JPH07114161B2 - Oxide resistor - Google Patents

Oxide resistor

Info

Publication number
JPH07114161B2
JPH07114161B2 JP61198856A JP19885686A JPH07114161B2 JP H07114161 B2 JPH07114161 B2 JP H07114161B2 JP 61198856 A JP61198856 A JP 61198856A JP 19885686 A JP19885686 A JP 19885686A JP H07114161 B2 JPH07114161 B2 JP H07114161B2
Authority
JP
Japan
Prior art keywords
oxide
resistor
sintered body
resistance
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61198856A
Other languages
Japanese (ja)
Other versions
JPS6355904A (en
Inventor
武夫 山崎
守孝 庄司
昭 池上
伸一 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61198856A priority Critical patent/JPH07114161B2/en
Publication of JPS6355904A publication Critical patent/JPS6355904A/en
Publication of JPH07114161B2 publication Critical patent/JPH07114161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遮断器などの開閉サージ吸収に好適な抵抗体
で、酸化亜鉛,酸化アルミニウム,酸化マグネシウムを
基本成分とし、副成分に他の酸化物を含有させ相対密度
70〜90%の焼結体を用いた直線抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a resistor suitable for absorbing switching surges such as circuit breakers, which has zinc oxide, aluminum oxide, and magnesium oxide as basic components and other components as other components. Relative density including oxide
It relates to a linear resistor using a 70 to 90% sintered body.

〔従来の技術〕[Conventional technology]

直線性抵抗体はオームの法則にしたがう電圧−電流特性
を持ち、近似的にI(電流)={V(電圧)/C(定
数)}αで示し、α(直線性指数)が1.3以下で、か
つ、抵抗の温度係数が正であることが遮断器などの開閉
時に発生するサージを吸収するのに大きな効果を示すこ
とがわかつている。
A linear resistor has a voltage-current characteristic according to Ohm's law, and is approximately represented by I (current) = {V (voltage) / C (constant)} α , and α (linearity index) is 1.3 or less. It has been found that a positive temperature coefficient of resistance has a great effect on absorbing a surge generated when a circuit breaker or the like is opened or closed.

このような直線抵抗体のうち代表的なものは炭素の含有
量で抵抗値を制御している酸化アルミニウム−粘度−炭
素系がある。この直線抵抗体の製造法の概要は酸化アル
ミニウム、炭素を主成分とし、これに焼結助剤として粘
度や低融点酸化物などを加え、十分に混合する。混合粉
には水やポリビニールアルコール水溶液などの適当なバ
インダ加えて造粒,成形,焼成する。焼成は炭素粉の酸
化を防止するため、還元雰囲気の電気炉中1000〜1500℃
で焼結され、抵抗値は炭素粉の含有量、すなわち、炭素
粉と炭素粉の接触面積及び炭素粉との密着性などで抑制
している。
A typical example of such a linear resistor is an aluminum oxide-viscosity-carbon system in which the resistance value is controlled by the carbon content. The outline of the manufacturing method of this linear resistor is mainly composed of aluminum oxide and carbon, to which viscosity and a low melting point oxide are added as a sintering aid and sufficiently mixed. The mixed powder is granulated, molded and fired by adding an appropriate binder such as water or an aqueous solution of polyvinyl alcohol. In order to prevent the carbon powder from being oxidized, firing should be performed in an electric furnace in a reducing atmosphere at 1000-1500 ° C.
The resistance value is controlled by the content of carbon powder, that is, the contact area between carbon powder and the adhesion between carbon powder, and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の従来技術で得られた抵抗体には次のような欠点が
ある。第一には焼結体の相対密度が50〜60%と低いため
抵抗値を抑制している炭素粉と炭素粉との密着性が悪い
ため、放電サージ吸収時に炭素粉と炭素粉との接触面で
放電し、放電耐量が小さいこと、第二には抵抗温度係数
が負で−9×10-2Ω/℃(20〜250℃)と大きいために
放電サージを吸収して温度上昇すると抵抗値が低下し、
電圧が一定の場合には電流の急激な増加により一層発熱
して熱暴走状態におちいることなどの欠点がある。この
ため、炭素粉分散性抵抗体を使用する場合には、抵抗体
の形状を大きくして、単位体積当りの吸収エネルギを小
さくする方法を取ってとつていた。しかし、この方法で
は、抵抗体を入れる碍子等の容器が大型になり、価格が
高くなる。また、遮断器などの機器が大型になるため、
設置面積も大きくなるなどの問題を生じる。
The resistor obtained by the above conventional technique has the following drawbacks. First, the relative density of the sintered body is low at 50 to 60%, which suppresses the resistance value.The adhesion between carbon powder and carbon powder is poor, so contact between carbon powder and carbon powder during discharge surge absorption. discharged at the surface, it discharging capability is small, and the second temperature coefficient of resistance -9 × 10 -2 Ω / ℃ negative (20 to 250 [° C.) and absorbs the discharge surge in larger temperature rises the resistance The value drops,
When the voltage is constant, there is a drawback that the current further increases due to a rapid increase in the current, resulting in a thermal runaway state. For this reason, when the carbon powder dispersible resistor is used, the shape of the resistor is made large and the absorbed energy per unit volume is made small. However, according to this method, a container such as an insulator for accommodating the resistor becomes large in size, resulting in a high price. In addition, since devices such as circuit breakers become large,
This causes problems such as a large installation area.

