響で特性が不安定となったり、抵抗変化幅が1〜2桁程度と実用に際しては不十分であった。
【0004】
本発明の目的は、前記の問題点を解決し、定常時の抵抗値が十分に低く大きな抵抗変化幅を有し、かつ熱的に安定なPTCサーミスタを提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは、ガラスに特定の金属または合金を分散させた複合構造をとることにより、従来のチタン酸バリウム系PTCサーミスタとは異なる新しい原理でPTCR特性を発現することを見出した。すなわち、本発明は、SiO 2 −PbO−B 2 O 3 系ガラスに、溶融によって体積減少する平均粒子径0.5〜500μmのBi金属を10〜90重量%分散したことを特徴とするPTCサーミスタ用複合材料であって、前記PTCサーミスタ用複合材料を使用して得られたPTC素子の抵抗変化率が10 8 以上であるPTCサーミスタ用複合材料に関する。また、本発明は、SiO 2 −PbO−B 2 O 3 系ガラスに、溶融によって体積減少する平均粒子径0.5〜500μmのBi金属を10〜90重量%含有するように調整・混合し、その混合粉を加圧・成形し、得られた成形体を400〜450℃で加熱することを特徴とするPTCサーミスタ用複合材料の製造方法に関する。
さらに、本発明は、前記PTCサーミスタ用複合材料を用いることを特徴とするPTCサーミスタに関する。
【0006】
【作用】
本発明の複合構造により、定常時に低抵抗で優れたPTCR特性を有するPTCサーミスタ材料が得られる。その発現機構は未だ明らかにされていないが、以下のように推察される。
【0007】
【発明の実施の形態】
本発明の複合材料は、低温時には金属および/または合金粒子がガラスに分散した複合構造をしており、その金属粒子は適度な割合で接触してネットワーク構造を形成している。この状態では、金属粒子間に伝導パスが形成されるために低抵抗を示す。次に高温になると、分散している金属または合金粒子が融点で急激な体積減少を起こし、金属または合金のネットワークが切断される。その結果として、金属および/または合金の融点で伝導パスが遮断され、複合材料の抵抗が急激に増大する。すなわち複合材料のPTCR特性は、金属および/または合金の融解現象に起因する。このようなことから、公知のBaPbO3系PTCサーミスタにくらべ、低抵抗の場合でも大きな抵抗変化幅が得られ、かつ急峻なPTCR特性が実現される。
【0008】
本発明における溶融によって体積が減少する金属および/または合金としては、Bi、Sb、Ga、Ge、Siなどの金属やBi−Pb−Sn、Bi−Pb−Sn−Sbなどの合金等、動作原理を満足するものであれば良い。
本発明の複合材料において、前記金属および/または合金の分散量は、過度に少ない場合にはPTCR特性を示さないことがあり、過度に多い場合には抵抗変化幅が小さくなる。また、前記金属または合金粒子の平均粒子径は、0.5μmよりも過度に小さい場合には急峻な抵抗増加が得られず、500μmよりも過度に大きい場合には、動作後に初期抵抗が増加してしまいサイクル特性が劣化する。
【0009】
ガラスの組成は、前記金属および/または合金の融点よりも高い溶融温度または分解温度を有するものであれば、その組み合わせは特に限定されず、所望の性能、用途等に応じて適宜選択することができる。例えば、SiO2−PbO−B2O3、B2O3−ZnO−PbO等のSiO2系酸化物ガラス、B2O3系酸化物ガラスなどを挙げることができる。
【0010】
また、ガラス粉末の平均粒子径は特に限定されないが、通常0.1〜100μmであるのが好ましい。
【0011】
【実施例】
以下に実施例を示し、本発明を具体的に説明する。
【0012】
実施例1
SiO2−PbO−B2O3系ガラス粉末(平均粒子径10μm)にBi金属(平均粒子径10μm)を複合材料中に30重量%分散、含有するように調整・混合した。その混合粉を1000Kg/cm2の圧力で所定の形状に加圧し、ガラス複合成形体を得た。
次にこれを大気中、450℃、約10分の条件で加熱した。このようにして得られた複合体に、Ag電極を形成してPTC素子を得た。このPTC素子の室温抵抗率は0.78Ωcmであり、金属の融点である270℃付近からPTCR特性を示した。
【0013】
図1に、SiO2−PbO−B2O3系ガラス粉末にBi金属を30重量%混合したPTC素子における抵抗の温度依存性を示す。図から明らかなように、Bi金属の融点である270℃付近から急激に抵抗が増加した。この時の最大抵抗値は108Ωcmになり、抵抗変化率は108以上の高い値になった。さらに、ヒートサイクルによる抵抗の変化も見られなかった。
【0014】
参考例1
B2O3−ZnO−PbO系ガラス粉末(平均粒子径10μm)にBi金属(平均粒子径10μm)を複合材料中に30重量%分散、含有するように調整・混合した。その混合粉を1000Kg/cm2の圧力で所定の形状に加圧し、ガラス複合成形体を得た。次にこれを大気中、400℃、約10分の条件で加熱した。このようにして得られた複合体に、Ag電極を形成してPTC素子を得た。このPTC素子の室温抵抗率は0.85Ωcmであり、金属の融点である270℃付近からPTCR特性を示した。
【0015】
参考例2
B2O3−ZnO−PbO系ガラス粉末(平均粒子径10μm)にBi−Pb−Sn−Sb合金(平均粒子径10μm)を複合材料中に30重量%分散、含有するように調整・混合した。その混合粉を1000Kg/cm2の圧力で所定の形状に加圧し、ガラス複合成形体を得た。次にこれを大気中、400℃、約10分の条件で加熱した。このようにして得られた複合体に、Ag電極を形成してPTC素子を得た。このPTC素子の室温抵抗率は0.98Ωcmであり、合金の融点である100℃付近からPTCR特性を示した。
【0016】
以上のべたように、本発明はPTC素子において、10-1Ωcm程度の低抵抗を実現し、抵抗変化幅や特性の安定性を格段に改良することができる。
【0017】
【発明の効果】
本発明によると、ガラスに、溶融によって体積減少する金属および/または合金を分散させた複合構造をとることで、定常時に低抵抗でかつ大きな抵抗変化幅を有するPTCサーミスタ材料を得ることができる。その結果、さらに大きな負荷に対する過電流保護素子を実用化でき、その利用価値は極めて高いものである。
【図面の簡単な説明】
【図1】抵抗−温度特性を示す図である。[0001]
[Industrial application fields]
The present invention relates to a conductive or semiconductive composite material, and to a composite material having a positive resistance temperature characteristic (hereinafter referred to as PTCR characteristic).
[0002]
[Prior art]
A PTC thermistor material is widely used as a motor starting element, a heater element, and a temperature compensating element as a material exhibiting positive resistance temperature characteristics. As a typical material, a barium titanate semiconductor ceramic material containing barium titanate as a main component and containing at least one kind of rare earth elements such as Bi, Sb, Ta, or La is known. According to the Heywang model, the PTCR characteristic of this material is explained by the fact that the grain boundary barrier potential increases due to a rapid decrease in the dielectric constant at the Curie point.
[0003]
[Problems to be solved by the invention]
However, when used as a protective circuit element through which a large current flows, the specific resistance is required to be sufficiently low in a steady state, but the specific resistance value of a barium titanate-based semiconductor material that has been put to practical use is as high as 10 Ωcm, Therefore, there was a drawback that it could not be used with high power. As an improved barium titanate-based material, for example, Japanese Patent Application Laid-Open No. 60-59702 discloses a PTC thermistor in which solder glass is added to BaPbO 3 . This PTC material exhibits a room temperature resistivity of about 10 −2 to 10 −4 Ωcm and an operating temperature of about 750 ° C. However, the room temperature resistivity is low, but the characteristics become unstable due to the effect of the added glass, and the resistance change width is about 1 to 2 digits, which is insufficient for practical use.
[0004]
An object of the present invention is to provide a PTC thermistor that solves the above-mentioned problems, has a sufficiently low resistance value in a steady state, has a large resistance change width, and is thermally stable.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have found that by taking a composite structure in which a specific metal or alloy is dispersed in glass, PTCR characteristics are developed based on a new principle different from that of a conventional barium titanate PTC thermistor. That is, the present invention relates to a PTC thermistor characterized in that 10 to 90% by weight of Bi metal having an average particle diameter of 0.5 to 500 μm which is reduced in volume by melting is dispersed in SiO 2 —PbO—B 2 O 3 glass. It is related with the composite material for PTC thermistors which is a composite material for PTC, and the resistance change rate of the PTC element obtained using the said composite material for PTC thermistors is 10 8 or more . Further, the present invention adjusts and mixes SiO 2 —PbO—B 2 O 3 glass so that it contains 10 to 90 wt% of Bi metal having an average particle size of 0.5 to 500 μm that is reduced in volume by melting, The present invention relates to a method for producing a composite material for a PTC thermistor, wherein the mixed powder is pressed and molded, and the obtained molded body is heated at 400 to 450 ° C.
Furthermore, the present invention relates to a PTC thermistor using the composite material for a PTC thermistor.
[0006]
[Action]
With the composite structure of the present invention, a PTC thermistor material having a low resistance and excellent PTCR characteristics in a steady state can be obtained. The expression mechanism has not been clarified yet, but is presumed as follows.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The composite material of the present invention has a composite structure in which metal and / or alloy particles are dispersed in glass at a low temperature, and the metal particles are in contact with each other at an appropriate ratio to form a network structure. In this state, since a conduction path is formed between the metal particles, the resistance is low. Next, when the temperature rises, the dispersed metal or alloy particles undergo a rapid volume decrease at the melting point, and the metal or alloy network is cut. As a result, the conduction path is blocked at the melting point of the metal and / or alloy, and the resistance of the composite material increases rapidly. That is, the PTCR characteristics of the composite material are due to the melting phenomenon of the metal and / or alloy. For this reason, compared with the known BaPbO 3 PTC thermistor, a large resistance change width can be obtained even when the resistance is low, and a steep PTCR characteristic is realized.
[0008]
Examples of the metal and / or alloy whose volume is reduced by melting in the present invention include metals such as Bi, Sb, Ga, Ge, Si, and alloys such as Bi—Pb—Sn and Bi—Pb—Sn—Sb. Anything that satisfies the above is acceptable.
In the composite material of the present invention, when the amount of the metal and / or alloy dispersed is excessively small, the PTCR characteristic may not be exhibited, and when the amount is excessively large, the resistance change width becomes small. In addition, when the average particle diameter of the metal or alloy particles is excessively smaller than 0.5 μm, a steep increase in resistance cannot be obtained. When the average particle diameter is excessively larger than 500 μm, the initial resistance increases after operation. As a result, the cycle characteristics deteriorate.
[0009]
The composition of the glass is not particularly limited as long as it has a melting temperature or decomposition temperature higher than the melting point of the metal and / or alloy, and can be appropriately selected according to desired performance, application, and the like. it can. Examples thereof include SiO 2 -based oxide glasses such as SiO 2 —PbO—B 2 O 3 and B 2 O 3 —ZnO—PbO, and B 2 O 3 based oxide glasses.
[0010]
Moreover, although the average particle diameter of glass powder is not specifically limited, Usually, it is preferable that it is 0.1-100 micrometers.
[0011]
【Example】
The present invention will be specifically described with reference to the following examples.
[0012]
Example 1
The SiO 2 —PbO—B 2 O 3 glass powder (average particle size 10 μm) was adjusted and mixed so that Bi metal (average particle size 10 μm) was dispersed and contained in the composite material by 30% by weight. The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body.
Next, this was heated in air at 450 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. The room temperature resistivity of this PTC element was 0.78 Ωcm, and PTCR characteristics were exhibited from around 270 ° C., which is the melting point of the metal.
[0013]
FIG. 1 shows the temperature dependence of resistance in a PTC element in which 30 wt% of Bi metal is mixed with SiO 2 —PbO—B 2 O 3 glass powder. As is apparent from the figure, the resistance increased rapidly from around 270 ° C., which is the melting point of Bi metal. The maximum resistance value at this time was 10 8 Ωcm, and the resistance change rate was a high value of 10 8 or more. Furthermore, no change in resistance due to heat cycling was observed.
[0014]
Reference example 1
B 2 O 3 —ZnO—PbO-based glass powder (average particle size 10 μm) was adjusted and mixed so that Bi metal (average particle size 10 μm) was dispersed and contained in the composite material by 30% by weight. The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Next, this was heated in air at 400 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. This PTC element had a room temperature resistivity of 0.85 Ωcm, and exhibited PTCR characteristics from around 270 ° C., which is the melting point of the metal.
[0015]
Reference example 2
B 2 O 3 —ZnO—PbO-based glass powder (average particle size 10 μm) was prepared and mixed so that Bi—Pb—Sn—Sb alloy (average particle size 10 μm) was dispersed and contained in the composite material by 30% by weight. . The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Next, this was heated in air at 400 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. This PTC element had a room temperature resistivity of 0.98 Ωcm, and exhibited PTCR characteristics from around 100 ° C., which is the melting point of the alloy.
[0016]
As described above, the present invention achieves a low resistance of about 10 −1 Ωcm in the PTC element, and can greatly improve the resistance change width and the stability of characteristics.
[0017]
【The invention's effect】
According to the present invention, it is possible to obtain a PTC thermistor material having a low resistance and a large resistance change width in a steady state by taking a composite structure in which a metal and / or alloy whose volume is reduced by melting is dispersed in glass. As a result, an overcurrent protection element for a larger load can be put into practical use, and its utility value is extremely high.
[Brief description of the drawings]
FIG. 1 is a diagram showing resistance-temperature characteristics.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20008398A JP4134386B2 (en) | 1998-07-15 | 1998-07-15 | Composite material for PTC thermistor, manufacturing method thereof, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20008398A JP4134386B2 (en) | 1998-07-15 | 1998-07-15 | Composite material for PTC thermistor, manufacturing method thereof, and use thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008105216A Division JP4433072B2 (en) | 2008-04-15 | 2008-04-15 | Manufacturing method of composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000034133A JP2000034133A (en) | 2000-02-02 |
JP4134386B2 true JP4134386B2 (en) | 2008-08-20 |
Family
ID=16418580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20008398A Expired - Fee Related JP4134386B2 (en) | 1998-07-15 | 1998-07-15 | Composite material for PTC thermistor, manufacturing method thereof, and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4134386B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136321A1 (en) * | 2015-02-25 | 2016-09-01 | 株式会社村田製作所 | Composite material and manufacturing method thereof |
-
1998
- 1998-07-15 JP JP20008398A patent/JP4134386B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000034133A (en) | 2000-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358436B2 (en) | Inorganic-metal composite body exhibiting reliable PTC behavior | |
JP4134386B2 (en) | Composite material for PTC thermistor, manufacturing method thereof, and use thereof | |
JP4433072B2 (en) | Manufacturing method of composite material | |
TWI711059B (en) | A polymer positive temperature coefficient (pptc) material and a fuse device including the same | |
JP3301312B2 (en) | PTC material composition and PTC material | |
CN1219742A (en) | Protection element | |
JP3775003B2 (en) | Conductive paste for semiconductor ceramic and semiconductor ceramic component | |
JPH11111507A (en) | Composite material | |
JPH11329675A (en) | Ptc composition | |
JPH08286537A (en) | Heat generating resistor and heater for fixing device of electrophotographic printer | |
JP3334264B2 (en) | Semiconductor ceramic element | |
JPH01143201A (en) | Variable positive temperature coefficient resistance(ptcr) element | |
JPH1131603A (en) | Ptc resistant element for protecting electric circuit and manufacture thereof | |
JPH09320815A (en) | Manufacture of zno varistor | |
JPS623962B2 (en) | ||
JPS60206106A (en) | Method of producing thick film positive temperature coefficient semiconductor element | |
JP2000294405A (en) | Low resistance ptc material composition and manufacture thereof | |
JPH04365B2 (en) | ||
JP2000173804A (en) | Composit ptc material | |
JPH0534807B2 (en) | ||
JP2017108087A (en) | Composite material and PTC thermistor | |
JPS62287603A (en) | Current limiting resistance element | |
JPH0534802B2 (en) | ||
JPH11121203A (en) | Manufacture of current-limiting element | |
JPH0136961B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080520 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |