JP3301312B2 - PTC material composition and PTC material - Google Patents

PTC material composition and PTC material

Info

Publication number
JP3301312B2
JP3301312B2 JP14159596A JP14159596A JP3301312B2 JP 3301312 B2 JP3301312 B2 JP 3301312B2 JP 14159596 A JP14159596 A JP 14159596A JP 14159596 A JP14159596 A JP 14159596A JP 3301312 B2 JP3301312 B2 JP 3301312B2
Authority
JP
Japan
Prior art keywords
powder
weight
parts
ptc
ptc material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14159596A
Other languages
Japanese (ja)
Other versions
JPH09326302A (en
Inventor
和晴 加藤
廣士 足達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14159596A priority Critical patent/JP3301312B2/en
Publication of JPH09326302A publication Critical patent/JPH09326302A/en
Application granted granted Critical
Publication of JP3301312B2 publication Critical patent/JP3301312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正の抵抗温度特
性(以下、PTC特性と略す)を有するPTC材料及び
その組成物に関するもので、このPTC材料は大電力の
電流制御、保護回路として機器を過大電流から保護する
ために用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PTC material having a positive resistance temperature characteristic (hereinafter abbreviated as PTC characteristic) and a composition thereof. Used to protect the power supply from excessive current.

【0002】[0002]

【従来の技術】電流制御、保護回路に用いたPTC材料
からなる抵抗素子(PTC素子)は、過大電流が通電さ
れたときに、ジュール熱による自己発熱によって温度が
上昇して素子抵抗が大きくなり、過大電流を絞る働きを
有する。
2. Description of the Related Art A resistance element (PTC element) made of a PTC material used for a current control and protection circuit, when an excessive current is applied, the temperature rises due to self-heating due to Joule heat and the element resistance increases. And has the function of reducing the excessive current.

【0003】PTC素子に用いられる材料として最も一
般的なものは、BaTiO3にLa、Ce、Srあるい
はPbなどの酸化物をドープして半導体化したセラミッ
クスが知られている。微量の酸化物をドープしたBaT
iO3系半導体は、キューリー点以下においては、粒界
の強誘電性のために結晶粒界のショットキー障壁が低く
なっているが、キューリー点以上では、誘電率が低下す
るために結晶粒界のショットキー障壁が高くなり抵抗が
急上昇するものと考えられている。
The most common material used for the PTC element is a ceramic obtained by doping BaTiO 3 with an oxide such as La, Ce, Sr or Pb to form a semiconductor. BaT doped with a small amount of oxide
In the iO 3 -based semiconductor, below the Curie point, the Schottky barrier at the crystal grain boundary is low due to the ferroelectricity of the grain boundary. It is believed that the Schottky barrier increases and the resistance rises sharply.

【0004】BaTiO3あるいはBaTiO3系組成物
からなるPTC材料を使用した種々の製品が知られてお
り、例えば、特開昭60−32282号公報には、PT
Cの抵抗変化幅の大きなセラミックヒータを得るため
に、BaTiO3と半導体化のための成分とからなるガ
ラス粉末を有機バインダと混合し、結晶析出温度以下で
加熱処理する製造方法が提案されている。
Various products using a PTC material composed of BaTiO 3 or a BaTiO 3 composition are known. For example, Japanese Patent Application Laid-Open No.
In order to obtain a ceramic heater having a large resistance change width of C, there has been proposed a manufacturing method in which glass powder composed of BaTiO 3 and a component for semiconductor conversion is mixed with an organic binder, and heat treatment is performed at a temperature lower than a crystal deposition temperature. .

【0005】しかし、上記公報に記載されているBaT
iO3系のPTC材料は、抵抗値が急激に増加するキュ
ーリー点が、通常100〜120℃の低温域に存在す
る。また、BaTiO3系PCT材料は、ドープする酸
化物の種類と添加量によってキューリー温度をコントロ
ールすることができ、例えば、Pb(鉛)酸化物を添加
することによって高温側にシフトさせることが試みられ
ているが、約300〜400℃が限界になっている。ま
た、大電力を得るためには室温近辺における抵抗率がで
きるだけ小さい方が好ましいが、100〜101Ω・cm
程度が限界であった。
However, the BaT described in the above publication is
In the iO 3 -based PTC material, the Curie point at which the resistance value sharply increases generally exists in a low temperature range of 100 to 120 ° C. The Curie temperature of the BaTiO 3 -based PCT material can be controlled by the type and amount of the oxide to be doped. For example, it has been attempted to shift to a higher temperature side by adding Pb (lead) oxide. However, the limit is about 300 to 400 ° C. Further, it is preferable resistivity in the vicinity room as small as possible in order to obtain a high power but, 10 0 ~10 1 Ω · cm
The extent was marginal.

【0006】BaTiO3系のPCT材料は、キューリ
ー温度が高く、かつ室温抵抗率が十分低いものが得られ
ないため、高温域あるいは大電力における使用が困難
で、形状も限られるという欠点があった。
The BaTiO 3 -based PCT material has a drawback that it is difficult to use it in a high-temperature region or a large power because the Curie temperature is high and the room temperature resistivity is not sufficiently low, and the shape is limited. .

【0007】上記のようなBaTiO3系のPCT材料
の欠点を解消したものとして、例えばBaPbO3にP
bO、B23、ZnOを主成分とするソルダーガラスを
重量比で5〜30%含有したPTC材料が、特開昭60
−59702号公報に記載されている。このPTC材料
は、室温抵抗率の値が10-4〜10-1Ω・cmと低く、
キューリー温度が約750℃と高温域にある。しかし、
添加するソルダーガラスの影響で室温抵抗率が著しく変
動したり、製造工程中における高温の焼成のためにPb
Oが飛散して組成変動を生じるという問題があった。
As a solution to the above-mentioned disadvantages of the BaTiO 3 based PCT material, for example, Pt is added to BaPbO 3 .
bO, B 2 O 3, PTC materials of the solder glass containing 5-30% by weight of a main component of ZnO, JP 60
-59702. This PTC material has a low room temperature resistivity value of 10 −4 to 10 −1 Ω · cm,
Curie temperature is in the high temperature range of about 750 ° C. But,
The room temperature resistivity fluctuates remarkably due to the influence of the added solder glass, or Pb due to high temperature firing during the manufacturing process.
There is a problem that O is scattered to cause composition fluctuation.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の問題を解決し、室温抵抗率が低く、抵抗率変化
点の温度が高く、抵抗変化率が大きな、安定なPCT材
料を得るものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a stable PCT material having a low room temperature resistivity, a high temperature at a resistivity change point, and a large resistance change rate. What you get.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
2 5 、ZnO及びB 2 3 を主成分とし、Al 2 3 及び
Bi 2 3 を添加した、あるいはAl 2 3 及びLi 2 3
添加した結晶化温度が500℃以下の結晶化ガラスの粉
末と、導電性材料粉末とを含有したPTC材料組成物で
ある。
The invention according to claim 1 is
V 2 O 5 , ZnO and B 2 O 3 as main components, Al 2 O 3 and
Bi 2 O 3 was added, or Al 2 O 3 and Li 2 O 3 were added.
It is a PTC material composition containing a crystallized glass powder having a crystallization temperature of 500 ° C. or less and a conductive material powder.

【0010】[0010]

【0011】請求項に係る発明は、請求項1記載のP
TC材料組成物において、導電性材料粉末が、金属粉末
からなるものである。
[0011] The invention according to claim 2 is a device according to claim 1,
In the TC material composition, the conductive material powder is made of a metal powder.

【0012】請求項に係る発明は、請求項記載のP
TC材料組成物において、結晶化ガラスの粉末と金属粉
末との合計100重量部に対して、金属粉末の含有量が
20〜40重量であるものである。
[0012] The invention according to claim 3 is a device according to claim 2 ,
In the TC material composition, the content of the metal powder is 20 to 40 parts by weight with respect to the total of 100 parts by weight of the crystallized glass powder and the metal powder.

【0013】請求項に係る発明は、請求項1記載のP
TC材料組成物において、導電性材料粉末が、導電性カ
ーボン粉末からなるものである。
[0013] The invention according to claim 4 is a device according to claim 1,
In the TC material composition, the conductive material powder is made of a conductive carbon powder.

【0014】請求項に係る発明は、請求項記載のP
TC材料組成物において、結晶化ガラスの粉末と導電性
カーボン粉末との合計100重量部に対して、導電性カ
ーボン粉末の含有量が5〜20重量部であるものであ
る。
[0014] According to Claim 5 invention, P of claim 4, wherein
In the TC material composition, the content of the conductive carbon powder is 5 to 20 parts by weight based on 100 parts by weight of the total of the crystallized glass powder and the conductive carbon powder.

【0015】請求項に係る発明は、請求項記載のP
TC材料組成物において、低融点ガラスの粉末を含有す
るものである。
[0015] According to Claim 6 invention, P according to claim 2, wherein
The TC material composition contains low melting glass powder.

【0016】請求項に係る発明は、請求項記載のP
TC材料組成物において、結晶化ガラスの粉末と低融点
ガラスの粉末と金属粉末との合計100重量部に対し
て、結晶化ガラスの粉末の含有量が30〜60重量部、
低融点ガラスの粉末の含有量が10〜40重量部、金属
粉末の含有量が20〜50重量部のものである。
[0016] The invention according to claim 7 is the invention according to claim 6 , wherein
In the TC material composition, the content of the crystallized glass powder is 30 to 60 parts by weight with respect to the total of 100 parts by weight of the powder of the crystallized glass, the powder of the low melting point glass, and the metal powder.
The content of the low melting glass powder is 10 to 40 parts by weight, and the content of the metal powder is 20 to 50 parts by weight.

【0017】請求項に係る発明は、 2 5 、ZnO及
びB 2 3 を主成分とし、Al 2 3 及びBi 2 3 を添加し
た、あるいはAl 2 3 及びLi 2 3 を添加した結晶化温
度が500℃以下の結晶化ガラスの粉末と、導電性材料
粉末とを含有したPTC材料組成物を成形した成形物を
焼成してなるPTC材料である。
The invention according to claim 8 is characterized in that V 2 O 5 , ZnO and
And B 2 O 3 as main components, and Al 2 O 3 and Bi 2 O 3 added.
Alternatively, a molded product obtained by molding a PTC material composition containing a powder of crystallized glass having a crystallization temperature of 500 ° C. or less and Al 2 O 3 and Li 2 O 3 added thereto and a conductive material powder is fired. PTC material.

【0018】[0018]

【0019】請求項に係る発明は、請求項記載のP
TC材料において、導電性材料粉末が、金属粉末からな
るものである。
According to a ninth aspect of the present invention, there is provided the method according to the eighth aspect.
In the TC material, the conductive material powder is made of a metal powder.

【0020】請求項10に係る発明は、請求項記載の
PTC材料において、結晶化ガラスの粉末と金属粉末と
の合計100重量部に対して、金属粉末の含有量が20
〜40重量部であるものである。
According to a tenth aspect of the present invention, in the PTC material according to the ninth aspect , the content of the metal powder is 20 parts by weight based on 100 parts by weight of the total of the crystallized glass powder and the metal powder.
4040 parts by weight.

【0021】請求項11に係る発明は、請求項記載の
PTC材料において、導電性材料粉末が、導電性カーボ
ン粉末からなるものである。
According to an eleventh aspect of the present invention, in the PTC material according to the eighth aspect , the conductive material powder is made of a conductive carbon powder.

【0022】請求項12に係る発明は、請求項11記載
のPTC材料において、結晶化ガラスの粉末と導電性カ
ーボン粉末との合計100重量部に対して、導電性カー
ボン粉末の含有量が5〜20重量部であるものである。
According to a twelfth aspect of the present invention, in the PTC material according to the eleventh aspect , the content of the conductive carbon powder is 5 to 100 parts by weight in total of the crystallized glass powder and the conductive carbon powder. It is 20 parts by weight.

【0023】請求項13に係る発明は、請求項記載の
PTC材料において、PTC材料組成物が、低融点ガラ
スの粉末を含有するものである。
According to a thirteenth aspect of the present invention, there is provided the PTC material according to the ninth aspect, wherein the PTC material composition contains a low-melting glass powder.

【0024】請求項14に係る発明は、請求項13記載
のPTC材料において、結晶化ガラスの粉末と低融点ガ
ラスの粉末と金属粉末との合計100重量部に対して、
結晶化ガラスの粉末の含有量が30〜60重量部、低融
点ガラスの粉末の含有量が10〜40重量部、金属粉末
の含有量が20〜50重量部であるものである。
According to a fourteenth aspect of the present invention, in the PTC material according to the thirteenth aspect , a total of 100 parts by weight of the crystallized glass powder, the low melting point glass powder, and the metal powder is used.
The content of the crystallized glass powder is 30 to 60 parts by weight, the content of the low melting point glass powder is 10 to 40 parts by weight, and the content of the metal powder is 20 to 50 parts by weight.

【0025】[0025]

【発明の実施の形態】以下に、本発明の実施の形態を示
す。本発明のPTC材料組成物は、結晶化温度が500
℃以下の結晶化ガラスの粉末と、導電性材料の粉末とを
含有する。
Embodiments of the present invention will be described below. The PTC material composition of the present invention has a crystallization temperature of 500
It contains a powder of crystallized glass at a temperature of not more than ° C and a powder of a conductive material.

【0026】結晶化ガラスの粉末は、V(バナジウ
ム)、Zn(亜鉛)およびB(ボロン)の酸化物(V2
5、ZnO及びB23)を主成分とするものである。
The powder of crystallized glass includes oxides of V (vanadium), Zn (zinc) and B (boron) (V 2
O 5 , ZnO and B 2 O 3 ) as main components.

【0027】上記結晶化ガラスの粉末と、導電性材料の
粉末とを含有するPTC材料組成物を成形し、焼成する
ことによって、室温抵抗率が低く、抵抗率変化点の温度
が高く、抵抗変化率が大きな、安定なPCT材料が得ら
れる。
By molding and firing a PTC material composition containing the above-mentioned crystallized glass powder and a conductive material powder, the room temperature resistivity is low, the temperature at the resistivity change point is high, and the resistance change A stable PCT material with a high rate can be obtained.

【0028】上記導電性材料粉末として、金属粉末ある
いは導電性カーボン粉末で構成することができる。
The conductive material powder may be composed of a metal powder or a conductive carbon powder.

【0029】金属粉末あるいは導電性カーボン粉末の含
有量は、多すぎる場合は抵抗変化率が小さくなり、PT
C特性における高抵抗率を保持できなくり、少なすぎる
場合は、室温抵抗率が著しく大きくなる。従って、全体
100重量部に対して、金属粉末の含有量は20〜40
重量部、好ましくは25〜35重量部とし、導電性カー
ボン粉末の場合の含有量は5〜20重量部とする。
If the content of the metal powder or the conductive carbon powder is too large, the rate of change in resistance becomes small,
When the high resistivity in the C characteristic cannot be maintained and is too small, the room temperature resistivity becomes extremely large. Therefore, the content of the metal powder is 20 to 40 parts by weight based on 100 parts by weight in total.
Parts by weight, preferably 25 to 35 parts by weight, and the content in the case of conductive carbon powder is 5 to 20 parts by weight.

【0030】また、本発明のPTC材料組成物は、結晶
化ガラスの粉末と、金属粉末とを含むものに、さらに低
融点ガラスの粉末を含有することによって、成形・焼成
後のPTC材料のPTC抵抗変化率をさらに大きくでき
る。
Further, the PTC material composition of the present invention comprises a powder containing a crystallized glass and a metal powder, and further contains a powder of a low-melting glass, so that the PTC material of the molded and fired PTC material is obtained. The rate of change in resistance can be further increased.

【0031】結晶化ガラスの粉末、低融点ガラスの粉末
及び金属粉末それぞれの含有量は、PTC特性の改善に
対して適正な範囲がある。すなわち、低融点ガラスの粉
末の含有量は、少なすぎるとPTC特性に対する改善効
果が得られず、多すぎると室温抵抗率が著しく増大し、
抵抗変化率が小さくなったり、温度上昇にともなって抵
抗が低下するNTC(Negative Temmpe
rature Coefficiennt)が発生し、
また、金属粉末の含有量は、多すぎる場合は抵抗変化率
が小さくなり、PTC特性における高抵抗率を保持でき
なくり、少なすぎる場合は、室温抵抗率が著しく大きく
なる。種々検討した結果、結晶化ガラスの粉末と低融点
ガラスの粉末と金属粉末との合計100重量部に対し
て、結晶化ガラスの粉末の含有量は30〜60重量部、
好ましくは40〜55重量部、低融点ガラスの粉末の含
有量は10〜40重量部、好ましくは20〜30重量
部、金属粉末の含有量は20〜50重量部、好ましくは
25〜45重量部の範囲(図2中の斜線部の範囲)とす
るのがよい。
The content of each of the crystallized glass powder, the low melting glass powder and the metal powder has an appropriate range for improving the PTC characteristics. That is, if the content of the powder of the low-melting glass is too small, the effect of improving the PTC characteristics cannot be obtained, and if it is too large, the room temperature resistivity remarkably increases,
NTC (Negative Temmpe) in which the resistance change rate decreases or the resistance decreases with an increase in temperature.
(Rateure Coefficient) occurs.
On the other hand, if the content of the metal powder is too large, the rate of change in resistance will be small, and it will not be possible to maintain a high resistivity in the PTC characteristics. If it is too small, the resistivity at room temperature will be significantly large. As a result of various studies, the content of the powder of the crystallized glass is 30 to 60 parts by weight with respect to the total of 100 parts by weight of the powder of the crystallized glass, the powder of the low melting point glass, and the metal powder.
Preferably, the content of the low melting glass powder is 40 to 55 parts by weight, preferably 20 to 30 parts by weight, and the content of the metal powder is 20 to 50 parts by weight, preferably 25 to 45 parts by weight. (The range of the hatched portion in FIG. 2).

【0032】上記PTC材料組成物を原料として、この
PTC材料組成物を均一に混合・調整して成形材料を作
製し、この成形材料を加圧成形して成形品を作製した
後、この成形品を焼成し、結晶析出と焼結を進行させ
て、本発明になるPTC材料を製造する。
Using the PTC material composition as a raw material, the PTC material composition is uniformly mixed and adjusted to produce a molding material, and the molding material is press-molded to produce a molded product. Is fired, crystal precipitation and sintering are advanced to produce the PTC material according to the present invention.

【0033】焼成して得られたPTC材料は、結晶化ガ
ラスの結晶粒界に、導電性材料粉末を含有する。
The PTC material obtained by firing contains a conductive material powder at the crystal grain boundaries of crystallized glass.

【0034】結晶化ガラスの結晶粒界の導電性材料粉末
は導電体として存在し、導体回路を形成する。抵抗の温
度変化に対する急激な変化、すなわち、PTC特性は、
従来のBaTiO3系PTC材料のようなキューリー点
における強誘電−常誘電転移に基づくものとは異なり、
23系のような結晶変態にともなう導電体−絶縁体転
移の機構、あるいは結晶化ガラスの結晶粒界に存在する
導電体の導体回路が、温度上昇によって結晶粒界に生成
されるわずかなガラス液相あるいはこのガラス液相から
析出する結晶によって排除され、切断されるといった新
たな機構によるものと推察される。
The conductive material powder at the crystal grain boundaries of the crystallized glass exists as a conductor and forms a conductive circuit. The rapid change of the resistance with respect to the temperature change, that is, the PTC characteristic is
Unlike those based on the ferroelectric-paraelectric transition at the Curie point, such as conventional BaTiO 3 based PTC materials,
The mechanism of the conductor-insulator transition accompanying the crystal transformation such as the V 2 O 3 system, or the conductor circuit of the conductor existing at the crystal grain boundary of the crystallized glass is slightly formed at the crystal grain boundary by the temperature rise. This is presumed to be due to a new mechanism such as being eliminated and cut by a vitreous glass liquid phase or crystals precipitated from this glass liquid phase.

【0035】通常の結晶化ガラスの結晶化温度は、90
0〜1000℃と高く、このような高い結晶化温度にお
いては、導電性材料の粉末は不安定になり、表面に酸化
物が形成されるなどして、導電性が著しく低下するが、
結晶化温度が500℃以下の結晶化ガラスを用い、50
0℃付近の温度で焼結することによって、導電性材料粉
末の導電性を維持するとともに、結晶化と焼結を同時に
進行させ、緻密なPTC材料を得ることができる。
The crystallization temperature of ordinary crystallized glass is 90
At such a high crystallization temperature as 0 to 1000 ° C., the powder of the conductive material becomes unstable and an oxide is formed on the surface, thereby significantly reducing the conductivity.
Using a crystallized glass having a crystallization temperature of 500 ° C. or less,
By sintering at a temperature around 0 ° C., the conductivity of the conductive material powder is maintained, and crystallization and sintering are simultaneously advanced, so that a dense PTC material can be obtained.

【0036】導電性材料粉末として、金属粉末あるいは
導電性カーボン粉末を用いることができる。
As the conductive material powder, metal powder or conductive carbon powder can be used.

【0037】金属粉末は、PTC材料の結晶化ガラスの
結晶粒界に、500℃付近の温度で液相または固相とし
て安定に存在し、焼結時には焼結性を向上させる働きも
有する。
The metal powder is stably present as a liquid phase or a solid phase at a temperature of around 500 ° C. at the crystal grain boundary of the crystallized glass of the PTC material, and also has a function of improving the sinterability during sintering.

【0038】PTC材料中の金属粉末の含有量は、多す
ぎる場合は抵抗変化率が小さくなり、PTC特性におけ
る高抵抗率を保持できなくなり、少なすぎる場合は、室
温抵抗率が著しく大きくなる。従って、全体100重量
部に対して、20〜40重量部、好ましくは25〜35
重量部とする。
If the content of the metal powder in the PTC material is too large, the rate of change in resistance will be small, and it will be impossible to maintain a high resistivity in the PTC characteristics. If it is too small, the resistivity at room temperature will be significantly large. Therefore, 20 to 40 parts by weight, preferably 25 to 35 parts by weight, based on 100 parts by weight in total.
Parts by weight.

【0039】また、PTC材料中の導電性カーボン粉末
は比重が小さいので、多すぎる場合は焼成時に発生する
結晶化ガラスの液相と混じり合わず、焼結が困難にな
り、たとえ焼結できても抵抗変化率は導電性カーボンと
変わらないものになる。また、少なすぎる場合は、室温
抵抗率が著しく大きくなる。従って、全体100重量部
に対して、導電性カーボン粉末の場合には、含有量は5
〜20重量部とする。
Also, since the conductive carbon powder in the PTC material has a small specific gravity, if it is too large, it does not mix with the liquid phase of the crystallized glass generated at the time of firing, making sintering difficult. Also, the resistance change rate is the same as that of the conductive carbon. If the amount is too small, the resistivity at room temperature becomes extremely large. Therefore, in the case of conductive carbon powder, the content is 5
To 20 parts by weight.

【0040】焼成温度は、低すぎると結晶化が不十分に
なるので結晶化温度より約20℃高い温度とし、高すぎ
ると結晶化ガラスの液相成分が増大し発泡し焼結密度が
低下するので、550℃以下の温度とする。種々検討し
た結果によれば、金属粉末を含むものでは550℃以下
で焼成し、導電性カーボン粉末を含有するものでは50
0℃以下で焼成することによって良好な結果が得られ
る。
If the sintering temperature is too low, the crystallization will be insufficient, so that the sintering temperature is about 20 ° C. higher than the crystallization temperature. Therefore, the temperature is set to 550 ° C. or less. According to the results of various investigations, those containing metal powder were fired at 550 ° C. or lower, while those containing conductive carbon powder were fired at 50 ° C. or less.
Good results can be obtained by firing at 0 ° C. or lower.

【0041】また、上記のように、PTC材料組成物
に、さらに低融点ガラスの粉末を含有させることによっ
て、PTC抵抗変化率を大きくできるが、この低融点ガ
ラス粉末の融点は、焼成温度より低く、さらに結晶化ガ
ラス粉末の結晶化温度より低いものが用いられ、焼成温
度は、結晶化ガラスの結晶化の進行及び低融点ガラスの
発泡による焼結密度の低下の点から、500℃とするの
がよい。
Further, as described above, the rate of change in PTC resistance can be increased by further adding a low melting point glass powder to the PTC material composition, but the melting point of the low melting point glass powder is lower than the firing temperature. Further, a material having a temperature lower than the crystallization temperature of the crystallized glass powder is used. Is good.

【0042】低融点ガラスの粉末を含有することによっ
て、焼成時に、溶融した低融点ガラスの中で結晶化ガラ
スの結晶析出及び結晶成長が進行するため、結晶化ガラ
スの粒界に導電性金属粉末が有効に存在するようになっ
て、金属粉末の界面が増大し、PTC抵抗変化幅が大き
くなる。
By containing the powder of the low-melting glass, the crystallization and the crystal growth of the crystallized glass progress in the molten low-melting glass at the time of sintering. Effectively exists, the interface of the metal powder increases, and the PTC resistance change width increases.

【0043】また、低融点ガラス粉末として、主成分が
PbO、B23、SiO2(融点が300〜350℃)
のソルダーガラスを用いることができる。このソルダー
ガラスは、融点がPTC材料の焼成温度より低いため、
この溶融したソルダーガラスの中での結晶化ガラスの析
出・結晶成長が進行するのに好適であり、また、焼結を
促進し焼結したPTC材料の強度を向上する働きを有す
る。
As the low melting point glass powder, the main components are PbO, B 2 O 3 and SiO 2 (melting point is 300 to 350 ° C.)
Can be used. Since this solder glass has a melting point lower than the firing temperature of the PTC material,
It is suitable for the precipitation and crystal growth of crystallized glass in the molten solder glass to proceed, and has a function of promoting sintering and improving the strength of the sintered PTC material.

【0044】本発明のPTC材料組成物及びPTC材料
の結晶化ガラスは、V25、ZnO及びB23を主成分
とし、Al23及びBi23を添加したもの、あるいは
Al23及びLi23を添加したものなど結晶化温度が
500℃以下のものであればよく、また、結晶化ガラス
の平均粒径は、特に限定されないが、通常3〜20μm
であるのが好ましい。
The PTC material composition and the crystallized glass of the PTC material according to the present invention contain V 2 O 5 , ZnO and B 2 O 3 as main components, to which Al 2 O 3 and Bi 2 O 3 are added, or It is sufficient that the crystallization temperature is 500 ° C. or less, such as the one to which Al 2 O 3 and Li 2 O 3 are added, and the average particle size of the crystallized glass is not particularly limited, but is usually 3 to 20 μm.
It is preferred that

【0045】また、導電性材料粉末は、カーボン粉末、
Sn、Fe、Co、Ni、Mo、W、Ag、Ptあるい
はPdなどの金属粉末、合金粉末、これらの金属あるい
は合金粉末の1種または2種以上を混合したものなど導
電性のものであればよいが、特に、室温抵抗率が11×
10-6Ω・cm以下の金属粉末あるいは室温抵抗率が1
×10-3Ω・cm以下の導電性カーボン粉末が好まし
い。
The conductive material powder may be carbon powder,
Conductive materials such as metal powders such as Sn, Fe, Co, Ni, Mo, W, Ag, Pt or Pd, alloy powders, and mixtures of one or more of these metals or alloy powders Good, but especially room temperature resistivity is 11 ×
Metal powder of 10 -6 Ω · cm or less or resistivity at room temperature of 1
A conductive carbon powder of × 10 −3 Ω · cm or less is preferable.

【0046】また、導電性材料粉末の平均粒径は特に限
定されないが、金属粉末の平均粒径は、通常、0.1〜
5μmであるのが好ましく、導電性カーボンの平均粒径
は、30〜100nmのものがPTC特性発現上好まし
い。
The average particle size of the conductive material powder is not particularly limited.
Preferably, the average particle size of the conductive carbon is 30 to 100 nm in terms of PTC characteristics.

【0047】[0047]

【実施例】以下に、本発明について、実施例と比較例を
挙げて詳細に説明する。 実施例1〜28.表1は、本実施例におけるPTC材料
組成物の組成、焼成温度、室温抵抗率、抵抗率変化点及
び変化率(500℃における抵抗率/室温抵抗率)を、
比較例1〜5とともに示すものである。
The present invention will be described below in detail with reference to examples and comparative examples. Embodiments 1-28. Table 1 shows the composition of the PTC material composition, the firing temperature, the room temperature resistivity, the resistivity change point and the change rate (resistivity at 500 ° C./room temperature resistivity) in this example.
This is shown together with Comparative Examples 1 to 5.

【0048】[0048]

【表1】 [Table 1]

【0049】本実施例のPCT材料組成物は、V25
ZnO−B23−Al23−Bi23系結晶化ガラス
(結晶化温度:430℃、融点:670℃)の粉末と、
金属粉末としてAg、Sn、Cu、Fe、Co、Ni、
Mo、W、PtまたはPdの1種以上の金属粉末とを原
料とした。これらの金属粉末には、高純度試薬(99.
99%)を用いた。
The PCT material composition of the present example was obtained by using V 2 O 5
ZnO-B 2 O 3 -Al 2 O 3 -Bi 2 O 3 based crystallized glass (crystallization temperature: 430 ° C., a melting point: 670 ° C.) and powder,
Ag, Sn, Cu, Fe, Co, Ni,
At least one metal powder of Mo, W, Pt or Pd was used as a raw material. These metal powders include high-purity reagents (99.
99%).

【0050】まず、この原料を秤量して上記表1に示す
組成で、結晶化ガラスと、金属粉末を配合した後、オム
ニミキサーで5分間予備混合し、次に、アセトンを加え
て5分間石川式攪袢擂潰機で混合し、さらに、湿式ボー
ルミルで6時間混合を行って均一化を図り、混合材料を
得た。
First, this raw material was weighed and mixed with a crystallized glass and a metal powder with the composition shown in Table 1 above, followed by premixing for 5 minutes with an omni mixer, and then adding acetone for 5 minutes. The mixture was mixed by a stirring machine and further mixed by a wet ball mill for 6 hours to achieve uniformity, thereby obtaining a mixed material.

【0051】次に、上記混合材料を常態ドラフト中に放
置してアセトンを見かけ上揮発させた後、50℃のオー
ブン中で、1時間保持し、さらに、80℃に昇温して1
昼夜保持して、アセトンを完全に除去・乾燥してPTC
材料組成物を得た。
Next, the above mixed material was left in a normal draft to apparently volatilize acetone, then kept in an oven at 50 ° C. for 1 hour, and further heated to 80 ° C. for 1 hour.
Hold day and night to completely remove acetone and dry to remove PTC
A material composition was obtained.

【0052】得られたPTC材料組成物を直径30mm
の金型に充填し、加圧形して高さが約2mmの成形体
を形成した。この成形体を電気炉中で500℃前後の温
度に加熱し自然放冷させてPTC材料を得た。この加熱
によって、ガラスの結晶化及び焼結が進行する。
The obtained PTC material composition was prepared with a diameter of 30 mm.
Of was filled in a mold, the height to form a compact of about 2mm by pressure formed shape. This molded body was heated to a temperature of about 500 ° C. in an electric furnace and allowed to cool naturally to obtain a PTC material. By this heating, crystallization and sintering of the glass progress.

【0053】得られたPTC材料にAgペーストを塗布
し焼き付けて電極を形成し、室温から500℃までの抵
抗率の温度特性を測定した。
An Ag paste was applied to the obtained PTC material and baked to form an electrode, and the temperature characteristics of resistivity from room temperature to 500 ° C. were measured.

【0054】上記表1の結果が示すように、比較例1
(結晶化ガラス90重量%)は室温抵抗率が高く、抵抗
変化点が観測されず、比較例2及び3(結晶化ガラス5
0重量%)は室温抵抗率は低いものの、抵抗変化点が観
測されなかった。一方、実施例1〜28(結晶化ガラス
の含有量が60〜80重量%、金属粉末の含有量が20
〜40重量%)は、室温抵抗率が約100Ω・cm以
下、抵抗率変化点が400℃以上で抵抗変化率が5以上
のPTC材料が得られ、特に、結晶化ガラスの含有量が
65〜75重量%で金属粉末の含有量が25〜35重量
%(実施例4〜5)の場合に良好な結果が得られた。
As shown by the results in Table 1 above, Comparative Example 1
(90% by weight of crystallized glass) has a high room temperature resistivity, no resistance change point is observed, and Comparative Examples 2 and 3 (crystallized glass 5
0% by weight), the room temperature resistivity was low, but no resistance change point was observed. On the other hand, Examples 1-28 (the content of crystallized glass was 60-80% by weight and the content of metal powder was 20
40 wt%), the room temperature resistivity of about 10 0 Ω · cm or less, the resistivity change point resistance change rate at 400 ° C. or more 5 or more PTC material is obtained, in particular, the content of crystallized glass Good results were obtained when the metal powder content was 25 to 35% by weight (Examples 4 and 5) at 65 to 75% by weight.

【0055】比較例4及び5は焼成温度を検討したもの
であるが、焼成温度は450〜550℃とした場合に良
好な結果が得られ、比較例4(焼成温度400℃)のよ
うに焼成温度が低い場合は未焼結となり、比較例5(焼
成温度600℃)のように焼成温度が高い場合は発泡し
て室温抵抗率が高くなり、抵抗変化点が観測されなかっ
た。
In Comparative Examples 4 and 5, the firing temperature was examined. Good results were obtained when the firing temperature was 450 to 550 ° C. When the temperature was low, it was unsintered, and when the firing temperature was high as in Comparative Example 5 (fired temperature 600 ° C.), foaming occurred and the room temperature resistivity increased, and no resistance change point was observed.

【0056】実施例29〜41.本実施例は、結晶化ガ
ラスと導電性材料粉末(金属粉末)に、さらに低融点ガ
ラスを含むもので、表2にそのPTC材料組成物の組
成、焼成温度、室温抵抗率、抵抗率変化点及び抵抗変化
率(500℃における抵抗率/室温抵抗率)を、比較例
6〜9とともに示した。
Embodiments 29 to 41. In this embodiment, the crystallized glass and the conductive material powder (metal powder) further contain a low melting point glass. Table 2 shows the composition of the PTC material composition, the firing temperature, the room temperature resistivity, and the resistivity change point. And the rate of change in resistivity (resistivity at 500 ° C./resistivity at room temperature) are shown together with Comparative Examples 6 to 9.

【0057】[0057]

【表2】 [Table 2]

【0058】結晶化ガラスにはV25−ZnO−B23
−Al23−Bi23系結晶化ガラス(結晶化温度:4
30℃、融点:670℃)の粉末を用い、低融点ガラス
にはPbO−B23−SiO2−Bi23系のフリット
ガラスを用いた。導電性材料粉末にはAg粉末、Agと
Cuとを混合した金属粉末、AgとCuとPdとを混合
した金属粉末とし、金属粉末には、高純度試薬(99.
99%)を用いた。
V 2 O 5 —ZnO—B 2 O 3
-Al 2 O 3 -Bi 2 O 3 -based crystallized glass (crystallization temperature: 4
A powder having a melting point of 30 ° C. and a melting point of 670 ° C.) was used, and a frit glass based on PbO—B 2 O 3 —SiO 2 —Bi 2 O 3 was used as the low melting point glass. Ag powder, metal powder obtained by mixing Ag and Cu, metal powder obtained by mixing Ag, Cu and Pd are used as the conductive material powder, and a high-purity reagent (99.
99%).

【0059】まず、この原料を秤量して上記表2に示す
組成で、結晶化ガラスと、低融点ガラス粉末と、金属粉
末とを配合した後、実施例1〜28と同様、予備混合、
石川式攪袢擂潰機による混合、湿式ボールミルによる均
一化を経て混合材料を得、この混合材料を常態ドラフト
中及びオーブン中における乾燥を行ってPTC材料組成
物を得た。
First, this raw material was weighed and blended with a crystallized glass, a low-melting glass powder and a metal powder according to the composition shown in Table 2 above, followed by pre-mixing as in Examples 1-28.
A mixed material was obtained through mixing with an Ishikawa stirring mill and homogenization with a wet ball mill, and the mixed material was dried in a normal draft and in an oven to obtain a PTC material composition.

【0060】得られたPTC材料組成物を、実施例1〜
28と同様に加圧成形して直径30mm、高さ約2mm
の成形体を形成した。この成形体を電気炉中で500℃
前後の温度に加熱し自然放冷させてPTC材料を得た。
この加熱によって、ガラスの結晶化及び焼結が進行す
る。
The obtained PTC material compositions were prepared as in Examples 1 to
Pressure molding in the same way as 28, diameter 30mm, height about 2mm
Was formed. This molded body is placed in an electric furnace at 500 ° C.
The PTC material was obtained by heating to the temperature before and after and allowing it to cool naturally.
By this heating, crystallization and sintering of the glass progress.

【0061】得られたPTC材料にAgペーストを塗布
し焼き付けて電極を形成し、室温から500℃までの抵
抗率の温度特性を測定した。図2は本実施例の組成1と
比較例の組成2とを示すものである。
An Ag paste was applied to the obtained PTC material and baked to form an electrode, and the temperature characteristics of resistivity from room temperature to 500 ° C. were measured. FIG. 2 shows composition 1 of the present example and composition 2 of the comparative example.

【0062】上記表2の結果が示すように、結晶化ガラ
ス30〜60重量%、低融点ガラス10〜40重量%、
金属粉末20〜50重量%の範囲、すなわち実施例の組
成2を含む範囲(図2の斜線部)で室温抵抗率が約10
0Ω・cm以下、抵抗率変化点が400℃以上、抵抗変
化率が5以上のPTC材料が得られ、特に、結晶化ガラ
ス35〜55重量%、低融点ガラス15〜35重量%、
金属粉末25〜45重量%の範囲で良好な特性が得られ
る。上記斜線で示す組成の外側(図2の比較例の組成
2)の比較例6及び7は室温抵抗率が高く、比較例8は
室温抵抗率は低いものの抵抗変化点が観測されなかっ
た。
As shown in the results of Table 2, 30 to 60% by weight of crystallized glass, 10 to 40% by weight of low melting glass,
The room temperature resistivity was about 10 in the range of 20 to 50% by weight of the metal powder, that is, in the range including the composition 2 of the example (the hatched portion in FIG. 2).
A PTC material having 0 Ω · cm or less, a resistivity change point of 400 ° C. or more, and a resistance change rate of 5 or more is obtained. In particular, crystallized glass 35 to 55% by weight, low melting point glass 15 to 35% by weight,
Good characteristics can be obtained in the range of 25 to 45% by weight of the metal powder. Comparative examples 6 and 7 outside the composition indicated by the oblique lines (composition 2 of the comparative example in FIG. 2) have high room temperature resistivity, and comparative example 8 has low room temperature resistivity but no resistance change point was observed.

【0063】焼成温度は結晶化ガラスの結晶化温度より
高い450〜500℃の範囲でよい結果が得られる。比
較例9は焼成温度を検討したもので、図2の斜線部の範
囲内の組成であっても、焼成温度が500℃を越えると
発泡し、室温抵抗率が高くなることを示している。
Good results are obtained when the firing temperature is in the range of 450 to 500 ° C. higher than the crystallization temperature of the crystallized glass. Comparative Example 9 examines the firing temperature, and shows that even if the composition is within the range of the hatched portion in FIG. 2, when the firing temperature exceeds 500 ° C., foaming occurs and the room temperature resistivity increases.

【0064】実施例42〜45.本実施例は、導電性材
料粉末の原料として導電性カーボンを用いたもので、表
3にそのPTC材料組成物の組成、焼成温度、室温抵抗
率、抵抗率変化点及び抵抗変化率(500℃における抵
抗率/室温抵抗率)を、比較例10〜13とともに示し
た。
Embodiments 42 to 45. In this example, conductive carbon was used as a raw material of the conductive material powder. Table 3 shows the composition of the PTC material composition, firing temperature, room temperature resistivity, resistivity change point, and resistance change rate (500 ° C.). At room temperature / resistivity at room temperature) along with Comparative Examples 10 to 13.

【0065】[0065]

【表3】 [Table 3]

【0066】結晶化ガラスにはV25−ZnO−B23
−Al23−Bi23系結晶化ガラス(結晶化温度:4
30℃、融点:670℃)の粉末を用い、導電性カーボ
ンには平均粒子径50nmの高純度(99.99%)の
ものを用いた。
V 2 O 5 —ZnO—B 2 O 3 is used for the crystallized glass.
-Al 2 O 3 -Bi 2 O 3 -based crystallized glass (crystallization temperature: 4
A powder having a high purity (99.99%) with an average particle diameter of 50 nm was used as the conductive carbon.

【0067】まず、この原料を秤量して上記表3に示す
組成で配合した後、実施例1〜28と同様、予備混合、
石川式攪袢擂潰機による混合、湿式ボールミルによる均
一化を経て混合材料を得、この混合材料を常態ドラフト
中及びオーブン中における乾燥を行ってPTC材料組成
物を得た。
First, this raw material was weighed and blended with the composition shown in Table 3 above, followed by pre-mixing as in Examples 1-28.
A mixed material was obtained through mixing with an Ishikawa stirring mill and homogenization with a wet ball mill, and the mixed material was dried in a normal draft and in an oven to obtain a PTC material composition.

【0068】得られたPTC材料組成物を、実施例1〜
28と同様に加圧成形して直径30mm、高さ約2mm
の成形体を形成した。この成形体を電気炉中で500℃
前後の温度に加熱し自然放冷させてPTC材料を得た。
この加熱によって、ガラスの結晶化及び焼結が進行す
る。
The obtained PTC material compositions were prepared in Examples 1 to
Pressure molding in the same way as 28, diameter 30mm, height about 2mm
Was formed. This molded body is placed in an electric furnace at 500 ° C.
The PTC material was obtained by heating to the temperature before and after and allowing it to cool naturally.
By this heating, crystallization and sintering of the glass progress.

【0069】得られたPTC材料にAgペーストを塗布
し焼き付けて電極を形成し、室温から500℃までの抵
抗率の温度特性を測定した。
An Ag paste was applied to the obtained PTC material and baked to form electrodes, and the temperature characteristics of resistivity from room temperature to 500 ° C. were measured.

【0070】上記表3の結果が示すように、結晶化ガラ
ス80〜95重量%、導電性カーボン5〜20重量%
(実施例42〜45)で室温抵抗率が約100Ω・cm
以下、抵抗率変化点が400℃以上、抵抗変化率が5以
上のPTC材料が得られ、この組成の外側の組成の場合
(比較例10及び11)は室温抵抗率が高く、抵抗変化
点が観測されず(比較例10)、また観測されても抵抗
変化率が小さなもの(比較例11)であった。
As shown in the results in Table 3, 80 to 95% by weight of crystallized glass and 5 to 20% by weight of conductive carbon
Room temperature resistivity (Example 42-45) is about 10 0 Ω · cm
Hereinafter, a PTC material having a resistivity change point of 400 ° C. or more and a resistance change rate of 5 or more is obtained. In the case of a composition outside this composition (Comparative Examples 10 and 11), the room temperature resistivity is high and the resistance change point is high. It was not observed (Comparative Example 10), and even if observed, the resistance change rate was small (Comparative Example 11).

【0071】焼成温度は結晶化ガラスの結晶化温度より
高い450〜500℃の範囲でよい結果が得られる。比
較例12及び13は焼成温度を検討したもので、焼成温
度が500℃を越えると発泡し、焼成温度が低い(43
0℃)では室温抵抗率が高く抵抗変化率が負(NTC特
性)になる。
Good results can be obtained when the firing temperature is in the range of 450 to 500 ° C. higher than the crystallization temperature of the crystallized glass. In Comparative Examples 12 and 13, the firing temperature was studied. When the firing temperature exceeded 500 ° C., foaming occurred and the firing temperature was low (43).
0 ° C.), the room temperature resistivity is high and the resistance change rate is negative (NTC characteristic).

【0072】なお、上記実施例1〜45において、V2
5−ZnO−B23−Al23−Bi23系結晶化ガ
ラスの粉末を用いたが、V25−ZnO−B23−Al
23−Li23系結晶化ガラスの粉末を用いた場合おい
ても同様のPTC特性のが得られた。
In Examples 1 to 45, V 2
O 5 -ZnO-B 2 O 3 -Al 2 O 3 -Bi 2 O 3 system was used a powder of crystallized glass, V 2 O 5 -ZnO-B 2 O 3 -Al
Similar PTC characteristics were obtained when powder of 2 O 3 —Li 2 O 3 crystallized glass was used.

【0073】[0073]

【発明の効果】請求項1〜14に係る発明によれば、室
温抵抗率が低く、抵抗変化点の温度が高く、抵抗変化率
が大きく、安定なPTC特性を示すPTC材料が得られ
る。
According to the first to fourteenth aspects of the present invention, a PTC material having a low room temperature resistivity, a high temperature at a resistance change point, a large resistance change rate, and stable PTC characteristics can be obtained.

【0074】請求項6、7、13および14に係る発明
によれば、さらに抵抗変化率が大きくでき、安定なPT
C特性を示すPTC材料が得られる。
According to the sixth, seventh, thirteenth, and fourteenth aspects of the present invention, the rate of change in resistance can be further increased, and
A PTC material exhibiting C characteristics is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一般的なPTC材料の温度特性を示すグラフ
である。
FIG. 1 is a graph showing temperature characteristics of a general PTC material.

【図2】 本発明の低融点ガラスを含有するPTC材料
の組成範囲を示す図である。
FIG. 2 is a diagram showing a composition range of a PTC material containing a low melting point glass of the present invention.

【符号の説明】[Explanation of symbols]

1 実施例の組成、2 比較例の組成 1 Composition of Example 2 Composition of Comparative Example

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01C 7/02 - 7/22 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01C 7/ 02-7/22

