JPS61101004A - Manufacture of thick film type positive temperature coefficient semiconductor element - Google Patents

Manufacture of thick film type positive temperature coefficient semiconductor element

Info

Publication number
JPS61101004A
JPS61101004A JP22350784A JP22350784A JPS61101004A JP S61101004 A JPS61101004 A JP S61101004A JP 22350784 A JP22350784 A JP 22350784A JP 22350784 A JP22350784 A JP 22350784A JP S61101004 A JPS61101004 A JP S61101004A
Authority
JP
Japan
Prior art keywords
thick film
film type
temperature coefficient
glass frit
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22350784A
Other languages
Japanese (ja)
Inventor
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22350784A priority Critical patent/JPS61101004A/en
Publication of JPS61101004A publication Critical patent/JPS61101004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機器の保温、加熱などに用いられる面状発熱体
のなかで、ガラスフリットを必要としない厚膜型正特性
半導体素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thick-film positive temperature coefficient semiconductor element that does not require glass frit, among planar heating elements used for heat insulation and heating of equipment, etc. It is.

従来例の構成とその問題点 11aTiO3系半導体からなる素子は所定温度以上で
急激に抵抗値が増大するスイッチング特性及びスイッチ
ング後の自己発熱特性を有し、昇温特性が速く自己温度
制御機能を有し、外部の制御回路を必要としないため広
く利用されている。
Conventional structure and its problems 11a Elements made of TiO3-based semiconductors have switching characteristics in which the resistance value increases rapidly above a predetermined temperature and self-heating characteristics after switching, and have fast temperature rise characteristics and a self-temperature control function. However, it is widely used because it does not require an external control circuit.

従来の正特性サーミスタ発熱体はBaT x O3系半
導体粉末を加圧成形した後、焼成して得ていたが、実用
可能な厚膜状の正特性サーミスタ発熱体を得ることは困
4であるとされていた。
Conventional positive temperature coefficient thermistor heating elements were obtained by press-molding BaT x O3 semiconductor powder and then firing it, but it was difficult to obtain a practical thick film positive temperature coefficient thermistor heating element. It had been.

従来、f3a T *Oa系半導体を膜状に加工すや方
法としては、次のようなものが知られている。
Conventionally, the following methods are known for processing an f3a T *Oa semiconductor into a film.

■ ディスク形に成形した後、焼成したものを薄片に研
磨する。
■ After forming into a disk shape, the fired product is polished into thin pieces.

■ 真空蒸着法により基板上に薄膜を形成する。■ Form a thin film on the substrate by vacuum evaporation.

■ BaTiO3系半導体粉末に導電性の添加剤とガラ
スフリットを加えてペースト状とし、基板上にスクリー
ン印刷した後、焼成する。
(2) Conductive additives and glass frit are added to BaTiO3-based semiconductor powder to form a paste, which is screen printed on a substrate and then fired.

しかし、前記■の方法ではBa T 103系半導体の
結晶粒子径が大きくもろいため、膜状にまで研磨するこ
とは甚だ困難である。また、前記■の方法では操作が面
倒であり、発熱体に適した大電力を得ることがむずかし
い。さらに、前記■の方法では面積抵抗が高くなりやす
く制御が困難であシ、発熱体には適さず、またあらかじ
めガラスフリッ3 ・々 トを調合、焼成しておかなければならず、面倒であると
共にガラスフリットの材質によってはBa T 103
系半導体の持つスイ・ンチング特性及び自己発熱特性を
劣化させる。そして、ガラスフリットを加えることによ
りBa T iO3系半導体とガラスフリットの耐熱性
、熱膨張係数の差から熱衝撃に弱く、熱伝導が妨げられ
る。さらに、導電性の添加剤とガラスフリットを均一に
混合することは困難であり、特性にばらつきを生じる原
因の一つとなっている。
However, in the method (2) above, it is extremely difficult to polish the BaT 103-based semiconductor into a film because the crystal grain size is large and brittle. In addition, the method (2) is cumbersome to operate, and it is difficult to obtain a large amount of power suitable for the heating element. Furthermore, method (2) tends to have a high sheet resistance and is difficult to control, is not suitable for heating elements, and requires preparing and firing the glass frit in advance, which is troublesome and Depending on the material of the glass frit, Ba T 103
It deteriorates the switching characteristics and self-heating characteristics of semiconductors. By adding glass frit, the glass frit becomes susceptible to thermal shock due to the difference in heat resistance and thermal expansion coefficient between the BaTiO3-based semiconductor and the glass frit, and heat conduction is hindered. Furthermore, it is difficult to uniformly mix conductive additives and glass frit, which is one of the causes of variations in properties.

発明の目的 そこで本発明では前記従来技術の欠点であった製造上の
繁雑さを解決ひ、ガラスフリットを用いずに厚膜状にす
ることにより熱衝微性、熱伝導性に優れ、均一な特性を
持つ厚膜型正特性半導体素子を容易に製造できる方法を
提供することを目的としている。
Purpose of the Invention Therefore, the present invention solves the drawback of the prior art, which is the complexity of manufacturing, and creates a film with excellent thermal shock properties and thermal conductivity by forming a thick film without using glass frit. It is an object of the present invention to provide a method for easily manufacturing a thick film type positive characteristic semiconductor element having the following characteristics.

発明の構成 本発明の厚膜型正特性半導体素子の製造方法は、Ba 
S iO3系半導体粉末にHfB2をその混合量が全重
量に対して1〜60重量%加え、ペースト状にした混合
物を基板上に塗布して厚膜状とした後、焼成することに
より厚膜型正特性半導体素子を得ようとするものである
Structure of the Invention The method for manufacturing a thick film type positive characteristic semiconductor element of the present invention is characterized in that Ba
HfB2 is added to SiO3-based semiconductor powder in a mixed amount of 1 to 60% by weight based on the total weight, and the paste-like mixture is applied onto a substrate to form a thick film, and then baked to form a thick film type. The purpose is to obtain a positive characteristic semiconductor device.

従来の導電性添加剤とガラスフリットを用いる方法では
BaTiO3系半導体粉末同士の電気的接続のために導
電性添加剤が必要であり、Ba T iO3系粉末同士
を物理的に接続するのにガラスフリットが必要であった
In the conventional method using conductive additives and glass frit, conductive additives are required for electrical connection between BaTiO3-based semiconductor powders, and glass frit is required to physically connect BaTiO3-based semiconductor powders. was necessary.

しかし、本発明によれば導電性添加剤とガラスフリット
の両方の役割をはだすものとして、HfB2を用いたと
ころ吟特徴を有している。このHfB2は常温では導体
であり、1ooo〜1100’C以上゛の温度になると
一部分が分解して粒子表面に、B2O3が析出するが、
粒子内部は元のままで表面のB2O3膜により分解が阻
止される。従って、B a T sO3系半導体粉末と
、HfB2粉末を混合して焼成すると、HfB2の表面
に析出するB2O3がガラスフリットと同じ役割をし、
粒子内部が導電性添加剤の役割をするため、HfB2を
添加するだけでガラスフリ5べ−7 ソ)を必要としない厚膜型正特性半導体素子が得られる
However, according to the present invention, HfB2 is used as a material that functions as both a conductive additive and a glass frit, which has a unique feature. This HfB2 is a conductor at room temperature, but at temperatures above 100 to 1100'C, a portion decomposes and B2O3 precipitates on the particle surface.
The inside of the particle remains intact and decomposition is prevented by the B2O3 film on the surface. Therefore, when B a T sO3-based semiconductor powder and HfB2 powder are mixed and fired, B2O3 precipitated on the surface of HfB2 plays the same role as glass frit,
Since the inside of the particles acts as a conductive additive, a thick film positive temperature coefficient semiconductor element that does not require a glass layer can be obtained simply by adding HfB2.

また、導電性金属を添加することにより熱伝導性が悪い
ガラスフリットに比べて熱伝導性が良くなり、熱衝撃性
も向上する。
Furthermore, by adding a conductive metal, the thermal conductivity becomes better than that of glass frit, which has poor thermal conductivity, and the thermal shock resistance is also improved.

実施例の説明 以下に本発明の実施例をあげて第1図と共に具体的に説
明する。
DESCRIPTION OF EMBODIMENTS Below, embodiments of the present invention will be specifically explained with reference to FIG.

実施例1 Ba T 103に1.0モル%Nb2O3を加え10
00°CT焼成した後、粉砕してB a T 103系
半導体粉末を得る。前記BaTiO3系半導体粉末に全
重量に対して2.5重量%のHfB2粉末を加え均一に
混合し、さらにa−テルピネオールを加えてペースト状
混合物1を作る。
Example 1 Adding 1.0 mol% Nb2O3 to BaT 103
After firing at 00° CT, it is pulverized to obtain a B a T 103 semiconductor powder. 2.5% by weight of HfB2 powder based on the total weight is added to the BaTiO3-based semiconductor powder and mixed uniformly, and a-terpineol is further added to form a paste mixture 1.

一方、Al2O3などからなる基板2上にあらかじめ一
対のAq などの導電性物質からなる電極3゜4を設け
ておき、前記電極3,4土にその電極3゜4の一部が残
るように前記ペースト状混合物1をスクリーン印刷など
により塗布し、室温から10’%の昇温速度で1350
’Cまで昇温し、1時間保持した後、炉内放冷する。こ
のようにして厚膜型正特性半導体素子を得た。
On the other hand, a pair of electrodes 3.4 made of a conductive material such as Aq are provided in advance on a substrate 2 made of Al2O3, etc., and the electrodes 3. Paste-like mixture 1 was applied by screen printing, etc., and heated to 1350°C at a heating rate of 10'% from room temperature.
The temperature was raised to 'C, held for 1 hour, and then allowed to cool in the furnace. In this way, a thick film type positive characteristic semiconductor device was obtained.

実施例2 実施例1と同様にしてBaTiO3に3.0モル係のC
eO2を加え1250°Cで構成した後、粉砕してBa
TiO3系半導体粉末を得る。前記Ba T io3系
半導体粉末に全重量に対して33重重量%HfB2粉末
を加え均一に混合し、さらにα−テルピネオールを加え
てペースト状混合物1にする。ついで、実施例1と同様
に前記基板2上にあらかじめ前記電極3.4を設けてお
き、前記電極3.4の一部が残るように前記ペースト状
混合物1をスクリーン印刷などにより塗布し、室温から
10′c/分の昇温速度で1300’Qまで昇温し、3
0分間保持した後、炉内放冷する。このようにして厚膜
型半導体素子を得た。
Example 2 In the same manner as in Example 1, 3.0 mol of C was added to BaTiO3.
After adding eO2 and constituting at 1250°C, it is crushed to obtain Ba
A TiO3-based semiconductor powder is obtained. 33% by weight of HfB2 powder based on the total weight is added to the BaTio3-based semiconductor powder and mixed uniformly, and α-terpineol is further added to form paste mixture 1. Next, as in Example 1, the electrodes 3.4 are provided on the substrate 2 in advance, and the paste mixture 1 is applied by screen printing or the like so that a portion of the electrodes 3.4 remains. The temperature was raised from 1300'Q at a heating rate of 10'c/min, and 3
After holding for 0 minutes, allow to cool in the furnace. In this way, a thick film semiconductor element was obtained.

こうして得た厚膜型半導体素子の室温での面積抵抗は実
施例1の場合s 、 6KQ/crAであり、実施例2
の場合2゜7にΩ/crAであり、各々の温度と抵抗値
7 、 。
The sheet resistance at room temperature of the thick film semiconductor device thus obtained was s, 6KQ/crA in the case of Example 1, and 6KQ/crA in the case of Example 2.
In the case of 2°7Ω/crA, each temperature and resistance value 7.

の関係は第2図に示した通りであった。第2図でAは実
施例1により得られた素子の特性、Bは実施例2の場合
の特性である。
The relationship was as shown in Figure 2. In FIG. 2, A shows the characteristics of the device obtained in Example 1, and B shows the characteristics in Example 2.

発明の効果 以上のように本発明の製造方法によれば、HfB2粉末
が従来の導電性添加剤とガラスフリットの両方の役割を
はだし、電気的接続、物理的接続に十分な効果があり、
ガラスフリットなしで厚膜状正特性半導体素子が得らね
ることとなる。
Effects of the Invention As described above, according to the manufacturing method of the present invention, HfB2 powder plays the role of both a conventional conductive additive and a glass frit, and has sufficient effects on electrical connection and physical connection.
A thick film positive characteristic semiconductor device cannot be obtained without a glass frit.

また、ガラスフリットという熱伝導の悪いものにかわっ
て熱伝導のよい導電性金属の1(fB2を用いることに
より、熱伝導が良くなり熱衝撃性も向上する。さらに、
スクリーン印刷などにより製造できることから作業が容
易で量産が可能である。
In addition, by using conductive metal 1 (fB2) with good heat conduction instead of glass frit, which has poor heat conduction, heat conduction is improved and thermal shock resistance is also improved.Furthermore,
Since it can be manufactured by screen printing, etc., it is easy to work with and mass production is possible.

なお、本発明においてBaTiO3系半導体粉末として
はBa T iO3に各種の添加剤を加えて半導体化し
たものであればなんでもよい3.また、HfB2粉末の
添加量を全重量に対して1〜60重量係と規定したのは
、1重量%未満では面積抵抗が大きくなりすぎ発熱体に
不適当であシ、B a T 103粉末同士の物理的固
定もできなく、一方60重量係を越えると面積抵抗が小
さくなりすぎ、自己制御特性(PTC特性)が小さくな
り発熱体に不適当になるためである。さらに、BaTi
O3系半導体粉末とHfB2粉末をペースト状にするの
に有機溶剤(実施例ではα−テルピネオール)を用いた
が、ペースト状にできるものであればなんでもよい。
In the present invention, any BaTiO3-based semiconductor powder may be used as long as it is made into a semiconductor by adding various additives to BaTiO33. In addition, the addition amount of HfB2 powder was specified to be 1 to 60% by weight based on the total weight, because if it was less than 1% by weight, the area resistance would be too large and it would be unsuitable for a heating element. On the other hand, if the weight coefficient exceeds 60, the sheet resistance becomes too small, and the self-control characteristics (PTC characteristics) become small, making it unsuitable for use as a heating element. Furthermore, BaTi
An organic solvent (alpha-terpineol in the example) was used to make the O3-based semiconductor powder and HfB2 powder into a paste, but any solvent may be used as long as it can be made into a paste.

以上述べたように本発明によれば、ガラスフリットを必
要としない厚膜型正特性半導体素子が容易に製造でき、
その実用上の効果は大きいものである。
As described above, according to the present invention, it is possible to easily manufacture a thick film type positive characteristic semiconductor device that does not require a glass frit.
Its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により得られる厚膜型正特性半導体
素子を示す一部切欠斜視図、第2図は本発明の実施例に
よる素子の温度と抵抗値の関係を示す図である。 1・・・・・・ペースト状混合物、2・・・・・・基板
、3.4・・・・・・電極。
FIG. 1 is a partially cutaway perspective view showing a thick film positive temperature coefficient semiconductor device obtained by the method of the present invention, and FIG. 2 is a diagram showing the relationship between temperature and resistance value of the device according to an embodiment of the present invention. 1... Paste mixture, 2... Substrate, 3.4... Electrode.

Claims (1)

【特許請求の範囲】[Claims] BaTiO_3系半導体粉末にHfB_2をその混合量
が全重量に対して1〜60重量%加え、ペースト状にし
た混合物を基板上に塗布して厚膜状とした後、焼成する
ことを特徴とする厚膜型正特性半導体素子の製造方法。
A thick film characterized by adding HfB_2 to BaTiO_3-based semiconductor powder in an amount of 1 to 60% by weight based on the total weight, applying the paste-like mixture on a substrate to form a thick film, and then firing it. A method for manufacturing a film type positive characteristic semiconductor device.
JP22350784A 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element Pending JPS61101004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22350784A JPS61101004A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22350784A JPS61101004A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Publications (1)

Publication Number Publication Date
JPS61101004A true JPS61101004A (en) 1986-05-19

Family

ID=16799225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22350784A Pending JPS61101004A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Country Status (1)

Country Link
JP (1) JPS61101004A (en)

Similar Documents

Publication Publication Date Title
JPS61101004A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101007A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158204A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6012702A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261109A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158210A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158208A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260103A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101009A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158209A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261107A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158211A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6012701A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158207A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261105A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH0534807B2 (en)
JPS6158205A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101006A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS59111302A (en) Method of producing thick film type temperature coefficient semiconductor element
JPS61101005A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158206A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH04565B2 (en)