JPS61101007A - Manufacture of thick film type positive temperature coefficient semiconductor element - Google Patents

Manufacture of thick film type positive temperature coefficient semiconductor element

Info

Publication number
JPS61101007A
JPS61101007A JP22351084A JP22351084A JPS61101007A JP S61101007 A JPS61101007 A JP S61101007A JP 22351084 A JP22351084 A JP 22351084A JP 22351084 A JP22351084 A JP 22351084A JP S61101007 A JPS61101007 A JP S61101007A
Authority
JP
Japan
Prior art keywords
thick film
type positive
film type
temperature coefficient
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22351084A
Other languages
Japanese (ja)
Inventor
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22351084A priority Critical patent/JPS61101007A/en
Publication of JPS61101007A publication Critical patent/JPS61101007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機器の保湿、加熱などに用いられる面状発熱体
のなかで、ガラスフリットを必要としない厚膜型正特性
半導体素子の製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing a thick-film positive temperature coefficient semiconductor element that does not require a glass frit, which is a sheet heating element used for moisturizing, heating, etc. of equipment. It is.

従来例の構成とその問題点 BaTiO3系半導体から々る素子は所定温度以上で急
激に抵抗値が増大するスイッチング特性及びスイッチン
グ後の自己発熱特性を有し、昇温特性が速く自己温度制
御機能を有し、外部の制御回路2ベー。
Conventional structure and problems Elements made of BaTiO3-based semiconductors have switching characteristics in which the resistance value increases rapidly above a certain temperature and self-heating characteristics after switching, and have fast temperature rise characteristics and self-temperature control functions. It has 2 external control circuits.

を必要とし力いため広く利用されている。It is widely used because it requires a lot of power.

従来の正特性サーミスタ発熱体はBaTiO3系半導体
粉末を加圧成形した後、焼成して得ていたが、実用可能
な厚膜状の正特性サーミスタ発熱体を得ることは困難で
あるとされていた。
Conventional positive temperature coefficient thermistor heating elements were obtained by press-molding BaTiO3-based semiconductor powder and then firing it, but it was considered difficult to obtain a practical thick film positive temperature coefficient thermistor heating element. .

従来、BaTi(15系半導体を膜状に加工する方法と
しては、次のよう々ものが知られている。
Conventionally, the following methods are known for processing BaTi (15-based semiconductors) into a film.

■ ディスク形に成形した後、焼成したものを薄片に研
磨する。
■ After forming into a disk shape, the fired product is polished into thin pieces.

■ 真空蒸着法により基板上に薄膜を形成する。■ Form a thin film on the substrate by vacuum evaporation.

■ BaTiOs系半導体粉末に導電性の添加剤とガラ
スフリットを加えてペースト状とし、基板上にスクリー
ン印刷した後、焼成する。
(2) Conductive additives and glass frit are added to BaTiOs semiconductor powder to form a paste, which is screen printed on a substrate and then fired.

しかし、前記■の方法ではBaTiO3系半導体の結晶
粒子径が大きくもろいため、膜状にまで研磨することは
甚だ困難である。また、前記■の方法では操作が面倒で
あり、発熱体に適した大電力を得ることがむずかしい。
However, in the method (2), since the BaTiO3-based semiconductor has a large crystal grain size and is brittle, it is extremely difficult to polish the BaTiO3-based semiconductor into a film. In addition, the method (2) is cumbersome to operate, and it is difficult to obtain a large amount of power suitable for the heating element.

さらに、前記■の方法では面積抵抗が高くなりやすく制
御が困難であり、発熱体には適さず、またあらかじめガ
ラスフリッ3ぺ−2 トを調合、焼成しておかなければならず、面倒であると
共にガラスフリットの材質によってはBaTiO3糸示
導体の持つスイッチング特性及び自己発熱特性を劣化さ
せる。そして、ガラスフリットを加えることによりBa
TiOs系半導体とガラスフリットの耐熱性、熱膨張係
数の差から熱衝撃に弱く、熱伝導が妨げられる。さらに
、導電性の添加剤とガラスフリットを均一に混合するこ
とは困難であり、特性にばらつきを生じる原因の一つと
なっている。
Furthermore, method (2) above tends to have a high sheet resistance and is difficult to control, is not suitable for heating elements, and requires preparing and firing the glass frit in advance, which is both troublesome and difficult to control. Depending on the material of the glass frit, the switching characteristics and self-heating characteristics of the BaTiO3 thread conductor may deteriorate. By adding glass frit, Ba
Due to the difference in heat resistance and coefficient of thermal expansion between TiOs-based semiconductors and glass frit, they are susceptible to thermal shock and impede heat conduction. Furthermore, it is difficult to uniformly mix conductive additives and glass frit, which is one of the causes of variations in properties.

