JPH0136961B2 - - Google Patents

Info

Publication number
JPH0136961B2
JPH0136961B2 JP58070461A JP7046183A JPH0136961B2 JP H0136961 B2 JPH0136961 B2 JP H0136961B2 JP 58070461 A JP58070461 A JP 58070461A JP 7046183 A JP7046183 A JP 7046183A JP H0136961 B2 JPH0136961 B2 JP H0136961B2
Authority
JP
Japan
Prior art keywords
boric acid
mol
leakage current
amount
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58070461A
Other languages
Japanese (ja)
Other versions
JPS59194402A (en
Inventor
Yoshio Takada
Ken Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58070461A priority Critical patent/JPS59194402A/en
Publication of JPS59194402A publication Critical patent/JPS59194402A/en
Publication of JPH0136961B2 publication Critical patent/JPH0136961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、酸化亜鉛を主成分とする電圧非直
線抵抗体の電気特性の改良に関するものである。 電圧非直線抵抗体はサージアブソーバ、電圧安
定化素子、避雷器などに広く使用されているが、
最近は酸化亜鉛を主成分とする焼結体を使うこと
が多くその主流となつている。この電圧非直線抵
抗体は酸化亜鉛と微量添加物である酸化ビスマ
ス、酸化マンガン、酸化コバルトなどの原料をよ
く混合し、加圧成形後1000℃以上の高温で焼成し
たものに電極を設けてつくられる。この酸化亜鉛
を主成分とする電圧非直線抵抗体は酸化亜鉛粒子
同志の接触部分(粒界部分)に電気的障壁が形成
され、これがすぐれた電圧非直線性の発現の原因
と考えられている。 一般に、電圧非直線性を示す一つの指標として
非直線指数αを使用するが、非直線抵抗体の場合
この指数は従来知られている炭化珪素の3〜4よ
り著しく大きく5〜100程度の値をもち、さらに
ツエナダイオードのように単結晶の接合を利用す
るものでないことから素子特性、例えばV1nA
(1mAの電流を流すときの電圧)は素子形状、焼
成条件を選べば比較的自由に変えることができる
などの利点をもち、電圧非直線抵抗体の使用は
増々増加しようとしている。 しかしながら、このような利点を有する電圧非
直線抵抗体に直流又は交流の電圧を印加すると、
一般に素子に流れるもれ電流は時間とともに増大
し、素子は発熱のすえ熱暴走現象を呈し、ついに
は素子破壊に至るなどといつた寿命上での限界が
あつた。特にギヤツプレスの酸化亜鉛形避雷器の
場合、もれ電流の増大による素子破壊は極めて重
要な問題で、課電劣化の極めて小さな長寿命素子
を得ることは不可欠である。このため、従来はあ
らかじめもれ電流の増加を見込んで、αをできる
だけ大きくし(すなわち、初期もれ電流を小さく
する)、さらに課電率(V0/V1nA:V0印加電圧)
をできるだけ小さく(V0を小さくすなわち低電
圧の印加)するなどの方法によりもれ電流の増加
を緩慢化し、寿命を確保するという方法がとられ
てきた。 しかし避雷器の保護性能の向上という点からは
前述の寿命の確保という方法は望ましくない。 これを第1図で説明する。避雷器用素子の電流
電圧特性で重要であるのは、その規格によつて定
まる大電流側の制限電圧、例えばV10KAと、実際
に素子に印加されている電圧V0との比(V10KA
V0)であり、この比ができるだけ小さい方がよ
い。すなわち制限電圧はできるだけ低く、逆に
V0はできるだけ高い方が望ましいわけである。
しかしすでに述べたように、V0を高くすると短
寿命となるなどの問題があり、避雷器の保護特性
の改善には、素子の長寿命化も極めて重要な問題
となる。 この長寿命化に対する試みは焼成条件、添加物
の選択、組み合わせ等広範囲な検討が進められて
いる。その結果、非直線指数αは若干小さくな
り、初期もれ電流は幾分大きくなつたけれどもも
れ電流の増加割合を小さくすることができ、ある
程度の長寿命化も可能となつてきた。にもかかわ
らず、他の特性、例えば制限電圧比(V10KA
V1nA)値が極端に大きくなつたりするなどの欠
点があつた。 さらに、V0で課電中の素子に高エネルギサー
ジが注入された場合の動的熱安定性の問題があ
る。これはサージ吸収による素子温度の上昇と放
熱に関する問題であり、ある臨界温度を越えると
素子は熱暴走に至る。これを第2図によつて説明
する。 一般に素子温度ともれ電流Iとの関係は(1)式に
よつて示される: I=I0 exp(−Ea(T、V)/kT) (1) ここで、Ea(T、V)は活性エネルギ(一般
に、温度(T)、電圧(V)で変化するが、狭い
温度範囲では一定)、kはボルツマン定数、Tは
絶対温度、I0は定数である。 印加電圧が一定であるとすると、素子への電気
的入力Pは(2)式で示される: P=P0 exp(−Ea(T)/kT) (2) 自然放熱量Qは(3)式で示される: Q=K(T−T0) (3) ここでKは定数である。 この様子を第2図に、曲線A((2)式に対応し電
気的入力Pを表わす曲線)及び直線B((3)式に対
応し放熱量Qを表わす直線)として示した。直線
Bは周囲条件により決まるが、発熱曲線Aは素子
の温度特性により決定される。図中、交点C及び
Dの間では、放熱が発熱を上回り熱的には安定で
はあるが、サージ吸収時、素子の温度上昇がD点
を越えると発熱が放熱を上回り熱暴走に至る。 このため、D点はできるだけ高温にあるほど望
ましい。このことは(2)式でE0、P0、(I0)が小さ
な値を持つことが望ましいことを意味する。これ
らの数値もやはり組成、焼成条件により変化する
ので、この点も十分に考慮に入れる必要がある。
素子を長寿命化すると一般にEaは小さくなるも
のの、逆にI0の増加(これは非直線指数αの低下
に関連する)がみられ、第2図の熱的安定領域
C,D間の温度差ΔTが小さくなり問題となる。 本発明の目的は、特に電圧印加時に、(1)長寿命
で、(2)もれ電流の温度特性に優れ、(3)制限電圧比
ができるだけ小さい素子を得ることにある。 本発明は酸化亜鉛を主成分とする配合物に、ホ
ウ酸(H3BO3)を適量含有せしめて焼結し、焼
成時の条件の選択、焼成後の熱処理などの適宜な
方法により、酸化ビスマスを主成分とする粒界部
分結晶相の体心立方晶の含有比率を制御すること
によつて上記目的を達成するものである。 本発明は、添加物として少なくともホウ酸及び
酸化ビスマスを含み、該ホウ酸含有量が0.02〜
0.1モル%、且つ該酸化ビスマスの80%以上が体
心立方晶であることを特徴とする、酸化亜鉛電圧
非直線抵抗体に存する。 ホウ酸添加量は後述する第3図のように、002
モル%未満では制限電圧比に極大が生じ実用上好
ましくなく、0.1モル%を越えると制限電圧比が
増大するので好ましくないが、0.02〜0.1モル%
の範囲では制限電圧比が一定となる。また同時
に、熱処理などによつて酸化ビスマスの体心立方
晶の含有比率を80%以上とすることによつて、優
れた寿命特性(第4図)及びもれ電流の温度特性
(第6図)が達成される。 次に実施例に基づき本発明を説明する。 実施例 原料配合は酸化ビスマス(Bi2O3)0.5モル%、
酸化コバルト(Co2O3)1.0モル%、酸化マンガ
ン(MnO2)0.5モル%、酸化アンチモン
(Sb2O3)1.0モル%、酸化クロム(Cr2O3)0.5モ
ル%、酸化珪素(SiO2)0.5モル%、及びホウ酸
(H3BO3)添加量を0〜0.1モル%の範囲で変化さ
せ、残部を酸化亜鉛(ZnO)とした。上記原料粉
末及びホウ酸水溶液をボールミルで十分粉砕混合
し、PVA(ポリビニールアルコール)などの結合
剤を添加、造粒後加圧成形し、1200℃2時間焼成
して焼結体を得た。ここでは酸化ビスマス結晶相
の制御を、焼結体を450℃〜800℃の温度範囲でア
ニールすることによりおこない、次いでアルミニ
ウム電極を形成し電気特性を計測した。 第3図は、ホウ酸添加量と制限電圧比
(V2.5KA/V10A)との関係を、ホウ酸無添加の場
合に正規化して示したものである。図中の曲線1
はアニールせず、曲線2ないし4はアニール温度
がそれぞれ、600℃、650℃、700℃である。制限
電圧比は、ホウ酸添加量に対し熱処理なしの場合
には単調増加であるが、熱処理を施すと0.01モル
%付近で極大を示し、0.02〜0.1モル%のホウ酸
に対してはほぼ一定値を示すが、さらにホウ酸を
増量すると制限電圧比は増加する。 制限電圧比だけから判断すればホウ酸無添加が
最も良いようであるが、ホウ酸を添加する場合に
は0.02〜0.1モル%が好適である。 次に素子の課電寿命を検討したのが第4図であ
る。平担率の比較的良好なアニールなし及び600
℃アニールの場合を例にとり、課電率0.8、周囲
温度100℃でホウ酸添加量をパラメメータとして
素子のもれ電流経時変化を調べた。 図中曲線1〜8のホウ酸添加量及び熱処理の有
無を次に示す:
The present invention relates to improving the electrical characteristics of a voltage nonlinear resistor containing zinc oxide as a main component. Voltage nonlinear resistors are widely used in surge absorbers, voltage stabilizing elements, lightning arresters, etc.
Recently, sintered bodies containing zinc oxide as a main component have become the mainstream. This voltage nonlinear resistor is made by thoroughly mixing raw materials such as zinc oxide and trace additives such as bismuth oxide, manganese oxide, and cobalt oxide, and then press-molding and firing at a high temperature of 1000℃ or more, followed by electrodes. It will be done. In this voltage nonlinear resistor whose main component is zinc oxide, an electrical barrier is formed at the contact area (grain boundary area) between zinc oxide particles, and this is thought to be the cause of the excellent voltage nonlinearity. . In general, a nonlinearity index α is used as an indicator of voltage nonlinearity, but in the case of nonlinear resistors, this index is significantly larger than the conventionally known 3 to 4 for silicon carbide, and has a value of about 5 to 100. Furthermore, since it does not use a single crystal junction like a Zener diode, the device characteristics, such as V 1nA
(The voltage when a current of 1 mA flows) has the advantage that it can be changed relatively freely by selecting the element shape and firing conditions, and the use of voltage nonlinear resistors is increasing. However, when applying a DC or AC voltage to a voltage nonlinear resistor that has such advantages,
Generally, the leakage current flowing through an element increases with time, and the element generates heat and exhibits a thermal runaway phenomenon, eventually leading to element destruction, which has reached a limit in terms of life. Particularly in the case of gear press zinc oxide type lightning arresters, element destruction due to increased leakage current is an extremely important problem, and it is essential to obtain long-life elements with extremely low deterioration due to electrical current. For this reason, in the past, the increase in leakage current was anticipated in advance, α was made as large as possible (that is, the initial leakage current was made small), and the charging rate (V 0 /V 1nA : V 0 applied voltage) was
Methods have been taken to slow down the increase in leakage current and ensure a long life by reducing V 0 as much as possible (lowering V 0 , that is, applying a low voltage). However, from the viewpoint of improving the protection performance of the lightning arrester, the above-mentioned method of ensuring the lifespan is not desirable. This will be explained with reference to FIG. What is important in the current-voltage characteristics of lightning arrester elements is the ratio of the limiting voltage on the large current side determined by the standard, e.g. V 10KA , to the voltage V 0 actually applied to the element (V 10KA /
V 0 ), and it is better that this ratio is as small as possible. In other words, the limiting voltage should be as low as possible;
It is desirable that V 0 be as high as possible.
