JP2000034133A - Composite material - Google Patents
Composite materialInfo
- Publication number
- JP2000034133A JP2000034133A JP20008398A JP20008398A JP2000034133A JP 2000034133 A JP2000034133 A JP 2000034133A JP 20008398 A JP20008398 A JP 20008398A JP 20008398 A JP20008398 A JP 20008398A JP 2000034133 A JP2000034133 A JP 2000034133A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- alloy
- resistance
- glass
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Glass Compositions (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、導電性または半導性の
複合材料に関するもので、また正の抵抗温度特性(以下
PTCR特性という)を有する複合材料に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive or semiconductive composite material, and more particularly to a composite material having a positive resistance temperature characteristic (hereinafter referred to as PTCR characteristic).
【0002】[0002]
【従来の技術】PTCサーミスタ材料は、正の抵抗温度
特性を示す材料として、モーター起動素子、ヒーター素
子、温度補償素子として広く利用されている。代表的な
材料としては、チタン酸バリウムを主成分として、B
i、Sb、TaまたはLaなどの希土類元素などのうち
少なくとも一種類を含有させた、チタン酸バリウム系半
導体磁器材料が知られている。この材料のPTCR特性
は、Heywangモデルによるとキュリー点での誘電率の急
激な減少により、粒界障壁ポテンシャルが増大するため
と説明されている。2. Description of the Related Art PTC thermistor materials are widely used as materials exhibiting positive resistance-temperature characteristics as motor starting elements, heater elements, and temperature compensating elements. Typical materials include barium titanate as a main component and B
Barium titanate-based semiconductor ceramic materials containing at least one kind of rare earth elements such as i, Sb, Ta or La are known. According to the Heywang model, the PTCR property of this material is explained by a sharp decrease in the dielectric constant at the Curie point, thereby increasing the grain boundary barrier potential.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、大電流
が流れる保護回路素子として利用する場合、定常状態に
おいて比抵抗が十分に低いことが要求されるが、実用化
されているチタン酸バリウム系半導体材料の比抵抗値は
10Ωcmと高く、そのため大電力では使用できないと
いう欠点があった。また、チタン酸バリウム系材料を改
良したものとして、例えば特開昭60−59702号公
報にBaPbO3にソルダーガラスを添加したPTCサ
ーミスタが開示されている。このPTC材料は10-2〜
10-4Ωcmほどの室温抵抗率を示し、動作温度は約7
50℃である。しかし、室温抵抗率は低抵抗ではある
が、添加したガラスの影響で特性が不安定となったり、
抵抗変化幅が1〜2桁程度と実用に際しては不十分であ
った。However, when used as a protection circuit element through which a large current flows, it is required that the specific resistance is sufficiently low in a steady state. Has a drawback that it cannot be used with high power because of its high specific resistance of 10 Ωcm. Further, as an improvement of the barium titanate-based material, for example PTC thermistor obtained by adding solder glass BaPbO 3 in JP 60-59702 JP is disclosed. This PTC material is 10 -2
Room temperature resistivity of about 10 -4 Ωcm and operating temperature of about 7
50 ° C. However, although the room temperature resistivity is low, the characteristics become unstable due to the effect of added glass,
The resistance change width was about one or two digits, which was insufficient for practical use.
【0004】本発明の目的は、前記の問題点を解決し、
定常時の抵抗値が十分に低く大きな抵抗変化幅を有し、
かつ熱的に安定なPTCサーミスタを提供するものであ
る。[0004] An object of the present invention is to solve the above problems,
The constant resistance value is sufficiently low and has a large resistance change width,
The present invention also provides a thermally stable PTC thermistor.
【0005】[0005]
【問題点を解決するための手段】本発明者らは、ガラス
に特定の金属または合金を分散させた複合構造をとるこ
とにより、従来のチタン酸バリウム系PTCサーミスタ
とは異なる新しい原理でPTCR特性を発現することを
見出した。すなわち、本発明は、ガラスに、溶融によっ
て体積減少する平均粒子径0.5〜500μmの金属お
よび/または合金の少なくとも一種を10〜90重量%
分散したことを特徴とする複合材料に関する。Means for Solving the Problems The present inventors have realized a PTCR characteristic based on a new principle different from the conventional barium titanate-based PTC thermistor by adopting a composite structure in which a specific metal or alloy is dispersed in glass. Was found to be expressed. That is, the present invention relates to a method in which at least one kind of metal and / or alloy having an average particle diameter of 0.5 to 500 μm whose volume is reduced by melting is added to glass by 10 to 90% by weight.
The present invention relates to a composite material characterized by being dispersed.
【0006】[0006]
【作用】本発明の複合構造により、定常時に低抵抗で優
れたPTCR特性を有するPTCサーミスタ材料が得ら
れる。その発現機構は未だ明らかにされていないが、以
下のように推察される。According to the composite structure of the present invention, a PTC thermistor material having low resistance and excellent PTCR characteristics in a steady state can be obtained. Its expression mechanism has not been elucidated yet, but is presumed as follows.
【0007】[0007]
【発明の実施の形態】本発明の複合材料は、低温時には
金属および/または合金粒子がガラスに分散した複合構
造をしており、その金属粒子は適度な割合で接触してネ
ットワーク構造を形成している。この状態では、金属粒
子間に伝導パスが形成されるために低抵抗を示す。次に
高温になると、分散している金属または合金粒子が融点
で急激な体積減少を起こし、金属または合金のネットワ
ークが切断される。その結果として、金属および/また
は合金の融点で伝導パスが遮断され、複合材料の抵抗が
急激に増大する。すなわち複合材料のPTCR特性は、
金属および/または合金の融解現象に起因する。このよ
うなことから、公知のBaPbO3系PTCサーミスタ
にくらべ、低抵抗の場合でも大きな抵抗変化幅が得ら
れ、かつ急峻なPTCR特性が実現される。DESCRIPTION OF THE PREFERRED EMBODIMENTS The composite material of the present invention has a composite structure in which metal and / or alloy particles are dispersed in glass at a low temperature, and the metal particles contact at an appropriate ratio to form a network structure. ing. In this state, since a conduction path is formed between the metal particles, a low resistance is exhibited. At the next higher temperature, the dispersed metal or alloy particles undergo a rapid volume decrease at the melting point, cutting the metal or alloy network. As a result, the conduction path is interrupted at the melting point of the metal and / or the alloy, and the resistance of the composite material increases sharply. That is, the PTCR property of the composite material is
Due to melting phenomena of metals and / or alloys. For this reason, as compared with the known BaPbO 3 -based PTC thermistor, a large resistance change width is obtained even at a low resistance, and a steep PTCR characteristic is realized.
【0008】本発明における溶融によって体積が減少す
る金属および/または合金としては、Bi、Sb、G
a、Ge、Siなどの金属やBi−Pb−Sn、Bi−
Pb−Sn−Sbなどの合金等、動作原理を満足するも
のであれば良い。本発明の複合材料において、前記金属
および/または合金の分散量は、過度に少ない場合には
PTCR特性を示さないことがあり、過度に多い場合に
は抵抗変化幅が小さくなる。また、前記金属または合金
粒子の平均粒子径は、0.5μmよりも過度に小さい場
合には急峻な抵抗増加が得られず、500μmよりも過
度に大きい場合には、動作後に初期抵抗が増加してしま
いサイクル特性が劣化する。The metals and / or alloys whose volume is reduced by melting in the present invention include Bi, Sb, G
a, Ge, Si and other metals, Bi-Pb-Sn, Bi-
Any material that satisfies the operation principle, such as an alloy such as Pb-Sn-Sb, may be used. In the composite material of the present invention, if the dispersion amount of the metal and / or alloy is excessively small, the PTCR characteristic may not be exhibited. If the dispersion amount is excessively large, the resistance change width becomes small. When the average particle diameter of the metal or alloy particles is excessively smaller than 0.5 μm, a steep increase in resistance cannot be obtained, and when the average particle diameter is excessively larger than 500 μm, the initial resistance increases after operation. As a result, the cycle characteristics deteriorate.
【0009】ガラスの組成は、前記金属および/または
合金の融点よりも高い溶融温度または分解温度を有する
ものであれば、その組み合わせは特に限定されず、所望
の性能、用途等に応じて適宜選択することができる。例
えば、SiO2−PbO−B2O3、B2O3−ZnO−P
bO等のSiO2系酸化物ガラス、B2O3系酸化物ガラ
スなどを挙げることができる。The composition of the glass is not particularly limited as long as it has a melting temperature or a decomposition temperature higher than the melting point of the metal and / or alloy, and is appropriately selected according to the desired performance, application, and the like. can do. For example, SiO 2 —PbO—B 2 O 3 , B 2 O 3 —ZnO—P
Examples thereof include SiO 2 -based oxide glass such as bO and B 2 O 3 -based oxide glass.