本発明の目的は放電サージ耐量が高く、正の抵抗温度係
数を有する酸化物抵抗体を提供することにある。
An object of the present invention is to provide an oxide resistor having a high discharge surge resistance and a positive temperature coefficient of resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、モル比で、酸化アルミニウム0.5〜30%,酸
化マグネシウム5〜40%及び残部の酸化亜鉛を有し、相
対密度が70〜90%である焼結体からなり、該焼結体の上
下端面に電極が設けられていることを特徴とする酸化物
抵抗体にあり、更に、モル比で、酸化アルミニウム0.5
〜30%,酸化マグネシウム5〜40%,酸化アンチモン,
酸化珪素及び酸化リチウムから選ばれた1種以上0.01〜
30%及び残部の酸化亜鉛を有し、相対密度が70〜90%で
ある焼結体からなり、該焼結体の上下端面に電極が設け
られていることを特徴とする酸化物抵抗体にあり、それ
によって高い放電サージ耐量と正の抵抗温度係数とをも
たせ、かつ、焼成後の冷却速度を150℃/h以下で徐冷す
ることによつて、より電圧−電流特性の直線性を良くし
たものである。なお、本発明の電圧−電流特性の直線性
指数1.3以下の酸化物直線抵抗体の構造を第7図に示し
た。さらに、第8図に示すように、得られる酸化物直線
抵抗体の中心部付近に孔を設けても良いことはいうまで
もない。
The present invention comprises a sintered body having a molar ratio of 0.5 to 30% aluminum oxide, 5 to 40% magnesium oxide and the balance zinc oxide, and a relative density of 70 to 90%. It is an oxide resistor characterized in that electrodes are provided on the upper and lower end faces, and further, in a molar ratio, aluminum oxide 0.5
~ 30%, magnesium oxide 5-40%, antimony oxide,
One or more selected from silicon oxide and lithium oxide 0.01 to
An oxide resistor having 30% and the balance zinc oxide, and comprising a sintered body having a relative density of 70 to 90%, wherein electrodes are provided on the upper and lower end surfaces of the sintered body. By providing a high discharge surge withstand capability and a positive temperature coefficient of resistance, and by gradually cooling at a cooling rate of 150 ° C / h or less after firing, the linearity of voltage-current characteristics can be improved. It was done. The structure of an oxide linear resistor having a voltage-current characteristic linearity index of 1.3 or less is shown in FIG. Further, as shown in FIG. 8, it goes without saying that a hole may be provided near the center of the obtained oxide linear resistor.

発明者らは種々の検討の結果、放電サージ耐量は得ら
れる焼結体の相対密度が70%以下、及び90%以上にする
と従来の炭素分散型抵抗体の放電サージ耐量400J/cm3
りも小さくなること、抵抗の温度係数は放電サージ耐
量と同様に、得られる焼結体の相対密度を90%以上にす
ると従来の炭素分散型抵抗体と同様に負となること、
一方、電圧−電流特性の直線性は焼成後の冷却速度を15
0℃/hとすると直線性指数αが目標値1.3よりも大きくな
り、わるくなることなどから遮断器用抵抗体として不適
当になることがわかつた。
As a result of various studies by the inventors, when the relative density of the obtained sintered body is 70% or less, and the discharge surge withstand capacity is 90% or more, the discharge surge withstand capacity of the conventional carbon dispersion type resistor is 400 J / cm 3 or more. As with the discharge surge resistance, the temperature coefficient of resistance becomes negative when the relative density of the obtained sintered body is 90% or more, as in the case of the conventional carbon dispersion type resistor.
On the other hand, the linearity of the voltage-current characteristic depends on the cooling rate after firing.
It was found that the linearity index α becomes larger than the target value of 1.3 at 0 ° C / h, and it becomes unsuitable as a resistor for a circuit breaker.

本発明の酸化物直線抵抗体は一般の窯業的製造法で得ら
れる。すなわち、酸化亜鉛に酸化マグネシウム5〜40モ
ル%、酸化アルミニウム0.5〜30モル%を加えたものを
基本成分とし、さらに、望ましくは、酸化アンチモン,
酸化珪素及び酸化リチウムから選ばれた一成分以上を0.
01〜30モル%加えて十分に混合し、これに水及びポリビ
ニールアルコール等の的層なバインダを加え造粒し、金
型を用いて成形する。成形体は電気炉を用いて大気中10
00〜1500℃の温度で焼成後150℃/h以下の冷却速度で除
冷する。ここでの焼成後の除冷は上記のように、得られ
る抵抗体の電圧−電流特性の直線性に影響を及ぼす。ま
た、得られる焼結体は相対密度が70〜90%になるよう
に、上記の酸化亜鉛,酸化マグネシウム,酸化アルミニ
ウムの基本成分の最適配合割合や酸化アンチモン,酸化
リチウム,酸化珪素の別成分の最適添加量及びそれに対
応する最適焼成温度などの選定してやることが重要であ
る。なぜならば、相対密度は放電サージ耐量及び抵抗温
度係数に影響を及ぼすからである。さらに、得られる焼
結体中には、ZnO結晶粒よりも高抵抗のZnAl2O4,MgAl
2O4,Zn2SiO4,MgSiO4,ZnnSb2O12,Li2SiO4などの結晶粒を
生成させ、かつ、各結晶粒間には、少なくとも、ZnO結
晶粒よりも抵抗の高い粒界相が形成されていないことで
ある。従つて、酸化ビスマスなどの添加は結晶粒界相な
どに高抵抗層を形成するため望ましくない。このように
して焼成された焼結体は電極を形成する両端面を研磨
し、電気溶射または焼付け法によつて電極を形成する。
得られた抵抗体は使用中における沿面放電を防止するた
め、抵抗体の側面に高抵抗セラミツクス層やガラス層を
設けても良い。なお、得られた抵抗体は電圧−電流特性
に直線性を示すが、非直線性を示す場合には高抵抗の部
分(特に、粒界層)を破壊することが有効である。
The oxide linear resistor of the present invention can be obtained by a general ceramic manufacturing method. That is, zinc oxide 5 to 40 mol% magnesium oxide, aluminum oxide 0.5 to 30 mol% as a basic component, more preferably, antimony oxide,
One or more components selected from silicon oxide and lithium oxide should be used.
Add 01 to 30 mol% and mix well, add water and binder such as polyvinyl alcohol as a target layer to granulate, and mold using a mold. The molded body was placed in the atmosphere using an electric furnace.
After firing at a temperature of 00 to 1500 ° C, it is cooled at a cooling rate of 150 ° C / h or less. The cooling after firing here has an effect on the linearity of the voltage-current characteristics of the obtained resistor, as described above. In addition, the obtained sintered body should have a relative density of 70 to 90% so that the optimum mixing ratio of the above-mentioned basic components of zinc oxide, magnesium oxide, and aluminum oxide and other components of antimony oxide, lithium oxide, and silicon oxide are different. It is important to select the optimum addition amount and the optimum firing temperature corresponding to it. This is because the relative density affects the discharge surge withstand capacity and the temperature coefficient of resistance. Furthermore, in the obtained sintered body, ZnAl 2 O 4 , MgAl having higher resistance than ZnO crystal grains
2 O 4 , Zn 2 SiO 4 , MgSiO 4 , ZnnSb 2 O 12 , Li 2 SiO 4 and other crystal grains are generated, and between each crystal grain, at least, a grain boundary having a higher resistance than the ZnO crystal grain. That is, no phase is formed. Therefore, addition of bismuth oxide or the like is not desirable because it forms a high resistance layer in the grain boundary phase or the like. The thus-sintered sintered body has its both end surfaces polished to form electrodes, and the electrodes are formed by electrospraying or baking.
The obtained resistor may be provided with a high resistance ceramic layer or a glass layer on the side surface of the resistor in order to prevent creeping discharge during use. Although the obtained resistor exhibits linearity in voltage-current characteristics, it is effective to destroy the high resistance portion (particularly, the grain boundary layer) when it exhibits nonlinearity.

