JPS61101005A - Manufacture of thick film type positive temperature coefficient semiconductor element - Google Patents

Manufacture of thick film type positive temperature coefficient semiconductor element

Info

Publication number
JPS61101005A
JPS61101005A JP22350884A JP22350884A JPS61101005A JP S61101005 A JPS61101005 A JP S61101005A JP 22350884 A JP22350884 A JP 22350884A JP 22350884 A JP22350884 A JP 22350884A JP S61101005 A JPS61101005 A JP S61101005A
Authority
JP
Japan
Prior art keywords
thick film
type positive
film type
temperature coefficient
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22350884A
Other languages
Japanese (ja)
Inventor
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22350884A priority Critical patent/JPS61101005A/en
Publication of JPS61101005A publication Critical patent/JPS61101005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機器の保温、加熱などに用いられる面状発熱体
のなかで、ガラスフリットを必要としない厚膜型正特性
半導体素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thick-film positive temperature coefficient semiconductor element that does not require glass frit, among planar heating elements used for heat insulation and heating of equipment, etc. It is.

従来例の構成とその問題点 BaTiO3  系半導体からなる素子は所定温度以上
で急激に抵抗値が増大するスイッチング特性及びスイッ
チング後の自己発熱特性を有し、昇温特性が速く自己温
度制御機能を有し、外部の制御口2べ 路を必要としないため広く利用されている。
Conventional configuration and its problems Elements made of BaTiO3-based semiconductors have switching characteristics in which the resistance value increases rapidly above a predetermined temperature and self-heating characteristics after switching, and have fast temperature rise characteristics and a self-temperature control function. However, it is widely used because it does not require two external control ports.

従来の正特性サーミスタ発熱体ばB a T 103系
半導体粉末を加圧成形した後、焼成して得ていたが、実
用可能な厚膜状の正特性サーミスタ発熱体を得ることは
困難であるとされていた。
Conventional positive temperature coefficient thermistor heating elements were obtained by press-molding B a T 103 semiconductor powder and then firing it, but it was difficult to obtain a practical thick film positive temperature coefficient thermistor heating element. It had been.

従来、B a T iOs系半導体を膜状に加工する方
法としては、次のようなものが知られている。
Conventionally, the following method is known as a method for processing a B a TiOs semiconductor into a film.

■ ディスク形に成形した後、焼成したものを薄片に研
磨する。
■ After forming into a disk shape, the fired product is polished into thin pieces.

■ 真空蒸着法によシ基板士に薄膜を形成する。■ Form a thin film on the substrate using the vacuum evaporation method.

■ B a T iOa系半導体粉末に導電性の添加剤
とガラスフリットを加えてペースト状とし、基板上にス
フリース印刷した後、焼成する。
(2) Conductive additives and glass frit are added to B a TiOa semiconductor powder to form a paste, which is printed on a substrate as fleece and then fired.

しかし、前記■の方法ではB a T i O3系半導
体の結晶粒子径が大きくもろいため、膜状にまで研磨す
ることは甚だ困難である。また、前記■の方法では操作
が面倒であり、発熱体に適した大電力を得ることがむず
かしい。さらに、前記■の方法では面積抵抗が高くなり
やすく制御が困難であり、発熱体には適さず、またあら
かじめガラスフリッ3、・ 7 トを調合、焼成しておかなければならず、面倒であると
共にガラスフリットの材質によってはB a T iO
3系半導体の持つスイッチング特性及び自己発熱特性を
劣化させる。そして、ガラスフリットを加えることによ
りB a T iO3系半導体とガラスフリットの耐熱
性、熱膨張係数の差少ら熱衝撃に弱く、熱伝導が妨げら
れる。さらに、導電性の添加剤とガラスフリットを均一
に混合することは困難であり、特性にばらつきを生じる
原因の一つとなっている。
However, in the method (2) above, since the crystal grain size of the B a T i O 3 -based semiconductor is large and brittle, it is extremely difficult to polish it into a film. In addition, the method (2) is cumbersome to operate, and it is difficult to obtain a large amount of power suitable for the heating element. Furthermore, the above method (3) tends to have a high sheet resistance and is difficult to control, is not suitable for heating elements, and requires preparing and firing the glass frit in advance, which is troublesome and difficult to control. Depending on the material of the glass frit, B a T iO
It deteriorates the switching characteristics and self-heating characteristics of the III-based semiconductor. By adding a glass frit, the difference in heat resistance and coefficient of thermal expansion between the B a TiO3 semiconductor and the glass frit is small, making it susceptible to thermal shock and hindering heat conduction. Furthermore, it is difficult to uniformly mix conductive additives and glass frit, which is one of the causes of variations in properties.

発明の目的              、そこで本発
明では前記従来技術の欠点であり泥製造上の繁雑さを解
決し、ガラスフリットを用いずに厚膜状にすることによ
り熱衝撃性、熱伝導性に優れ、均一な特性を持つ厚膜型
正特性半導体素子を容易に製造できる方法を提供するこ
とを目的としている。
Purpose of the Invention Therefore, the present invention solves the drawbacks of the prior art, which is the complexity of mud production, and creates a thick film with excellent thermal shock resistance and thermal conductivity by not using glass frit. It is an object of the present invention to provide a method for easily manufacturing a thick film type positive characteristic semiconductor element having the following characteristics.

発明の構成 本発明のり模型正特性半導体素子の製造方法は、B a
 T iO3系半導体粉末にZrB12をその混合量が
全重量に対して1〜60重量係加え、ペースト状にした
混合物を基板上に塗布して厚膜状とした後、焼−するこ
とにより厚膜型正特性半導体素子を得ようとするもので
ある。
Structure of the Invention The method for manufacturing a glue model positive characteristic semiconductor device of the present invention is based on B a
ZrB12 is added to TiO3-based semiconductor powder in a mixed amount of 1 to 60% by weight based on the total weight, and the paste-like mixture is applied onto a substrate to form a thick film, and then baked to form a thick film. The purpose is to obtain a type positive characteristic semiconductor device.

従来の導電性添加剤とガラスフリットを用いる方法では
BaTi○3系半導体粉系間導体粉末同士続のために導
電性添加剤が必要であり、B a T 1’03系半導
体粉末同士を物理的に接続するのにガラスフリットが必
要であった。
In the conventional method using conductive additives and glass frit, conductive additives are required to connect conductor powders between BaTi○3 semiconductor powder systems, and physical contact between BaTi○3 semiconductor powders is required. A glass frit was required to connect the

しかし、本発明によれば導電性添加剤とガラス・  フ
リットの両方の役割をはだすものとして、ZrB12を
用いたところに特徴を有している。このZ r B 1
2は常温では導体であり、1oOO〜1100℃以上の
温度になると一部分が分解して粒子表面にB2O3が析
出するが、粒子内部は元のま1で表面のBF2膜により
分解が阻止される。従って、B a T iO3系半導
体粉末と、ZrB12粉末を混合して焼成すると、Zr
B12の表面に析出するB2O3がガラスフリットと同
じ役割をし、粒子内部が導電性添加剤の役割をするため
、ZrB12を添加するだけでガラス6ペー7 フリットを必要としない厚膜型正特性半導体素子が得ら
れる。
However, the present invention is characterized in that ZrB12 is used as a material that functions as both a conductive additive and a glass frit. This Z r B 1
2 is a conductor at room temperature, and when the temperature reaches 1oOO to 1100°C or higher, a portion of it decomposes and B2O3 is precipitated on the particle surface, but the inside of the particle remains as it was and decomposition is prevented by the BF2 film on the surface. Therefore, when B a TiO3-based semiconductor powder and ZrB12 powder are mixed and fired, Zr
B2O3 precipitated on the surface of B12 plays the same role as a glass frit, and the inside of the particle plays the role of a conductive additive, so just adding ZrB12 makes glass a thick film type positive temperature semiconductor that does not require a frit. An element is obtained.

また、導電性金属を添加することにより熱伝導性が悪い
ガラスフリットに比べて熱伝導性が良くなり、熱衝撃性
も向上する。
Furthermore, by adding a conductive metal, the thermal conductivity becomes better than that of glass frit, which has poor thermal conductivity, and the thermal shock resistance is also improved.

実施例の説明 以下に本発明の実施例をあげて第1図と共に具体的に説
明する。
DESCRIPTION OF EMBODIMENTS Below, embodiments of the present invention will be specifically explained with reference to FIG.

実施例1   。Example 1.

BaTiO3  に1.oモル%のNb2O3を加え1
3ω℃で焼成した後、粉砕してB a T iO3系半
導体粉末を得る。前記BaTiO3系半導体粉末に全重
量に対して12重量楚のzrB12粉末を加え均一に混
合し、さら顛α−テルピネオールを加えてペースト状混
合物1を作る。
1 for BaTiO3. Add o mol% Nb2O3 and 1
After firing at 3ω°C, it is pulverized to obtain a B a T iO3 semiconductor powder. ZrB12 powder in an amount of 12 parts by weight based on the total weight is added to the BaTiO3-based semiconductor powder and mixed uniformly, and then α-terpineol is added to prepare paste mixture 1.

一方、Al2O3などからなる基板2上にあらかしめ一
対のAqなとの導電性物質からなる電極3゜4を設けて
おき、前記電極3,4上にその電極3゜4の一部が残る
ように前記ペースト状混合物1をスクリーン印刷などに
より塗布し、室温から1061\ 。
On the other hand, a pair of electrodes 3.4 made of a conductive material such as Aq is provided on a substrate 2 made of Al2O3, etc., and a part of the electrodes 3.4 is left on the electrodes 3, 4. The paste-like mixture 1 was applied by screen printing or the like, and the mixture was heated from room temperature to 1061\.

℃/分の昇温速度で1360℃まで昇温し、1時間保持
した後、炉内放冷する。このようにして厚膜型正特性半
導体素子を得た。
The temperature was raised to 1360° C. at a heating rate of 1360° C./min, held for 1 hour, and then allowed to cool in the furnace. In this way, a thick film type positive characteristic semiconductor device was obtained.

実施例2 実施例1と同様にしてB a T 103 に3.0モ
ル係のLa293を加え1260℃で焼成した後、粉砕
してBaTiO3系半導、体粉末を得る。聞記BaTi
O3系半導体粉末に全重量に対して28重量係のZrB
12粉末を加え均一に混合し、さらにa−テルピネオー
ルを加えてペースト状混合物1にする。ついで、実施例
1と同様に前記基板2上にあらかじめ前記電極3,4を
設けておき、前記電極3,4の一部が残るように前記ペ
ースト状混合物1をスクリーン印刷などにより塗布し、
室温から10℃/分の昇温速度で1000℃まで昇温し
、30分間保持した後、炉内放冷する。このようにして
厚膜型半導体素子を得た。
Example 2 In the same manner as in Example 1, 3.0 mol of La293 was added to B a T 103 and fired at 1260°C, followed by pulverization to obtain a BaTiO3-based semiconductor powder. Listening BaTi
ZrB of 28% by weight based on the total weight of O3-based semiconductor powder
12 powder is added and mixed uniformly, and a-terpineol is further added to form paste mixture 1. Next, as in Example 1, the electrodes 3 and 4 are provided on the substrate 2 in advance, and the paste mixture 1 is applied by screen printing or the like so that a portion of the electrodes 3 and 4 remains.
The temperature is raised from room temperature to 1000° C. at a heating rate of 10° C./min, held for 30 minutes, and then allowed to cool in the furnace. In this way, a thick film semiconductor device was obtained.

こうして得た厚膜型半導体素子の室温での面積抵抗は実
施例1の場合3.4にΩ/cd であり、実施例2の場
合1.1にΩ/crlであり、各々の温度と抵抗7ベー
2 値の関係は第2図に示した通りであった。第2図でAは
実施例1により得られた素子の特性、Bは実施例2の場
合の特性である。
The sheet resistance at room temperature of the thick-film semiconductor device thus obtained was 3.4 Ω/cd in Example 1, and 1.1 Ω/crl in Example 2, and each temperature and resistance The relationship between the 7be2 values was as shown in Figure 2. In FIG. 2, A shows the characteristics of the device obtained in Example 1, and B shows the characteristics in Example 2.

発明の効果 以上のように本発明の製造方法によれば、ZrB12粉
末が従来の導電性添加剤とガラスフリットの両方の役割
をはだし、電気的接続、物理的接続に十分な効果があり
、ガラスフリットなしで厚膜状正特性半導体素子が得ら
れることとなる。
Effects of the Invention As described above, according to the manufacturing method of the present invention, ZrB12 powder plays the role of both a conventional conductive additive and a glass frit, and has sufficient effects on electrical connection and physical connection. A thick film positive characteristic semiconductor element can be obtained without a glass frit.

丑だ、ガラスフリットという熱伝導の悪いものにかわっ
て熱伝導のよい導電性金属のZrB12を用いることに
より、熱伝導が良くなり熱衝撃性も向上する。さらに、
スクリーン印刷などにより製造できることから作業が容
易で量産が可能である。
By using ZrB12, a conductive metal with good thermal conductivity, instead of glass frit, which has poor thermal conductivity, thermal conductivity improves and thermal shock resistance improves. moreover,
Since it can be manufactured by screen printing, etc., it is easy to work with and mass production is possible.

なお、本発明においてB a T iO3系半導体粉末
としてはBaTiO3に各種の添加剤を加えて半導体化
したものであればなんでもよい。また、ZrB12粉末
の添加量を全重量に対して1〜60重量係と規定したの
は、1重量幅未満では面積抵抗が大きくなりすぎ発熱体
に不適当であり、BaTiO3粉末同士の物理的固定も
できなく、一方60重量係を越えると面積抵抗が小さく
なりすぎ、自己制御特性(PTC特性)が小さくなり発
熱体に不適当になるためである。さらに、B a T 
iO3系半導体粉末とzrB12粉末をペースト状にす
るのに有機溶剤(実施例ではα−テルピネオール)を用
いたが、ペースト状にできるものであればなんでもよい
In the present invention, any BaTiO3-based semiconductor powder may be used as long as it is made into a semiconductor by adding various additives to BaTiO3. In addition, the addition amount of ZrB12 powder was specified to be 1 to 60% by weight relative to the total weight because if it was less than 1 weight range, the area resistance would be too large and it would be unsuitable for a heating element. On the other hand, if the weight ratio exceeds 60, the sheet resistance becomes too small, and the self-control characteristic (PTC characteristic) becomes small, making it unsuitable for a heating element. Furthermore, B a T
Although an organic solvent (alpha-terpineol in the example) was used to make the iO3-based semiconductor powder and the zrB12 powder into a paste, any solvent may be used as long as it can be made into a paste.

以上述べたように本発明によれば、ガラスフリットを必
要としない厚膜型正特性半導体素子が容易に製造でき、
その実用上の効果は大きいものである。
As described above, according to the present invention, it is possible to easily manufacture a thick film type positive characteristic semiconductor device that does not require a glass frit.
Its practical effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により得られる厚膜型正特性半導体
素子を示す一部切欠斜視図、第2図は本発明の実施例に
よる素子の温度と抵抗値の関係を示す図である。 1・・・・・・ペースト状混合物12・・・・・・基板
、3,4・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名℃1
11   寸  つ  〜  、 (1f)s kγ −
FIG. 1 is a partially cutaway perspective view showing a thick film positive temperature coefficient semiconductor device obtained by the method of the present invention, and FIG. 2 is a diagram showing the relationship between temperature and resistance value of the device according to an embodiment of the present invention. 1... Paste mixture 12... Substrate, 3, 4... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person℃1
11 s kγ − , (1f)s kγ −

Claims (1)

【特許請求の範囲】[Claims] BaTiO_3系半導体粉末にZrB_1_2をその混
合量が全重量に対して1〜60重量%加え、ペースト状
にした混合物を基板上に塗布して厚膜状とした後、焼成
することを特徴とする厚膜型正特性半導体素子の製造方
法。
A thick film characterized by adding ZrB_1_2 to BaTiO_3-based semiconductor powder in a mixed amount of 1 to 60% by weight based on the total weight, applying the paste-like mixture on a substrate to form a thick film, and then firing it. A method for manufacturing a film type positive characteristic semiconductor device.
JP22350884A 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element Pending JPS61101005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22350884A JPS61101005A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22350884A JPS61101005A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Publications (1)

Publication Number Publication Date
JPS61101005A true JPS61101005A (en) 1986-05-19

Family

ID=16799243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22350884A Pending JPS61101005A (en) 1984-10-24 1984-10-24 Manufacture of thick film type positive temperature coefficient semiconductor element

Country Status (1)

Country Link
JP (1) JPS61101005A (en)

Similar Documents

Publication Publication Date Title
JPS61101005A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101007A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158204A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260103A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158208A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158209A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101004A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6012702A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261105A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261109A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158210A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261108A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH04364B2 (en)
JPS61101006A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101003A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101009A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158203A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206103A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158206A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158211A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101002A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPH04563B2 (en)
JPS60260102A (en) Method of producing thick film positive temperature coefficient semiconductor element