However, as already mentioned, increasing V 0 causes problems such as shortening the lifespan, and thus extending the lifespan of the element is extremely important in improving the protection characteristics of lightning arresters. In attempts to extend the service life, extensive studies are being conducted on firing conditions, selection of additives, combinations, etc. As a result, the nonlinear index α became slightly smaller, and although the initial leakage current became somewhat larger, the rate of increase in the leakage current could be reduced, and a certain degree of longevity became possible. Nevertheless, other characteristics, such as the limiting voltage ratio (V 10KA /
There were drawbacks such as the extremely large V 1nA ) value. Additionally, there is the problem of dynamic thermal stability when high energy surges are injected into the device while it is being energized at V 0 . This is a problem related to the rise in element temperature due to surge absorption and heat dissipation, and when a certain critical temperature is exceeded, the element goes into thermal runaway. This will be explained with reference to FIG. Generally, the relationship between element temperature and leakage current I is expressed by equation (1): I=I 0 exp (-Ea (T, V)/kT) (1) Here, Ea (T, V) is Activation energy (generally varies with temperature (T) and voltage (V), but is constant within a narrow temperature range), k is Boltzmann's constant, T is absolute temperature, and I 0 is a constant. Assuming that the applied voltage is constant, the electrical input P to the element is expressed by equation (2): P = P 0 exp (-Ea (T) / kT) (2) The amount of natural heat radiation Q is (3) It is expressed by the formula: Q=K(T-T 0 ) (3) where K is a constant. This state is shown in FIG. 2 as a curve A (a curve corresponding to equation (2) and representing the electrical input P) and a straight line B (a straight line corresponding to equation (3) and representing the amount of heat dissipation Q). The straight line B is determined by the ambient conditions, but the heat generation curve A is determined by the temperature characteristics of the element. In the figure, between intersection points C and D, heat radiation exceeds heat generation and the device is thermally stable; however, when the temperature rise of the element exceeds point D during surge absorption, heat generation exceeds heat radiation, leading to thermal runaway. For this reason, it is desirable that point D be as high as possible. This means that it is desirable for E 0 , P 0 , and (I 0 ) to have small values in equation (2). These values also vary depending on the composition and firing conditions, so this point also needs to be taken into consideration.
Although Ea generally decreases when the device has a longer life, conversely I 0 increases (this is related to a decrease in the nonlinear index α), and the temperature between the thermal stability regions C and D in Figure 2 increases. The difference ΔT becomes small and becomes a problem. The object of the present invention is to obtain an element that (1) has a long life, (2) has excellent leakage current temperature characteristics, and (3) has a limiting voltage ratio as small as possible, especially when a voltage is applied. The present invention involves adding an appropriate amount of boric acid (H 3 BO 3 ) to a composition containing zinc oxide as a main component, sintering the mixture, and then oxidizing it by appropriate methods such as selecting firing conditions and heat treatment after firing. The above object is achieved by controlling the content ratio of body-centered cubic crystals in the grain boundary partial crystal phase containing bismuth as a main component. The present invention contains at least boric acid and bismuth oxide as additives, and the boric acid content is from 0.02 to
0.1 mol %, and 80% or more of the bismuth oxide is a body-centered cubic crystal. The amount of boric acid added is 002 as shown in Figure 3 below.
If it is less than mol%, the limiting voltage ratio will reach a maximum, which is not practical, and if it exceeds 0.1 mol%, the limiting voltage ratio will increase, which is not preferable, but 0.02 to 0.1 mol%.
In the range of , the limiting voltage ratio is constant. At the same time, by increasing the content of body-centered cubic crystals in bismuth oxide to 80% or more through heat treatment, excellent life characteristics (Figure 4) and temperature characteristics of leakage current (Figure 6) can be achieved. is achieved. Next, the present invention will be explained based on examples. Example Raw material composition is bismuth oxide (Bi 2 O 3 ) 0.5 mol%,
Cobalt oxide (Co 2 O 3 ) 1.0 mol %, manganese oxide (MnO 2 ) 0.5 mol %, antimony oxide (Sb 2 O 3 ) 1.0 mol %, chromium oxide (Cr 2 O 3 ) 0.5 mol %, silicon oxide (SiO 2 ) 0.5 mol% and the amount of boric acid (H 3 BO 3 ) added was varied in the range of 0 to 0.1 mol%, and the remainder was zinc oxide (ZnO). The above raw material powder and boric acid aqueous solution were thoroughly ground and mixed in a ball mill, a binder such as PVA (polyvinyl alcohol) was added, granulated, pressure molded, and fired at 1200° C. for 2 hours to obtain a sintered body. Here, the bismuth oxide crystal phase was controlled by annealing the sintered body at a temperature range of 450°C to 800°C, and then aluminum electrodes were formed and the electrical properties were measured. FIG. 3 shows the relationship between the amount of boric acid added and the limiting voltage ratio (V 2.5KA /V 10A ) normalized to the case where no boric acid is added. Curve 1 in the diagram
is not annealed, and curves 2 to 4 have annealing temperatures of 600°C, 650°C, and 700°C, respectively. The limiting voltage ratio increases monotonically with respect to the amount of boric acid added without heat treatment, but when heat treatment is applied, it reaches a maximum around 0.01 mol%, and remains almost constant for boric acid in the range of 0.02 to 0.1 mol%. However, when the amount of boric acid is further increased, the limiting voltage ratio increases. Judging only from the limiting voltage ratio, it seems best not to add boric acid, but when boric acid is added, 0.02 to 0.1 mol % is suitable. Next, FIG. 4 shows a study of the lifespan of the element when charged with electricity. Relatively good flatness ratio without annealing and 600
Taking the case of °C annealing as an example, we investigated the change in leakage current of the element over time at a charge rate of 0.8 and an ambient temperature of 100 °C, using the amount of boric acid added as a parameter. The amount of boric acid added and the presence or absence of heat treatment for curves 1 to 8 in the figure are shown below:

【表】 熱処理をしない場合は初期もれ電流値は小さい
ものの、ホウ酸の添加量に無関係に短時間で著し
い電流増加をきたす(0.01モル%〜0.1モル%の
場合は図示していないが同様な結果であつた)。
600℃でアニールした素子ではホウ酸が0.02モル
%(図中曲線6)〜0.04モル%(図中曲線7)が
最も安定な経時変化を示した。 次に、アニール温度と体心立方晶酸化ビスマス
の生成量をX線回折により検討した結果を第5図
に示す。ホウ酸0.04モル%添加した素子をそれぞ
れ2時間アニールした。約450℃付近から体心立
方晶酸化ビスマスの生成が始まり、650℃でほぼ
完全に体心立方晶のみ(それまでは、正方晶との
混晶)になる。 これらの関係から、体心立方晶酸化ビスマスの
生成量が約80%以上になることによつて、素子課
電時のもれ電流の経時変化が安定し長寿命化する
ことがわかる。 最後に直流もれ電流の温度依存性を、ホウ酸添
加量及び熱処理条件との関係で示したのが第6図
である。図中各曲線のホウ酸添加量及び熱処理条
件を次に示す:
[Table] When no heat treatment is performed, the initial leakage current value is small, but the current increases significantly in a short period of time regardless of the amount of boric acid added (0.01 mol% to 0.1 mol% is not shown in the figure, but the same applies) ).
In the device annealed at 600° C., boric acid of 0.02 mol % (curve 6 in the figure) to 0.04 mol % (curve 7 in the figure) showed the most stable change over time. Next, FIG. 5 shows the results of examining the annealing temperature and the amount of body-centered cubic bismuth oxide produced using X-ray diffraction. Each element to which 0.04 mol% of boric acid was added was annealed for 2 hours. Formation of body-centered cubic bismuth oxide begins at around 450°C, and at 650°C it becomes almost completely body-centered cubic (until then, it is a mixed crystal with tetragonal crystals). From these relationships, it can be seen that when the amount of body-centered cubic bismuth oxide produced is about 80% or more, the change in leakage current over time when the device is energized is stabilized, and its life is extended. Finally, FIG. 6 shows the temperature dependence of the DC leakage current in relation to the amount of boric acid added and the heat treatment conditions. The amount of boric acid added and heat treatment conditions for each curve in the figure are shown below:

【表】 もれ電流と絶対温度の逆数は実際には曲線で示
され、活性化エネルギーはもれ電流レベルの大き
い方がやや小さい傾向にあるもののそれほど大き
な差異はないようである。むしろ熱処理のない場
合には(1)式におけるI0値が小さいなど、I0値の大
小が問題となる。第6図から熱処理した場合の最
適な(もれ電流が小さい)ホウ素添加量が示され
る(曲線2)。 このように本発明は前記した(1)長寿命で、(2)も
れ電流の温度特性に優れ、(3)制限電圧比ができる
だけ小さい、3つの条件を同時に満足させるため
に、第3図ないし第6図に示す結果を総合するこ
とによつて、最適なホウ酸添加量及び酸化ビスマ
ス体心立方晶含有割合を決定したものである。 なお、本実験でホウ素は全てホウ酸水溶液とし
て添加しているが、ホウ酸水溶液でなければ上記
効果は得られなかつた。これは、例えば酸化ホウ
素(B2O3)等では水との反応のために均一に混
合しにくいものと推察される。また、本心立方晶
酸化ビスマス量の制御は、本実施例では熱処理に
よつて行つたが、体心立方晶酸化ビスマスの量を
80%以上とする方法であれば、雰囲気焼成その他
添加物の考慮などどのような方法であつてもよ
い。 以上のように本発明によれば、ホウ酸添加量及
び体心立方晶酸化ビスマスの生成量を制御するこ
とによつて、長寿命で制限電圧比及びもれ電流の
温度特性に優れた素子を得ることができる。
[Table] The reciprocal of leakage current and absolute temperature is actually shown as a curve, and although the activation energy tends to be slightly smaller at higher leakage current levels, there does not seem to be a large difference. Rather, the magnitude of the I 0 value becomes a problem, such as the small I 0 value in equation (1) in the case without heat treatment. FIG. 6 shows the optimum boron addition amount (lower leakage current) in the case of heat treatment (curve 2). In this way, the present invention is designed to simultaneously satisfy the three conditions described above: (1) long life, (2) excellent temperature characteristics of leakage current, and (3) as small a limiting voltage ratio as possible. The optimum amount of boric acid added and the content ratio of body-centered cubic crystals of bismuth oxide were determined by integrating the results shown in FIGS. In this experiment, all boron was added as an aqueous boric acid solution, but the above effect could not be obtained unless it was an aqueous boric acid solution. This is presumably because boron oxide (B 2 O 3 ), for example, is difficult to mix uniformly due to its reaction with water. In addition, although the amount of body-centered cubic bismuth oxide was controlled by heat treatment in this example, the amount of body-centered cubic bismuth oxide was
Any method such as atmosphere firing or consideration of additives may be used as long as it is 80% or more. As described above, according to the present invention, by controlling the amount of boric acid added and the amount of body-centered cubic bismuth oxide produced, an element with a long life and excellent temperature characteristics of limiting voltage ratio and leakage current can be produced. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化亜鉛電圧非直線抵抗体の電流電圧
特性を示す図、第2図は素子における熱収支を示
す図、第3図はホウ酸添加量と正規化した制限電
圧比との関係を示す図、第4図は素子もれ電流の
経時変化を示す図、第5図はアニール温度と体心
立方晶ビスマスの生成割合を示す図、第6図は素
子もれ電流の温度依存性を示す図である。
Figure 1 shows the current-voltage characteristics of a zinc oxide voltage nonlinear resistor, Figure 2 shows the heat balance in the element, and Figure 3 shows the relationship between the amount of boric acid added and the normalized limiting voltage ratio. Figure 4 shows the change in element leakage current over time, Figure 5 shows the annealing temperature and body-centered cubic bismuth production rate, and Figure 6 shows the temperature dependence of element leakage current. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 添加物として少くともホウ酸及び酸化ビスマ
スを含み、該ホウ酸含有量が0.02〜0.1モル%、
且つ該酸化ビスマスの80%以上が体心立方晶であ
ることを特徴とする酸化亜鉛電圧非直線抵抗体。
1 Contains at least boric acid and bismuth oxide as additives, the boric acid content is 0.02 to 0.1 mol%,
A zinc oxide voltage nonlinear resistor characterized in that 80% or more of the bismuth oxide is a body-centered cubic crystal.
JP58070461A 1983-04-19 1983-04-19 Zinc oxide voltage nonlinear resistor Granted JPS59194402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070461A JPS59194402A (en) 1983-04-19 1983-04-19 Zinc oxide voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070461A JPS59194402A (en) 1983-04-19 1983-04-19 Zinc oxide voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS59194402A JPS59194402A (en) 1984-11-05
JPH0136961B2 true JPH0136961B2 (en) 1989-08-03

Family

ID=13432176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070461A Granted JPS59194402A (en) 1983-04-19 1983-04-19 Zinc oxide voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS59194402A (en)

Also Published As

Publication number Publication date
JPS59194402A (en) 1984-11-05

Similar Documents

Publication Publication Date Title
US5000876A (en) Voltage non-linear type resistors
JPS5811084B2 (en) Voltage nonlinear resistor
JPH0136684B2 (en)
JPH0136961B2 (en)
JPS644651B2 (en)
JP2623188B2 (en) Varistor and manufacturing method thereof
JP2546726B2 (en) Voltage nonlinear resistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JP2573580B2 (en) Voltage non-linear resistor
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPH0114682B2 (en)
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPS6236615B2 (en)
JPS634681B2 (en)
JPH0439761B2 (en)
JPS6322602B2 (en)
JP2531586B2 (en) Voltage nonlinear resistor
JPH0354441B2 (en)
JPS604564B2 (en) Voltage nonlinear resistor
JPS6330765B2 (en)
JPH0223008B2 (en)
JPS63132402A (en) Manufacture of voltage nonlinear resistor
JPS60192302A (en) Method of producing voltage nonlinear resistor
JPS59214204A (en) Voltage nonlinear resistor