〔実施例〕〔Example〕

〔実施例1〕 酸化亜鉛(ZnO)3400g,酸化マグネシウム(MgO)101g,
酸化アルミニウム(Al2O3)510gを湿式ボールミルで十
五時間混合する。混電粉は乾燥した後、5Wt%ポリビニ
ールアルコール水溶液を乾燥原料粉に対して7Wt%加え
て造粒する。造粒粉は金型を用いてφ50×15mmに成形す
る。成形体は大気中1300℃、3時間保持した後70℃/hで
100℃まで冷却した。得られた焼結体の相対密度は85%
であつた。
[Example 1] 3400 g of zinc oxide (ZnO), 101 g of magnesium oxide (MgO),
510 g of aluminum oxide (Al 2 O 3 ) is mixed in a wet ball mill for 15 hours. After the mixed powder is dried, 5 Wt% polyvinyl alcohol aqueous solution is added to the dry raw material powder at 7 Wt% for granulation. The granulated powder is molded into a size of 50 mm x 15 mm using a mold. Molded body is held at 1300 ℃ in air for 3 hours, then at 70 ℃ / h
Cooled to 100 ° C. The relative density of the obtained sintered body is 85%
It was.

別に、低融点結晶化ガラスの岩城硝子社製AGF−72ガラ
ス粉(PbO−Al2O3−SiO2系)をエチルセルローズ・ブチ
ルカルビトール溶液に懸濁しておき、これを焼成した焼
結体の側面に厚さ50〜300μmになるように筆塗りし
た。ガラス粉を塗布した焼結体は大気中500℃、30時間
熱処理してガラスを焼付けた。ガラスを形成した焼結体
はその両端面をラツプマスタで約0.5mmずつ研磨し、ト
リクロルエチレンで洗浄した。洗浄した焼結体は電溶射
法によつてAl電極を形成して抵抗体とした。この発明品
と従来品(炭素分散型抵抗体)との放電サージ耐量,抵
抗温度係数,大気中500℃熱処理前後の抵抗値変化率及
び電圧−電流特性の直線性指数αを比較すると第1表と
なる。
Separately, AGF-72 glass powder (PbO-Al 2 O 3 -SiO 2 system) of low melting point crystallized glass manufactured by Iwaki Glass Co., Ltd. was suspended in an ethyl cellulose butyl carbitol solution, and the sintered body was fired. It was brush-painted on the side surface of the so as to have a thickness of 50 to 300 μm. The glass powder-coated sintered body was heat-treated in the air at 500 ° C. for 30 hours to bake the glass. Both ends of the glass-formed sinter were polished with a lap master by about 0.5 mm and washed with trichlorethylene. The cleaned sintered body was used as a resistor by forming an Al electrode by electrospraying. Comparison of the discharge surge resistance, the resistance temperature coefficient, the resistance value change rate before and after heat treatment at 500 ° C. in air, and the linearity index α of the voltage-current characteristics of the product of the present invention and the conventional product (carbon dispersion type resistor) is shown in Table 1. Becomes

本発明品は従来品よりも放電サージ耐量が大きく、抵抗
温度係数が正で、大気中500℃熱処理前後の抵抗値変化
が小さく、かつ、直線性指数が1に近づきすぐれている
こがわかる。
It can be seen that the product of the present invention has a larger discharge surge resistance than the conventional product, a positive temperature coefficient of resistance, a small change in resistance value before and after heat treatment at 500 ° C. in air, and a linearity index close to 1.

〔実施例2〕 抵抗率500〜600Ω・cmで焼結体の相対密度が60〜98%の
抵抗体を得るために、酸化亜鉛(ZnO)に酸化マグネシ
ウム(MgO)5〜40モル%、酸化アルミニウム(Al2O3
0.5〜30モル%に変え、さらに酸化アンチモン(Sb
2O3)、酸化珪素(SiO2)及び酸化リチウム(Li2O)か
ら選ばれた一成分0.01〜30モル%を加え、その配合量を
正確に秤量した。秤量した原料粉は実施例1と同様に、
混合,造粒,成形して焼成温度を1200〜1400℃に変えて
3時間保持して大気中で焼成した。焼成後の冷却速度は
133℃/hであつた。得られた焼結体は両端面をラツプマ
スタで約0.5mmずつ研磨し、トリクロルエチレン中で超
音波洗浄した。洗浄した焼結体は研磨面にAl溶射電極を
形成して抵抗体とした。得られた抵抗体の焼結体の相対
密度と抵抗率,放電サージ耐量及び抵抗温度係数との関
係を第1図に示す。
Example 2 In order to obtain a resistor having a resistivity of 500 to 600 Ω · cm and a relative density of the sintered body of 60 to 98%, zinc oxide (ZnO) was mixed with magnesium oxide (MgO) 5 to 40 mol% and oxidized. Aluminum (Al 2 O 3 )
0.5 to 30 mol%, and antimony oxide (Sb
0.01 to 30 mol% of one component selected from 2 O 3 ), silicon oxide (SiO 2 ) and lithium oxide (Li 2 O) was added, and the blending amount was accurately weighed. The weighed raw material powder was the same as in Example 1,
After mixing, granulating, and molding, the firing temperature was changed to 1200 to 1400 ° C, and the mixture was held for 3 hours and fired in the atmosphere. The cooling rate after firing is
It was 133 ° C / h. Both end faces of the obtained sintered body were polished by a lap master by about 0.5 mm and ultrasonically cleaned in trichloroethylene. An Al sprayed electrode was formed on the polished surface of the washed sintered body to form a resistor. Fig. 1 shows the relationship between the relative density of the sintered body of the obtained resistor, the resistivity, the discharge surge withstand capacity, and the resistance temperature coefficient.

第1図から、抵抗体の放電サージ耐量及び抵抗温度係数
は焼結体の相対密度に著しく影響されていることがわか
る。すなわち、放電サージ耐量は焼結体の相対密度を70
%以下及び90%以上にすると400J/cm3以下で従来品(炭
素分散型抵抗体)よりも小さくなる。一方、抵抗温度係
数は焼結体の相対密度を約95%以上にすると負になり遮
断器用の抵抗体として好ましくなくなる。
From FIG. 1, it can be seen that the discharge surge resistance and the temperature coefficient of resistance of the resistor are significantly affected by the relative density of the sintered body. In other words, the discharge surge withstand capability is defined as 70% of the relative density of the sintered body.
% Or less and 90% or more, it becomes 400 J / cm 3 or less and becomes smaller than the conventional product (carbon dispersion type resistor). On the other hand, the temperature coefficient of resistance becomes negative when the relative density of the sintered body is about 95% or more, which is not preferable as a resistor for a circuit breaker.

これらのことから、遮断用抵抗体として特に望ましいの
は焼結体の相対密度を70〜90%にすることである。
From these facts, it is particularly desirable for the blocking resistor to have a relative density of the sintered body of 70 to 90%.

〔実施例3〕 酸化亜鉛(ZnO)4880g,酸化マグネシウム(MgO)400g,
酸化アルミニウム(Al2O3)2550g,酸化珪素(SiO2)300
g,酸化リチウム(Li2O)2gを湿式ボールミルで15時間混
合する。混合した原料粉は、実施例1及び2と同様に、
造粒,成形して焼成する。焼成方法は1350℃、3時間保
持した後、その冷却速度を17℃/hr,30℃/hr,60℃/hr,13
3℃/hr,200℃/hr及び300℃/hrに変えて行なつた。得ら
れた焼結体の相対密度は80〜85%、であつた。焼成した
焼結体は両端面をラツプマスタで約0.5mmづつ研磨し、
トリロルエチレン中で超音波洗浄した。洗浄後の焼結体
は研磨面にAl溶射電極を形成して抵抗体とした。得られ
た抵抗体の抵抗率は450〜500Ω・cmであつた。得られた
抵抗体の焼成後の冷却速度と電圧−電流特性の直線性指
数α、放電サージ耐量及び抵抗温度係数との関係を第2
図に示す。
[Example 3] Zinc oxide (ZnO) 4880 g, magnesium oxide (MgO) 400 g,
Aluminum oxide (Al 2 O 3 ) 2550g, Silicon oxide (SiO 2 ) 300
g and lithium oxide (Li 2 O) 2 g are mixed in a wet ball mill for 15 hours. The mixed raw material powder was the same as in Examples 1 and 2,
Granulate, shape and fire. The firing method is 1350 ° C for 3 hours, and then the cooling rate is 17 ° C / hr, 30 ° C / hr, 60 ° C / hr, 13
The temperature was changed to 3 ° C / hr, 200 ° C / hr and 300 ° C / hr. The relative density of the obtained sintered body was 80 to 85%. Both ends of the fired sintered body are polished by a lap master by about 0.5 mm,
Ultrasonic cleaning was performed in trilol ethylene. An Al sprayed electrode was formed on the polished surface of the cleaned sintered body to form a resistor. The resistivity of the obtained resistor was 450 to 500 Ω · cm. The relationship between the cooling rate after firing of the obtained resistor and the linearity index α of the voltage-current characteristic, the discharge surge withstand capability and the temperature coefficient of resistance is described in the second section.
Shown in the figure.

第2図から、抵抗体の直線指数αは焼成後の冷却速度を
速くするにしたがつて大きくなり、目標値の1.3以下に
するには冷却速度を約150℃/hr以下にする必要がある。
また、放電サージ耐量は冷却速度を速くするにしたがつ
て低下する傾向にあるが、冷却速度の最も速い300℃/hr
でも約750J/cm3で従来品(炭素分散型抵抗体)の400J/c
m3よりも大きい。一方、抵抗温度係数はいずれも正であ
る。
From Fig. 2, the linear index α of the resistor becomes larger as the cooling rate after firing becomes faster, and it is necessary to set the cooling rate to about 150 ° C / hr or less to achieve the target value of 1.3 or less. .
The discharge surge resistance tends to decrease as the cooling rate increases, but the maximum cooling rate is 300 ° C / hr.
However, it is about 750 J / cm 3 and 400 J / c of the conventional product (carbon dispersion type resistor).
Greater than m 3 . On the other hand, the temperature coefficients of resistance are all positive.

これらのことから、遮断器用抵抗体として特に望ましい
のは焼成後の冷却速度を150℃/hr以下にすることであ
る。
From these facts, what is particularly desirable as the circuit breaker resistor is to set the cooling rate after firing to 150 ° C./hr or less.

〔実施例4〕 第3図及び第4図は実施例1〜3において得られた本発
明の酸化物抵抗体をSF6ガス封入して送電用遮断器の投
入時に発生するサージを吸収する投入抵抗器簿呼び送電
用変圧器の中性点接地抵抗器(NGR)に応用した例を示
す。第8図に示した円筒状酸化物抵抗体4は絶縁棒5を
介して第3図の投入抵抗器6及び第4図のNGRに組込み
使用している。第3図及ひ第4図中での7はコンデン
サ,8は遮断部,9はブツシング,10はタンク,11は接地端で
ある。
[Embodiment 4] FIGS. 3 and 4 show that the oxide resistor of the present invention obtained in Embodiments 1 to 3 is filled with SF 6 gas to absorb a surge generated when the breaker for power transmission is closed. An example of application to a neutral point grounding resistor (NGR) of a transformer for call transmission of resistors is shown. The cylindrical oxide resistor 4 shown in FIG. 8 is used by being incorporated into the closing resistor 6 of FIG. 3 and the NGR of FIG. 4 through the insulating rod 5. In FIGS. 3 and 4, 7 is a capacitor, 8 is a cutoff portion, 9 is a bushing, 10 is a tank, and 11 is a ground terminal.

第5図及び第6図は本発明の酸化物抵抗体を用いた場合
と従来形抵抗体を用いた場合の遮断器の投入抵抗器及び
NGRを比較したものである。
5 and 6 show the closing resistors of the circuit breaker using the oxide resistor of the present invention and the conventional resistor.
This is a comparison of NGR.

〔発明の効果〕〔The invention's effect〕

本発明による酸化物直線性抵抗体は従来抵抗体(炭素分
散型抵抗体)に比べて約2.3倍と大きく、電圧−電流特
性の直線性が優れ、抵抗温度係数が正でしかも小さく、
かつ、500℃での熱処理後の抵抗値変化も小さいため、
従来型遮断器の抵抗体がしめる面積を約1/2にすること
ができる。
The oxide linear resistor according to the present invention is about 2.3 times larger than the conventional resistor (carbon dispersion type resistor), the linearity of the voltage-current characteristic is excellent, the temperature coefficient of resistance is positive and small,
And since the change in resistance value after heat treatment at 500 ° C is also small,
The area occupied by the resistors of conventional circuit breakers can be halved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の酸化物抵抗体の焼結体の相
対密度と抵抗率、放電サージ耐量及び抵抗温度係数との
関数図、第2図は本発明酸化物抵抗体の焼成後の冷却速
度と電圧−電流特性の直線性指数α、放電サージ耐量及
び抵抗温度係数との関係図、第3図及び第4図は本発明
の酸化物抵抗体を送電用の遮断器及び変圧器用の中性点
接地抵抗器に応用した例図、第5図及び第6図は本発明
の酸化物抵詳体を用いた場合と従来形抵抗体を用いた場
合の遮断器及び中性点接地抵抗器を比較した図、第7図
及び第8図は本発明の実施例に係る酸化物抵抗体の断面
図である。 1……焼結体。
FIG. 1 is a function diagram of relative density and resistivity, discharge surge withstand capacity and resistance temperature coefficient of a sintered body of an oxide resistor according to an embodiment of the present invention, and FIG. 2 is firing of the oxide resistor of the present invention. The relationship between the cooling rate and the linearity index α of the voltage-current characteristic, the discharge surge withstanding capability, and the temperature coefficient of resistance, which are shown in FIGS. 3 and 4, in which the oxide resistor of the present invention is used as a circuit breaker and transformer FIGS. 5, 5 and 6 are examples of application to a neutral grounding resistor for a circuit breaker and a neutral point when the oxide resistor of the present invention is used and when a conventional resistor is used. FIGS. 7 and 8 are cross-sectional views of an oxide resistor according to an embodiment of the present invention, in which ground resistors are compared. 1 ... Sintered body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大和田 伸一 茨城県日立市国分町1丁目1番1号 株式 会社日立製作所国分工場内 (56)参考文献 特開 昭57−53906(JP,A) 特開 昭56−126902(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinichi Owada 1-1-1 Kokubun-cho, Hitachi-shi, Ibaraki Inside the Kokubun factory of Hitachi, Ltd. (56) Reference JP-A-57-53906 (JP, A) Kaisho 56-126902 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モル比で、酸化アルミニウム0.5〜30%,
酸化マグネシウム5〜40%及び残部の酸化亜鉛を有し、
相対密度が70〜90%である焼結体からなり、該焼結体の
上下端面に電極が設けられていることを特徴とする酸化
物抵抗体。
1. A molar ratio of aluminum oxide 0.5 to 30%,
Having 5-40% magnesium oxide and the balance zinc oxide,
An oxide resistor comprising a sintered body having a relative density of 70 to 90%, wherein electrodes are provided on upper and lower end surfaces of the sintered body.
【請求項2】モル比で、酸化アルミニウム0.5〜30%,
酸化マグネシウム5〜40%,酸化アンチモン,酸化珪素
及び酸化リチウムから選ばれた1種以上0.01〜30%及び
残部の酸化亜鉛を有し、相対密度が70〜90%である焼結
体からなり、該焼結体の上下端面に電極が設けられてい
ることを特徴とする酸化物抵抗体。
2. A molar ratio of aluminum oxide 0.5 to 30%,
A sintered body having 5 to 40% magnesium oxide, 0.01 to 30% of at least one selected from antimony oxide, silicon oxide and lithium oxide and the balance zinc oxide, and having a relative density of 70 to 90%, An oxide resistor, wherein electrodes are provided on upper and lower end surfaces of the sintered body.
JP61198856A 1986-08-27 1986-08-27 Oxide resistor Expired - Lifetime JPH07114161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198856A JPH07114161B2 (en) 1986-08-27 1986-08-27 Oxide resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198856A JPH07114161B2 (en) 1986-08-27 1986-08-27 Oxide resistor

Publications (2)

Publication Number Publication Date
JPS6355904A JPS6355904A (en) 1988-03-10
JPH07114161B2 true JPH07114161B2 (en) 1995-12-06

Family

ID=16398048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198856A Expired - Lifetime JPH07114161B2 (en) 1986-08-27 1986-08-27 Oxide resistor

Country Status (1)

Country Link
JP (1) JPH07114161B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196003B2 (en) * 1995-03-27 2001-08-06 株式会社日立製作所 Ceramic resistor and manufacturing method thereof
US5584308A (en) * 1995-04-21 1996-12-17 Maekawa; Seiji Permanent wave method and apparatus
JP3636075B2 (en) 2001-01-18 2005-04-06 株式会社村田製作所 Multilayer PTC thermistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126902A (en) * 1980-03-10 1981-10-05 Marukon Denshi Kk Ceramic varistor and method of producing same
JPS6329802B2 (en) * 1980-09-18 1988-06-15 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPS6355904A (en) 1988-03-10

Similar Documents

Publication Publication Date Title
US5614138A (en) Method of fabricating non-linear resistor
US4855708A (en) Voltage non-linear resistor
JP3175500B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH07114161B2 (en) Oxide resistor
US5764129A (en) Ceramic resistor, production method thereof, neutral grounding resistor and circuit breaker
JP3212672B2 (en) Power resistor
JPH06101401B2 (en) Linear resistor
JP2002252104A (en) Voltage nonlinear resistor and arrester using the same
JP2020092105A (en) Voltage nonlinear resistor
JPS6033282B2 (en) Voltage nonlinear resistor
JPH01228105A (en) Manufacture of non-linear voltage resistance
JPH0522361B2 (en)
JPS61281501A (en) Oxide resistor
JPS5838563Y2 (en) nonlinear resistor
JPH08255705A (en) High energy resistance zinc oxide element for lightening arrester
JP3256673B2 (en) Power resistor
JPH10289807A (en) Functional ceramic element
JPH05258911A (en) Power resistor
JPH07130506A (en) Manufacture of resisting body nonlinear in voltage
JPS5951724B2 (en) Ceramic voltage nonlinear resistor
JPH03250605A (en) Manufacture of voltage non-linearity resistor
JPH05121213A (en) Linear resistor
JPH1187103A (en) Resistor for power use
JPH03159201A (en) Oxide resistor
JPH06151115A (en) Non linear resistor