【0010】また、ガラス粉末の平均粒子径は特に限定
されないが、通常0.1〜100μmであるのが好まし
い。Although the average particle size of the glass powder is not particularly limited, it is usually preferably 0.1 to 100 μm.
【0011】[0011]
【実施例】以下に実施例を示し、本発明を具体的に説明
する。The present invention will be specifically described below with reference to examples.
【0012】実施例1 SiO2−PbO−B2O3系ガラス粉末(平均粒子径1
0μm)にBi金属(平均粒子径10μm)を複合材料
中に30重量%分散、含有するように調整・混合した。
その混合粉を1000Kg/cm2の圧力で所定の形状
に加圧し、ガラス複合成形体を得た。次にこれを大気
中、450℃、約10分の条件で加熱した。このように
して得られた複合体に、Ag電極を形成してPTC素子
を得た。このPTC素子の室温抵抗率は0.78Ωcm
であり、金属の融点である270℃付近からPTCR特
性を示した。Example 1 SiO 2 —PbO—B 2 O 3 based glass powder (average particle size 1
(0 μm) and 30% by weight of Bi metal (average particle diameter: 10 μm) dispersed and contained in the composite material.
The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Next, this was heated in air at 450 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. The room temperature resistivity of this PTC element is 0.78 Ωcm.
And showed PTCR characteristics from around 270 ° C., which is the melting point of the metal.
【0013】図1に、SiO2−PbO−B2O3系ガラ
ス粉末にBi金属を30重量%混合したPTC素子にお
ける抵抗の温度依存性を示す。図から明らかなように、
Bi金属の融点である270℃付近から急激に抵抗が増
加した。この時の最大抵抗値は108Ωcmになり、抵
抗変化率は108以上の高い値になった。さらに、ヒー
トサイクルによる抵抗の変化も見られなかった。FIG. 1 shows the temperature dependence of the resistance of a PTC element in which 30% by weight of Bi metal is mixed with SiO 2 —PbO—B 2 O 3 glass powder. As is clear from the figure,
The resistance rapidly increased from about 270 ° C., which is the melting point of Bi metal. At this time, the maximum resistance value was 10 8 Ωcm, and the resistance change rate was a high value of 10 8 or more. Further, no change in resistance due to the heat cycle was observed.
【0014】実施例2 B2O3−ZnO−PbO系ガラス粉末(平均粒子径10
μm)にBi金属(平均粒子径10μm)を複合材料中
に30重量%分散、含有するように調整・混合した。そ
の混合粉を1000Kg/cm2の圧力で所定の形状に
加圧し、ガラス複合成形体を得た。次にこれを大気中、
400℃、約10分の条件で加熱した。このようにして
得られた複合体に、Ag電極を形成してPTC素子を得
た。このPTC素子の室温抵抗率は0.85Ωcmであ
り、金属の融点である270℃付近からPTCR特性を
示した。Example 2 B 2 O 3 —ZnO—PbO-based glass powder (average particle diameter 10
μm) was adjusted and mixed so that Bi metal (average particle diameter: 10 μm) was dispersed and contained in the composite material at 30% by weight. The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body. Then put this in the atmosphere,
Heating was performed at 400 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. The room temperature resistivity of this PTC element was 0.85 Ωcm, and PTCR characteristics were exhibited from around 270 ° C., which is the melting point of metal.
【0015】実施例3 B2O3−ZnO−PbO系ガラス粉末(平均粒子径10
μm)にBi−Pb−Sn−Sb合金(平均粒子径10
μm)を複合材料中に30重量%分散、含有するように
調整・混合した。その混合粉を1000Kg/cm2の
圧力で所定の形状に加圧し、ガラス複合成形体を得た。
次にこれを大気中、400℃、約10分の条件で加熱し
た。このようにして得られた複合体に、Ag電極を形成
してPTC素子を得た。このPTC素子の室温抵抗率は
0.98Ωcmであり、合金の融点である100℃付近
からPTCR特性を示した。Example 3 B 2 O 3 —ZnO—PbO-based glass powder (average particle diameter 10
μm) to a Bi—Pb—Sn—Sb alloy (average particle size 10
μm) was adjusted and mixed so as to be dispersed and contained in the composite material at 30% by weight. The mixed powder was pressed into a predetermined shape at a pressure of 1000 kg / cm 2 to obtain a glass composite molded body.
Next, this was heated in air at 400 ° C. for about 10 minutes. An Ag electrode was formed on the composite thus obtained to obtain a PTC element. The room temperature resistivity of this PTC element was 0.98 Ωcm, and PTCR characteristics were exhibited from around 100 ° C., which is the melting point of the alloy.
【0016】以上のべたように、本発明はPTC素子に
おいて、10-1Ωcm程度の低抵抗を実現し、抵抗変化
幅や特性の安定性を格段に改良することができる。As described above, the present invention realizes a low resistance of about 10 -1 Ωcm in the PTC element, and can remarkably improve the resistance change width and the stability of characteristics.
【0017】[0017]
【発明の効果】本発明によると、ガラスに、溶融によっ
て体積減少する金属および/または合金を分散させた複
合構造をとることで、定常時に低抵抗でかつ大きな抵抗
変化幅を有するPTCサーミスタ材料を得ることができ
る。その結果、さらに大きな負荷に対する過電流保護素
子を実用化でき、その利用価値は極めて高いものであ
る。According to the present invention, a PTC thermistor material having a low resistance and a large resistance change width in a steady state is obtained by forming a composite structure in which a metal and / or an alloy whose volume is reduced by melting is dispersed in glass. Obtainable. As a result, an overcurrent protection element for a larger load can be put to practical use, and its use value is extremely high.
【図1】抵抗−温度特性を示す図である。FIG. 1 is a diagram showing resistance-temperature characteristics.
Claims (2)
平均粒子径0.5〜500μmの金属および/または合
金の少なくとも一種を10〜90重量%分散したことを
特徴とする複合材料。1. A composite material characterized in that at least one kind of metal and / or alloy having an average particle diameter of 0.5 to 500 μm whose volume is reduced by melting in glass is dispersed in an amount of 10 to 90% by weight.
O3系酸化物の少なくとも一種からなることを特徴とす
る請求項1記載の複合材料。2. The method according to claim 1, wherein the glass is SiO 2 -based oxide or B 2
The composite material according to claim 1, comprising at least one kind of O 3 -based oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20008398A JP4134386B2 (en) | 1998-07-15 | 1998-07-15 | Composite material for PTC thermistor, manufacturing method thereof, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20008398A JP4134386B2 (en) | 1998-07-15 | 1998-07-15 | Composite material for PTC thermistor, manufacturing method thereof, and use thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008105216A Division JP4433072B2 (en) | 2008-04-15 | 2008-04-15 | Manufacturing method of composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000034133A true JP2000034133A (en) | 2000-02-02 |
JP4134386B2 JP4134386B2 (en) | 2008-08-20 |
Family
ID=16418580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20008398A Expired - Fee Related JP4134386B2 (en) | 1998-07-15 | 1998-07-15 | Composite material for PTC thermistor, manufacturing method thereof, and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4134386B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136321A1 (en) * | 2015-02-25 | 2016-09-01 | 株式会社村田製作所 | Composite material and manufacturing method thereof |
-
1998
- 1998-07-15 JP JP20008398A patent/JP4134386B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136321A1 (en) * | 2015-02-25 | 2016-09-01 | 株式会社村田製作所 | Composite material and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4134386B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358436B2 (en) | Inorganic-metal composite body exhibiting reliable PTC behavior | |
JP2000034133A (en) | Composite material | |
JP4433072B2 (en) | Manufacturing method of composite material | |
JP3301312B2 (en) | PTC material composition and PTC material | |
JP3775003B2 (en) | Conductive paste for semiconductor ceramic and semiconductor ceramic component | |
US3856567A (en) | Electrode for porous ceramic and method of making same | |
JPH11111507A (en) | Composite material | |
JPH11329675A (en) | Ptc composition | |
JPH04365B2 (en) | ||
JPS6320364B2 (en) | ||
JPH1131603A (en) | Ptc resistant element for protecting electric circuit and manufacture thereof | |
JPS60206106A (en) | Method of producing thick film positive temperature coefficient semiconductor element | |
JPH0534807B2 (en) | ||
JPH0534802B2 (en) | ||
JPH061722B2 (en) | Method for manufacturing thick film type positive temperature coefficient semiconductor device | |
JPS62287603A (en) | Current limiting resistance element | |
JPH0558242B2 (en) | ||
JPS6158210A (en) | Method of producing thick film positive temperature coefficient semiconductor element | |
JPS623962B2 (en) | ||
JPS60261102A (en) | Method of producing thick film positive temperature coefficient semiconductor element | |
JP2017108087A (en) | Composite material and PTC thermistor | |
JP2000173804A (en) | Composit ptc material | |
JPH04565B2 (en) | ||
JPH04364B2 (en) | ||
JPH05251207A (en) | Manufacturing method of ptc ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080520 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |