JPH061722B2 - Method for manufacturing thick film type positive temperature coefficient semiconductor device - Google Patents

Method for manufacturing thick film type positive temperature coefficient semiconductor device

Info

Publication number
JPH061722B2
JPH061722B2 JP6402184A JP6402184A JPH061722B2 JP H061722 B2 JPH061722 B2 JP H061722B2 JP 6402184 A JP6402184 A JP 6402184A JP 6402184 A JP6402184 A JP 6402184A JP H061722 B2 JPH061722 B2 JP H061722B2
Authority
JP
Japan
Prior art keywords
thick film
semiconductor device
batio
film type
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6402184A
Other languages
Japanese (ja)
Other versions
JPS60206105A (en
Inventor
慶一 野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6402184A priority Critical patent/JPH061722B2/en
Publication of JPS60206105A publication Critical patent/JPS60206105A/en
Publication of JPH061722B2 publication Critical patent/JPH061722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機器の保温,加熱などに用いられる面状発熱体
のなかで、ガラスフリットを必要としない厚膜型正特性
半導体素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thick film type positive temperature coefficient semiconductor device which does not require glass frit among planar heating elements used for heat insulation and heating of equipment. Is.

従来例の構成とその問題点 BaTiO3系半導体からなる素子は所定温度以上で急激に抵
抗値が増大するスイッチング特性及びスイッチング後の
自己発熱特性を有し、昇温特性が速く自己温度制御機能
を有し、外部の制御回路を必要としないため広く利用さ
れている。
Configuration of conventional example and its problems The element made of BaTiO 3 based semiconductor has the switching characteristic that the resistance value rapidly increases at a predetermined temperature or more and the self-heating characteristic after switching. It is widely used because it does not require an external control circuit.

従来の正特性サーミスタ発熱体はBaTiO3系半導体粉末を
加圧成形した後、焼成して得ていたが、実用可能な厚膜
状の正特性サーミスタ発熱体を得ることは困難であると
されていた。
The conventional PTC thermistor heating element was obtained by pressure-molding BaTiO 3 semiconductor powder and then firing it, but it is said that it is difficult to obtain a practical thick-film PTC thermistor heating element. It was

従来、BaTiO3系半導体を膜状に加工する方法としては、
次のようなものが知られている。
Conventionally, as a method of processing a BaTiO 3 based semiconductor into a film,
The following are known.

ディスク形に成形した後、焼成したものを薄片に研磨
する。
After being formed into a disc shape, the fired product is ground into thin pieces.

真空蒸着法により基板上に薄膜を形成する。A thin film is formed on the substrate by a vacuum evaporation method.

BaTiO3系半導体粉末に導電性の添加剤とガラスフリッ
トを加えてペースト状とし、基板上にスクリーン印刷し
た後、焼成する。
A conductive additive and glass frit are added to BaTiO 3 semiconductor powder to form a paste, which is screen-printed on a substrate and then baked.

しかし、前記の方法ではBaTiO3系半導体の結晶粒子径
が大きくもろいため、膜状にまで研磨することは甚だ困
難である。また、前記の方法では操作が面倒であり、
発熱体に適した大電力を得ることがむつかしい。さら
に、前記の方法では面積抵抗が高くなり易く制御が困
難であり、発熱体には適さず、またあらかじめガラスフ
リットを調合,焼成しておかなければならず、面倒であ
ると共にガラスフリットの材質によってはBaTiO3系半導
体の持つスイッチング特性及び自己発熱特性を劣化させ
る。そして、ガラスフリットを加えることによりBaTiO3
系半導体とガラスフリットの耐熱性,熱膨張係数の差か
ら熱衝撃に弱く、熱伝導が妨げられる。さらに、導電性
の添加剤とガラスフリットを均一に混合することは困難
であり、特性にばらつきを生じる原因の一つとなってい
る。
However, since the crystal grain size of the BaTiO 3 semiconductor is large and brittle in the above method, it is very difficult to polish it into a film. Also, the above method is troublesome to operate,
It is difficult to obtain high power suitable for the heating element. Furthermore, in the above method, the sheet resistance is likely to be high and the control is difficult, it is not suitable for the heating element, and the glass frit must be prepared and fired in advance, which is troublesome and depends on the material of the glass frit. Deteriorates the switching and self-heating properties of BaTiO 3 semiconductors. Then, by adding glass frit, BaTiO 3
Due to the difference in heat resistance and coefficient of thermal expansion between the system semiconductor and the glass frit, it is weak against thermal shock and prevents heat conduction. Furthermore, it is difficult to uniformly mix the conductive additive and the glass frit, which is one of the causes of variations in characteristics.

発明の目的 そこで本発明では前記従来技術の欠点であった製造上の
繁雑さを解決し、ガラスフリットを用いずに厚膜状にす
ることにより熱衝撃性,熱伝導性に優れ、均一な特性を
持つ厚膜型正特性半導体素子を容易に製造できる方法を
提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, the present invention solves the disadvantage of the above-mentioned prior art in manufacturing complexity, and by forming a thick film without using a glass frit, it has excellent thermal shock resistance and thermal conductivity, and has uniform characteristics. It is an object of the present invention to provide a method for easily manufacturing a thick film type positive temperature coefficient semiconductor device having

発明の構成 本発明の厚膜型正特性半導体素子の製造方法は、BaTiO3
系半導体粉末にMo3Si,Mo5Si3のうち少なくとも一種類の
粉末を1.0〜60.0重量%の粉末を加え、ペースト状にし
た混合物を基板上に塗布して厚膜状とした後焼成するこ
とにより厚膜型正特性半導体素子を得ようとするもので
ある。
Method for producing a thick film type PTC semiconductor device having the structure This invention, BaTiO 3
1.0 to 60.0% by weight of at least one kind of powder of Mo 3 Si and Mo 5 Si 3 is added to the base semiconductor powder, and the paste-like mixture is applied onto the substrate to form a thick film and then baked. This is intended to obtain a thick film type positive temperature coefficient semiconductor device.

従来の導電性添加剤とガラスフリットを用いる方法では
BaTiO3系半導体粉末同志の電気的接続のために導電性添
加剤が必要であり、BaTiO3系粉末同志を物理的に接続す
るのにガラスフリットが必要であった。
In the conventional method using the conductive additive and the glass frit,
A conductive additive was required for electrical connection between the BaTiO 3 -based semiconductor powders, and a glass frit was required for physically connecting the BaTiO 3 -based powders.

しかし、本発明によれば導電性添加剤とガラスフリット
の両方の役割をはたすものとして、Mo3Si,Mo5Si3を用い
たところに特徴を有している。
However, the present invention is characterized in that Mo 3 Si and Mo 5 Si 3 are used because they serve as both the conductive additive and the glass frit.

これらのMo3Si,Mo5Si3は常温では導体であり、1000〜11
00℃以上の温度になると一部分が分解して粒子表面にSi
O2が析出するが、粒子内部は元のままで表面のSiO2膜に
より分解が阻止される。従って、BaTiO3系半導体粉末
と、Mo3Si,Mo5Si3粉末を混合して焼成すると、Mo3Si,Mo
5Si3の表面に析出するSiO2がガラスフリットと同じ役割
をし、粒子内部が導電性添加剤の役割をするため、Mo3S
i,Mo5Si3を添加するだけでガラスフリットを必要としな
い厚膜型正特性半導体素子が得られる。
These Mo 3 Si and Mo 5 Si 3 are conductors at room temperature,
When the temperature reaches over 00 ℃, a part of it decomposes and Si is
Although O 2 is deposited, the inside of the particle remains intact and the decomposition is prevented by the SiO 2 film on the surface. Therefore, when BaTiO 3 based semiconductor powder and Mo 3 Si, Mo 5 Si 3 powder are mixed and fired, Mo 3 Si, Mo
Since the SiO 2 precipitated on the surface of the 5 Si 3 is the same role as the glass frit, the role of particle inside conductive additive, Mo 3 S
Only by adding i, Mo 5 Si 3 , it is possible to obtain a thick film type positive temperature coefficient semiconductor device which does not require a glass frit.

また、導電性金属を添加することにより熱伝導性が悪く
ガラスフリットに較べ熱伝導性が良くなり、熱衝撃性も
向上する。
Further, by adding a conductive metal, the thermal conductivity is poor and the thermal conductivity is improved as compared with the glass frit, and the thermal shock resistance is also improved.

実施例の説明 以下に本発明の実施例をあげて第1図と共に具体的に説
明する。
Description of Embodiments An embodiment of the present invention will be specifically described below with reference to FIG.

実施例1 BaTiO3に1.0モル%のNb2O5を加え1300℃で焼成した後、
粉砕してBaTiO3系半導体粉末を得る。前記BaTiO3系半導
体粉末に全重量に対して18.0重量%のMo3Si粉末を加
え均一に混合し、さらにα−テルピネオールを加えてペ
ースト状混合物1を作る。
Example 1 After adding 1.0 mol% of Nb 2 O 5 to BaTiO 3 and baking at 1300 ° C.,
Grind to obtain BaTiO 3 based semiconductor powder. 18.0 wt% of Mo 3 Si powder is added to the BaTiO 3 based semiconductor powder and mixed uniformly, and α-terpineol is further added to prepare a paste-like mixture 1.

一方、Al2O3などからなる基板2上にあらかじめ一対のA
gなどの導電性物質からなる電極3,4を設けておき、
前記電極3,4上にその電極3,4の一部が残るように
前記ペースト状混合物1をスクリーン印刷などにより塗
布し、室温から10℃/minの昇温速度で1350℃ま
で昇温し、1時間保持した後、炉内放冷する。このよう
にして厚膜型正特性半導体素子を得た。
On the other hand, a pair of A is previously formed on the substrate 2 made of Al 2 O 3 or the like.
The electrodes 3 and 4 made of a conductive substance such as g are provided in advance,
The paste mixture 1 is applied onto the electrodes 3 and 4 by screen printing so that a part of the electrodes 3 and 4 remains, and the temperature is raised from room temperature to 1350 ° C. at a heating rate of 10 ° C./min. After holding for 1 hour, the furnace is allowed to cool. Thus, a thick film type positive temperature coefficient semiconductor device was obtained.

実施例2 実施例1と同様にしてBaTiO3に3.0モル%のY2O3を加え
1250℃で焼成した後、粉砕してBaTiO3系半導体粉末
を得る。前記BaTiO3系半導体粉末に全重量に対して39.5
重量%のMo5Si3粉末を加え均一に混合し、さらにα−テ
ルピネオールを加えてペースト状混合物1にする。つい
で、実施例1と同様に前記基板2上にあらかじめ前記電
極3,4を設けておき、前記電極3,4の一部が残るよ
うに前記ペースト状混合物1をスクリーン印刷などによ
り塗布し、室温から10℃/minの昇温速度で1300
℃まで昇温し、30分間保持した後、炉内放冷する。こ
のようにして厚膜型半導体素子を得た。
After firing at Similarly to BaTiO 3 and 3.0 mol% of Y 2 O 3 was added 1250 ° C. as in Example 1, to obtain a BaTiO 3 based semiconductor powder by grinding. The BaTiO 3 based semiconductor powder has a total weight of 39.5
Weight% Mo 5 Si 3 powder is added and mixed uniformly, and α-terpineol is further added to form a paste-like mixture 1. Then, the electrodes 3 and 4 are provided in advance on the substrate 2 in the same manner as in Example 1, and the paste mixture 1 is applied by screen printing or the like so that a part of the electrodes 3 and 4 remains, and the temperature is kept at room temperature. To 1300 at a heating rate of 10 ° C / min
The temperature is raised to 0 ° C., held for 30 minutes, and then allowed to cool in the furnace. Thus, a thick film type semiconductor device was obtained.

こうして得た厚膜型半導体素子の室温での面積抵抗は実
施例1の場合2.7KΩ/cm2であり、実施例2の場合1.6
KΩ/cm2であり、各々の温度と抵抗値の関係は第2図
に示した通りであった。第2図でAは実施例1により得
られた素子の特性、Bは実施例2の場合の特性である。
The sheet resistance of the thick film type semiconductor device thus obtained at room temperature is 2.7 KΩ / cm 2 in the case of Example 1 and 1.6 K in the case of Example 2.
It was KΩ / cm 2 , and the relationship between each temperature and resistance value was as shown in FIG. In FIG. 2, A is the characteristic of the device obtained in Example 1, and B is the characteristic in the case of Example 2.

ここで、Mo3Si,Mo5Si3を同時に加えても前記実施例と同
等の効果を得ることができる。
Here, even if Mo 3 Si and Mo 5 Si 3 are added at the same time, the same effect as that of the above-described embodiment can be obtained.

発明の効果 以上のように本発明の製造方法によれば、粉末が従来の
導電性添加剤とガラスフリットの両方の役割をはたし、
電気的接続,物理的接続に十分な効果があり、ガラスフ
リットなしで厚膜状正特性半導体素子が得られることと
なる。
As described above, according to the production method of the present invention, the powder serves as both the conventional conductive additive and the glass frit,
It has a sufficient effect on electrical connection and physical connection, and a thick film positive-characteristic semiconductor device can be obtained without glass frit.

また、ガラスフリットという熱伝導の悪いものにかわっ
て熱伝導のよい導電性金属Mo3Si,Mo5Si3を用いることに
より、熱伝導が良くなり熱衝撃性も向上する。さらに、
スクリーン印刷などにより製造できることから作業が容
易で量産が可能である。
Further, by using the conductive metals Mo 3 Si and Mo 5 Si 3 having good thermal conductivity instead of the glass frit having poor thermal conductivity, thermal conductivity is improved and thermal shock resistance is also improved. further,
Since it can be manufactured by screen printing, the work is easy and mass production is possible.

なお、本発明においてBaTiO3系半導体粉末としてはBaTi
O3に各種の添加剤を加えて半導体化したものであればな
んでもよい。また、Mo3Si,Mo5Si3粉末の添加量を全重量
に対して1〜60重量%と規定したのは、1重量%未満
では面積抵抗が大きくなりすぎ発熱体に不適当であり、
BaTiO3粉末同志の物理的固定もできなく、一方60重量
%を越えると面積抵抗が小さくなりすぎ、自己制御特性
(PTC特性)が小さくなり発熱体に不適当になるため
である。さらに、BaTiO3系半導体粉末とMo3Si,Mo5Si3
末をペースト状にするのに有機溶剤(実施例ではα−テ
ルピネオール)を用いたが、ペースト状にできるもので
あればなんでもよい。
In the present invention, BaTi 3 -based semiconductor powder is BaTi
Any material may be used as long as it is made into a semiconductor by adding various additives to O 3 . Further, the addition amount of Mo 3 Si, Mo 5 Si 3 powder is defined to be 1 to 60% by weight based on the total weight. If it is less than 1% by weight, the sheet resistance becomes too large and it is unsuitable for a heating element.
This is because it is impossible to physically fix the BaTiO 3 powders to each other, and if it exceeds 60% by weight, the sheet resistance becomes too small, and the self-controlling characteristic (PTC characteristic) becomes small, making it unsuitable for a heating element. Furthermore, the organic solvent (α-terpineol in the example) was used to make the BaTiO 3 based semiconductor powder and the Mo 3 Si, Mo 5 Si 3 powder into a paste, but any material that can be made into a paste may be used.

またBaTiO系半導体粉末にMoSiを加えたも
のは面積抵抗が2.7KΩ/cm2となり、またがMo
Siに代えてMoSiを加えたものは面積抵抗が
1.6KΩ/cm2となり、両者ともMoSiを加えた
ものの面積抵抗1.2KΩ/cm2よりも面積抵抗が大き
くなるので通電初期の突入電流に強く、しかも低温発熱
用とすることができるという効果がある。
Further, BaTiO 3 based semiconductor powder to which Mo 3 Si is added has a sheet resistance of 2.7 KΩ / cm 2 , and also Mo 3
In the case where Mo 5 Si 3 was added instead of Si, the sheet resistance was 1.6 KΩ / cm 2 , and in both cases, the sheet resistance was larger than the sheet resistance of 1.2 KΩ / cm 2 in which MoSi 2 was added. Is strong against inrush current and has an effect that it can be used for low temperature heat generation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法により得られる厚膜型正特性半導体
素子を示す一部切欠斜視図、第2図は本発明の実施例に
よる素子の温度と抵抗値の関係を示す図である。 1……ペースト状混合物、2……基板、3,4……電
極。
FIG. 1 is a partially cutaway perspective view showing a thick film type positive temperature coefficient semiconductor device obtained by the method of the present invention, and FIG. 2 is a view showing a relation between temperature and resistance value of the device according to an embodiment of the present invention. 1 ... Paste mixture, 2 ... Substrate, 3, 4 ... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】BaTiO3系半導体粉末にMo3Si,Mo5Si3のうち
少なくとも一種類の粉末を1.0〜60.0重量%加え、ペー
スト状にした混合物を基板上に塗布して厚膜状とした
後、焼成することを特徴とする厚膜型正特性半導体素子
の製造方法。
1. At least one kind of powder of Mo 3 Si and Mo 5 Si 3 is added to BaTiO 3 based semiconductor powder in an amount of 1.0 to 60.0% by weight, and a paste-like mixture is applied onto a substrate to form a thick film. A method for manufacturing a thick film type positive temperature coefficient semiconductor device, comprising:
JP6402184A 1984-03-30 1984-03-30 Method for manufacturing thick film type positive temperature coefficient semiconductor device Expired - Lifetime JPH061722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6402184A JPH061722B2 (en) 1984-03-30 1984-03-30 Method for manufacturing thick film type positive temperature coefficient semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6402184A JPH061722B2 (en) 1984-03-30 1984-03-30 Method for manufacturing thick film type positive temperature coefficient semiconductor device

Publications (2)

Publication Number Publication Date
JPS60206105A JPS60206105A (en) 1985-10-17
JPH061722B2 true JPH061722B2 (en) 1994-01-05

Family

ID=13246084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6402184A Expired - Lifetime JPH061722B2 (en) 1984-03-30 1984-03-30 Method for manufacturing thick film type positive temperature coefficient semiconductor device

Country Status (1)

Country Link
JP (1) JPH061722B2 (en)

Also Published As

Publication number Publication date
JPS60206105A (en) 1985-10-17

Similar Documents

Publication Publication Date Title
JPH061722B2 (en) Method for manufacturing thick film type positive temperature coefficient semiconductor device
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPH0534807B2 (en)
JPH04364B2 (en)
JPH0534808B2 (en)
JPH04365B2 (en)
JPH0558241B2 (en)
JPH0558242B2 (en)
JPH0534802B2 (en)
JPH04565B2 (en)
JPH0558244B2 (en)
JPH0534803B2 (en)
JPH0534805B2 (en)
JPH04563B2 (en)
JPH04564B2 (en)
JPH0534804B2 (en)
JPH0313722B2 (en)
JPH04562B2 (en)
JPH0558243B2 (en)
JPH0534806B2 (en)
JPS61101004A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPH04366B2 (en)
JPS61101009A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158209A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260102A (en) Method of producing thick film positive temperature coefficient semiconductor element