JPS6064403A - Method of producing thick film positive temperature coefficient semiconductor element - Google Patents

Method of producing thick film positive temperature coefficient semiconductor element

Info

Publication number
JPS6064403A
JPS6064403A JP17344883A JP17344883A JPS6064403A JP S6064403 A JPS6064403 A JP S6064403A JP 17344883 A JP17344883 A JP 17344883A JP 17344883 A JP17344883 A JP 17344883A JP S6064403 A JPS6064403 A JP S6064403A
Authority
JP
Japan
Prior art keywords
thick film
semiconductor element
temperature coefficient
positive temperature
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17344883A
Other languages
Japanese (ja)
Inventor
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17344883A priority Critical patent/JPS6064403A/en
Publication of JPS6064403A publication Critical patent/JPS6064403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は機器の保温、加熱などに用いられる面状発熱体
のなかで、ガラスフリットを必要としない厚膜型正特性
半導体素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thick-film positive temperature coefficient semiconductor element that does not require glass frit, among planar heating elements used for heat insulation and heating of equipment, etc. It is.

従来例の構成とその問題点 B a T x Os系半導体からなる素子は所定温度
以上で急激に抵抗値が増大するスイッチング特性及びス
イッチング後の自己発熱特性を有し、昇温特性が速く自
己温度制御機能を有し、外部の制御回路を必要としない
ため広く利用されている。
Conventional configuration and its problems B A device made of an a T It is widely used because it has a control function and does not require an external control circuit.

従来の正特性サーミスタ発熱体はB a T i O3
系半導体粉末を加圧成形した後、焼成して得ていたが、
実用可能な厚膜状の正特性サーミスタ発熱体を得ること
は困難であるとされていた。
The conventional positive temperature coefficient thermistor heating element is B a T i O3
It was obtained by press-molding a semiconductor powder and then firing it.
It has been considered difficult to obtain a practical thick-film positive temperature coefficient thermistor heating element.

従来、B a T 103系半導体を膜状に加工する方
法としては、次のようなものが知られている。
Conventionally, the following methods are known for processing BaT 103-based semiconductors into a film.

■ ディスク形に成形した後、焼成したものをAQ片に
研磨する。
■ After forming into a disk shape, the fired product is polished into AQ pieces.

■ 真空蒸着法により基板上に薄膜を形成する。■ Form a thin film on the substrate by vacuum evaporation.

■ E a T iO3系半導体粉末に導電性の添加剤
とガラスフリットを加えてベースト状とし、基板」〕に
スクリーン印刷した後、焼成する。
(2) A conductive additive and glass frit are added to the E a TiO3-based semiconductor powder to form a base, which is screen printed on a substrate and then fired.

しかし、前記■の方法ではB a T i O3系半導
体の結晶粒子径が大きくもろいため、膜状に寸で研磨す
ることは甚だ困難である。また、前記■の方法では操作
が面倒であり、発熱体に適した大電力を得ることがむつ
かしい。さらに、前記■の方法では面積抵抗が高くなり
易く制御が困難であり、発熱体には適さず、またあらか
じめガラスフリットを調合、焼成しておかなければなら
ず、面倒であると共にガラスフリットの材質によっては
BaTiO3系半導体の持つスイッチング特性及び自己
発熱特性を劣化させる。そして、ガラスフリットを加え
ることによF) B a T t O3系半導体とガラ
スフリットの耐熱性、熱膨張係数の差から熱衝撃に弱く
、熱伝導が妨げられる。さらに、導電性の添加剤とガラ
スフリットを均一に混合することは困難であり、特性に
ばらつきを生じる原因の一つとなっている。
However, in the method (2), since the crystal grain size of the B a T i O 3 -based semiconductor is large and brittle, it is extremely difficult to polish it into a film. Furthermore, the method (2) is cumbersome to operate, and it is difficult to obtain a large amount of power suitable for the heating element. Furthermore, in method (2) above, the sheet resistance tends to increase and is difficult to control, making it unsuitable for heating elements. Furthermore, the glass frit must be prepared and fired in advance, which is troublesome, and the material of the glass frit is difficult to control. In some cases, the switching characteristics and self-heating characteristics of BaTiO3-based semiconductors are deteriorated. By adding glass frit, F) B a T t O3 type semiconductor and the glass frit are susceptible to thermal shock due to the difference in heat resistance and coefficient of thermal expansion, and heat conduction is hindered. Furthermore, it is difficult to uniformly mix conductive additives and glass frit, which is one of the causes of variations in properties.

発明の目的 そこで本発明では前記従来技術の欠点であった製造上の
繁雑さをブW決し、ガラスフリットを用いずに厚膜状に
することにより熱衝撃性、熱伝導性に優れ、均一な特性
を持つ厚膜型正特性半導体素子を容易に製造できる方法
を提供することを目的としている。
Purpose of the Invention Therefore, the present invention eliminates the complexity of manufacturing, which was a drawback of the prior art, and creates a film with excellent thermal shock resistance and thermal conductivity, and by forming a thick film without using glass frit. It is an object of the present invention to provide a method for easily manufacturing a thick film type positive characteristic semiconductor element having the following characteristics.

発明の構成 本発明の厚膜型正特性半導体素子の製造方法は、B a
 T iO3系半導体粉末にSm6Si3.SmSiま
たはSmSi2のうち少なく吉も1種類を全重量に対し
て1〜60重量%加えてペースト状にした混合物を基板
上に塗布して厚膜状とした後焼成することにより厚膜型
正特性半導体素子をイ(Jようとするものである。
Structure of the Invention The method for manufacturing a thick film type positive temperature semiconductor device of the present invention comprises B a
Sm6Si3. Thick film type positive characteristics can be obtained by applying a paste-like mixture of at least one type of SmSi or SmSi2 at 1 to 60% by weight based on the total weight and applying it onto a substrate to form a thick film and then firing it. It is intended to convert semiconductor elements into I(J).

従来の導電性添加剤とガラスフリットを用いる方法では
BaTiO3系半導体粉末同志の電気的接続のために導
電性添加剤が必要であり、B a T s Oa系粉末
同志を物理的に接続するのにガラスフリットが必要であ
った。
The conventional method using conductive additives and glass frit requires a conductive additive to electrically connect BaTiO3-based semiconductor powders, and it is difficult to physically connect BaTiO3-based semiconductor powders to each other. Glass frit was required.

しかし、本発明によれば導電性添加剤とガラスフリット
の両方の役割をはだすものとしてSm5si3゜SmS
i またばSmSi2を用いたところに慣徴を有してい
る。このSm5St3.SmSi、SmSi2は常温で
は導体であり、1000〜11oo℃以−1−の温度に
なると一部分が分解してオシ子表面に3102が析出す
るが1粒子内部は元のままで表向のSiO2膜により分
解が阻止される。従って、BaTi○3系半導体粉末と
Sm5Si3.Sm5i−!f、たはSmSi2粉末を
混合して焼成すると、Sm 、S i3. SmS i
またはSmSi2の表面に析出するS t O2がガラ
スフリットと同じ役割をし、粒子内部が導電性添加剤の
役割をするため、Sm5Si3.SmSiまたはSmS
i2を添加するだけでガラス7リツトを必要としない厚
膜型正特性半導体素子が得られる。
However, according to the present invention, Sm5si3°SmS acts as both a conductive additive and a glass frit.
i Also, it has a habit of using SmSi2. This Sm5St3. SmSi and SmSi2 are conductors at room temperature, but at temperatures above 1000~1100°C, a portion of them decomposes and 3102 precipitates on the surface of the oscillator, but the inside of each particle remains intact and is formed by the SiO2 film on the surface. Decomposition is prevented. Therefore, BaTi○3 based semiconductor powder and Sm5Si3. Sm5i-! f, or SmSi2 powder is mixed and fired, Sm, Si3. SmSi
Alternatively, Sm5Si3. SmSi or SmS
By simply adding i2, it is possible to obtain a thick film type positive characteristic semiconductor element that does not require glass.

また、導電性金属を添加することにより熱伝導性が悪い
ガラススリットに較べ熱伝導性が良くなシ、熱衝撃性も
向上する。
Furthermore, by adding a conductive metal, the thermal conductivity is better than that of a glass slit with poor thermal conductivity, and the thermal shock resistance is also improved.

実施例の説明 以下に本発明の実施例をあげて第1図と共に具体的に説
明する。
DESCRIPTION OF EMBODIMENTS Below, embodiments of the present invention will be specifically explained with reference to FIG.

実施例1 E a T IO3に1.0モルチのLa2O3を加え
1300℃で焼成した後、粉砕してB a T i O
3系半導体を得る。前記B a T i O3系半導体
粉末に全重量に対して6.0重用チの3rnSi粉末を
加え均一に混合し、さらにα−テルピネオールを加えて
ペースト状混合物1を作る。
Example 1 1.0 mol of La2O3 was added to E a T IO3, fired at 1300°C, and then pulverized to form B a T i O
A 3-based semiconductor is obtained. A paste-like mixture 1 is prepared by adding 3rnSi powder in an amount of 6.0% by weight based on the total weight of the B a T i O3 semiconductor powder and mixing uniformly, and then adding α-terpineol.

一方、Al2O3などからなる基板2上にあらかじめ一
対のAqなとの導電性物質からなる電極3゜4を設けて
おき、前記電極3,4上にその電極3゜4の一部が残る
ように前記ペースト状混合物1をスクリーン印刷などに
より塗布し、室温から10℃/mLnの昇温速度で13
50℃まで昇温し、1時間保持した後、炉内放冷する。
On the other hand, a pair of electrodes 3゜4 made of a conductive substance such as Aq is provided in advance on a substrate 2 made of Al2O3, etc., and a part of the electrodes 3゜4 remains on the electrodes 3, 4. The paste-like mixture 1 was applied by screen printing or the like, and heated at a heating rate of 10°C/mLn from room temperature for 13 min.
After raising the temperature to 50°C and maintaining it for 1 hour, it is allowed to cool in the furnace.

このようにして厚膜型正特性半導体素子を得た。In this way, a thick film type positive characteristic semiconductor device was obtained.

実施例2 実施例1と同様にしてB a T 103に3.0モル
チのLa2O3を加え1260℃で焼成した後、−粉砕
してBaTiO3 系半導体粉末に全重量に対して20.0重@チのSmS
i2粉末を加え均一に混合し、さらにα−テルピネオー
ルを加えてベース!・状混合物1にする1、ついで、実
施例1と同様に前記基板2上にあらかじめ前記電極3,
4を設けておき、前記電極3゜4の一部が残るように前
記ペースト状混合物1をスクリーン印刷などより塗布し
、室温から10℃/駆の昇温速度で1300℃まで昇温
し、30分間保持した後、炉内放冷する。このようにし
て)11IIψ型半導体素子を得た。
Example 2 In the same manner as in Example 1, 3.0 mole of La2O3 was added to B a T 103 and fired at 1260°C, and then crushed to give a BaTiO3 based semiconductor powder with 20.0 mole of La2O3 based on the total weight. SmS of
Add i2 powder and mix evenly, then add α-terpineol and base! The mixture 1 is made into a mixture 1, and then, as in Example 1, the electrodes 3,
4 was prepared, the paste mixture 1 was applied by screen printing or the like so that a part of the electrode 3.4 remained, and the temperature was raised from room temperature to 1300°C at a rate of 10°C/drive. After holding for a minute, let it cool in the furnace. In this way, an 11IIψ type semiconductor device was obtained.

こうして得だ厚膜型半導体素子の室温での面積抵抗は実
施例1の場合3.7にΩ/cdlであシ、実施例2の場
合1.4KQlcdtであシ、各々の温度と抵抗値の関
係は第2図に示した通りであった。第2図でAは実施例
1により得られた素子の特性、Bは実施例2の場合の特
性である。
In this way, the sheet resistance of the thick film semiconductor device at room temperature is 3.7Ω/cdl in the case of Example 1, and 1.4KQlcdt in the case of Example 2, depending on the temperature and resistance value. The relationship was as shown in Figure 2. In FIG. 2, A shows the characteristics of the device obtained in Example 1, and B shows the characteristics in Example 2.

発明の効果 以上のように本発明の製造方法によれば、Sm 5S 
i3. SmS iまたはSmSi2 粉末が従来の導
電性添加剤とガラスフリットの両方の役割をはだし、電
気的接続、物理的接続に十分な効果があり、ガラスフリ
ットなしで厚膜状正特性半導体素子が得られることとな
る。
Effects of the Invention As described above, according to the manufacturing method of the present invention, Sm 5S
i3. SmSi or SmSi2 powder plays the role of both a conventional conductive additive and a glass frit, and has sufficient effects for electrical and physical connections, making it possible to obtain thick-film positive characteristic semiconductor devices without a glass frit. It will be.

また、ガラスフリットという熱伝導の悪いものにかわっ
て熱伝導のよい導電性金属のSm6Si3゜SmSi、
SmS’2を用いることにより、熱伝導が良くなり熱衝
撃性も向上する。さらに、スクリーン印刷などにより製
造できることから作業が容易で量産が可能である。
In addition, instead of glass frit, which has poor thermal conductivity, Sm6Si3°SmSi, a conductive metal with good thermal conductivity,
By using SmS'2, heat conduction is improved and thermal shock resistance is also improved. Furthermore, since it can be manufactured by screen printing or the like, the work is easy and mass production is possible.

なお、本発明においてB a T i O3系半導体粉
末としてはBa T iOsに各種の添加剤を加えて半
導体化したものであればなんでもよい。また、Sm6S
i3゜SmSi、SmSi2粉末の添加用:を全重量に
対して1〜60重量%と規定したのは、1重量−未満で
は面積抵抗が大きくなシすぎ発熱体に不適当であり、B
 a T i O3粉末同志の物理的固定もできなく、
一方6ON量チを越えると面積抵抗が小さくなりすぎ、
自己制御特性(PTC特性)が小さくなり発熱体に不適
当になるためである。
In the present invention, any Ba TiO3-based semiconductor powder may be used as long as it is made into a semiconductor by adding various additives to Ba TiOs. Also, Sm6S
The reason why i3゜For addition of SmSi, SmSi2 powder: is specified as 1 to 60% by weight based on the total weight is that if it is less than 1% by weight, the area resistance is too large and it is unsuitable for a heating element.
a T i O3 powder cannot be physically fixed together,
On the other hand, if the amount exceeds 6ON, the area resistance becomes too small.
This is because the self-control characteristic (PTC characteristic) becomes small, making it unsuitable for a heating element.

また、実施例では導電性金属として1種類添加した場合
のみ示したが、複数種類の全添加量が規定量内であれば
同様の効果があることを確認した。
Further, in the examples, only the case where one type of conductive metal was added was shown, but it was confirmed that the same effect can be obtained if the total amount of multiple types added is within the specified amount.

さらに、B a T 10s系半導体粉末とSm6Si
3゜SmS i 、SmS t2粉末をペースト状にす
るのに有機溶剤(実施例ではa−テルピネオ;ル)を用
いたが、ペースト状にできるものであればなんでもよい
Furthermore, B a T 10s semiconductor powder and Sm6Si
Although an organic solvent (a-terpineol in the example) was used to make the 3°SmS i and SmS t2 powders into a paste, any solvent may be used as long as it can be made into a paste.

以上述べたように本発明によれば、ガラスフリットを必
要としない厚膜型正特性半導体素子が容易に製造でき、
その実用上の効果は大きいものである。
As described above, according to the present invention, it is possible to easily manufacture a thick film type positive characteristic semiconductor device that does not require a glass frit.
Its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により得られる厚膜型正特性半導体
素子を示す一部切欠斜視図、第2図は本発明の実施例に
よる素子の温度と抵抗値の関係を示す図である。 1・・−・・・ペースト状混合物、2・・・・・・基板
、3,4・・・・・・電極。
FIG. 1 is a partially cutaway perspective view showing a thick film positive temperature coefficient semiconductor device obtained by the method of the present invention, and FIG. 2 is a diagram showing the relationship between temperature and resistance value of the device according to an embodiment of the present invention. 1... Paste mixture, 2... Substrate, 3, 4... Electrode.

Claims (1)

【特許請求の範囲】[Claims] B a T i O3系半導体粉末に5rrh ss 
is 、5rnS zまたはSmSi2のうち少なくと
も1種類を全重量に対して1〜60重量%加え、ペース
ト状にした混合物を基板上に塗布して厚膜状とした後、
焼成してなることを特徴とする厚膜型正特性半導体素子
の製造方法。
5rrh ss to B a Ti O3 based semiconductor powder
After adding 1 to 60% by weight of at least one of is, 5rnS z or SmSi2 to the total weight and applying the paste-like mixture on the substrate to form a thick film,
A method for manufacturing a thick film type positive characteristic semiconductor element, characterized in that it is produced by firing.
JP17344883A 1983-09-19 1983-09-19 Method of producing thick film positive temperature coefficient semiconductor element Pending JPS6064403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17344883A JPS6064403A (en) 1983-09-19 1983-09-19 Method of producing thick film positive temperature coefficient semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17344883A JPS6064403A (en) 1983-09-19 1983-09-19 Method of producing thick film positive temperature coefficient semiconductor element

Publications (1)

Publication Number Publication Date
JPS6064403A true JPS6064403A (en) 1985-04-13

Family

ID=15960659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17344883A Pending JPS6064403A (en) 1983-09-19 1983-09-19 Method of producing thick film positive temperature coefficient semiconductor element

Country Status (1)

Country Link
JP (1) JPS6064403A (en)

Similar Documents

Publication Publication Date Title
JPS6064403A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS60261109A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6012702A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158204A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6012701A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158209A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101007A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158210A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206103A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206105A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261107A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60261105A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60206102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101009A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS6158211A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6158208A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS60260103A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS6012705A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101003A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS61101004A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS60260102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS61101002A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPS60261108A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPS59111302A (en) Method of producing thick film type temperature coefficient semiconductor element