発明の目的 そこで本発明では前記従来技術の欠点であった製造上の
繁雑さを解決し、ガラスフリットを用いずに厚膜状にす
ることにより熱衝撃性、熱伝導性に優れ、均一な特性を
持つ厚膜型正特性半導体素子を容易に製造できる方法を
提供することを目的としている。
Purpose of the Invention Therefore, the present invention solves the manufacturing complexity that was a drawback of the prior art, and by forming a thick film without using glass frit, it has excellent thermal shock resistance and thermal conductivity, and has uniform properties. It is an object of the present invention to provide a method for easily manufacturing a thick film type positive characteristic semiconductor device having the following characteristics.

発明の構成 本発明の厚膜型正特性半導体素子の製造方法は、BaT
iOx系半導体粉末にTi2Bをその混合量が全重量に
対して1〜60重量%加え、ペースト状にした混合物を
基板上に塗布して厚膜状とした後、焼成するととによシ
厚膜型正特性半導体素子を得ようとするものである。
Structure of the Invention The method for manufacturing a thick film type positive temperature semiconductor device of the present invention includes
Ti2B is added to the iOx semiconductor powder in a mixed amount of 1 to 60% by weight based on the total weight, and the paste-like mixture is applied onto a substrate to form a thick film, and then fired to form a very thick film. The purpose is to obtain a type positive characteristic semiconductor device.

従来の導電性添加剤とガラスフリットを用いる方法では
BaTiO3系半導体粉末同士の電気的接続のだめに導
電性添加剤が必要であり、BaTiO3糸粉末同士全粉
末同士接続するのにガラスフリットが必要であった。
In the conventional method using conductive additives and glass frit, conductive additives are required to establish electrical connections between BaTiO3 semiconductor powders, and glass frits are required to connect BaTiO3 thread powders to all powders. Ta.

しかし、本発明によれば導電性添加剤とガラスフリット
の両方の役割をはだすものとしてTi2Bを用いたとこ
ろに特徴を有している。とのTi2Bは常温では導体で
あり、1000〜1100°C以上の温度になると一部
分が分解して粒子表面にB2O5が析出するが、粒子内
部は元の!!:まで表面のB2O3膜によシ分解が阻止
される。従って、BaTi05系半導体粉末と、Ti2
B粉末を混合して焼成すると、Ti2Bの表面に析出す
るB2O3がガラスフリットと同じ役割をし、粒子内部
が導電性添加剤の役割をするだめ、Ti2Bを添加する
だけ5ベーノ でガラスフリットを必要とし々い厚膜型正特性半導体素
子が得られる。
However, the present invention is characterized in that Ti2B is used as both a conductive additive and a glass frit. Ti2B is a conductor at room temperature, and at temperatures above 1000-1100°C, a portion of it decomposes and B2O5 precipitates on the particle surface, but the inside of the particle remains the same! ! : Decomposition is inhibited by the B2O3 film on the surface. Therefore, BaTi05-based semiconductor powder and Ti2
When B powder is mixed and fired, the B2O3 precipitated on the surface of Ti2B plays the same role as the glass frit, and the inside of the particles plays the role of a conductive additive, so just adding Ti2B requires a glass frit. A very thick film type positive characteristic semiconductor device can be obtained.

また、導電性金属を添加することにより熱伝導性が悪い
ガラスフリットに比べて熱伝導性が良く11)、熱衝撃
性も向上する。
In addition, by adding a conductive metal, it has better thermal conductivity than glass frit, which has poor thermal conductivity11), and also improves thermal shock resistance.

実施例の説明 以下に本発明の実施例をあげて第1図と共に具体的に説
明する。
DESCRIPTION OF EMBODIMENTS Below, embodiments of the present invention will be specifically explained with reference to FIG.

実施例1 BaTi03に1−Q−[=/l/%のNb2O5を加
え1300°Cで焼成した後、粉砕してBaTiO3系
半導体粉末を得る。前記BaTiO3系半導体粉末に全
重量に対して1.5重量%のTi2B粉末を加え均一に
混合し、さらにα−テルピネオールを加えてペースト状
混合物1を作る。
Example 1 1-Q-[=/l/% of Nb2O5 is added to BaTi03 and fired at 1300°C, followed by pulverization to obtain BaTiO3-based semiconductor powder. A paste-like mixture 1 is prepared by adding 1.5% by weight of Ti2B powder based on the total weight to the BaTiO3-based semiconductor powder and mixing uniformly, and then adding α-terpineol.

一方、Al2O3などから々る基板2上にあらかじめ一
対のAgなどの導電性物質から々る電極3゜4を設けて
おき、前記電極3,4上にその電極3゜4の一部が残る
ように前記ペースト状混合物1をスクリーン印刷などに
よシ塗布し、室温から106ベー。
On the other hand, a pair of electrodes 3.4 made of a conductive material such as Ag is provided in advance on a substrate 2 made of Al2O3, etc., and a part of the electrodes 3.4 is left on the electrodes 3, 4. The paste-like mixture 1 was applied by screen printing or the like, and heated from room temperature to 106 bases.

’C/分の昇流速度で1350°Cまで昇温し、1時間
保持した後、炉内放冷する。このようにして厚膜型正特
性半導体素子を得た。
The temperature was raised to 1350°C at a rising rate of 'C/min, held for 1 hour, and then allowed to cool in the furnace. In this way, a thick film type positive characteristic semiconductor device was obtained.

実施例2 実施例1と同様にして13aTi03にjOモル%のN
d2O3を加え1250°Cで焼成した後、粉砕してB
aTiO3系半導体粉末を得る。前記BaTiOs系半
導体粉末に全重量に対して30重量%のTi2B粉末を
加え均一に混合し、さらにα−テルピネオールを加えて
ペースト状混合物1にする。ついで、実施例1と同様に
前記基板2上にあらかじめ前記電極3,4を設けておき
、前記電極3,4の一部が残るように前記ペースト状混
合物1をスクリーン印刷などによシ塗布し、室温から1
0’C/分の昇温速度で1300°Cまで昇温し、3o
分間保持した後、炉内放冷する。このようにして厚膜型
半導体素子を得た。
Example 2 In the same manner as in Example 1, jO mol% of N was added to 13aTi03.
After adding d2O3 and firing at 1250°C, crush it to obtain B
Obtain aTiO3-based semiconductor powder. 30% by weight of Ti2B powder based on the total weight is added to the BaTiOs semiconductor powder and mixed uniformly, and α-terpineol is further added to form paste mixture 1. Next, as in Example 1, the electrodes 3 and 4 are provided on the substrate 2 in advance, and the paste mixture 1 is applied by screen printing or the like so that a portion of the electrodes 3 and 4 remain. , room temperature to 1
Raise the temperature to 1300°C at a heating rate of 0'C/min, and
After holding for a minute, let it cool in the furnace. In this way, a thick film semiconductor element was obtained.

こうして得た厚膜型半導体素子の室温での面積抵抗は実
施例1の場合5 、OKQ/ (、J、であシ、実施例
2の場合1.3にΩ/c2であり、各々の温度と抵抗値
7ペーノ の関係は第2図に示しだ通りであった。第2図でAは実
施例1により得られた素子の特性、Bは実施例2の場合
の特性である。
The sheet resistance at room temperature of the thick-film semiconductor device thus obtained was 5, OKQ/ (, J, and Ω/c2 in the case of Example 1, and 1.3 and Ω/c2 in the case of Example 2, respectively). The relationship between the resistance value 7 and the resistance value was as shown in FIG. 2. In FIG. 2, A shows the characteristics of the device obtained in Example 1, and B shows the characteristics in Example 2.

発明の効果 以上のように本発明の製造方法によれば、Ti2B粉末
が従来の導電性添加剤とガラスフリットの両方の役割を
はだし、電気的接続、物理的接続に十分な効果があり、
ガラスフリット々しで厚膜状正特性半導体素子が得られ
ることとなる。
Effects of the Invention As described above, according to the manufacturing method of the present invention, Ti2B powder plays the role of both a conventional conductive additive and a glass frit, and has sufficient effects for electrical connection and physical connection.
A thick film positive characteristic semiconductor element can be obtained using glass frits.

また、ガラスフリットという熱伝導の悪いものにかわっ
て熱伝導のよい導電性金属のTi2Bを用いることによ
り、熱伝導が良くなり熱衝撃性も向上する。さらに、ス
クリーン印刷などによシ製造できることから作業が容易
で量産が可能である。
Furthermore, by using Ti2B, a conductive metal with good heat conduction, instead of glass frit, which has poor heat conduction, heat conduction is improved and thermal shock resistance is also improved. Furthermore, since it can be manufactured by screen printing or the like, the work is easy and mass production is possible.

iお、本発明においてBaTiO3系半導体粉末として
はBaTiO3に各種の添加剤を加えて半導体化したも
のであればなんでもよい。また、Ti2B粉末の添加量
を全重量に対して1〜60重量%と規定したのは、1重
量%未満では面積抵抗が大きくなりすぎ発熱体に不適当
であシ、BaTiO3粉末同士の物理的固定もできなく
、一方60重量%を越えると面積抵抗が小さくなりすぎ
、自己制御特性(PTC特性)が小さくなり発熱体に不
適当になるためである。さらに、BaTiO3系半導体
粉末とTi2B粉末をペースト状にするのに有機溶剤(
実工 流側はα−テルピネオー)V)を用いたが、ペースト状
にできるものであればなんでもよい。
In the present invention, any BaTiO3-based semiconductor powder may be used as long as it is made into a semiconductor by adding various additives to BaTiO3. In addition, the addition amount of Ti2B powder was specified as 1 to 60% by weight based on the total weight, because if it was less than 1% by weight, the area resistance would become too large and it would be unsuitable for a heating element. On the other hand, if it exceeds 60% by weight, the sheet resistance becomes too small and the self-control characteristics (PTC characteristics) become small, making it unsuitable for use as a heating element. Furthermore, an organic solvent (
In the actual process, α-terpineo) V) was used, but any material that can be made into a paste form may be used.

以上述べたように本発明によれば、ガラスフリットを必
要としない厚膜型正特性半導体素子が容易に製造でき、
その実用上の効果は大きいものである。
As described above, according to the present invention, it is possible to easily manufacture a thick film type positive characteristic semiconductor device that does not require a glass frit.
Its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により得られる厚膜型正特性半導体
素子を示す一部切欠斜視図、第2図は本発明の実施例に
よる素子の温度と抵抗値の関係を示す図である。 1・・・・・・ペースト状混合物、2・・・・・・基板
、3,4・・・・・・電極。
FIG. 1 is a partially cutaway perspective view showing a thick film positive temperature coefficient semiconductor device obtained by the method of the present invention, and FIG. 2 is a diagram showing the relationship between temperature and resistance value of the device according to an embodiment of the present invention. 1... Paste mixture, 2... Substrate, 3, 4... Electrode.

Claims (1)

【特許請求の範囲】[Claims] BaTiO_3系半導体粉末にTi_2Bをその混合量
が全重量に対して1〜60重量%加え、ペースト状にし
た混合物を基板上に塗布して厚膜状とした後、焼成する
ことを特徴とする厚膜型正特性半導体素子の製造方法。
A thick film characterized by adding Ti_2B to BaTiO_3-based semiconductor powder in a mixed amount of 1 to 60% by weight based on the total weight, applying the paste-like mixture on a substrate to form a thick film, and then firing it. A method for manufacturing a film type positive characteristic semiconductor device.
JP22351084A 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element Pending JPS61101007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22351084A JPS61101007A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22351084A JPS61101007A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Publications (1)

Publication Number Publication Date
JPS61101007A true JPS61101007A (en) 1986-05-19

Family

ID=16799271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22351084A Pending JPS61101007A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Country Status (1)

Country Link
JP (1) JPS61101007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111386A1 (en) * 2011-02-17 2012-08-23 株式会社村田製作所 Positive temperature-coefficient thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111386A1 (en) * 2011-02-17 2012-08-23 株式会社村田製作所 Positive temperature-coefficient thermistor

Similar Documents

Publication Publication Date Title
JPS61101007A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158204A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260103A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101004A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158209A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261109A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158208A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101009A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101005A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6012702A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6012701A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS59111302A (en) Method of producing thick film type temperature coefficient semiconductor element
JPS6158211A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206105A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261105A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206104A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158205A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261107A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158206A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158210A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158203A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6064403A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206103A (en) Method of producing thick film positive temperature coefficient semiconductor element