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2 5 、ZnO及びB 2 3 を主成分と
し、Al 2 3 及びBi 2 3 を添加した、あるいはAl 2
3 及びLi 2 3 を添加した結晶化温度が500℃以下
の結晶化ガラスの粉末と、導電性材料粉末とを含有した
ことを特徴とするPTC材料組成物。
1. A composition comprising V 2 O 5 , ZnO and B 2 O 3 as main components.
And Al 2 O 3 and Bi 2 O 3 were added, or Al 2 O 3
A PTC material composition comprising: a powder of crystallized glass to which O 3 and Li 2 O 3 are added, the crystallization temperature of which is 500 ° C. or lower; and a conductive material powder.
【請求項2】 導電性材料粉末が、金属粉末からなる
とを特徴とする請求項1記載のPTC材料組成物。
2. The PTC material composition according to claim 1 , wherein the conductive material powder comprises a metal powder .
【請求項3】 結晶化ガラスの粉末と金属粉末との合計
100重量部に対して、金属粉末の含有量が20〜40
重量部であることを特徴とする請求項記載のPTC材
料組成物。
3. The sum of the powder of crystallized glass and the metal powder
The metal powder content is 20 to 40 parts by weight based on 100 parts by weight.
The PTC material composition according to claim 2 , wherein the PTC material composition is part by weight .
【請求項4】 導電性材料粉末が、導電性カーボン粉末
からなることを特徴とする請求項記載のPTC材料組
成物。
4. The conductive material powder is a conductive carbon powder.
PTC material composition according to claim 1, characterized in that it consists of.
【請求項5】 結晶化ガラスの粉末と導電性カーボン粉
末との合計100重量部に対して、導電性カーボン粉末
の含有量が5〜20重量部であることを特徴とする請求
記載のPTC材料組成物。
5. A powder of crystallized glass and a conductive carbon powder.
Conductive carbon powder with respect to 100 parts by weight in total
The PTC material composition according to claim 4 , wherein the content of PTC is 5 to 20 parts by weight .
【請求項6】 低融点ガラスの粉末を含有することを特
徴とする請求項記載のPTC材料組成物。
6. The PTC material composition according to claim 2, further comprising a low melting glass powder .
【請求項7】 結晶化ガラスの粉末と低融点ガラスの粉
末と金属粉末との合計100重量部に対して、結晶化ガ
ラスの粉末の含有量が30〜60重量部、低融点ガラス
の粉末の含有量が10〜40重量部、金属粉末の含有量
が20〜50重量部であることを特徴とする請求項
載のPTC材料組成物。
7. Powder of crystallized glass and powder of low-melting glass
For a total of 100 parts by weight of powder and metal powder,
Low melting glass with a content of lath powder of 30 to 60 parts by weight
Powder content is 10 to 40 parts by weight, metal powder content
PTC material composition according to claim 6, wherein the but 20 to 50 parts by weight.
【請求項8】 2 5 、ZnO及びB 2 3 を主成分と
し、Al 2 3 及びBi 2 3 を添加した、あるいはAl 2
3 及びLi 2 3 を添加した結晶化温度が500℃以下
の結晶化ガラスの粉末と、導電性材料粉末とを含有した
PTC材料組成物を成形した成形物を焼成してなること
を特徴とするPTC材料。
8. A composition comprising V 2 O 5 , ZnO and B 2 O 3 as main components.
And Al 2 O 3 and Bi 2 O 3 were added, or Al 2 O 3
The crystallization temperature to which O 3 and Li 2 O 3 are added is 500 ° C. or less
Containing crystallized glass powder and conductive material powder
A PTC material obtained by firing a molded product obtained by molding a PTC material composition .
【請求項9】 導電性材料粉末が、金属粉末からなるこ
とを特徴とする請求項8記載のPTC材料。
9. The PTC material according to claim 8 , wherein the conductive material powder comprises a metal powder .
【請求項10】 結晶化ガラスの粉末と金属粉末との合
計100重量部に対して、金属粉末の含有量が20〜4
0重量部であることを特徴とする請求項9記載のPTC
材料。
10. A combination of a crystallized glass powder and a metal powder.
The metal powder content is 20 to 4 with respect to a total of 100 parts by weight.
The PTC according to claim 9, wherein the amount is 0 parts by weight.
material.
【請求項11】 導電性材料粉末が、導電性カーボン
末からなることを特徴とする請求項記載のPTC材
料。
11. The PTC material according to claim 8 , wherein the conductive material powder comprises a conductive carbon powder.
【請求項12】 結晶化ガラスの粉末と導電性カーボン
粉末との合計100重量部に対して、導電性カーボン粉
末の含有量が5〜20重量部であることを特徴とする請
求項11記載のPTC材料。
12. A conductive carbon powder based on a total of 100 parts by weight of a crystallized glass powder and a conductive carbon powder.
The PTC material according to claim 11 , wherein the content of the powder is 5 to 20 parts by weight .
【請求項13】 PTC材料組成物が、低融点ガラスの
粉末を含有することを特徴とする請求項9記載のPTC
材料。
13. The method of claim 1, wherein the PTC material composition comprises a low melting glass.
The PTC according to claim 9, wherein the PTC contains a powder.
material.
【請求項14】 結晶化ガラスの粉末と低融点ガラスの
粉末と金属粉末との合計100重量部に対して、結晶化
ガラスの粉末の含有量が30〜60重量部、低融点ガラ
スの粉末の含有量が10〜40重量部、金属粉末の含有
量が20〜50重量部であることを特徴とする請求項
記載のPTC材料。
14. A method for producing a powder of crystallized glass and a glass having a low melting point.
Crystallized for a total of 100 parts by weight of powder and metal powder
30-60 parts by weight of glass powder, low melting point glass
Powder content is 10 to 40 parts by weight, metal powder content
Claim amount, characterized in that 20 to 50 parts by weight 1
3. The PTC material according to 3 .
JP14159596A 1996-06-04 1996-06-04 PTC material composition and PTC material Expired - Fee Related JP3301312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14159596A JP3301312B2 (en) 1996-06-04 1996-06-04 PTC material composition and PTC material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14159596A JP3301312B2 (en) 1996-06-04 1996-06-04 PTC material composition and PTC material

Publications (2)

Publication Number Publication Date
JPH09326302A JPH09326302A (en) 1997-12-16
JP3301312B2 true JP3301312B2 (en) 2002-07-15

Family

ID=15295670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14159596A Expired - Fee Related JP3301312B2 (en) 1996-06-04 1996-06-04 PTC material composition and PTC material

Country Status (1)

Country Link
JP (1) JP3301312B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626483B2 (en) 2004-08-30 2009-12-01 Kyushu Institute Of Technology Self-recovering current limiting fuse using dielectrophoretic force
JP5050265B2 (en) * 2007-11-09 2012-10-17 国立大学法人九州工業大学 Self-healing current limiting fuse
JP5050266B2 (en) * 2008-01-10 2012-10-17 国立大学法人九州工業大学 Mechanical fuse and its sensitivity setting method
JP2012001402A (en) * 2010-06-18 2012-01-05 Shimane Univ Electric resistance material

Also Published As

Publication number Publication date
JPH09326302A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JPWO2010067866A1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP3301312B2 (en) PTC material composition and PTC material
JP6848327B2 (en) A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor.
TW200940475A (en) Process for producing semiconductor porcelain composition and heater employing semiconductor porcelain composition
JP6887615B2 (en) Glass containing bismuth ruthenate particles and its production method, thick film resistor composition and thick film resistor paste
JP2005145809A (en) Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
KR940009872B1 (en) Making method of semiconductive batio3
JPS61220402A (en) Ptc paste
JP2005097070A (en) Zinc oxide-based sintered compact and zinc oxide varistor
JPH10308302A (en) Zinc oxide-based porcelain composition and its production and zinc oxide varistor
JP3038906B2 (en) Method for producing barium titanate-based semiconductor porcelain
JPS61294803A (en) Manufacture of voltage non-linear resistor
JPWO2015002197A1 (en) PTC element and heating module
JP2000044333A (en) Production of zinc oxide varistor
JPS6366401B2 (en)
JPS61101008A (en) Manufacture of thick film type positive temperature coefficient semiconductor element
JPH0855702A (en) Composition for heat-generating body
JPS59167001A (en) Oxidized zinc nonlinear resistor
JPH1112031A (en) Barium lead titanate-based semiconductor ceramic composition
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JP2004269341A (en) Zinc oxide-based sintered compact, its manufacturing method, and zinc oxide varistor
JPS60261102A (en) Method of producing thick film positive temperature coefficient semiconductor element
JPH061722B2 (en) Method for manufacturing thick film type positive temperature coefficient semiconductor device
JPH11106256A (en) Production of barium titanate-based semiconductor material
JPH09330806A (en) Manufacture of voltage nonlinear resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees